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Cross-Language Taint Analysis: Generating
Caller-Sensitive Native Code Specification for Java

Shuangxiang Kan , Yuhao Gao , Zexin Zhong , and Yulei Sui

Abstract—Cross-language programming is a common practice
within the software development industry, offering developers a
multitude of advantages such as expressiveness, interoperability,
and cross-platform compatibility, for developing large-scale ap-
plications. As an important example, JNI (Java Native Interface)
programming is widely used in diverse scenarios where Java
interacts with code written in other programming languages,
such as C or C++. Conventional static analysis based on a single
programming language faces challenges when it comes to tracing
the flow of values across multiple modules that are coded in
different programming languages. In this paper, we introduce
CSS, a new Caller-Sensitive Specification approach designed to
enhance the static taint analysis of Java programs employing
JNI to interface with C/C++ code. In contrast to conservative
specifications, this approach takes into consideration the calling
context of the invoked C/C++ functions (or cross-language
context), resulting in more precise and concise specifications for
the side effects of native code. Furthermore, CSS specifically
enhances the capabilities of Java analyzers, enabling them to
perform precise static taint analysis across language boundaries
into native code. The experimental results show that CSS can
accurately summarize value-flow information and enhance the
ability of Java monolingual static analyzers for cross-language
taint flow tracking.

Index Terms—Static analysis, taint analysis, cross-language
program, caller-sensitive specification.

I. INTRODUCTION

CROSS-LANGUAGE programming, involving the use of
multiple programming languages within a single software

project, has become increasingly relevant in today’s diverse
computing environment. Java, a widely-used language, employs
the Java Native Interface (JNI) for this purpose. JNI allows Java
to interact with C and C++ code, enabling access to functional-
ities like those in C/C++ libraries, such as OpenCV. However,
JNI’s use introduces the complexity of development [1] and also
potential security vulnerabilities [1], [2], [3], [4], [5], [6], [7],
[8], [9]. These risks are particularly concerning in the context
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of sensitive data exchanges, where malicious information flows
can infiltrate from an app to native code (or third-party libraries)
by exploiting a security vulnerability through JNIs. This allows
attackers to bypass specific security checks, enabling activities
such as identity theft and unauthorized account access [4], [5],
[6], [7], [10].

Static taint analysis is increasingly becoming an impor-
tant technique to ensure security for multi-module and multi-
language frameworks [11], [12], [13], [14]. When undertaking
cross-language static analysis, there are typically two strategies
to consider. The first strategy involves compiling different pro-
gramming languages into a singular intermediate representation
(IR) [9], [15], [16], [17], [18], [19]. The limitation of this
approach is the intrinsic and distinct features among different
programming languages, creating a common IR to encompass
programs written in distinct languages can be very challeng-
ing. Another limitation is the potential loss of information and
inconsistencies when using a unified IR for analyzing different
languages. In these tools [20], [21], [22], different languages are
compiled into a unified IR separately. To accommodate multiple
languages, compromises in the unified IR are often made due
to separate compilation for distinct semantics of each language.
Representing precisely the semantics at the border between two
languages is challenging. For example, in JNI programs, Java
and C/C++ have static and dynamic binding modes and distinct
naming conventions. In addition, C/C++ consistently represents
all Java objects as jobject without distinguishing specific Java
object information. Even if a unified IR representing both Java
and C/C++ code is used for later analysis, it may still fail to
produce the desired results due to the loss of jobject informa-
tion. The unified IR has to preserve all these API behaviors.
As high-level languages evolve, modifying the design or imple-
mentation of the unified IR is also challenging. Accommodating
all possible behaviors from high-level languages by modifying
the unified IR is very hard and sometimes cost-ineffective.

The second strategy utilizes specifications (including sum-
maries and stub functions) to encapsulate the value-flow side-
effects of native methods [9], [23], [24]. The specification-based
approach represents another way of performing cross-language
analysis where the existing single-language analyzers (e.g., Java
analyzers) together with their various analysis algorithms can
be reused with light or even no modifications. The specification-
based approach, which centers on analyzing a summarized or
condensed version of a library function rather than the entire
function, has demonstrated its practicality in real-world cross-
language and cross-module static analysis scenarios. However,
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Fig. 1. A data leakage JNI example (simplified).

automatically generating highly precise specifications for
large-sized programs that involve multiple languages can pose
significant challenges. This is due to the fact that specifications
heavily depend on the analyzers, such as different value-flow
or vulnerability checkers. The current cross-language static
analysis approach often entails the creation of specifications
either manually or automatically for each language
independently, without considering the cross-language
calling contexts, like calling context in Java that makes use of
native libraries.

To illustrate, Fig. 1 is a simplified Android case of
sensitive information leakage within the Gumen family
in the Android Malware Dataset [25]. This case shows
data leakage by transmitting the device’s IMEI from the
Java layer’s processReplyMsg() method to the C++ code’s
Java_SdkUtils_stringFromJNI() function (the counterpart of
stringFromJNI() method in the Java code). A conventional
approach to specification generation prioritizes analysis
soundness by accounting for all conceivable caller information
and calling contexts. Nonetheless, such specifications
frequently suffer from redundancy and imprecision. For
example, in the initial caller-insensitive specification, the
“Case 2” branch within the C++ program’s specification
becomes redundant if it’s established that there is only
one calling context for stringFromJNI() from the Java
program callers. A more concise and precise caller-sensitive
specification can be created, ensuring that s and t are always
non-aliases. This accurately summarizes all feasible execution
scenarios by considering all available code in both the Java
and C++ programs. Our insight is that specifications for
available source code (written in multiple languages) benefit
from cross-language caller-sensitive summarization, which
produces more precise and compact specifications than a
single-language (e.g., C/C++) based conservative approach.
Given that JNI interactions often require C/C++ code to
invoke Java methods and access fields while relying on
Java class or object information, conducting an independent
analysis of C/C++ to over-approximate all possible input

to native code can lead to the generation of redundant and
imprecise specifications (as detailed in Section II-B1). Note
that specifications may need to be updated if the available
source code including caller information is changed.

In this paper, we introduce a new approach named Caller-
Sensitive Specification (CSS) to generate precise and concise
specifications for native calls within JNI environments. Given
its automated specification extraction approach, CSS aims to
improve efficiency and reduce the size of specifications to
track value-flows across JNI programs. Unlike the conventional
approach of analyzing isolated C/C++ functions, our caller-
sensitivity pertains to contextual information (including aliases,
method signatures, and tainted flows) across language bound-
aries, that is when a native callee is called by Java caller
methods. The soundness of CSS is based on the assumption
that all source code is available. This strategy enables us to
identify the data attributes existing at the boundary between
Java and C/C++ interactions – for instance, direct and indirect
value-flows via parameter passings and returns. Subsequently,
utilizing insights provided by the Java analyzer, the C/C++
static analyzer contributes to the extraction of value-flows of
the corresponding native C/C++ functions. The outcomes of
the C/C++ function’s value-flows are conveyed back to the Java
analyzer in the form of a specification, namely CSS, facilitating
the iterative value-flow analysis.

Incorporating the cross-language context of called native
functions into summarization can reduce redundancy with im-
proved analysis efficiency and reduced storage space. Further-
more, our automated CSS approach can be used as a compact
program representation for existing single-language static an-
alyzers to aid in cross-language modeling. This compatibility
empowers static analyzers to seamlessly execute effective cross-
language static analysis with slight code adjustments. Though
more precise given caller-sensitive information, the soundness
of CSS is based on the availability of both Java and native
source code. The specifications interface, capable of accom-
modating methods from diverse languages, demonstrates its
versatility by supporting new languages without necessitating
extensive modifications.

In summary, the following are our contributions:
• We introduce CSS, a new caller-sensitive specification

approach designed to enhance the static value-flow analy-
sis of JNI programs. This approach, which takes into ac-
count the calling context across languages, yields precise
and compact specifications for efficient cross-language
analysis.

• CSS integrates smoothly with Java static analysis tools
specifically for JNI contexts. The incorporation of our
proposed caller-sensitive specifications enables these tools
to handle Java/Native interactions more efficiently within
their existing frameworks.

• We have conducted comprehensive experiments aimed at
comparing the value-flow analysis using CSS in JNI pro-
grams. Through the application of CSS, existing Java static
analyzers demonstrate enhanced performance in tracing
value-flow within JNI programs, outperforming current
cross-language approaches.
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Fig. 2. JNI interoperation.

II. BACKGROUND AND MOTIVATING EXAMPLE

A. JNI Interoperation

The Java Native Interface (JNI) is a mechanism enabling
Java code to interact with native code in languages like C
and C++ (In this paper, the terms “native code” and “C/C++
code” are used interchangeably). It facilitates Java methods to
call native functions and vice versa. This is particularly useful
for accessing platform-specific features or using performance-
critical libraries written in native languages.

JNI calls. JNI enables the development of cross-language
programs, allowing developers to use Java and C/C++ seam-
lessly in a simple workflow like Fig. 2. This process involves
declaring and calling a “native” method in Java, which corre-
sponds to a C++ callee function in C/C++. The Java code is
compiled to Java bytecode, while the C/C++ code is compiled to
binary code within a dynamic library. The Java Virtual Machine
(JVM) facilitates JNI calls, enabling communication between
the Java bytecode and binary code during program execution.

Binding modes. There are two binding modes for JNI
development: static binding and dynamic binding. Static
binding links a native method directly to its implementa-
tion during compilation, with a fixed function name for-
mat like Java_PackageName_ClassName_MethodName (e.g.,
Java_SdkUtils_stringFromJNI() in Fig. 1), determined at com-
pile time. Additional macros and keywords, such as JNIEX-
PORT and JNICALL, ensure proper linkage between Java and
native code. The JNIEnv* pointer refers to the JNIEnv interface,
providing JNI functions to interact with the Java runtime, and
the jobject or jclass is a reference to the invoking Java object
or class. On the other hand, dynamic binding allows registering
native methods at runtime using any naming scheme through
the RegisterNatives() function and the JNI_OnLoad() function
during native library initialization.

JNI functions. JNI provides a set of functions, such as
locating classes, accessing methods and fields, and creating
objects, that facilitate communication between Java and na-
tive code. JNI functions serve as a bridge between the two
worlds, enabling seamless interaction and communication. By
using these functions, developers can extend the capabilities
of Java applications by leveraging platform-specific features
and performance-critical native libraries. For example, JNI
function FindClass() can locate a Java class using its fully
qualified name.

B. Motivating Example

Fig. 3 illustrates a JNI example demonstrating how sensitive
data propagates between Java (Fig. 3(a)) and C++ (Fig. 3(b)).
The interface void native_c_callee(User, User), declared with
the “native” keyword, serves as the entry point for the Java
code to execute the corresponding C++ function. The function
void Java_JavaCaller_native_c_callee (JNIEnv*, jobject, job-
ject, jobject) (Lines C2 and C3) represents the C/C++ function
implementation of this native method, which will handle the
data that passed from the Java side.

The method caller() (Line J3) in the Java side loads the
sensitive user data (Line J5) from the request and stores it in
an object of User. In addition, another object loginUser will
load and store the object user (Line J7). Because the loginUser
and user refer to the same memory, loginUser.username and
user.username are aliased. Finally, the C++ function will be in-
voked at Line J8 by calling the native method native_c_callee()
with two aliased arguments user and loginUser.

In C++ function void Java_JavaCaller_native_c_callee(),
there exists a potential data leakage of sensitive source data.
The username of the second parameter, b, is obtained through
the three JNI functions at Lines C7-9 and then stored into the
userInfo of object model (Line C10), ultimately being leaked to
a log file by calling Log.print() at Line C11. Since b.username
and a.username are aliased, a.username is also leaked when
calling Log.print(). Next, we will briefly compare CSS and
other approaches when building native summarizations to trace
sensitive data and detect information leakages across languages.

1) Taint Analysis With Caller-Insensitive Specification
(CIS): Conventional Java static analyzers typically conduct a
manually defined solution for native library summarizations.
These approaches require developers or users to provide value-
flow specifications that identify source-to-sink paths of the na-
tive functions for the analyzers [26], [27]. However, ensuring
the accuracy of manually defined specifications can be chal-
lenging because they are often isolated from the cross-language
calling context, which is caller-insensitive (Caller-insensitive
Specification, CIS), and mainly focuses on analyzing the be-
haviour of native functions. As a result, the accuracy of such
specifications is hard to guarantee. Furthermore, these manually
defined specifications either selectively consider certain cases
(such as excluding alias situations) or include all possible taint
and alias situations.

Optimistic handling of JNIs. If the analysis is con-
ducted exclusively on Java_JavaCaller_native_c_callee(), the
first challenge is JNI functions. As the C/C++ analyzer en-
counters getObjectClass(b) at Line C7, it faces difficulty in
obtaining information about the object b, which results in a
broken value-flow of the taint analysis at this line. This hinders
the creation of a valid source-sink specification, as depicted
in the ObjectClass-unavailable specification in Fig. 3(c). This
optimistic approach assumes no side effects on unresolved JNI
functions, simplifying analysis but risking unsound results.

Pessimistic handling of JNIs. Even if a C/C++ analyzer
has access to information about object b, in order to main-
tain soundness, the pessimistic or conservative approach as-
sumes that C/C++ code can execute any action. A conservative
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Fig. 3. An illustrating JNI example with Java and native code.

specification would include the following two alias cases for
the function Java_JavaCaller_native_c_callee():
Case 1: alias(arg0, arg1) == true (red value-flow 1©)
Scallee = 〈From : {arg0&arg1}.username,To : Log .

print()〉
Case 2: alias(arg0, arg1) == false (blue value-flow 2©)

Scallee = 〈From : arg1 .username,To : Log .print()〉.
For the conservative specification in Fig. 3(d), pts(v) represents
the points-to set of variable v, Lines C7-9 are simplified to char
*name = b.getUsername(); for easy understanding. However,
these redundancy cases in CIS can impact the analysis effi-
ciency if the conditions are complicated in large-size summa-
rizations, and it could also lead to over-tainting and impact the
performance of the analysis.

2) Taint Analysis With Caller-Sensitive Specification
(CSS): A taint analyzer with CSS typically comprises a Java
analyzer and a C/C++ analyzer, each responsible for analyzing
the specific programming language. The Java analyzer first
performs taint analysis on the Java side and traces the
propagation of sensitive data. In this example, the source data
of the username loaded from the request is marked and traced
by the Java taint analyzer. Due to loginUser and user are
made to be aliases at Line J7, and thus loginUser.username is
also tainted. When calling native method native_c_callee(), as
the Java analyzer lacks traceability to C/C++ code, the taint
analysis will be handed over to the C/C++ analyzer. Prior to this,

the Java analyzer will generate a caller specification Scaller =
〈taint : {arg0 &arg1}.username;alias : {arg0 , arg1};arg
Types : {User ,User}〉 that includes cross-language context
information about this native call.

The C/C++ analyzer then takes over the analyzing
task using the caller specification Scaller . Because Scaller
contains the object information of b (i.e., User in the
caller), the functionality of three JNI functions can be
successfully parsed, leading to the retrieval of b’s username.
b.username is ultimately leaked to the Log.print() function.
Since Scaller indicates that b.username and a.username are
aliased, a.username also leaks to the Log.print() function.
When the analysis on the C/C++ side is completed, a
specification representing the taint analysis result in the
C/C++ side of the callee is generated in the form of Scallee =
〈From : {arg0&arg1}.username;To : Log .print()〉 (Caller-
sensitive specification in Fig. 3(e)). This generated specification
is then sent back to the Java analyzer for further taint tracing.
The above value-flow analysis process reveals that accurate
value-flow for C/C++ functions is achieved given the
knowledge of cross-language contexts.

3) Taint Analysis With JN-SAF and JuCify: JN-SAF
[28] is an Android static analysis framework that handles
native method calls. It constructs the call graph from re-
quest.getUsername() to Log.print() and performs taint analysis.
While JN-SAF can identify the source-to-sink path in this small
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Fig. 4. The workflow of our cross-language taint analysis with caller-sensitive specifications.

example, its scalability is constrained for larger programs due
to path explosion problems with Angr’s [29] symbolic execu-
tion. Moreover, it may yield inconsistent results when dealing
with binary code compiled at different optimization levels [30].
Another Android static analysis framework, JuCify [17], aims
to construct a unified model for Android code. However, Jucify
is unable to reconstruct the behavior of pure native functions.
Consequently, its tainted flow is broken at setUserInfo() and
print(). These limitations affect the accuracy and scalability of
cross-language static analysis in these tools.

III. METHODOLOGY

A. Workflow

Fig. 4 illustrates our taint analysis workflow with CSS for JNI
programs. It starts by analyzing the bytecode to identify tainted
data sources. To demonstrate the generalization of our CSS
summarization, we use recent popular taint analyzers Flowdroid
[13], Tai-e [27] and, WALA [21] for Android and Java. Ana-
lyzers are employed to track the flow of tainted data and gather
contextual information for specifying native method callers.
Upon finding a called native method (Step 1©) with tainted
arguments (Step 2©), it checks whether the same calling context
has been previously analyzed (Step 3©). If the same calling
context analysis has been performed before, the Java static
analyzer will reuse the pre-generated native call specification
to reduce redundant analysis (Step 4©). Otherwise, a caller
specification (Step 5©) is generated to record the current native
calling context.

The caller specification contains method signature, and infor-
mation about tainted and aliased arguments. For callee spec-
ification, we use SVF, a C/C++ static analyzer [12], [31] to
combine this information with LLVM IR to identify native
functions (Step 6©) and annotate tainted and aliased arguments
(Step 7©). Sources and sinks in native code are identified based
on caller specifications and user configurations (Step 8©).

The Sparse Value-Flow Graph (SVFG) [31] (Step 9©) repre-
sents interprocedural value-flows across C/C++ functions, help-
ing identify paths from native sources to native sinks. A caller-
sensitive specification for each callee is generated using SVFG
(Step 10©), including native method signatures, callbacks, native

sources of tainted data and sinks. This specification is then sent
back to the Java static analyzer to continue the analysis. As
illustrated in Fig. 4, the process of generating caller and callee
specifications is conducted in an iterative manner until a fixed
point is reached (Step 11©).

B. Caller Specification Extraction on Java Side

We employ alias analysis and taint analysis in a Java taint
analyzer (e.g., FlowDroid, Tai-e and, WALA) to construct caller
specifications. In these tools, a forward taint analysis is in-
tegrated with an on-demand alias analysis. A native callee
function can be invoked by multiple callers from Java code
with each call involving different arguments being passed to
the callee’s parameters. Please note that our caller-sensitive ap-
proach, unlike the traditional context-sensitive analysis, focuses
on language boundaries, where the caller-sensitive contextual
information transferred to native code can be computed through
any (context-insensitive or context-sensitive) Java alias and taint
analysis. We consider the argument information passed from the
Java side caller before extracting value-flow specifications for
C/C++ side functions. By following this approach, we can gen-
erate specific specifications that precisely reflect the program’s
behavior, as opposed to relying on a single, all-encompassing
conservative specification that might fail to accurately capture
the caller-sensitive behaviors.

The analysis begins by identifying sources and sinks, after
which data from the input sources is labeled starting from the
entry points. Throughout this process, each callsite is examined
to determine if the method being called is a native method
(indicated by the “native” keyword in its declaration). If the
method is native and its arguments contain source data when
being invoked, a three-tuple specification Scaller = (Se ,D ,A)
(Fig. 5) is generated to capture the calling context of this
native method.

Specifically, Se contains the signature of the called native
method, including fully qualified method m (package name,
class name, and method name), the return type r and the list
of n parameter types P . In order to identify tainted argu-
ments and aliases, D and A are introduced. D represents a list
of arguments indicating which argument ai is tainted or not
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Fig. 5. Three-tuple caller specification.

(taint(ai) = true or false). A represents a list of pairs of argu-
ments, where each pair (aj , ak ) represents an alias relationship
between argument aj and argument ak (alias(aj , ak ) = true or
false). If tainted data and aliases occur at a deeper level within
the arguments, such as aj .f and ak .g , we mark the specific level
of the taint and alias relationships in fields D and A.

When marking tainted parameters, a recursive access path
may arise. For example, when a parameter’s field points back
to the parameter itself (a.f = a), the length of the access path can
potentially become infinite (a.f, a.f.f, a.f.f...f ). We use k-limiting
[32] to address this issue. We set a fixed value k, signifying
the maximum length for all access paths within our analysis. In
cases where the analysis produces an access path that surpasses
this predetermined value k, it is truncated and annotated with
an asterisk. For instance, when k = 2, “o.f.f.f ” is represented
as “o.f.f.*” and all objects pointed to by fields after “o.f.f ” are
considered tainted. Moreover, using k-limiting to truncate the
access path is sound because o.f.f.f is a subset of o.f.f, and using
o.f.f to represent o.f.f.f will cause the result of static analysis to
be conservative.

But before generating a new Scaller , the Java analyzer will
check whether the same native call context has been encoun-
tered previously. This context involves the call to the same
native method and the same aliases and tainted flows. If such a
context has occurred before, it reuses the existing native call
specification (Scallee ) and continues the analysis of the Java
code. Otherwise, a new Scaller is generated for the subsequent
C/C++ code analysis.

For example, the caller specification Scaller of Java method
caller() is like the format of Fig. 6. calleeMethod (Field
Se ) records the signature of the invoked native method na-
tive_c_callee(). taintedArgs (Field D) and aliasArgs (Field A)
indicate that the username of first and second arguments of this
native call are both tainted and aliased.

C. Callee’s Value-Flow Specification Extraction on C/C++
Side

Once the caller specification Scaller is generated, it will be
used by C/C++ analyzers to produce the callee specification
with source-sink information for native functions. The caller
specifications are combined with the LLVM IR compiled by
C/C++ code to produce a CSS containing the value-flows of
tainted arguments.

Fig. 4 illustrates the five steps involved in generating a caller-
sensitive (callee) specification:

• Native function identification: Accurate mapping of a
native method in Java to its corresponding function in

Fig. 6. Caller’s specification extraction.

C/C++ is necessary to locate the implementation code of
the method, as naming conventions for native methods
differ between the two languages.

• Taint and alias arguments annotation: This step can
assist in more precisely tracking tainted arguments in de-
termined native function and identifying alias relationships
among them.

• Sources and sinks determination in native code: Native
sources and sinks need to be specified to generate interpro-
cedural value-flows in native code.

• Sparse value-flow graph (SVFG) construction: Sparse
value-flow graph is then constructed to capture the def-use
chains of variables for sources and sinks.

• Caller-sensitive specification generation: This is accom-
plished by solving graph reachability on SVFG, which
entails traversing from sources to sinks in native code.
According to whether the sources can reach the sinks, the
corresponding specification is generated.

Before the five steps mentioned earlier, C/C++ code is con-
verted to LLVM IR using clang or other tools. In LLVM IR,
each instruction is in Static Single Assignment (SSA) form, en-
suring that each variable is assigned only once. LLVM IR com-
prises two types of variables: top-level variables and address-
taken variables. Top-level variables, which consist of stack vir-
tual registers (prefixed with “%”) and global variables (prefixed
with “@”), are explicit and maintain the SSA form. On the other
hand, address-taken variables are accessed indirectly through
“Load” or “Store” instructions and encompass stack objects,
heap objects, and global objects.

1) Native Function Identification: As described in Section
II-A, the naming conventions for native methods differ between
Java and C/C++. In Java, native methods are typically declared
using the “native” keyword, followed by the method signa-
ture. To ensure accurate mapping between Java and C/C++,
functions that adhere to the JNI naming rules and those regis-
tered dynamically through (env)→RegisterNatives() within the
JNI_OnLoad() function in C/C++ code will be searched to find
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Fig. 7. A fragment of LLVM IR and its memory SSA form of the motivating
example in Fig. 3.

the counterpart of the Java native method (green curved arrow
in Fig. 7).

2) Taint and Alias Arguments Annotation: Fields D (tain-
tArgs) and A (aliasArgs) in Scaller are used after the C/C++
function is determined. D is used to mark which arguments
are “tainted”, which can help eliminate the influence of other
“untainted” arguments and focus only on the tainted ones. A is
used when allocating abstract objects for the C/C++ function
arguments. If two arguments are aliased, only one object is
allocated for both of them. Conversely, if they are not aliased,
then two different objects are allocated for each of the argu-
ments, respectively. For example, in Fig. 7, since taintedArgs
(Field D) in Scaller indicates that the field username of first
and second arguments are tainted, then the objects pointed by
a.username and b.username are marked as sources and their
value-flows will be tracked. In addition, aliasArgs (Field A)
indicates that parameters a and b are aliased, so only one
object obj1 is assigned to a.username and b.username (blue
curved arrow).

3) Sources and Sinks Determination in Native Code: The
parameters indicated in the field D of Scaller are marked as
sources (or native sources), such as the field username of the
first and second parameters in Fig. 7. Sinks in native code (or
native sinks) need to determine whether the tainted data flows to
return value or is leaked to the outside world (data confidential-
ity is violated). Some sink functions can be configured before
the analysis, such as fprintf() or __android_log_print(), to check
whether native sources are used as arguments of these native
sink functions. In the motivating example, we are interested in
whether the user’s name or password information is written to
the logs, so Log.print() is marked as a native sink.

4) Sparse Value-Flow Graph (SVFG) Construction: Sparse
pointer analysis propagates pointer information from variable

definitions to their uses through pre-computed def-use chains.
Sparse value-flow graph (SVFG) [31], [33] captures def-use
chains and value-flow via assignments for all memory loca-
tions represented by both top-level and address-taken pointers.
After getting the Scaller and LLVM IR, SVFG is constructed
to capture the value-flow paths within and across procedural
boundaries. During the construction of SVFG, the side-effects
of instructions such as “Load”, “Copy”, “Store”, “Phi”, and
“Call” are annotated using χ and μ functions. χ and μ functions
were used to represent potential defs and uses of a memory
object o at stores or loads, where μ(o) indicates the use of
variable o, and o = χ(o) represents the def and use of o [34].

However, JNI C/C++ functions differ from regular C/C++
functions and require addressing the following three issues:

a) Constructing points-to sets of arguments: Before
constructing the SVFG of a determined C/C++ function, one
challenge is that the caller on the C/C++ side is absent, as the
caller resides on the Java side. Consequently, the points-to set
of the arguments is initially empty. To resolve this, it becomes
necessary to construct the points-to sets of the arguments based
on the fields D and A in the caller specification Scaller. When
multiple arguments have alias relationships, only one object is
created (e.g., obj1 in Fig. 7). Conversely, for arguments without
alias relationships, separate objects are created.

b) JNI type conversion functions modeling: Another
difficulty in building the SVFG arises from JNI-provided func-
tions. JNI functions are a set of native programming interfaces
provided by the JDK, enabling developers to interact with Java
objects, fields, and methods in native code. Type conversion
functions are a subset of JNI functions specifically used to con-
vert data between Java and C/C++ data types. Given the distinct
data type systems between Java and C/C++, JNI functions play
a crucial role in Java and C/C++ communication.

CSS aims to automatically summarize the native application
code (C/C++ code) by modelling the behaviour of JNI APIs.
These APIs when used in C/C++ have pre-defined semantics.
CSS supports modeling of JNI interactions between Java and
C in a caller-sensitive manner for precise summarization of
native code. When compiling JNI functions into LLVM IR,
their source code is often not included. We have abstracted their
side-effects to address this challenge in value-flow analysis.
This strategy improves value-flow analysis by focusing on user-
defined logic and efficiently handling the complexities of JNI
functions. For example, we replaced the body of const char*
addr = env→ GetStringUTFChars(env, addr_, NULL), which
retrieves a pointer to a UTF-8 encoded string representing a Java
String object, with a store statement *addr=addr_, allowing us
to handle JNI functions without access to their source code.

c) JNI callbacks to java methods and fields handling:
In native code, when callbacks to Java fields and methods are
needed, a series of JNI functions are used. These functions
contain the complete signatures of the Java fields and methods
being called back, such as class names, method names, and,
types. If C/C++ analysis can correctly resolve the callbacks
based on the signatures of the Java fields and methods, we will
parse these callbacks. For example, Lines L5-7 are considered
an operation to retrieve the “username” field of object b. For
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Fig. 8. Four-tuples callee specification.

callbacks with tainted values that the C/C++ analysis cannot
resolve, we record the signatures of callback Java fields or
methods and mark which field or argument is tainted. This
information is then passed to the Java analyzer after native
code analysis.

5) Caller-Sensitive Specification Generation: Once
the SVFG is built, the value-flow paths of top-level and
address-taken variables can be obtained by solving a graph
reachability problem on it. For example, the value-
flow of address-taken variables obj1 in Fig. 7 is
L3→ L4→ L9→ L12→ L15 (red curved arrow). Finally,
the value-flow passed in the function Log_print() through
an argument. Then a four-tuple caller-sensitive specification
Scallee = (Se ,Q ,B , J ), as shown in Fig. 8, is created to record
the tainted value-flow.
Scallee is similar to Scaller , but fields D and A in Scaller are

replaced by Q and B in Scallee . Additionally, we introduce J
to record call-back Java methods S or Java fields F in native
code, where F contains field names and types. When Scallee
is returned to the Java static analyzer for use, Se is used to
identify and locate which native method is called. Q contains
the taint arguments flowing to a sink in the native function.
B indicates the destination of the tainted arguments in Q . B
has two destinations: ret means that it flows back to the Java
side through the return value, Sk is the signature of the sink
function, indicating that arguments in Q finally flows to the
sink function. J contains Java methods and fields that are ac-
cessed sequentially in the order they are invoked from the native
code callback.

For instance, Fig. 9 shows the CSS of the function
Java_JavaCaller_native_c_callee(), which captures the
tainted value-flow originating from the field username
of first and second arguments (From: [arg0.username,
arg1.username]) and directs it towards the native function
Log.print() (To: [Log.print()]). Because we can deduce from
Scaller ’s parameter information that the role of Lines L5-7 in
Fig. 7 is to retrieve the username from b, so callbacks (Field
J ) in Fig. 9 is empty. Otherwise, we need to record callback
information for Java fields.

IV. EVALUATION

We present the evaluation of our CSS, aiming to assess its
ability to precisely summarize the value-flows of the native
code to be used by existing Java analyzers. We conducted three
experiments to validate our approach.

Experiment 1: Android benchmark NativeFlowBench For
this experiment, we utilize the benchmark Native FlowBench as

introduced in a previous study [28]. This benchmark contains
23 hand-crafted Android JNI applications, offering a wide spec-
trum of interoperability features. Our analysis employs Flow-
droid [13] to conduct value-flow analysis on the Java code and
SVF [12], [31] for C/C++ code. This combination of analysis
tools allows us to evaluate the effectiveness of CSS in tracking
value-flows across both Java and C/C++ components of these
Android applications.

Experiment 2: Java benchmark JavaNativeBench. To
further evaluate the robustness of CSS, we create a set of
custom-designed applications JavaNativeBench that simulate
real-world JNI interactions. These applications are crafted to
cover scenarios not addressed in Experiment 1. We leverage Tai-
e [27], WALA [21], Flowdroid, and, JN-SAF to perform value-
flow analysis. In addition, we conduct a comparative experiment
between CSS and another summary-based approach to evaluate
the quality of CSS.

Experiment 3: Real-world JNI projects. To assess the
practical applicability and correctness of CSS within real-world
contexts, we examine ten real-world JNI applications sourced
from Github. These applications represent diverse Android
projects that extensively utilize JNI, providing a comprehensive
and robust evaluation platform for our CSS approach. We use
FlowDroid for value-flow analysis on the Java components and
SVF for the C/C++ components.

Spanning these three experiments, our objective is to demon-
strate the effectiveness of the proposed CSS in precisely sum-
marizing value-flows within the native code and proficiently
tracing value-flows across JNI programs. Utilizing FlowDroid,
Tai-e and, WALA for Android and Java applications separately
demonstrates how CSS integrates with various Java static an-
alyzers, demonstrating its ability to improve single-language
analyzers for cross-language analysis.

Environment setup. All of our evaluations were performed
on 12th Gen Intel(R) Core(TM) i7-12700 with 16GB of RAM.
The O.S. is Ubuntu 22.04.3 LTS with Linux 6.2.0-33-generic
64-bit. Before experimenting with each project, sources and
sinks will be predetermined, and a manual check for ground
truths will be conducted to confirm the existence and number
of paths from sources to sinks. Additionally, projects with ex-
cessively long running times due to bugs in the baseline tools
will be manually terminated to ensure a fair comparison.

The experimental results are publicly available1.

A. Results on NativeFlowBench Benchmark

In NativeFlowBench, all the projects are Android-based.
Therefore, we chose a popular Android static analysis tool,
Flowdroid [13], as a baseline in this experiment. JN-SAF [28]
and JuCify [17] are two tools directly related to cross-language
taint analysis. Both can perform source-sink data flow analysis
for Android apps and only require specifying sources and sinks
for the experimental projects. Additionally, we integrated CSS
into Flowdroid to assess whether our proposed approach can

1https://drive.google.com/drive/folders/1KCneXc8NY80pEzk1nvjoiB6LB8-
D_F3S?usp=sharing
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Fig. 9. Callee’s specification extraction.

TABLE I
RESULTS OF NATIVEFLOWBENCH BENCHMARKS. FD, JS, JC, FD-CSS

DENOTES THE RESULT OF FLOWDROID, JN-SAF, JUCIFY

AND FLOWDROID-CSS

NativeFlowBench FD JS JC FD-CSS
icc_javatonative × � × ×
icc_nativetojava × � × �
native_complexdata × � × �
native_complexdata_stringop × ∗ × ×
native_dynamic_register_multiple × � × �
native_heap_modify × � × ×
native_leak × � × �
native_leak_array × � × �
native_leak_dynamic_register × � × �
native_method_overloading × × × �
native_multiple_interactions × � × �
native_multiple_libraries × � × �
native_noleak � × � �
native_noleak_array � ∗ � �
native_nosource × × × ×
native_pure × � × ×
native_pure_direct × � × ×
native_pure_direct_customized × � × ×
native_set_field_from_arg × � � �
native_set_field_from_arg_field × � × �
native_set_field_from_native × � × ×
native_source × � � ×
native_source_clean ∗ × × �
Precsion 8.7% 73.9% 17.4% 60.9%

�: True Positive; ∗ : False Positive; ×: False Negative.

enhance the capabilities of a single-language static analyzer
Flowdroid for cross-language data-flow analysis.

Table I presents the results of four different tools on Native-
FlowBench, namely FlowDroid (abbreviated as FD), JN-SAF
(JS), Jucify (JC), and FlowDroid-CSS (FD-CSS).

FlowDroid, primarily focused on analyzing Java and An-
droid applications, encountered challenges when handling na-
tive calls. It did not process these native calls if no manual
configuration was provided for their source-sink paths, often
leading to unsound modeling, as demonstrated by its result
(8.7% precision) in Table I.

FlowDroid-CSS, a hybrid approach that uses FlowDroid
with CSS summarization of C/C++ code, showed significant
improvement over FlowDroid. By leveraging CSS to

provide C/C++ value-flow information, FlowDroid-CSS
significantly enhances FlowDroid’s capability to handle JNI
programs, achieving 60.9% precision.

JN-SAF performs relatively well (73.9% precision)
compared to some other tools analyzed given that the
benchmark was created by the authors of JN-SAF themselves.
For cases where entry points not located in native code, the
differing performances of FlowDroid-CSS and JN-SAF on
certain benchmarks, including native_method_overloading,
native_noleak, native_noleak_array, native_source_clean,
and native_complexdata_stringop, primarily depend on
the differences in the data flow analysis algorithms of the
two tools. For instance, JN-SAF had a false positive on
native_noleak_array because it cannot distinguish different
indexes of a Java array. Another false positive occurred for
native_complexdata_stringop due to its imprecise string
analysis and overapproximated the contents of the string. In
contrast, FlowDroid-CSS did not analyze the content of string
variables, resulting in false negatives.

The biggest challenge that FlowDroid-CSS faced is sce-
narios where the entry points and sources are located in
native code. This limitation arises from the requirement of
caller information provided by the Java side for further value-
flow analysis. Without calling context information, subsequent
native code value-flow analysis cannot be completed. As a
result, FlowDroid-CSS encountered difficulties in handling cer-
tain cases, including icc_javatonative, native_heap_modify, na-
tive_pure, native_pure_direct, native_pure_direct_customized,
native_set_field_from_native, and native_source. These scenar-
ios involve native calls initiated by the C/C++ side, making
the caller information unavailable for the Java-based analysis,
leading to failure in generating correct specifications.

Jucify, another tool capable of handling Android cross-
language value-flow analysis, exhibited limitations (17.4%
precision), particularly in scenarios involving purely native
functions or native leaks. This constraint is due to Jucify’s
original design, which did not explicitly cater to such scenarios,
where native functions are prevalent in many JNI programs.

Note that the current version of JN-SAF is outdated, as it can
only analyze NDKs compiled in specific versions. However, the
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TABLE II
RESULTS (R) AND TIME(S) (T) OF JAVANATIVEBENCH BENCHMARKS

JavaNativeBench Tai-e WALA Flowdroid JN-SAF

Name
CIS CSS CIS CSS CIS CSS

Result Time Result Time Result Time Result Time Result Time Result Time Result Time

Java2Java � 4.09 � 4.01 � 2.98 � 3.04 � 6.94 � 6.12 × 1.12

Java2Native � 3.98 � 4.04 � 3.03 � 3.12 � 7.1 � 6.14 × 1.09

Java2JavaAlias � 4.07 � 3.88 � 3.04 � 3.28 � 6.09 � 6.28 × 1.04

Java2JavaNoalias * 4.02 � 5.37 * 3.11 � 4.23 * 6.18 � 8.24 × 1.12

Java2NativeAlias � 3.97 � 4.15 � 3.02 � 3.24 � 6.06 � 6.31 × 0.99

Java2NativeNoAlias * 4.15 � 5.23 * 3.39 � 4.21 * 6.37 � 7.87 × 1.21

Java2JavaFieldAlias × 4.23 � 4.08 × 3.22 � 3.31 × 6.16 � 6.28 × 1.15

Java2JavaFieldNoAlias × 4.16 � 5.12 × 3.27 � 4.52 × 6.28 � 8.56 × 1.09

Java2NativeFieldAlias × 4.08 � 3.98 × 3.23 � 3.47 × 6.29 � 6.51 × 1.11

Java2NativeFieldNoAlias × 4.21 � 5.23 × 3.43 � 4.34 × 6.5 � 8.29 × 1.12

�: True Positive; ∗ : False Positive; ×: False Negative.

authors of JN-SAF did not specify which NDK versions can be
analyzed; the problem was also mentioned by the author as per
the GitHub issue [30]. Therefore, the Android APKs used in
NativeFlowBench are provided by JN-SAF.

In summary, the CSS significantly improves FlowDroid’s
taint analysis, particularly for native calls in Java code. While
limitations exist in handling specific JNI scenarios, CSS shows
promise in enhancing the effectiveness of value-flow analysis
in the presence of native interactions.

B. Results on JavaNativeBench Benchmark

Apart from NativeFlowBench, we designed JavaNative
Bench, specifically targeting scenarios where Java callers in-
voke C/C++ functions with aliased and tainted arguments. We
employ two additional Java static analysis tools, Tai-e [27] and
WALA [21], alongside Flowdroid and JN-SAF, to analyze the
value-flow. Similar to FlowDroid, Tai-e and WALA focus solely
on the analysis of Java code in the absence of native method
models. Additionally, we also have a experiment between CSS
and another summary-based specification SemanticSpec [35].

1) CIS and CSS: To validate the effectiveness of CSS,
we also conducted a comparative experiment using caller-
insensitive specifications (CIS). Unlike CSS, CIS does not con-
sider Java caller information and directly analyzes the C/C++
code to extract relevant value-flows. For this experiment, we
use a conservative version of CIS that considers all alias rela-
tionships among arguments in native functions. The focus was
on determining the existence of paths from tainted arguments
to sinks in the value-flows.

Table II presents the results and times for the three
tools: Tai-e, WALA, and, Flowdroid, respectively, using CIS,
CSS, and JN-SAF applied to the JavaNativeBench evalu-
ation. Tai-e-CSS, WALA-CSS and, Flowdroid-CSS demon-
strated promising results, successfully analyzing all test cases
in the JavaNativeBench. Additionally, Tai-e-CIS, WALA-CIS
and, Flowdroid-CIS achieved success in four cases, while in
the remaining six test cases, there were four false negatives

Fig. 10. Code in Java2JavaFieldNoAlias.

and two false positives. Tai-e-CSS/WALA-CSS/Flowdroid-
CSS and Tai-e-CIS/WALA-CIS/Flowdroid-CIS both indicate
that providing value-flow information about native calls can be
beneficial for the value-flow analysis of JNI programs.

The failures observed in CIS (Tai-e-CIS, WALA-CIS, and,
Flowdroid-CIS) are primarily attributed to two main reasons.
First, without access to calling context information, CIS lacks
the necessary context to determine whether certain arguments
have alias relationships. To ensure the conservativeness of the
analysis results, it must consider all alias scenarios, such as
in Fig. 10 where obj1 and obj2 have the same type jobject
(Line C5), which may lead to false positives (Java2JavaNoAlias
and Java2NativeNoAlias). However, before conducting taint
analysis on C/C++ code, CSS (Tai-e-CSS, WALA-CSS, and,
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Flowdroid-CSS) already knew the alias and taint relationships
between native call parameters. Therefore, it excludes irrelevant
scenarios during the taint analysis, making the generated spec-
ifications precise and concise, which reduces the incidence of
false positives.

The second reason for failures is when dealing with JNI-
provided functions, such as GetObjectClass(obj1) in Fig. 10
(Line C6), where CIS lacks caller information to determine the
specific class information corresponding to the object obj in
Java. This lack of class or object information hinders the gen-
eration of effective specifications for these scenarios. The fail-
ures observed in Java2JavaFieldAlias, Java2JavaFieldNoAlias,
Java2NativeFieldAlias, and Java2NativeFieldNoAlias can also
be attributed to these reasons. However, CSS, informed by
the caller specification, get the specific java object infor-
mation represented by jobject, allowing the taint analysis
to continue.

The reason JN-SAF failed on all 10 test cases is that it cannot
analyze the native code compiled with the newer NDK, and
JN-SAF did not specify which version of the NDK used to
compile their APKs [30]. In Experiment 1, we used the pre-
compiled APKs provided by the authors of JN-SAF, not the
ones compiled by us because JN-SAF was unable to properly
parse the native code we compiled ourselves.

However, a limitation of CSS is that if the same native method
is called in different contexts from Java callers (i.e., under
different taint and alias arguments), the same native method
needs to be reanalyzed and resummarized to address the differ-
ent contexts. In contrast, for the same context, CSS can reuse
pre-generated callee specifications. This situation is evident
from the runtime of Java2JavaNoalias, Java2NativeNoAlias,
Java2JavaFieldNoalias and Java2NativeFieldNoalias, where,
in these four cases, there are multiple calls to the same native
method under different contexts.

2) Comparison of Different Specifications: Lee et al. [35]
also used a summary-based method for JNI analysis aimed at
finding interaction bugs. For clarity, we refer to their summary
as SemanticSpec. SemanticSpec first extracts semantic sum-
maries from C code, translates them into Java, and integrates
them for whole-program analysis.

Table III compares the performance of the static analyzer
Tai-e using SemanticSpec and CSS on JavaNativeBench. The
comparison includes taint analysis results, runtime (excluding
the time to generate SemanticSpec and CSS), and specification
quality. Specification quality is evaluated based on the follow-
ing criteria: (1) a correct specification contains the intended
value-flows without redundancies; (2) a redundant specification
includes the intended value-flows but also unnecessary cases;
(3) an incorrect specification lacks the intended value-flows.
We categorized them based on their effects on the accuracy
of the taint analysis results and the analysis time. Correct
specifications produced accurate results with minimal analysis
time by capturing intended value-flows without redundancies.
Redundant specifications yielded correct results but had longer
analysis times due to including unnecessary cases. Incorrect
specifications led to erroneous taint analysis results by missing
intended value-flows.

TABLE III
COMPARISON OF QUALITY, TAINT ANALYSIS RESULTS AND RUNTIME

BETWEEN SEMANTICSPEC AND CSS

JavaNativeBench SemanticSpec CSS

Name Quality Result Time Quality Result Time

Java2Java O � 2.23 O � 2.20

Java2Native O � 2.21 O � 2.19

Java2JavaAlias O � 2.19 O � 2.20

Java2JavaNoalias O � 2.20 O � 2.22

Java2NativeAlias O � 2.22 O � 2.22

Java2NativeNoAlias O � 2.23 O � 2.21

Java2JavaFieldAlias R,F × 2.39 O � 2.21

Java2JavaFieldNoAlias R,F × 2.44 O � 2.20

Java2NativeFieldAlias O � 2.23 O � 2.22

Java2NativeFieldNoAlias O � 2.21 O � 2.21

O: Correct specification; R: Redundant specification; F: Incorrect specifica-
tion; �: True Positive; ×: False Negative.

Like CIS, SemanticSpec extracts C code semantics with-
out caller context and translates it into Java for analysis,
potentially retaining redundant information. For example, in
Java2JavaFieldNoAlias of Fig. 10, SemanticSpec is conserva-
tive and hence does not distinguish between tainted obj1 and
untainted obj2, leading to specifications that include unnec-
essary semantics about obj2. This lack of caller context can
result in redundant specifications and slightly longer analysis
times compared to CSS, as seen in Java2JavaFieldAlias and
Java2JavaFieldNoAlias of Table III. Additionally, Semantic-
Spec generates summaries for the target guest language and
struggles with some complex C features and functions. For in-
stance, in the function findSubstring() of Fig. 10, it imprecisely
models the return value as a new, unrelated string, leading to
undetected taint flows in cases like Java2JavaFieldAlias and
Java2JavaFieldNoAlias. CSS generates concise caller-sensitive
specifications without unnecessary cases by leveraging the taint
and alias information of parameters provided by the caller. The
experimental results demonstrate that CSS detects all tainted
value flows in our benchmarks.

The results of the above experiments highlight the signif-
icance of incorporating CSS in JNI analysis. By leveraging
caller specification information, CSS can effectively track alias
relationships and handle JNI functions, thereby improving the
precision and accuracy of value-flow analysis for JNI programs.

By incorporating CSS into existing Java static analyzers (e.g.,
FlowDroid, Tai-e and, WALA), the existing established static
tools and their algorithms can be leveraged for cross-language
analysis. This integration approach enables the static analyzers
to take advantage of their existing value-flow analysis tech-
niques in the Java domain and supplement them with the value-
flow information from the native (C/C++) world, effectively
bridging the gap between the two languages.

C. Results on Real-World JNI Programs

In addition to conducting experiments with NativeFlow-
Bench and JavaNativeBench, we further tested real JNI pro-
grams to validate the accuracy of CSS in extracting value-flow
information from native code. For this evaluation, we selected
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TABLE IV
VALUE-FLOW ANALYSIS RESULTS OF THREE STATIC ANALYZERS JN-SAF, JUCIFY AND, FLOWDROID-CSS ON TEN ANDROID JNI APPLICATIONS. THE

METRICS INCLUDE THE TOTAL NUMBER OF LINES OF CODE IN THOUSANDS (LOC), THE PERCENTAGE OF JAVA CODE (JAVA), THE PERCENTAGE

OF C/C++ CODE (C/C++), THE NUMBER OF TRUE POSITIVE RESULTS (RECALL) OUT OF THE TOTAL TRUE POSITIVE RESULTS (TOTAL) IN

EACH APPLICATION, AND THE PRECISION OF THE TOOLS (R/T, RECALL-TO-TOTAL). THE TABLE ALSO REPORTS THE TIME TAKEN IN JAVA

AND C/C++ SEPARATELY IN SECONDS (TIME) FOR EACH TOOL

APP Loc(K) Java(%) C/C++(%) Total

JN-SAF JuCify FlowDroid-CSS

Recall R/T(%)
Time(s)

Recall R/T(%)
Time(s)

Recall R/T(%)
Times

Java C/C++ java C/C++ Java C/C++

android-aes-jni 1.3 12.6 86.8 1 0 0 5.7 - 0 0 1.0 194.4 1 100 3.7 0.2

LoggingApp 1.4 36.2 37.3 4 0 0 4.4 - 0 0 4.0 372.21 4 100 3.1 0.4

samba-documents-provider 11 81.2 16.0 1 0 0 14.3 - 1 100 21.0 37.0 1 100 10.9 2.3

base64encode 12 27.1 31.6 2 0 0 14.5 1.3 0 0 2.0 304.4 0 0 8 1.2

AndroidUn7zip 16 4.9 94.8 2 0 0 20.7 - 0 0 8.0 367.9 2 100 20.7 5.6

VoiceChange 26 60.5 23.5 6 0 0 23.8 - 0 0 25.0 444.8 6 100 23.9 6.4

FairEmail 63 55.4 38.5 1 0 0 69.2 - 1 100 22.0 492.7 1 100 28.9 10.2

Log4a 85 38.5 32.3 1 0 0 52.8 - 0 0 32.0 143.3 1 100 41.4 15.4

tracker-control-android 349 23.7 23.7 1 0 0 203.5 - 0 0 21.0 300.4 1 100 40.6 16.7

oboe 160 35.1 61.1 1 0 0 32 - 0 0 12.0 992.5 1 100 55 20.3

Avg 72.5 37.5 44.6 2 0 0 53.9 0.13 0.2 20 17.9 364.9 1.8 90 23.6 7.9

ten JNI-related Android projects from GitHub for our analysis
using three tools: JN-SAF, JuCify and, FlowDroid-CSS.

1) Implementation: We selected 10 repositories from around
50 GitHub candidates identified with “JNI” and “NDK”
keywords, focusing on three criteria: scale, diversity, and
path length. Repositories were classified by size as small
(1-15 KLoC), medium (15-100 KLoC), or large (over 100
KLoC), with our choices including 4 small, 4 medium, and 2
large. For diversity, we assigned one repository each to cate-
gories like “Security and Encryption”, “Logging”, and “Email”
and selected 3 for “File/Data Management” and 2 each for
“Audio/Image Processing” and “Privacy/Control”. Path lengths
were categorized from short (1-3 hops), medium(4-8 hops) to
long (9+ hops), with selections of 4 short, 4 medium, and 2
long paths.

For the selection of sources, we primarily chose functions
that involve sensitive data, such as getDeviceId(). As for sinks,
we selected functions that could potentially leak sensitive data,
such as __android_log_print(), which writes data to files. We
limited the sources and sinks to two scenarios: (1) Sources
in Java code, and sinks in native code; (2) Sources in Java
code, and sinks in Java code. In the second scenario, the data
generated by the source method in Java code flows into the
native code and then returns to the Java world. The reason we
did not consider the other two scenarios with the sources in
native code, namely (1) Sources in native code, the sinks in
Java code; (2) Sources in native code, the sinks in native code,
is because before processing the value-flow in native code, the
Java side needs to provide the caller specifications. In other
words, Java is the host language, and native code is the guest
language, so the Java side needs to serve as the starting point
for source generation in value-flow analysis.

Before the experiments, we manually inspected the code of
these Android projects to determine value-flow paths between
sources and sinks. With these value-flow paths as ground truth,
we can more clearly compare the performance of the JN-SAF,
JuCify and FlowDroid-CSS. Table IV summarizes the value-
flow analysis results of ten projects. The project characteristics

include the name of the application (APP), the total number
of lines of code in thousands (Loc), the percentage of code
written in Java and C/C++ languages, and the total number
of value-flow paths in each application (Total). The table also
provides information on the performance of JN-SAF, JuCify
and FlowDroid-CSS. For each tool, metrics such as “Recall”,
Recall-to-Total (“R/T”) ratio, and execution “Time” (in sec-
onds) are presented. “Recall” measures the effectiveness of
the tool in identifying the correct value-flow paths, while The
“R/T” ratio indicates the precision of the tool, and the “Time”
shows the speed of the tool in processing Java and C/C++ code
separately in the application.

2) Performance of JN-SAF, JuCify and FlowDroid-CSS:
From the experimental results, it can be seen that value-flow
analysis with CSS can correctly detect the source-sink paths
in nine out of the ten projects, while JuCify succeeded in only
two out of the ten projects. But JN-SAF failed for all projects.
The failure of JN-SAF is attributed to its latest version being
outdated in terms of analyzing native code. This prevents it
from correctly locating or analyzing the.so files and conducting
the analysis (The analysis time for C/C++ of JN-SAF in Table
IV is “-”). Different NDK versions may employ various opti-
mizations and compilation techniques, which can significantly
impact the final results. The applications used in Experiment
3 were compiled by ourselves, and the projects used in Ex-
periment 1 were compiled by the authors of JN-SAF. More-
over, JN-SAF did not specify the versions of NDK that can be
analyzed [30].

The main reason for Jucify’s failure is that the value-flow
analysis in C/C++ code involves pure native functions. The
current JuCify can only reconstruct native calls about Java-C
interoperation parts but does not consider pure native functions,
meaning it is unable to handle native functions and native leaks.
Hence, the scope of JuCify’s value-flow analysis is limited,
as it cannot identify value-flow paths where sensitive informa-
tion is leaked through pure C/C++ functions, which is a com-
mon scenario in real-world data breaches. Additionally, JuCify
uses Angr for symbolic execution to analyze C/C++ code, but
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Fig. 11. base64encode example.

symbolic execution faces the issue of path explosion. The
results from Table IV indicate that the time JuCify takes to
analyze native code using Angr is at nearly 46 times that of
FlowDroid-CSS. This is even when JuCify only focuses on JNI-
provided functions and but not the pure C/C++ code. If all logic
within the native code were considered, the analysis time for the
native code might continue to increase. On the other hand, Ju-
Cify cannot accurately reconstruct native code behavior because
it uses heuristics to handle native code behavior, rather than
tracking value-flow based on the native source code, causing
a loss of precision.

As for FlowDroid-CSS, since we use native source code to
conduct value-flow analysis, it does not miss the value-flow
information of native code like JuCify does. By employing
SVFG for sparse value-flow analysis and constructing the def-
use chain of variables, it also avoids the path explosion problem
encountered when using symbolic execution to analyze native
code in Jucify. However, CSS still failed to detect one value-
flow path in the project base64encode.

In project base64encode, a java-to-java value-flow path needs
to be detected. The source data str, originating from the
Java side, passes through the C function Java_base64encode()
(Fig. 11). Once encoded, str returns to the Java side as a re-
turn value. However, the base64encode() function located at
Line C6 performs mathematical and encoding operations on
the str variable. These operations represent an implicit value-
flow originating from the argument and reaching its return
value within base64encode(), while SVFG’s capabilities are
limited to constructing explicit value-flows for the string vari-
ables (e.g., str). Therefore, the value-flow path is disconnected
at the base64encode() function (red curved arrow), making
it impossible to generate a complete java-to-java value-flow
path. Tracking implicit flows is a semantic problem [36] and
the common approach is to manually write a specification for
implicit flows to define the value-flows. For example, we can
configure the side-effect of base64encode() as a store operation
of *str2 = strs. Then CSS can accurately identify the value-flow
path in this project. However, in the experiment, we did not
summarize the side-effects of the functions involved between
native sources and sinks for the sake of fairness in comparison.

In summary, value-flow analysis with CSS outperforms Ju-
Cify in terms of successfully detecting paths with a higher
success rate and a lower average analysis time.

V. LIMITATIONS

Although the CSS in the experiments improves the accuracy
of data propagation tracking in JNI programs by considering
cross-language context from Java callers. There are still limita-
tions in our approach. One limitation is as shown by the failed
project base64encode in Experiment 3. Although there is an
implicit value-flow path from the parameter to the return value,
this path was not discovered during the experiment due to the
involvement of numerous string operations and mathematical
computations. While we can summarize the side effects of these
functions containing implicit value-flow paths, through manual
summarization and advanced string analysis [37].

The second limitation lies in the resummarization of callee
specifications when cross-language context changes. Because
CSS supports the precise summarization of the behavior of
native functions under a cross-language context. If developers
update the caller code, which may affect or change the cross-
language context, we need to re-summarize the called native
functions. This is necessary to generate a new CSS based on the
updated caller specification. Subsequently, the newly generated
CSS must be incorporated into the native function specifications
library. The good side is that our summarization procedure is
incremental in nature. This means that our approach involves
augmenting the existing CSS with additional information, with-
out the removal of any pre-existing summarization within the
CSS. As a result, our approach facilitates incremental summa-
rization, allowing for gradual enhancements in situations where
the caller code, such as Java code, undergoes changes.

In Android app development, JNI calls are typically initiated
from the Java side, enabling methods in Java code to invoke
functions in native code through JNI for various interactions.
However, in certain cases, particularly when optimizing perfor-
mance or implementing low-level functionality, JNI calls can
also originate from the C/C++ native code side to invoke Java
methods. Value-flow analysis is intractable when the entry point
and source are in native code without information from the
Java-side caller method, as shown in Experiment 1. In such
cases, information from the Java-side caller method is necessary
for generating caller-sensitive specifications and conducting ac-
curate value-flow analysis. Without callers’ information, it is
difficult to identify the correct value-flow paths in the program
and generate precise specifications. The absence of caller infor-
mation can lead to incomplete or inaccurate results in the value-
flow analysis, making it difficult to detect potential security
vulnerabilities or performance issues. Future work will aim to
overcome these limitations to improve the accuracy of value-
flow analysis for JNI programs.

VI. RELATED WORK

Being a widely adopted programming language, Java has
attracted considerable scholarly interest due to its distinctive
features, including its capability for cross-language interaction.
Tan et al. [38] carried out an empirical security study on JNI
bugs in JDK’s native code, providing remedies and insights
into these bugs. Li and Tan [39], [40] developed approaches
to identify bugs in situations within JNI programs. Kondoh and
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Onodera [41] concentrated on four types of JNI-specific errors
that native compilers do not capture. Shi et al. [24] utilized
specifications to summarize information flow in Android native
libraries to support taint analysis in Android apps. However,
these studies primarily focus on native code and do not consider
the interaction at the boundary between Java and native code.

Tan et al. [15] extend Java Virtual Machine Language
(JVML) language for C code to assist static analysis for JNI
programs. JN-SAF [28] proposed by Wei et al. first constructs
a precise topologically sorted call graph for JNI programs.
This framework alternates between Java and C/C++ static an-
alyzers, ensuring accurate value-flow tracking throughout the
application. JN-SAF’s scalability can be constrained by path
explosion problems arising from Angr’s symbolic execution.
Furthermore, it might yield inconsistent outcomes when han-
dling binary codes with different optimization levels [30].
Samhi et al. [42] aimed at unifying bytecode and native code to
facilitate comprehensive static analysis of Android apps. They
introduced JuCify as a significant step towards this goal, which
generates a native call graph that is merged with the bytecode
call graph using links obtained through symbolic execution.
However, a key limitation of JuCify it that it is hard to recon-
struct native function behavior with high precision, impacting
the effectiveness of the analysis in many cross-language context
scenarios. Lee et al. [35] also used a summary-based method
for JNI analysis, where the approach first extracts semantic
summaries from C code and then integrates them with Java code
for a whole-program analysis. Our work differs from theirs in
that CSS is caller-sensitive, acquiring information from the Java
callers to yield a compact and precise summarization. Hence our
approach can be seen as a precision-driven enhancement on top
of their methods if all source code is available.

Aside from cross-language static analysis of JNI programs,
there is research focusing on static analysis involving other
languages. Lee et al. [42] introduced HybriDroid for executing
static analysis between Java and JavaScript. Monat et al. [16]
and Li et al. [8] developed static analyzers for identifying run-
time errors and reference count adjustments in Python programs
using C extensions. Furr et al. [43], [44], [45] performed type
safety checking targets OCaml’s FFI to C and JNI. Li et al.
[9] compiled Rust and C into LLVM IR and employed abstract
interpretation to detect cross-language memory management
issues in Rust.

VII. CONCLUSION

JNI programming makes cross-language software develop-
ment more flexible and efficient. However, it is challenging
to develop static analysis that can accurately analyze cross-
language programs, such as JNIs for Java and C/C++ due
to complicated semantics for language interaction. We pro-
pose a new approach to specification extraction known as
caller-sensitive specification. Compared to using conservative
specifications, this approach takes the cross-language calling
context of native C/C++ functions into account to generate more
accurate and compact specifications (side-effects) of the native

functions being called from Java. By focusing on the side-
effects that are sensitive to the cross-language calling context,
the CSS approach can reduce the number of unnecessary speci-
fications. In addition, the CSS can be easily integrated with Java
single-language static analysis tools, enabling cross-language
analysis with no or light code modifications. The results of
the experiment demonstrate that CSS is capable of precisely
tracking the value-flows in JNI programs over several recent
tools. Considering the challenges in developing an effective
static analyzer for JNI programs, the CSS approach presented in
this paper offers valuable insights for enhancing static analysis
tools in JNI contexts.
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