
1

Reinforcement-Learning-Guided Source Code
Summarization using Hierarchical Attention

Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu, Philip S. Yu, and Guandong Xu

Abstract—Code summarization (aka comment generation) provides a high-level natural language description of the function performed
by code, which can benefit the software maintenance, code categorization and retrieval. To the best of our knowledge, the state-of-the-art
approaches follow an encoder-decoder framework which encodes source code into a hidden space and later decodes it into a natural
language space. Such approaches suffer from the following drawbacks: (a) they are mainly input by representing code as a sequence of
tokens while ignoring code hierarchy; (b) most of the encoders only input simple features (e.g., tokens) while ignoring the features that
can help capture the correlations between comments and code; (c) the decoders are typically trained to predict subsequent words by
maximizing the likelihood of subsequent ground truth words, while in real world, they are excepted to generate the entire word sequence
from scratch. As a result, such drawbacks lead to inferior and inconsistent comment generation accuracy.
To address the above limitations, this paper presents a new code summarization approach using hierarchical attention network by
incorporating multiple code features, including type-augmented abstract syntax trees and program control flows. Such features, along with
plain code sequences, are injected into a deep reinforcement learning (DRL) framework (e.g., actor-critic network) for comment
generation. Our approach assigns weights (pays “attention”) to tokens and statements when constructing the code representation to
reflect the hierarchical code structure under different contexts regarding code features (e.g., control flows and abstract syntax trees). Our
reinforcement learning mechanism further strengthens the prediction results through the actor network and the critic network, where the
actor network provides the confidence of predicting subsequent words based on the current state, and the critic network computes the
reward values of all the possible extensions of the current state to provide global guidance for explorations. Eventually, we employ an
advantage reward to train both networks and conduct a set of experiments on a real-world dataset. The experimental results demonstrate
that our approach outperforms the baselines by around 22% to 45% in BLEU-1 and outperforms the state-of-the-art approaches by
around 5% to 60% in terms of S-BLEU and C-BLEU.

Index Terms—Code summarization, hierarchical attention, reinforcement learning.

F

1 INTRODUCTION

IN the life cycle of software development, nearly 90% of
the effort is used for maintenance, and much of this effort

is spent on understanding the maintenance task and related
software source code via code documents [1]. In addition,
it has been widely argued that code documents can benefit
various software engineering techniques [2], [3], [4], [5], [6],
[7], e.g., software testing [8], [9], [10], [11], [12], [13], [14],
fault localization [15], [16], [17], program repair [18], [19],
[20].

• W. Wang is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, Guangdong,
518055, P. R. China and the School of Computer Science, University of
Technology, Sydney, NSW 2008 Australia.
E-mail: 11760006@mail.sustech.edu.cn.

• Y. Zhang is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, Guangdong,
518055, P. R. China.
E-mail: zhangyq@sustech.edu.cn.

• Y. Sui, and G. Xu are with the School of Computer Science, University of
Technology, Sydney, NSW 2008 Austrialia.
E-mail: Yulei.Sui@uts.edu.au, Guandong.Xu@uts.edu.au.

• Y. Wan, Z. Zhao and J. Wu are with Zhejiang University, Hangzhou,
Zhejiang, P. R. China.
E-mail: wanyao@zju.edu.cn, Zhaozhou@zju.edu.cn, wu-
jian2000@zju.edu.an.

• Philip S. Yu is with the University of Illinois at Chicago, Illinois, USA.
E-mail: psyu@uic.edu.

• Corresponding Author: Yuqun Zhang, Guandong Xu and Yulei Sui

Manuscript received XXX, XX, 2019; revised XXX, XX, 2019.

Thus, it is essential for documentation to provide a high-
level description of the task performed by code for software
maintenance. Even though various techniques have been
developed to facilitate programmers during software imple-
mentation and testing, documenting code with comments
remains a labour-intensive task [21], [22], [23]. In fact, few
real-world software projects can adequately document code
to reduce future maintenance costs [24], [25]. It is even
challenging and time-consuming for a novice programmer
to write good comments for code. Typically, good comments
should have the following characteristics: (1) Correctness. The
comments should correctly clarify the intent of code. (2)
Fluency. The comments should be fluent, so that they can be
easily read and understood by maintainers. (3) Consistency.
The comments should follow a standard style/format for
better code reading. To this end, code summarization is
proposed to comprehend code and automatically generate
descriptions directly from code. Summarizing code can also
be viewed as a form of document expansion, where a suc-
cessful code summary can not only benefit the maintenance
of source code [26], [27], but also be used to improve the
performance of code search using natural language queries
[28], [29] and code categorization [30].

Existing Efforts. Recent research has made some progress
towards automatic generation of natural language descrip-
tions of software. As far as we know, most of the existing code
summarization approaches learn the semantic representation
of code based on statistical language models [26], [31],

2

and� then�generate�comments�based�on� templates�or� rules�
[32].�With�the�development�of�deep� learning,�some�neural�
translation�models�[27],�[33],�[34]�have�also�been�introduced�
for�code�summarization,�which�mainly�follow�an�encoder-
decoder�framework.�They�generally�employ�recurrent�neural�
networks� (RNNs)� [35]� to�encode� the� code� snippets� into�a�
hidden�space�and�utilize�another�RNN�to�decode�that�hidden�
space� to�coherent�sentences.�Given� the�predecessor�words�
and�the�ground�truth,�these�models�are�typically�trained�to�
maximize�the�likelihood�of�subsequent�words.

Limitations�and�Insights.�Based�on�our�observation,�the�
existing�approaches�suffer�from�the�following�three�limita-
tions:�(1)�Most�of�the�existing�approaches�input�code�as�plain�
texts�that�are�composed�of�tokens�(i.e.,�variables,�operations,�
etc.)�directly�without�considering�the�code�hierarchy�(e.g.,�to-
kens�forming�a�statement�and�statements�forming�a�function)�
which�can�provide�more�comprehensive�representation�by�
differentiating�tokens�under�different�contexts�for�comment�
generation.�(2)�Most�of�the�existing�approaches�[26],�[33],�[36]�
utilize�simple�sequential�features,�such�as�token�sequence,�for�
code�representation,�while�some�code�features�(e.g.,�control�
flow�graphs�(CFGs),�Abstract�Syntax�Tree�(AST),�and�types�
of�program�variables)�that�can�help�capture�the�correlations�
between�comments�and�programs�remain�unexplored.�(3)�The�
existing�training�approaches,�also�termed�“teacher-forcing”�
models,�suffer�from�the�exposure�bias�issue�which�occurs�as�
the�ground�truth�is�unavailable�during�testing�stage�and�the�
previously�generated�words�from�the�trained�model�are�used�
to�predict�subsequent�words�[37]�so�that�the�model�is�only�
trained�based�on�ground�truth�context�and�is�not�exposed�to�
its�own�errors�[38].

Our�Solutions.�To� tackle� the�aforementioned�problems,�
we� present� a� new� hierarchical-attention-based� learning�
approach� by� utilizing� multiple� structural� code� features�
(including�control�flow�graph�and�AST)�to�reflect�the�code�
hierarchy,� where� a� two-layer� attention� network� (a� token�
layer�and�a�statement� layer)� is�established� for�an�effective�
code�representation�that�differentiates�tokens�under�different�
contexts�for�comment�generation.

In�our�previous�work�[39],�we�proposed�a�deep�reinforce-
ment�learning-based�approach�which�draws�on�the�insights�
of�deep�reinforcement�learning�to�alleviate�the�exposure�bias�
issue�by� integrating� exploration�and� exploitation� into� the�
whole�framework�(addressing�limitation�(3)).�It�first�encodes�
the�structure�and�sequential�content�of�code�via�an�AST-based�
LSTM�and�a�regular�LSTM�respectively.�Next,�the�resulting�
code�representation�vector�is�fed�into�a�deep�reinforcement�
learning�framework,�namely�actor-critic�network.�Instead�of�
learning�a�sequential�recurrent�model�to�greedily�look�for�the�
subsequent�correct�word,�we�utilize�an�actor�network�and�a�
critic�network�to�jointly�determine�the�subsequent�optimal�
word� at� each� time� step.� In� particular,� the� actor� network�
provides�the�confidence�of�predicting�the�subsequent�word�
according� to� the� current� state.�The� critic�network,� on� the�
other�hand,�computes�the�reward�values�of�all�the�possible�
extensions�of� the� current� state.�As� a� result,�our� approach�
successfully� collects� the� appropriate� words� that� are� less�
likely� to�be� identified�by�using� the�actor�network�only.�To�
learn�these�two�networks�more�efficiently,�our�approach�is�
initialized�by�pretraining�an�actor�network�using�standard�
supervised�learning�with�cross�entropy�loss,�and�pretraining

a critic network with mean square loss. Accordingly, we
update the actor and critic networks based on the advantage
reward composed of BLEU metric via policy gradient.

In this paper, we further extend the previous approach
to improve the efficacy by replacing the AST-based tree
structure representation with type-augmented AST sequence
and complementing the code representation with control
flows (addressing limitation (2)). Moreover, we adopt the
hierarchical attention network ((HAN) to encode sequence
of different code representations (addressing limitation (1)).
Specifically, first, in our previous work, AST is used to reflect
the feature information of the code. However, constructing
AST-based LSTM is time-consuming. Hence, we extract
both unstructured and structured information (e.g., control
flows and type-augmented AST) from code to efficiently
represent code. The unstructured information is obtained
directly by transforming code to plain text following the
existing approach [27], while the structured information is
represented by the type-augmented abstract syntax tree [40]
sequence which is a syntactic code representation widely
used in compilers and its corresponding control flow graph.
Second, in our previous work, we transform code to be plain
text that is composed of tokens directly, while ignoring the
code hierarchy. Thus, we adopt the hierarchical attention
network to encode a code sequence to effectively represent
the code hierarchy by fusing different representations of
the code into a low-dimensional and compact feature space.
This hierarchical attention network assigns weights (pays
“attention”) to individual tokens and statements regarding
different code representations.

Framework Overview. Figure 1 gives an overview frame-
work of our reinforcement-learning-guided comment gen-
eration approach via two-layer attention network, which
includes an offline training stage and an online testing (sum-
marization) stage. In the offline training stage, we prepare
a large-scale corpus of annotated < code, comment > pairs.
Specifically, first, we used three sequences: xTXT , xAST and
x
CFG, to represent code at both unstructured level (plain

code sequence) and structured level (type-augmented ASTs
and control flows) (Figure 1(a)); next, we use the hierarchi-
cal attention network (Figure 1(b)) to encode these three
representations and integrate them. At last, the annotated
pairs are injected into our proposed deep reinforcement
learning model (Figure 1(c)) for training. Given the resulting
trained actor network and a code snippet, its corresponding
comment can be generated. Note that in this paper, we only
deal with function-level summarization.

Contributions. The main contributions of this paper are
as follows:

• New idea. We propose a deep reinforcement learning
framework—actor-critic network for comment genera-
tion which copes with the exposure bias issue existing in
most traditional maximum likelihood-based approaches.

• Extensive algorithms. This paper presents the first
hierarchical-attention-based learning approach for code
summarization by utilizing multiple code features (i.e.,
plain text, type-augmented AST and CFG) to reflect
code hierarchy (tokens forming a statement, statements
forming a function) by supporting a two-layer attention
network at both token level and statement level to pro-

3

Code Snippet

Comments

Code
Snippet

Comments

(c)
Reinforcement

learning

Offline training Testing

𝑥௜௝்௑்

𝑥௜௝஺ௌ்

𝑥௜௝஼ிீ

(a) (b) HAN

Reward

Actor Actor

v1
…
vi
…
vm

Figure 1: An overview framework of our proposed approach
(HAN is the Hierarchical Attention Network).

vide an effective code representation that differentiates
tokens under different contexts for comment generation.

• Evaluation. We validate our proposed approach on
a real-world dataset of 108,726 Python code snippets
used in our previous work and 20,000 more Python
code snippets for the testing. Moreover, compared with
the previous work, we implemented more existing
approaches for performance comparison. The overall
experimental results demonstrate that our approach out-
performs the baselines in terms of comment generation
accuracy (from around 22% to 45% in BLEU-1) and
outperforms the state-of-the-art approaches by around
5% to 60% in terms of both Sentence-BLEU and Corpus-
BLEU.

The remainder of this paper is organized as follows. Sec-
tion 2 illustrates some preliminary background knowledge.
An illustrative example is given in Section 3. The details of
our proposed approach are elaborated in Section 4. Section 5
demonstrates the experimental results and analysis. Threats
to validity are indicated in Section 6. Section 7 reviews the
related work. We conclude the paper in Section 8.

2 PRELIMINARIES

In this section, we first present some preliminary background
knowledge about text generation, including language model,
RNN encoder-decoder model, and the reinforcement learning
for decoding. Firstly, we introduce some basic notations and
terminologies. Let x = (x1, x2, . . . , x|x|) denote the code
sequence of one function, where xi represents a token of
the code, e.g., “def”, “fact”, or “i” in a Python statement
“def fact(i):”. Let y = (y1, y2, . . . , y|y|) denote a sequence of
the generated comments, where | · | denotes the sequence
length. Let T denote the maximum step of decoding in
the encoder-decoder framework. We use notation yl...m to
represent yl, . . . , ym and D = {(xN ,yN)} as the training
dataset, where N is the size of training set.

2.1 Language Model

Language model computes occurrence probability of the
words in a particular sequence [41]. The probability of a
sequence including T words: y1...T is denoted as p(y1:T)
which is usually computed based on the conditional proba-

𝑥ଵ 𝑥ଶ 𝑥்

ℎଵ ℎଶ ℎ்ℎ்ିଵ

start 𝑦ଵ 𝑦்ᇲ

ℎ଴ᇱ

(a) The architecture of
encoder in RNN

ℎଵᇱ ℎ்ᇲିଶ
ᇱ

(b) The architecture of
decoder in RNN

ℎ்ᇲିଵ
ᇱ

𝑦்ᇲିଵ

……

Figure 2: The structure of recurrent neural network (RNN).

bility from a window of n predecessor words, aka n-gram
[42], as shown in Equation 1.

p(y1:T) =
i=TY

i=1

p(yi|y1:i�1) ⇡
i=TY

i=1

p(yi|yi�(n�1):i�1) (1)

Such n-gram approach suffers from apparent limitations
[43], [44]. For example, the n-gram model is derived only
from the frequency counts and leads to inferior performance
when confronted with the tokens that have not frequently
appeared before.

Unlike the n-gram model which predicts a word based
on a fixed number of predecessor words, a neural language
model can predict a word by predecessor words with longer
distance. The associated neural network includes three layers,
i.e., an input layer which maps each word xt to a vector,
a recurrent hidden layer which recurrently computes and
updates a hidden state ht after reading xt, and an output
layer which estimates the probabilities of the subsequent
words given the current hidden state. In particular, the
neural network reads the words in the sentence one by
one, and predicts the possible subsequent word at each time.
At time t, it estimates the probability of the subsequent
word p(yt+1|y1:t) by the following steps: (1) the current
word yt is mapped to a vector by the input layer; (2) it
generates the hidden state (the values in the hidden layer)
ht at time t according to the previous hidden state ht�1 and
the current input xt: ht = f(ht�1, w(xt)), where w refers to
the parameters of the networks.

(3) the p(yt+1|y1:t) is predicted according to the current
hidden state ht: p(yt+1|y1:t) = g(ht), where g is a stochastic
output layer (e.g., a softmax for discrete outputs) that
generates output tokens.

2.2 RNN Encoder-Decoder Model
RNN (Recurrent Neural Network) encoder-decoder, as
shown in Figure 2, has two recurrent neural networks. The
encoder transforms the code snippet x into a sequence of
hidden states (h1,h2, . . . ,h|x|) with an RNN, while the
decoder uses another RNN to generate one word yt at a
time in the target space.

2.2.1 Encoder

A hidden state in an RNN encoder (Figure 2(a)) is a fixed-
length vector. At the time t, the encoder computes the hidden
state ht as shown in Equation 2.

ht = f(ht�1, w(xt)) (2)

4

Here,� ht�1� denotes� the� hidden� state� at� last� step,� xt�
denotes�the�input�at�step�t,�and�f� is�the�hidden�layer.�The�last�
symbol�of�x�should�be�an�end-of-sequence�(<�eos�>)�symbol�
which�notifies�the�encoder�to�terminate�and�output�the�final�
hidden�state�hT�,�which�is�used�as�a�vector�representation�of�
x1:T�.

RNN� has� two� shortcomings:� gradient� vanishing� and�
gradient� exploding�which� refer� to� the� large�decrease� and�
increase� in� the� norm� of� the� gradient� during� training.� To�
alleviate�this�problem,�the�long�short-term�Memory�(LSTM)
[45]� technology� with� a� gate� mechanism� is� proposed� to�
determine� the� information�accumulation,�where� the� input�
gate,� forget� gate� and� output� gate� control� the� input,� forgt�
and�output�part�of�the�entire�network�through�weights�and�
activation�function.�In�this�paper,�we�choose�LSTM�as�our�
encoder.�At�time�t,�the�hidden�state�is�updated�as�follows,

it = �(W(i)xt +U(i)ht�1 + b(i))

ft = �(W(f)xt +U(f)ht�1 + b(f))

at = tanh(W(a)xt +U(a)ht�1 + b(a))

ct = it � at + ft � ct�1

ot = �(W(o)xt +U(o)ht�1 + b(o))

ht = ot � tanh(ct) (3)

where it, ft, ot and at denote an input gate, a forget gate,
an output gate, and a intermediate parameter respectively
for updating the memory cell ct. W(·) and U(·) are weight
matrices, b(·) is a bias vector, and xt is the word embedding
of the tth node. �(·) is the logistic function, and the operator
� denotes element-wise multiplication between vectors.

2.2.2 Decoder

The output of the decoder (Figure 2(b)) is the target sequence
y = (y1, · · · , yT 0). The decoder is initialized to input a
< start > symbol denoting the beginning of the target
sequence. At time t, the decoder computes the conditional
distribution of the subsequent symbol yt+1 based on the
hidden state ht: p(yt+1|yt) = g(ht), where g is a stochastic
output layer.

2.2.3 Training Goal

The encoder and decoder networks are jointly trained to
maximize the following objective,

max
✓

L(✓) = max
✓

E
(x,y)⇠D

log p(y|x; ✓) (4)

where ✓ is the set of the model parameters. We can see that
this classical encoder-decoder framework targets on maxi-
mizing the likelihood of ground-truth word conditioned on
previously generated words. As we have mentioned above,
the maximum-likelihood-based encoder-decoder framework
suffers from the exposure bias issue. Accordingly, we in-
troduce the reinforcement learning technique for better
decoding.

2.3 Reinforcement Learning for Better Decoding
Reinforcement learning [46] interacts with the environment
and learns the optimal policy from the reward signal, which
can potentially solve the exposure bias problem introduced

by the maximum likelihood approaches which is used to
train the RNN model. Specifically in the inference stage, a
typical RNN model generates a sequence iteratively and
predicts next token conditioned on its previously predicted
ones that may never be observed in the training data
[47]. Such a discrepancy between training and inference
can become cumulative along with the sequence and thus
prominent as the length of sequence increases. While in the
reinforcement-learning-based framework, the reward, other
than the probability of the generated sequence, is calculated
to give feedback to train the model to alleviate such exposure
bias problem. Accordingly, the text generation process can be
viewed as a Markov Decision Process (MDP) {S,A, P,R, �}.
In the MDP setting, state st at time t consists of the code
snippets x and the predicted words y0, y1, . . . , yt. The action
space is defined as the dictionary Y where the words are
drawn, i.e., yt ⇢ Y . Correspondingly, the state transition
function P is defined as st+1 = {st, yt}, where the action
(word) yt becomes a part of the subsequent state st+1 and
the reward rt+1 is received. The objective of the generation
process is to find a policy that maximizes the expected reward
of the generated sentence sampled from the model’s policy,
as shown in Equation 5,

max
✓

L(✓) = max
✓

E x⇠D
ŷ⇠P✓(·|x)

[R(ŷ,x)] (5)

where ✓ is the policy parameter needed to be learnt, D is the
training set, ŷ is the predicted actions/words, and R is the
reward function. Our problem can be formulated as follows:

• Given a code snippet x = (x1, x2, . . . , x|x|), our goal is
to find a policy that generates a sequence of words y =
(y1, y2, . . . , y|y|) from dictionary Y with the objective of
maximizing the expected reward.

To learn the policy, many approaches have been proposed,
which are mainly categorized into two classes [48]: (1) the
policy-based approaches (e.g., Policy gradients [49]) which
optimize the policy directly via policy gradient and (2) the
value-based approaches (e.g., Q-learning [50]) which learn
the Q-function, and in each time the agent selects the action
with the highest Q-value. It has been verified that the policy-
based approaches may suffer from a variance issue and the
value-based approaches may suffer from a bias issue [51].
To combine the advantages of both policy- and value-based
approaches, the Actor-Critic learning approach is proposed
[52]. In particular, the actor chooses an action according to
the probability of each action and the critic assigns the value
to the chosen action, which speeds up the learning process
for the original policy-based approaches.

3 ILLUSTRATIVE EXAMPLE

In this section, we use a Python code snippet as our
illustrative example.

Figure 3(a) shows a simple Python code example which
aims to obtain the factorial of an integer via a recursive
function fact. Figure 3(b) is the AST of the code in Fig-
ure 3(a). Figure 3(c) shows its inter-procedural control flow
graph which represents program execution order. The ideal
comments (green) of this code is given in Figure 3(a). It can be
indicated that the semantics of the three highlighted words
can be precisely captured by different code representations,

5

Get the factorial of an integer
bymultiplying all integer from 1
to it via the recursive method.

1.def fact(i):
2. if i == 0:
3. return 1
4. else:
5. return i*fact(i-1)

FunctionDef

name

fact IfExp

body args

i

bodytest orelse

return= return

i 0

fact(i-1)

1 *

(a) The code & summary (b) Abstract syntax tree (c) Control flow

i == 0 ?

def fact(i)

return 1

return i*fact(i-1)

T

F

i

Figure 3: (a) Code snippet and the corresponding summary. (b) The AST sequence of the code obtained by the ast module of
Python. (c) The inter-procedural control flow of the code.

𝑥௜଴ 𝑥௜ଵ 𝑥௜ሺ்ିଵሻ

ℎ௜଴ ℎ௜ଵ ℎ௜ሺ்ିଵሻ
token encoder

𝑠଴ 𝑠௜ 𝑠௅ିଵ

ℎ଴ ℎ௜ ℎ௅ିଵstatement
encoder

…
…

…
…

𝑢௫

𝑢௦
…
…

𝛼௜଴ 𝛼௜ଵ 𝛼௜ሺ்ିଵሻ

𝛼଴ 𝛼௜ 𝛼௅ିଵ

token
attention

statement
attention

d

Figure 4: The architecture of a two-layer hierarchical attention
network.

e.g., plain text (for multiplying), type-augmented AST (for
integer) and CFG (for recursive).

The order of tokens and statements can vary depending
on different code representations. In this paper, we use
the three unstructured and structured information of code,
i.e., plain text, AST and CFG. For example, based on plain
text, the token after “if” in Figure 3 (a) is “i” followed by
“==”. Based on the AST sequence represented as: {stmt =
FunctionDef(identifier fact, arguments i, stmt body); body =
IfExp(expr test, expr body, expr orelse); ...}, there are three
tokens (test, body and orelse) following “IfExp” with “=”
following “test”, “return” following “body”, and “orelse”,
as shown in Figure 3 (b). After the token “1” in the last
statement at line 5, there is no token left according to plain
text. However, based on CFG, the subsequent token is “def”
at the beginning of fact due to the recursive function call.

From Figure 3(a), we can observe that tokens “def”, “fact”,
and “i” form statement 1, while statements 1 to 5 form
the entire function. Such hierarchy is captured by a two-
layer attention network (including one token layer and one
statement layer), as shown in Figure 4, where the bottom
layer encodes each token xit of statement si to produce a

vector of this statement, which is later injected into the top-
layer attention network along with the other statements to
obtain a final vector to represent their associated function.
Note that in Figure 4, ↵i and ↵it represent the weights of the
ith statement and the tth token of statement si respectively,
which are inferred during reinforcement learning.

By utilizing the three code representations and the hierar-
chical attention network, our approach produces three dif-
ferent vectors with different token and statement sequences.
Finally, the three vectors are concatenated to produce the
final code representation for precisely capturing the relations
between tokens and relations between statements.

4 THE DRL-GUIDED CODE SUMMARIZATION VIA
HIERARCHICAL ATTENTION NETWORK

In this section, we introduce the details of our proposed DRL
(Deep Reinforcement Learning)-guided code summarization
approach via hierarchical attention network with its architec-
ture shown in Figure 5. Our approach follows the actor-critic
framework [53], which has been successfully adopted in the
decision-making scenarios such as AlphaGo [54]. Specifically,
we split the framework into four submodules: (a) code
representations which are used to explain the unstructured
and structural information of a program; (b) hybrid hierar-
chical attention network which is used to encode the code
representations into vectors in the hidden space; (c) text
generation which is a LSTM-based generation network to
generate the subsequent words based on predecessor words;
and (d) the critic network which is used to evaluate the
quality of the generated word.

4.1 Source Code Representations
For the identifiers in source code, we tokenize and split
them by a set of symbols, i.e., {. , ” ’ () { } : ! - (space) }.
Next, all the resulting tokens are changed to lowercase letter.
Furthermore, we embed all the obtained tokens to vectors
by Word2Vec() provided by Python library genism [55], where
similar to [27], [56], [57], the undefined tokens are dealt as
the unknown words.

6

𝑥௜௝்௑்

ℎ௜௝்௑் token
encoder

𝑠௜்௑்

ℎ௜்௑் statement
encoder

𝑢௫்௑்

𝑢௦்௑் 𝛼௜்௑்

token
attention

statement
attention

𝑑்௑்

𝑥௜௝
஺ௌ்

ℎ௜௝஺ௌ்

𝑠௜
஺ௌ்

ℎ௜஺ௌ்

𝑢௫஺ௌ்

𝑢௦஺ௌ்

𝑑஺ௌ்

𝑥௜௝஼ிீ

ℎ௜௝஼ிீ

𝑠௜
஼ிீ

ℎ௜஼ிீ

𝑢௫஼ிீ

𝑢௦஼ிீ

𝑑஼ிீ

𝛼௜௝்௑்

𝛼௜஺ௌ்

𝛼௜௝஺ௌ்

𝛼௜஼ிீ

𝛼௜௝஼ிீ

Hybrid

c. Text generation

෥𝑠௧ ෦𝑠௧ାଵ ෦𝑠்

𝑠௧ 𝑠௧ାଵ 𝑠்

𝑦௧ 𝑦௧ାଵ 𝑦் MLP
Baseline

Reward𝑉గ

𝑉∅గ. . .

. . .

. . .

d

Code snippet
(a) Code representation

(b
) H

yb
rid

 h
ie

ra
rc

hi
ca

l a
tte

nt
io

n
(c

) T
ex

t
ge

ne
ra

tio
n

(d) Critic

Figure 5: An overview of our proposed reinforcement-
learning-guided code summarization via hierarchical atten-
tion network: (a) xTXT

ij , xAST
ij and x

CFG
ij represent the jth

token in the ith statement of the lexical level representation,
the type-augmented AST representation, and the control flow
representation of the code respectively; (b) the LSTM-based
hierarchical attention network is used to encode the three
code representations into vectors: dTXT

t , dAST
t and d

CFG
t

respectively, followed by a hybrid layer which is used to
integrate these three vectors; (c) the LSTM-based decoder is
used to generate the summary of the code; (d) Given a state
st, the critic network evaluates its value (baseline) with the
advantage defined as |baseline� reward|.

Based on the resulting tokens, we introduce the follow-
ing three code representations: plain text, type-augmented
abstract syntax tree, and control flow graph.

4.1.1 Plain Text

The key insight into the lexical level representation of code is
that comments are always extracted from the lexical items of
source code, such as the function name, variable name and
so on.

4.1.2 Type-augmented Abstract Syntax Tree

When executing a program, a compiler decomposes a
program into constituents and produces intermediate code
according to the syntax of the programming language, such
as AST [58]. In this paper, first, we obtain the AST sequence
by the ast module [59] of Python as one syntactic-level
representation of the code. Next, to augment the derived
AST sequence with additional type information, we propose
to abstract the type information of the tokens and integrate
them with the AST sequence of the code. For example, in
Figure 3 (a), line 2 is represented as “if integer i == integer 1”
by annotating “integer” type to variable “1”.

4.1.3 Control Flow Graph

Since different code representations reflect different latent
code features, we extract the control flow graph (CFG),
which is another type of intermediate code often used in
compiler, as another syntactic level representation of the
code. In particular, each node on CFG represents a statement
consisting of a sequence of tokens and each edge connecting
two nodes denotes the program’s control flow. The control
flow graph is obtained by following the ast module [59] and
[60] to and then traverse the obtained graph in depth-first
order to obtain the control flow sequence .

4.2 Hybrid Hierarchical Attention Network

Each code part makes its own contribution to the final
output of comments. Specifically, first, the importance of
tokens and statements are highly context dependent, i.e., the
same token or statement may be differentially important in
different context. Next, code essentially has a hierarchy (to-
kens forming statements and statements forming functions).
Therefore, the hierarchical attention network [61], which
has been successfully used in natural language processing,
is applied to allow the approach to assign weights (pay
“attention”) to individual tokens and statements respectively
when constructing the code representations. Attention not
only often results in better performance, but also provides
insights into the correlations between tokens/statements and
the corresponding summary, which benefits in generating
high-quality comments [62], [63].

In this paper, we apply a two-layer attention network (a
token layer and a statement layer), as shown in Figure 5 (b).
This network consists of four parts: a token sequence encoder,
a token-level attention layer, a statement encoder, and a
statement-level attention layer. Assuming d

TXT , dAST , and
d
CFG are the vectors deducted by encoding the three code

representations i.e., plain text, AST, and CFG. As a result,
they are merged into one hybrid vector d to represent code.
The details of such network are demonstrated as follows.

Token Encoder. Given a statement si with tokens
xi0, ..., xiTi�1, where Ti is the total number of tokens in
si, we first embed all the tokens to vectors through an
embedding matrix Wi, i.e., vit = Wixit. Next, we use an
LSTM to obtain token annotations by reading statement si
from xi0 to xiTi�1, as shown in Equation 6.

vit = Wixit, t 2 [0, Ti)

hit = lstm(vit), t 2 [0, Ti) (6)

Token Attention. Not all tokens contribute equally to
the semantic representation of the statement. For exam-
ple, in Figure 6, tokens “number” and “str” are essen-
tially more important than tokens “def” in statement “def
check number exist(str):” because there are words “num-
bers” and “string” in the comment of this code snippet.
Hence, we introduce the attention mechanism to extract the
tokens that are more important to the semantics of a state-
ment and aggregate the representation of those informative
tokens to form a statement vector as shown in Equation 7.

7

Check if there are numbers in a string.

1.def check_number_exist(str):
2. has_number = False
3. for c in str:
4. if c.isnumeric():
5. has_number = True
6. break
7. return has_number

Figure 6: Code example of different tokens contributing
differently for comment generation.

uit = tanh(Wxhit + bx)

↵it =
exp(uT

itux)

⌃T exp(uT
itux)

si = ⌃T↵ithit (7)

Here, Wx is the weight matrix, bx is a bias vector, ↵it

denotes the contribution (attention) of token xit to statement
si, and ux is the token-level context vector which is used for
the high-level representation of each statement in terms of
tokens. In particular, ux is randomly initialized and gradually
learned during the training process.

Statement Encoder. Given the statement vector si, we
can obtain a function vector in a similar manner to tokens.
We use an LSTM to encode the statements as follows.

hi = lstm(si), i 2 [0, L) (8)

Here, L is the total number of the statements included in one
function.

Statement Attention. To reward the statements that are
more semantically important to the associated function for
the summarization task, we again use attention network and
introduce a statement level function vector us which is used
to measure the importance of the statement as follows.

ui = tanh(Wshi + bs)

↵i =
exp(uT

i us)

⌃Lexp(uT
i us)

dc = ⌃L↵ihi (9)

Here, Ws is the weight matrix, bs is a bias vector, and ↵i

denotes the contribution (attention) of statement si to the
final vector dc.

Hybrid Representation of Source Code. To integrate
the structural context vector (i.e., AST and CFG repre-
sentations) and the unstructural textual vector (i.e., plain
text representation), we concatenate them firstly and
later feed them into a one-layer linear network: d =
Wd[dTXT ;dAST ;dCFG] + bd, where d is the hybrid repre-
sentation of code, [dTXT ;dAST ;dCFG] is the concatenation
of dTXT , dAST , and dCFG, and bd is a bias vector. The
context vector is then used for word prediction by placing an
additional hidden layer: est = tanh(Wcst + bd), where st is
hidden state of the encoding process. To be specific, initially
in the decoding process, s0 is assigned to be d. Accordingly,
the state st is updated at decoding step t.

4.3 Text Generation
After obtaining the representation of code snippet from
the hierarchical attention network and the hybrid layer,
we decode it into a natural language comments. Here we
describe how we generate a comment from the hidden space.

For the decoding, since we design a hierarchical and
multi-dimensional input, we decide to adopt the Input-
feeding attention mechanism [64] to predict the tth word
by using a softmax function. Let p⇡ denote a policy ⇡

determined by the actor network, p⇡(yt|st) denote the
probability distribution of the tth word yt, we can obtain the
following equation:

p⇡(yt|st) = softmax(Ws est + bs) (10)

4.4 Critic Network
Unlike traditional encoder-decoder frameworks [65] that
generate comments directly via maximizing likelihood of
subsequent words given the ground truth word, we generate
comments by iteratively optimizing the evaluation metrics
e.g., BLEU [66], in a reinforcement learning manner. Specifi-
cally, we apply a critic network to approximate the value of
a generated action at time t to issue a feedback to tune the
network iteratively. Different from the actor network, this
critic network outputs a single value instead of a probability
distribution on each decoding step.

To illustrate, given the generated comments and the
reward function r, the value function V is defined to
predict the total reward from the state st at time t, which is
formulated as follows,

V (st) = Est+1:T ,
yt:T

XT�t

l=0
rt+l|yt+1, · · · , yT ,h

�
(11)

where T is the max step of decoding and h is the representa-
tion of code snippet.

By applying the reward function, we can obtain an
evaluation score (e.g., BLEU) when the generation process
of the comment sequences is completed. Such process is
terminated when the associated step exceeds the max-step T

or generates the end-of-sequence (EOS) token. For instance,
a BLEU-based reward function can be calculated as

r = exp(
1

N
⇤

NX

i=1

logpn) (12)

where pn =
P

n�gram✏c count(n�gram)
P

n�gram
0
✏c

0 count(n�gram0)
, c is the generated

comment and c
0

is the ground truth.

4.5 Model Training
For actor network, the training objective is to minimize the
negative expected reward, which can be defined as L(✓) =
�Ey1,...,T⇠⇡(

PT
l=t rt), where ✓ is the parameter of the actor

network. Defining policy as the probability of a generated
comment, we adopt the policy gradient approach to optimize
the policy directly, which is widely used in reinforcement
learning.

The critic network attempts to minimize the following
loss function,

8

Algorithm 1 Actor-Critic training for code summarization.

1: Initialize actor network p(yt+1|st) and critic network
V (st) with random weights ✓ and �;

2: Pre-train the actor network to predict ground truth yt

given {y1, · · · , yt�1} by Eq. 4;
3: Pre-train the critic network to estimate V (st) with fixed

actor network;
4: for t = 1 ! T do
5: Receive a random example, and generate the com-

ment sequence {y1, · · · , yT } according to current actor
network;

6: Calculate the reward value according to Eq. 12;
7: Update critic network weights �;
8: Update actor network weights ✓;

L(�) = 1

2
kV (st)� V�(st)k2 (13)

where V (st) is the target value (calculated by the value
function based on the ground truth), V�(st) is the value
predicted by the critic network based on the generated
comments with its parameter set �. Eventually, the training
for code summarization is completed after L(�) converges.

Denoting all the parameters as ⇥ = {✓,�}, the total loss
of our model can be represented as L(⇥) = L(✓) +L(�). We
employ stochastic gradient descend with the diagonal variant
of AdaGrad [67] to tune the parameters for optimizing the
code summarization model.

5 EXPERIMENTS AND ANALYSIS

The goal of our evaluation is to show that our reinforcement-
learning-guided approach using hierarchical attention net-
work is more effective in generating comments than baselines
(e.g., without hierarchical attention network and/or without
reinforcement-learning) and state-of-the-art approaches. Our
evaluation focus on the following research questions.

• RQ1. What is the effectiveness of our approach in
generating comments and what are the results under
different configuration settings?

• RQ2. What is the time consumption and performance
trend regarding the increment of training epochs during
model training?

• RQ3. What is the performance of our proposed approach
on the datasets with different code or comment lengths?

• RQ4. How does our approach perform compared with
other existing code summarization approaches?

• RQ5. How do we extensively evaluate our approach
other than only relying on NLP-specific metrics?

5.1 Dataset Preparation
To evaluate the performance of our proposed approach,
we use the Python dataset used in our previous work
[39], which is obtained from a popular open source project
hosting platform GitHub [68] and processed by Barone et.
al [69]. In particular, we remove the low-quality <code,
comment> pairs, e.g., comments with massive misspelling
words, broken sentences, from the original dataset. As a
result, the derived dataset consists of around 108K pairs.

In addition to our previous work [39], we also collect
another 20K testing pairs to evaluate how our approach
and baselines perform in diverse datasets to evaluate their
universal applicability. In particular, to ensure that the
extended testing data do not overlap the original training
dataset, we first collect the projects with 80 to 100 stars
for deriving the extended testing dataset while the original
training dataset are made by the projects with more than
100 stars. Next, we sort the collected projects by the their
number of forks and select the top 20k pairs accordingly.
Eventually, our Python dataset contains 128K code-comment
pairs in total, where the vocabulary size of code and comment
is 50,400 and 31,350, respectively. Similar to [27], [56], we
shuffle the original dataset and use the first 80% for training
and validation and the remaining 20% for testing. Moreover,
we use 10-fold cross-validation to evaluate the performance
of their proposed approach. Specifically, we split the training
and validation data into 10-fold, where each time we utilize
10% of the data for validation and the rest 90% for training.
Then we average the testing results out of the 10 times of
execution.

We also adopt the Java project dataset in [70] to evaluate
the cross-language performance of our approach. Specially,
we select the same number of training data, validation data
and testing date as our python dataset from the original
dataset in [70] in a top-down manner.

We have conducted statistics analysis for the source code
and comment out of our adopted Python dataset based
on massive GitHub projects as shown in Figures 7 and 8.
Figure 7 shows the length distributions of code and comment.
From Figure 7 (a), we can find that the lengths of most code
snippets are located between 10 to 80 tokens. From Figure
7(b), we can notice that the length of nearly all the comments
are between 5 and 40. This reveals that the comment sequence
to be generated is not too long. Moreover, Figure 8 shows
the token number and statement number distribution in the
collected code snippets of our dataset where Figure 8 (a)
shows the token number distribution in each statement and
Figure 8 (b) shows the statement number distribution in each
function. From this figure, we can observe that the token
number in each statement mainly ranges from 1 to 15, and
the statement number in each function mainly ranges from 2
to 25.

5.2 Evaluation Metrics

We evaluate the performance of our proposed approach
based on three widely-used evaluation metrics in the area of
NLP, especially for the text generation task, i.e., BLEU [66],
METEOR [71] and ROUGE-L [72]. Since code summarization
is a special type of text generation with natural language as
the output, we utilize these evaluation metrics to evaluate
the quality of the generated comments.

BLEU is the most common metric adopted in text gen-
eration [73], [74], [75], [76], [77], [78], [79] which measures
the average n-gram precision on a set of reference sentences,
with a penalty for short sentences. BLEU is calculated as:

BLEU = exp(
1

N
⇤

NX

i=1

logpn), (14)

9

5992

15852
14455

12044

9473

7580

6128

4892
4221

3458
3010 2450 2144 1730 1539

12413

0

2000

4000

6000

8000

10000

12000

14000

16000

(a) Code length distribution.

28652

52089

19375

5068
1819 780 382 201 109 61 189

0

10000

20000

30000

40000

50000

(0,5] (5, 10] (10, 15] (15, 20] (20, 25] (25, 30] (30, 35] (35, 40] (40, 45] (45, 50] >50

(b) Comment length distribution.

Figure 7: Length distribution of testing data.

840100

418940

115675

35980
13603 6177 3452 2234 1417 925 2443 743

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

(0,5] (5, 10] (10, 15] (15, 20] (20, 25] (25, 30] (30, 35] (35, 40] (40, 45] (45, 50] (50, 100] >100

(a) Token number distribution in each statement.

38862

29601

16143

9436

5820
3669

2465 1681 1211 845
2705

669
0

5000

10000

15000

20000

25000

30000

35000

40000

(0,5] (5, 10] (10, 15] (15, 20] (20, 25] (25, 30] (30, 35] (35, 40] (40, 45] (45, 50] (50, 100] >100

(b) Statement number distribution in each function.

Figure 8: Statistic analyses of the source code.

where pn =
P

n�gram✏c count(n�gram)
P

n�gram
0
✏c

0 count(n�gram0)
, c is the generated

comment and c
0

is the ground truth. In this paper, we adopt
the BLEU-N metrics as in our previous paper. Moreover,
we extend our adoption of BLEU metrics by including both
the sentence-level BLEU (S-BLEU) and corpus-level BLEU
(C-BLEU) for the performance comparison between our
approach and state-of-the-art approaches. In particular, S-
BLEU calculates the BLEU score between each generated
comment and the ground truth and then calculates the
average of all the scores. For S-BLEU, we adopt the add-
k smoothing, for which we define k as 1e� 15 such that the
count of n-gram cannot be 0. C-BLEU, on the other hand,
computes the BLEU score in the corpus level.

METEOR is a recall-oriented metric which evaluates
how well the results capture content from the references
via computing recall by stemming and synonymy matching.
It is computed as:

METEOR = (1� Pen)Fmean, (15)

where Pen = �(chm)✓ and Fmean = PmRm
↵Pm+(1�↵)Rm

, where
�, ✓ and ↵ are parameters, ch is the number of tokens, m
means the matched tokens number, Pm represents unigram
precision which is computed as the ratio of the number
of unigrams in the system translation that are mapped (to
unigrams in the reference translation) to the total number
of unigrams in the system translation, and Rm describes
unigram recall which is computed as the ratio of the number
of unigrams in the system translation that are mapped (to

unigrams in the reference translation) to the total number of
unigrams in the reference translation.

ROUGE-L takes into account sentence-level structure
similarity naturally and identifies longest co-occurrence in
sequence n-grams automatically. It is calculated as:

ROUGE � L =

P
S2c

P
g raml 2 SCountmatch(graml)P

S2c

P
g raml 2 SCount(graml)

,

(16)
where l means the number of tokens, Countmatch(graml)
computes the maximum number of matched n-grams in the
generated comment.

5.3 Training Details

The size of all the hidden layers of both the encoder and
decoder LSTM networks are set to be 512, and the word
embedding size is also set to be 512. The mini-batch size
is set to be 32, while the learning rate is set to be 0.001.
We pretrain both actor network and critic network with
10 epochs each, and train the actor-critic network with 10
epochs simultaneously. We record the perplexity [37]/reward
every 50 iterations. All the experiments in this paper are
implemented with Python 3.6, and run on a computer with
a 2.8 GHz Intel Core i7 CPU, 64 GB 1600 MHz DDR3 RAM,
and a Titan X GPU with 16 GB memory, running RHEL 7.5.

10

Table 1: Effectiveness of code representations. (Best scores are in boldface.)

Approaches BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

TXT+HAN+DRL 19.51 2.45 0.95 0.65 5.65 31.56

AST+HAN+DRL 18.97 3.95 1.87 0.89 5.97 31.23

CFG+HAN+DRL 19.20 2.45 1.12 0.67 5.12 31.46

TXT&AST+HAN+DRL 26.56 3.96 1.89 1.32 6.21 37.68

TXT&CFG+HAN+DRL 27.66 4.25 1.97 1.12 6.38 38.24

AST&CFG+HAN+DRL 26.35 2.65 0.96 0.97 5.87 38.13

TXT&AST+AN+DRL(previous work) 25.27 10.33 6.40 4.41 9.29 39.13

TXT&AST&CFG+HAN+DRL 33.16 12.39 6.21 5.10 9.43 46.23

TXT&AST&CFG+HAN+DRL (with ad-
ditional 20,000 subjects)

32.87 11.76 6.32 5.48 8.53 39.72

Table 2: Effectiveness of hierarchical attention network. (Best scores are in boldface.)

Attention type BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

no attention 18.76 8.21 4.98 3.46 8.24 35.28

1-layer attention (general attention) 25.79 8.45 5.73 4.67 8.79 38.49

2-layer attention 33.16 12.39 6.21 5.10 9.43 46.23

Table 3: Effectiveness of deep reinforcement learning. (Best scores are in boldface.)

Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Approach without DRL 26.89 7.21 3.76 2.31 8.21 35.78

Approach with DRL 33.16 12.39 6.21 5.10 9.43 46.23

5.4 RQ1: The Effectiveness Analysis with Different
Baselines

5.4.1 Effectiveness of Code Representations

We evaluate our approach by comparing with different
baseline settings (addressing limitations 2). Here TXT, AST
and CFG refer to the three code representations, i.e., plain
text, AST, and CFG, respectively. HAN refers to hierarchical
attention network and DRL denotes deep reinforcement
learning.

• TXT+HAN+DRL. This baseline transforms code to be
plain text and uses a LSTM-based hierarchical attention
network to encode the code into a hidden space, and
DRL to train the model.

• AST+HAN+DRL. This baseline takes the sequence of
the type-augmented AST as the input of the LSTM-based
hierarchical attention network encoder.

• CFG+HAN+DRL. This baseline follows the same archi-
tecture with the above two baselines only differing in
that it takes the control flow of code as the input of the
LSTM-based hierarchical attention network encoder.

• TXT&AST+HAN+DRL. This baseline follows the same
architecture as above, and it takes both the plain text
and the type-augmented AST sequence of code as the
input of the LSTM-based hierarchical attention network
respectively. The encoded hidden vectors of them are
concatenated into one hidden vector by a hybrid layer,
and DRL is used to train the model.

• TXT&CFG+HAN+DRL. Similarly, this approach takes
the plain text and the control flow of code as the input
of the architecture.

• AST&CFG+HAN+DRL. Similarly, this approach takes
the type-augmented AST sequence and the control flow
of code as the input of the architecture.

• Our previous approach [39]: TXT&AST+AN+DRL.
This approach takes the plain text and the AST as the
input of the LSTM-based attention network respectively.
The encoded hidden vectors of them are concatenated
into one hidden vector by a hybrid layer, and DRL is
used to train the model.

• Our approach: TXT&AST&CFG+HAN+DRL. Our pro-
posed approach in this paper takes the plain text, the
type-augmented AST sequence, and the control flow
of code as the inputs of the LSTM-based hierarchical
network encoder respectively. The three encoded hidden
vectors are concatenated into one hidden vector by a
hybrid layer. Moreover, we also apply another 20,000
subjects as our new testing dataset for an additional
experiment to evaluate the robustness of our proposed
approach under various projects.

Table 1 shows the experimental result comparisons
between our proposed approach and the aforementioned
baselines. From this table, we can observe that our proposed
approach outperforms other baselines in almost all of the
evaluation metrics. Compared to the baselines which use only
plain text, AST or control flow, the hybrid representation of
code which uses two code representations can improve the
comment generation performance by 29.46% to 31.42% for
the evaluation metric BLEU-1. Our proposed approach which
uses three code representations outperforms the approaches
which use two code representations by 16.58% to 20.53% for

11

BLEU-1.�Compared�to�our�previous�work�[39],�our�extended�
approach� can� improve� the� accuracy� by� about� 23.79%� for�
BLEU-1.�The�approaches�which�use�two�code�representations�
outperform�our�previous�work�by�4.27%�to�9.26%�for�BLEU-1.�
In�addition,�the�testing�results�by�our�new�collected�data�can�
achieve�almost�the�same�accuracy�compared�with�the�original�
testing�dataset�performance.�Moreover,�the�results�in�terms�
of� the�other�evaluation�metrics�reflect� the�same� trends.�To�
conclude,�our�approach�can�achieve�better�accuracy�because�
of� the�stronger�code�representations�and� the�finer-grained�
HAN� that� reflect�more�accurate� semantic� for�high-quality�
comment�generation.

5.4.2� Effectiveness�of�Hierarchical�Attention�Mechanism

To� evaluate� the� effectiveness�of�hierarchical� attention�net-
work�(addressing�limitations�1),�we�encode�the�code�without�
attention�network,�with�1-layer�attention�network�and�with�
2-layer�attention�network�(our�approach)�respectively.�The�no�
attention�approach�encodes�the�input�by�LSTM�without�any�
attention�mechanism.�The�1-layer�attention�approach�encodes�
the�representation�of�the�code�from�tokens�to�function�directly�
with� attention� network.� Our� proposed� 2-layer� attention�
approach� encodes� the� representation� of� the� code� with� 2-
layer�attention�network�which�considers�code�hierarchy—the�
tokens� form� statements� and� the� statements� construct� the�
functions�of�code.

Table� 2� shows� the� effectiveness� of� the� hierarchical� at-
tention� network.� From� this� table,� we� can� know� that� the�
performance�of�the�approach�with�1-layer�attention�network�
is�better�than�the�approach�without�any�attention�mechanism�
by� 2.92%� to� 37.47%� for� different� evaluation� metrics.� Our�
proposed�approach�(2-layer�attention�network)�outperforms�
the� approach�with� 1-layer� attention�network�by� 4.36%� to�
49.59%�for�different�evaluation�metrics.�These�results�show�
that�our�proposed�hierarchical�attention�network� for�code�
representation�makes�significant�contributions� to�accurate�
comment�generation.

5.4.3� Effectiveness�of�Deep�Reinforcement�Learning

To� validate� the� effectiveness� of� the� deep� reinforcement�
learning�component�(addressing�limitation�3)�in�our�proposed�
approach,�we�train�the�model�both�with�and�without�deep�
reinforcement�learning�component�respectively,�denoted�as�
“approach�with�DRL”�and�“approach�without�DRL”�in�Table�
3.�From�this�table,�we�can�observe�that�the�performance�of�
the�approach�with�DRL�outperforms�the�approach�without�
DRL�by�14.13%�to�130.30%�for�different�evaluation�metrics.�
These�results�show� that�our�proposed�deep�reinforcement�
learning�model�can�significantly�boost�the�performance�of�
comment�generation.

5.4.4� Performance�Evaluation�under�different�dataset�set-

tings

In� this� section,� we� investigate� the� performance� of� our�
approach�under�different�dataset�settings,�i.e.,�cross-project�
and�different�dataset�split.

To�evaluate�the�code�summarization�performance�of�our�
proposed� approach� on� cross-project� dataset,� we� split� the�
dataset�based�on�their�projects.�In�particular,�we�adopt�84043�
pairs�for�training,�8689�pairs�for�validation,�and�14390�pairs

for testing from different projects. The result can be found
in Table 4, from which we can observe that the results are
worse compared with the randomly split dataset. To illustrate,
in our approach, the generated natural language words
(comments) are extracted from the collected dataset. When
we conduct the cross-project experiments, it is likely that
the training, validation, and testing dataset might contain
different words since they are extracted from cross projects.
Therefore, the generated comments are expected to be less
similar with the original comments due to the discrepancy of
the dictionaries among such datasets. On the other hand, it
can be derived that it is essential to expand the dataset scope
for improving the performance of our approach.

To investigate how our approach performs under differ-
ent data split policy, we select 80% data for training, 10%
data for validation, and the rest 10% for testing. The result
can found in Table 4, from which we can observe that the
results are close to our original data split policy. This result
can validate the robustness of our approach.

5.5 RQ2: Time Consumption and Performance Trend
with Different Training Epochs

We record the average training time for each epoch of this
approach with different code representations as shown in
Table 5. In this table, pretraining the actor network takes
the first 10 epochs, pretraining the critic network takes the
second 10 epochs, and training the actor-critic network takes
the last 10 epochs simultaneously. From the result, we can
observe that the training time of each epoch for all the three
stages in our approach is less than 1 hour which is reasonable
in real world.

Figure 9 shows the performance trend with the increment
of the total training epoch number from 5 to 45. From
this figure we can know that the performance increase
from 22.98% to 34.53% in BLEU-1 with the increment of
the training epochs from 5 to 45. We can also see that all
the results have an approximated upward trend with the
increment of the training epochs from 5 to 30, and then the
performance tends to be stable. Therefore, we choose 30 as
the total training epoch number in this paper.

5.6 RQ3: Performance of Different Code and Comment
Length

We vary both the code and comment lengths to evaluate the
effects on the representation of code and comment generation
from them. Figures 10 and 11 show the performance of our
proposed approach when compared with the baselines on
the datasets of varying code length and comment length,
respectively.

From Figure 10, we can observe that our approach per-
forms the best when compared with other baselines on four
evaluated metrics with respect to different code lengths. For
BLEU-1, our approach outperforms the baselines with differ-
ent code representations by 35.74%, 43.31%, 41.13%, 17.04%,
1l6.97%, and 12.66% respectively when the code length is 40.
For all the evaluation metrics, the approaches which use two
features for code representation, i.e., TXT&AST, TXT&CFG
and AST&CFG, can always outperform the ones which use
only one feature for code representation. Our approach which

12

Table 4: Experimental results of different dataset settings

Settings BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

cross-project 20.10 10.54 6.33 4.36 15.87 27.35

8:1:1-split 34.12 18.02 12.33 9.18 15.34 46.32

Table 5: The time consumption to train the models (mins).

TXT AST CFG TXT&AST TXT&CFG AST&CFG TXT&AST&CFG

Actor pretraining epochs 20 24 23 32 31 33 39

Critic pretraining epochs 27 30 29 41 40 41 50

Actor-critic training epochs 36 41 43 50 51 53 58

5 10 15 20 25 30 35 40 45
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Epoch number

BL
EU

TXT&AST&CFG+HAN+DRL

(a) BLEU-1

5 10 15 20 25 30 35 40 45
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Epoch number

M
ET

EO
R

TXT&AST&CFG+HAN+DRL

(b) METEOR

5 10 15 20 25 30 35 40 45
0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

Epoch number

R
O

U
G

E−
L

TXT&AST&CFG+HAN+DRL

(c) ROUGE-L

Figure 9: Performance trend on different metrics w.r.t. varying training epochs.

0 10 20 30 40 50 60 70 80

0.2

0.25

0.3

0.35

0.4

0.45

Code length

BL
EU

TXT
AST
CFG
TXT&AST
TXT&CFG
AST&CFG
TXT&AST&CFG

(a) BLEU-1

0 10 20 30 40 50 60 70 80
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Code length

M
ET

EO
R

TXT
AST
CFG
TXT&AST
TXT&CFG
AST&CFG
TXT&AST&CFG

(b) METEOR

0 10 20 30 40 50 60 70 80

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Code length

R
O

U
G

E−
L

TXT
AST
CFG
TXT&AST
TXT&CFG
AST&CFG
TXT&AST&CFG

(c) ROUGE-L

Figure 10: Performance trend on different metrics w.r.t. varying code length.

uses all the three features for code representation can out-
perform the ones with two features for code representation.
Moreover, compared to our previous work, the extended
approach can improve the comment generation accuracy
by about 20.36% for BLEU-1 when the code length is 40.
The results in terms of the other evaluation metrics reflect
about the same trends. This further validates the effectiveness
of the multi-feature code representation. Additionally, our
proposed hybrid representation performs consistently under
the code length ranging within (10, 80).

Figure 11 demonstrates the performance under different
comment lengths. We can clearly observe that our approach
has better performance compared with almost all the base-
lines under different comment lengths. For instance, for
BLEU-1, our approach outperforms the baselines by 107.61%,
100.31%, 200.59%, 51.77%, 42.64%, and 47.77% respectively

when the comment length is 20. Moreover, compared to
our previous work, the extended approach can improve the
comment generation accuracy by about 76.52% for BLEU-1
when the comment length is 10. From the figure we can also
know that the performance becomes worse when increasing
the comment length which analogizes the discoveries from
the research of neural translation [78], [80].

5.7 RQ4: Performance Comparison with State-of-the-
art approaches
To evaluate the code summarization performance of our
proposed approach, we also select several state-of-the-art
approaches, i.e., DeepCom [70], CODENN [27], Code2seq
[56], and CoaCor [57] for performance comparison. In
particular, DeepCom [70] utilizes the AST sequence con-
verted by traversing the AST as the code representation

13

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Comment length

BL
EU

TXT
AST
CFG
TXT&AST
TXT&CFG
AST&CFG
TXT&AST&CFG

(a) BLEU-1

5 10 15 20 25 30 35 40

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Comment length

M
ET

EO
R

TXT
AST
CFG
TXT&AST
TXT&CFG
AST&CFG
TXT&AST&CFG

(b) METEOR

5 10 15 20 25 30 35 40
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Comment length

R
O

U
G

E−
L

TXT
AST
CFG
TXT&AST
TXT&CFG
AST&CFG
TXT&AST&CFG

(c) ROUGE-L

Figure 11: Performance trend on different metrics w.r.t. varying comment length.

Table 6: Code summarization results comparison with state-of-the-art approaches.

Python Java

Approaches S-BLEU C-BLEU METEOR ROUGE-L S-BLEU C-BLEU METEOR ROUGE-L

DeepCom 12.92 13.27 6.09 14.33 29.65 31.55 16.87 25.76

CODENN 13.50 11.36 5.82 13.18 36.51 34.31 18.04 26.77

Code2Seq 19.49 17.53 6.52 22.04 19.96 18.07 10.17 23.56

CoaCor 25.61 23.67 9.52 29.38 33.61 32.64 17.62 28.76

Our approach 33.16 30.58 9.43 46.23 38.25 36.42 20.01 37.19

and inputs the AST sequence to the GRU-based NMT for
code summarization via combining lexical and structure
information. CODENN [27] uses RNN with an attention
mechanism to produce comments for C# code snippets and
SQL queries. Code2seq [56] represents code snippet as the
set of compositional paths in its AST and uses attention to
select the relevant paths while decoding. CoaCor [57] utilizes
the plain text of source code and an LSTM-based encoder-
decoder framework for code summarization. Apart from the
dataset of Python in our previous paper, we also utilize the
Java dataset applied in [70].

We evaluate the performance of all the approaches based
on the aforementationed evaluation metrics (especially for
BLEU, we adopt S-BLEU and C-BLEU) in terms of both
Python and Java dataset. Table 6 demonstrates the code
summarization results of all the approaches in terms of the
selected metrics. From the results we can observe that for
both the Python dataset and the Java dataset, our approach
can outperform the compared approaches in terms of most
evaluation metrics. Specially, in terms of the results based on
the Python dataset, state-of-the-art approaches can achieve
from 12.92% to 25.61% in terms of S-BLEU and from 11.36%
to 23.67% in terms of C-BLEU, while our approach can
achieve 33.16% and 30.58% respectively. Our approach can
outperform all the compared approaches by 22.77% to 61.04%
in terms of S-BLEU and by 22.60% to 62.85% in terms of
C-BLEU. Such performance advantages can indicate the
superiority of the our approach. Moreover, in terms of the
result based on Java dataset, state-of-the-art approaches can
achieve from 19.96% to 36.51% in terms of S-BLEU and from
18.07% to 34.31% in terms of C-BLEU, while our approach can
achieve 38.25% and 36.42% respectively. Our approach can
outperform all the compared approaches by 4.5% to 47.82%

in terms of S-BLEU and by 5.79% to 50.38% in terms of C-
BLEU. From the evaluation results based on both the Python
and the Java projects, we can summarize that our approach
can outperform multiple state-of-the-art approaches.

5.8 RQ5: Case Study and User Study

To extensively evaluate our approach, we also conduct case
study and user study which are illustrated as follows.

5.8.1 Case study

We demonstrate four real-world code examples for gener-
ating their comments using our approach in Table 7. In
this table, we first show the code snippet in the second
line and then give the ground truth comment which is
the code comment that is collected together with the code
snippet from GitHub. Next, the generated comments by
different approaches are given. For our approach, shown
as 2-layer+DRL, we have highlighted the words that are
closer to the ground truth. It can be observed that the
generated comments by our approach are the closest to
the ground truth. Although the approaches with DRL (1-
layer+DRL) can generate some tokens which are also in the
ground truth, they cannot predict those tokens which do not
frequently appear in the training data, i.e., pillar in Case
3. On the contrary, the deep-reinforcement-learning-based
approach can generate some tokens which are closer to the
ground truth, such as process, remove, subunit. This
can be illustrated by the fact that our approach has a more
comprehensive exploration on the word space and optimizes
the BLEU score directly.

14

Table 7: Case study of code summary generated by each approach.

Case 1 Case 2

Code snippet

def Pool(processes=None, initializer=None,

initargs=(), maxtasksperchild=None):

from multiprocessing.pool import Pool

return Pool(processes, initializer,

initargs, maxtasksperchild)

def remove_file(source):

if os.path.isdir(source):

shutil.rmtree(source)

elif (os.path.isfile(source) or

os.path.islink(source)):

os.remove(source)

Ground truth returns a process pool object. remove file or directory.

G
en

er
at

ed
C

om
m

en
ts no attention return a list of all available vm sizes on the cloud provider. return a list of all available services cli example.

1-layer returns the total number of cpus in the system. test the behavior of python and invalid features.

2-layer returns a list of all elements in a given order. given two tp instances.

1-layer+DRL returns a process object with the given id. remove a test.

2-layer+DRL returns a process object. remove the file.

Case 3 Case 4

Code snippet

def ext_pillar(minion_id, pillar, url):

log=logging.getLogger(__name__)

data = __salt__[’http.query’](url=url,

decode=True, decode_type=’yaml’)

if (’dict’ code-bluein data):

return data[’dict’]

log.error(((’Error caught on query to’

+ url) + ’More Info:’))

for (k, v) in six.iteritems(data):

log.error(((k + ’:’) + v))

return {}

def test_subunit_output_with_tags():

state.expect=[Includes({’status’:

’success’, ’tags’: set([’slow-ish’])}),

(Includes{’status’: ’success’, ’tags’:

set([’fast-ish’])}), Includes({’status’:

’success’, ’tags’: set()}), Includes({

’status’: ’success’, ’tags’: set()})]

runner=Runner(feature_name(

’tagged_features’),

enable_subunit=True)

runner.run()

Ground truth read pillar data from http response. test subunit output with tags.

G
en

er
at

ed
C

om
m

en
ts no attention returns a list of all available services cli example. return true if the given object is a valid config.

1-layer prints a dict of all methods on a specific server. return a list of available audio.

2-layer return a string with escape-backslashes converted to nulls. returns image.

1-layer+DRL test io for several. test subunit output to unicode.

2-layer+DRL read pillar data. test subunit output with unicode.

5.8.2 User study

Similar to CODENN [27], we conduct a user study to
measure the output of our code summarization approach
and baselines across two modalities—naturalness and in-
formativeness. In particular, we invite 5 proficient English
speakers and 5 proficient programmers with expertise in
Java and Python to rate the generated comments in terms
of grammaticality and fluency, on a scale between 1 and 5.
First, We choose the generated comments which rank top 50
in terms of S-BLEU by our approach in both the Java and
Python dataset. Furthermore, we identify their associated
code snippets/original comments and their corresponding
comments generated by other approaches. At last, each user
randomly selects 10 out of the selected 50 comments and
score them based on their respective understanding of the

naturalness/informativeness of all the generated comments.
The results are presented in Table 8, which demonstrates
that our approach can obtain higher score compared with
other baselines in both naturalness (4.35 over 3.41 to 4.18
on average) and informativeness (3.27 over 2.39 to 3.05 on
average). Such results turn out to reflect the metric-based
evaluation results on the fluency and consistency of our
approach vs. other approaches.

6 THREATS TO VALIDITY

One threat to validity is that our approach is experimented
only on Python and Java code collected from GitHub, so
they may not be representative of comments generation all
projects using that programming language. However, as the

15

Table�8:�Naturalness�and� Informativeness�measures�of� the�
generated�comments.

Approaches Naturalness Informativeness

DeepCom 3.59 2.91

CODENN 3.41 2.39

Code2seq 3.82 2.83

CoaCor 4.18 3.05

Our 4.35 3.27

components HAN and DRL in our approach are general
approaches which can also be used for comment generation
of other programming languages or other tasks regarding
code encoding or generation.

Another threat to validity is on the metrics we choose
for evaluation. It has always been a tough challenge to
evaluate the similarity between two sentences for the tasks
such as neural machine translation [80], image captioning
[81]. In this paper, we only adopt four popular automatic
metrics, it is necessary for us to evaluate the performance
of generated text from more perspectives, such as human
evaluation. Furthermore, in the deep reinforcement learning
perspective, we set the BLEU score of generated sentence as
the reward. It is well known that for a reinforcement learning
model, one of the biggest challenge is how to design a reward
function to measure the value of action correctly, and it is
still an open problem. In our future work, we plan to devise
a reward function that can reflect the value of each action
more correctly.

7 RELATED WORK

7.1 Deep Code Representation
With the successful development of deep learning, it has
also become more and more prevalent for representing
code in the domain of software engineering research. Gu
et al. [82] use a sequence-to-sequence deep neural network
[80], originally introduced for statistical machine translation,
to learn intermediate distributed vector representations of
natural language queries which they use to predict relevant
API sequences. Mou et al. [83] learn distributed vector
representations using custom convolutional neural networks
to represent features of code snippets, then they assume
that student solutions to various coursework problems have
been intermixed and seek to recover the solution-to-problem
mapping via classification. Li et al. [84] learn distributed
vector representations for the nodes of a memory heap
and use the learned representations to synthesize candidate
formal specifications for the code that produces the heap.
Piech et al. [85] and Parisotto et al. [86] learn distributed
representations of code input/output pairs and use them to
assess and review student assignments or to guide program
synthesis from examples. Neural code-generative models
of code also use distributed representations to capture
context, which is a common practice in natural language
processing. For example, the work of Maddison and Tarlow
[87] and other neural language models (e.g. LSTMs in Dam
et al. [88]) describe context distributed representations while

sequentially generating code. Ling et al. [89] and Allamanis et
al. [90] combine the code-context distributed representation
with distributed representations of other modalities (e.g.
natural language) to synthesize code.

7.2 Source Code Summarization

Code summarization is a novel task in the area of soft-
ware engineering and has drawn great attention in recent
years. The existing works for code summarization can be
mainly categorized as rule-based approaches [32], statistical-
language-model-based approaches [26] and deep-learning-
based approaches [33], [34], [65]. Sridhara et al. [32] construct
a software word usage model first, and generate comment
according to the tokenized function/variable names via
rules. Movshovitz-Attias et al. [26] predict comments from
Java code files using topic models and n-grams. In [33], the
authors introduce an attentional neural network that employs
convolution on the input tokens to detect local time-invariant
and long-range topical attention features to summarize code
snippets into short, descriptive function name-like sum-
maries. Iyer et al. [27] propose to use LSTM networks with
attention to produce sentences that describe C# code snippets
and SQL queries. In [34], the code summarization problem is
modelled as a machine translation task, and some translation
models such as Seq2Seq [80] and Seq2Seq with attention [91]
are employed. In [92], a framework, BVAE, which includes
two Variational AutoEncoders (VAEs) to model bimodal
data: C-VAE for code and L-VAE for natural language is
proposed. It could learn semantic vector representations for
both code and description and generate completely new
descriptions for arbitrary code snippets. Alon et al. [56]
proposes Code2Seq, which represents code snippet as the set
of compositional paths in its AST and used attention to select
the relevant paths while decoding. According to the diffs
information, Liu et al. propose NNGen (Nearest Neighbor
Generator) which generate concise commit messages using
the nearest neighbor algorithm [93]. CoaCor [57] utilizes
the plain text of source code and an LSTM-based encoder-
decoder framework for code summarization.

Unlike previous studies, we abstract more hidden infor-
mation of the code for a better code representation, introduce
the hierarchical attention mechanism to take the code struc-
ture into consideration and propose a deep reinforcement
learning framework to accurately generate code summary.

7.3 Deep Reinforcement Learning

Reinforcement learning [49], [53], [94], concerned with how
software agents ought to take actions in an environment
so as to maximize the cumulative reward, is well suited
for the task of decision-making. Recently, professional-level
computer Go program has been designed by Silver et al.
[54] using deep neural networks and Monte Carlo Tree
Search. Human-level gaming control [95] has been achieved
through deep Q-learning. A visual navigation system [96] has
been proposed recently based on actor-critic reinforcement
learning model. Text generation can also be formulated as
a decision-making problem and there have been several
reinforcement learning-based works on this specific tasks,
including image captioning [97], dialogue generation [98] and

16

sentence�simplification�[99].�Ren�et�al.�[97]�propose�an�actor-
critic�deep�reinforcement�learning�model�with�an�embedding�
reward� for� image� captioning.� Li� et� al.� [98]� integrate� a�
developer-defined�reward�with�REINFORCE�algorithm�for�
dialogue�generation.�In�this�paper,�we�follow�an�actor-critic�
reinforcement� learning� framework,�while� our� focus� is� on�
encoding�the�structural�and�sequential�information�of�code�
snippets�simultaneously�with�an�attention�mechanism.

8� CONCLUSION

This� paper� presents� the� first� hierarchical-attention-based�
learning�approach�by�utilizing�unstructured�and�structured�
features�information�of�code,�i.e.,�plain�text,�type-augmented�
AST�and�CFG,� to�reflect� the�hierarchical�structure�of�code�
(tokens� forming� a� statement,� statements� forming� a� func-
tion)�by�supporting�a� two-layer�attention�network�at�both�
token�level�and�statement�level.�Our�approach�provides�an�
effective�representation�that�by�differentiating�tokens�under�
different�contexts�for�comments�generation.�Comprehensive�
experiments�on�a�real-world�dataset�show�that�our�proposed�
approach�outperforms�competitive�baselines�based�on�several�
standard�evaluation�metrics.

9� ACKNOWLEDGEMENT

This� work� is� partially� supported� by� the� National� Natu-
ral� Science� Foundation� of� China� (Grant� No.� 61902169),�
Shenzhen� Science� and� Technology� Program� (Grant� No.�
KQTD2016112514355531),� Science� and� Technology� Inno-
vation� Committee� Foundation� of� Shenzhen� (Grant� No.�
JCYJ20170817110848086)� and� Australia� Research� Council�
(Grant�No.�DP200101374,�LP170100891,�DE170101081�and�
DP200101328),�the�National�key�R�&�D�program�sub�project�
”large� scale� cross-modality� medical� knowledge� manage-
ment”� under� grant� No.� 2018AAA0102100,� the� Zhejiang�
public�welfare�technology�research�project�under�grant�No.�
LGF20F020013,� the� National� Key� R&D� Program� Project�
of�”Software�Testing�Evaluation�Method�Research�and� its�
Database� Development� on� Artificial� Intelligence� Medical�
Information�System”�under� the�Fifth�Electronics�Research�
Institute�of�the�Ministry�of�Industry�and�Information�Tech-
nology�(No.�2019YFC0118802),�and�the�National�Key�R&D�
Program�Project�of�”Full�Life�Cycle�Detection�Platform�and�
Application�Demonstration�of�Medical�Artificial�Intelligence�
Product”�under�the�National�Institutes�for�Food�and�Drug�
Control�(No.�2019YFB1404802),�NSF�under�grants�III-1526499,�
III-1763325,�III-1909323,�and�CNS-1930941.

REFERENCES

[1] B. P. Lientz and E. B. Swanson, “Software maintenance man-
agement,” IEE Proceedings E Computers and Digital Techniques
Transactions on Software Engineering, vol. 127, no. 6, 1980.

[2] S. Zhang, C. Zhang, and M. D. Ernst, “Automated documentation
inference to explain failed tests,” in 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2011).
IEEE, 2011, pp. 63–72.

[3] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 416–426.

[4] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in android
apps,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 2018, pp. 408–419.

[5] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: better together,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 579–590.

[6] J. Hua, Y. Zhang, Y. Zhang, and S. Khurshid, “Edsketch: execution-
driven sketching for java,” International Journal on Software Tools for
Technology Transfer, vol. 21, no. 3, pp. 249–265, 2019.

[7] T. Zheng, X. Zheng, Y. Zhang, Y. Deng, E. Dong, R. Zhang,
and X. Liu, “Smartvm: a sla-aware microservice deployment
framework,” World Wide Web, vol. 22, no. 1, pp. 275–293, 2019.

[8] L. Zhang, “Hybrid regression test selection,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 199–209.

[9] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid,
“Deeproad: Gan-based metamorphic testing and input
validation framework for autonomous driving systems,” in
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, 2018, pp. 132–142. [Online]. Available:
https://doi.org/10.1145/3238147.3238187

[10] J. M. Zhang, L. Zhang, D. Hao, M. Wang, and L. Zhang, “Do
pseudo test suites lead to inflated correlation in measuring
test effectiveness?” in 12th IEEE Conference on Software
Testing, Validation and Verification, ICST 2019, Xi’an, China,
April 22-27, 2019, 2019, pp. 252–263. [Online]. Available:
https://doi.org/10.1109/ICST.2019.00033

[11] M. Wu, H. Zhou, L. Zhang, C. Liu, and Y. Zhang, “Charactering
and detecting cuda program bugs,” arXiv preprint arXiv:1905.01833,
2019.

[12] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang, and
C. Liu, “Deepbillboard: Systematic physical-world testing of au-
tonomous driving systems,” in Proceedings of the 42nd International
Conference on Software Engineering, ICSE 2020, Seoul, Korea, May 23 -
29, 2020, 2020.

[13] I.-L. Yen, S. Zhang, F. Bastani, and Y. Zhang, “A framework for
iot-based monitoring and diagnosis of manufacturing systems,” in
2017 IEEE Symposium on Service-Oriented System Engineering (SOSE).
IEEE, 2017, pp. 1–8.

[14] M. Wu, Y. Ouyang, H. Zhou, L. Zhang, C. Liu, and Y. Zhang,
“Simulee: Detecting cuda synchronization bugs via memory-access
modeling,” in Proceedings of the 42nd International Conference on
Software Engineering, ICSE 2020, Seoul, Korea, May 23 - 29, 2020,
2020.

[15] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: integrating
multiple fault diagnosis dimensions for deep fault localization,”
in Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2019, Beijing, China,
July 15-19, 2019., 2019, pp. 169–180. [Online]. Available:
https://doi.org/10.1145/3293882.3330574

[16] M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang, and S. Khurshid,
“An empirical study of boosting spectrum-based fault localization
via pagerank,” IEEE Transactions on Software Engineering, pp. 1–1,
2019.

[17] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An
information retrieval approach for regression test prioritization
based on program changes,” in 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, 2015, pp. 268–279. [Online]. Available:
https://doi.org/10.1109/ICSE.2015.47

[18] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019., 2019, pp. 19–30. [Online].
Available: https://doi.org/10.1145/3293882.3330559

[19] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in Proceedings
of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016, 2016, pp. 727–738. [Online]. Available:
https://doi.org/10.1145/2950290.2950295

[20] M. Wu, L. Zhang, C. Liu, S. H. Tan, and Y. Zhang, “Automating
cuda synchronization via program transformation,” in 2019 34th

17

IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 748–759.

[21] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile
software development methods review and analysis,” arXiv preprint
arXiv:1709.08439, 2002.

[22] S. H. Tan, J. Yi, Yulis, S. Mechtaev, and A. Roychoudhury, “Code-
flaws: A programming competition benchmark for evaluating
automated program repair tools,” in IEEE/ACM International
Conference on Software Engineering Companion. IEEE, 2017, pp.
180–182.

[23] E. T. Barr, M. Harman, P. Mcminn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[24] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A
study of the documentation essential to software maintenance,”
in Proceedings of the 23rd annual international conference on Design
of communication: documenting & designing for pervasive information.
ACM, 2005, pp. 68–75.

[25] M. Kajko-Mattsson, “A survey of documentation practice within
corrective maintenance,” Empirical Software Engineering, vol. 10,
no. 1, pp. 31–55, 2005.

[26] D. Movshovitz-Attias and W. W. Cohen, “Natural language models
for predicting programming comments,” in Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics, 2013,
pp. 35–40.

[27] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016, pp. 2073–2083.

[28] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
An analysis of stack overflow code snippets,” in Mining Software
Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on.
IEEE, 2016, pp. 391–401.

[29] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based
on crowd knowledge for code search,” IEEE Transactions on Services
Computing, vol. 9, no. 5, pp. 771–783, 2016.

[30] A. T. Nguyen and T. N. Nguyen, “Automatic categorization with
deep neural network for open-source java projects,” in Proceedings
of the 39th International Conference on Software Engineering Companion.
IEEE Press, 2017, pp. 164–166.

[31] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source code
using statistical machine translation (t),” in Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 2015, pp. 574–584.

[32] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java
methods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 2010, pp. 43–52.

[33] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in International
Conference on Machine Learning, 2016, pp. 2091–2100.

[34] T. Haije, B. O. K. Intelligentie, E. Gavves, and H. Heuer, “Automatic
comment generation using a neural translation model,” 2016.

[35] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[36] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred api knowledge,” 2018.

[37] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence
level training with recurrent neural networks,” arXiv preprint
arXiv:1511.06732, 2015.

[38] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as
beam-search optimization,” arXiv preprint arXiv:1606.02960, 2016.

[39] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S.
Yu, “Improving automatic source code summarization via deep
reinforcement learning,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 397–407.

[40] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Software Maintenance, 1998.
Proceedings., International Conference on. IEEE, 1998, pp. 368–377.

[41] E. Grave, A. Joulin, and N. Usunier, “Improving neural language
models with a continuous cache,” arXiv preprint arXiv:1612.04426,
2016.

[42] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram:
bug detection with n-gram language models,” in Proceedings of

the 31st IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2016, pp. 708–719.

[43] R. Rosenfeld, “Two decades of statistical language modeling: Where
do we go from here?” Proceedings of the IEEE, vol. 88, no. 8, pp.
1270–1278, 2000.

[44] A. Mnih and Y. W. Teh, “A fast and simple algorithm for
training neural probabilistic language models,” arXiv preprint
arXiv:1206.6426, 2012.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[46] S. Thrun and M. L. Littman, “Reinforcement learning: An intro-
duction,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp.
285–286, 2005.

[47] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence genera-
tive adversarial nets with policy gradient,” in Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[48] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[49] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” in Reinforcement Learning.
Springer, 1992, pp. 5–32.

[50] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[51] Y. Keneshloo, T. Shi, C. K. Reddy, and N. Ramakrishnan, “Deep
reinforcement learning for sequence to sequence models,” arXiv
preprint arXiv:1805.09461, 2018.

[52] V. Konda, “Actor-critic algorithms,” Siam Journal on Control &
Optimization, vol. 42, no. 4, pp. 1143–1166, 2003.

[53] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in
Advances in neural information processing systems, 2000, pp. 1008–
1014.

[54] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, and S. Dieleman, “Mastering the game of go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, pp.
484–489, 2016.

[55] “Genism,” https://pypi.org/project/gensim/.
[56] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating

sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018.

[57] Z. Yao, J. R. Peddamail, and H. Sun, “Coacor: Code annotation for
code retrieval with reinforcement learning,” in The World Wide Web
Conference. ACM, 2019, pp. 2203–2214.

[58] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles,
techniques,” Addison Wesley, vol. 7, no. 8, p. 9, 1986.

[59] “Abstract syntax trees,” accessed 16 August 2018.
https://docs.python.org/2/library/ast.html.

[60] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, L. Yang,
and S. Jaiswal, “graph2vec: Learning distributed representations of
graphs,” arXiv preprint arXiv:1707.05005, 2017.

[61] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy,
“Hierarchical attention networks for document classification,” in
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. NAACL, 2016, pp. 1480–1489.

[62] D. Hu, “An introductory survey on attention mechanisms in nlp
problems,” arXiv preprint arXiv:1811.05544, 2018.

[63] S. Jain and B. C. Wallace, “Attention is not explanation,” arXiv
preprint arXiv:1902.10186, 2017.

[64] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[65] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment genera-
tion,” in Proceedings of the 26th Conference on Program Comprehension.
ACM, 2018, pp. 200–210.

[66] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings
of the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[67] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[68] “Github,” https://github.com/.
[69] A. V. M. Barone and R. Sennrich, “A parallel corpus of python

functions and documentation strings for automated code docu-
mentation and code generation,” arXiv preprint arXiv:1707.02275,
2017.

18

[70] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gen-
eration with hybrid lexical and syntactical information,” Empirical
Software Engineering, pp. 1–39, 2019.

[71] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt
evaluation with improved correlation with human judgments,” in
Proceedings of the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summarization, vol. 29, 2005,
pp. 65–72.

[72] C. Y. Lin, “Rouge: A package for automatic evaluation of sum-
maries,” Text Summarization Branches Out, 2004.

[73] E. M. Ponti, R. Reichart, A. Korhonen, and I. Vulic, “Isomorphic
transfer of syntactic structures in cross-lingual nlp,” in The 56th
Annual Meeting of the Association for Computational Linguistics, 2018,
pp. 1531–1542.

[74] T. A. Pirinen, “Neural and rule-based finish nlp models-expectation,
experiments and experiences,” in The fifth Workshop on Computa-
tional Linguistics for Uralic Languages, 2019, pp. 104–1114.

[75] H. Shi, H. Zhou, J. Chen, and L. Li, “On tree-based neural sentence
modeling,” arXiv preprint arXiv:1808.09644, 2018.

[76] K. Nguyen, H. D. Iii, and J. Boyd-Graber, “Reinforcement learning
for bandit neural machine translation with simulated human
feedback,” in Conference on Empirical Methods in Natural Language
Processing, 2017.

[77] J. Pouget-Abadie, D. Bahdanau, B. V. Merrienboer, K. Cho, and
Y. Bengio, “Overcoming the curse of sentence length for neural
machine translation using automatic segmentation,” arXiv preprint
arXiv:1409.1257, 2014.

[78] J. Li, D. Xiong, Z. Tu, M. Zhu, Z. Min, and G. Zhou, “Modeling
source syntax for neural machine translation,” arXiv preprint
arXiv:1705.01020, 2017.

[79] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. V. D. Oord, and
K. Kavukcuoglu, “Neural machine translation in linear time,” arXiv
preprint arXiv:1610.10099, 2016.

[80] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural information
processing systems, 2014, pp. 3104–3112.

[81] M. Kilickaya, A. Erdem, N. Ikizler-Cinbis, and E. Erdem, “Re-
evaluating automatic metrics for image captioning,” arXiv preprint
arXiv:1612.07600, 2016.

[82] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[83] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional
neural networks over tree structures for programming language
processing,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI-16), 2016, pp. 1287–1293.

[84] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[85] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and
L. Guibas, “Learning program embeddings to propagate feedback
on student code,” arXiv preprint arXiv:1505.05969, 2015.

[86] E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, and
P. Kohli, “Neuro-symbolic program synthesis,” arXiv preprint
arXiv:1611.01855, 2016.

[87] C. Maddison and D. Tarlow, “Structured generative models of
natural source code,” in International Conference on Machine Learning,
2014, pp. 649–657.

[88] H. K. Dam, T. Tran, and T. Pham, “A deep language model for
software code,” arXiv preprint arXiv:1608.02715, 2016.

[89] W. Ling, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, A. Senior,
F. Wang, and P. Blunsom, “Latent predictor networks for code
generation,” arXiv preprint arXiv:1603.06744, 2016.

[90] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, “Bimodal
modelling of source code and natural language,” in International
Conference on Machine Learning, 2015, pp. 2123–2132.

[91] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[92] Q. Chen and M. Zhou, “A neural framework for retrieval and
summarization of source code,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 826–831.

[93] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are
we?” in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2018, pp. 373–384.

[94] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with function
approximation,” in Advances in neural information processing systems,
2000, pp. 1057–1063.

[95] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[96] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in Robotics and Automation (ICRA),
2017 IEEE International Conference on. IEEE, 2017, pp. 3357–3364.

[97] Z. Ren, X. Wang, N. Zhang, X. Lv, and L. J. Li, “Deep reinforcement
learning-based image captioning with embedding reward,” in Com-
puter Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
on. IEEE, 2017, pp. 1151–1159.

[98] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky, “Deep
reinforcement learning for dialogue generation,” arXiv preprint
arXiv:1606.01541, 2016.

[99] X. Zhang and M. Lapata, “Sentence simplification with deep
reinforcement learning,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, 2017, pp. 584–594.

Wenhua Wang is a joint PhD student in Southern
University of Science and Technology, Shenzhen,
Guangdong, China and the School of Software,
University of Technology, Sydney, NSW, Australia.
Her research interests include software engineer-
ing and deep learning.

Yuqun Zhang is an assistant professor in South-
ern University of Science and Technology, Shen-
zhen, China. He obtained his PhD degree from
the University of Texas at Austin, TX, USA, his
MS degree from the University of Rochester, NY,
USA, and his BS degree from Tianjin University,
Tianjin, China. His research interests include
software engineering and services computing. He
has won one ACM Distinguished Paper Award in
ISSTA 2019. He is an IEEE member.

Yulei Sui is a Lecturer (Assistant Professor) and
an ARC DECRA at Faculty of Engineering and
Information Technology, University of Technology
Sydney (UTS). He obtained his Ph.D. from Univer-
sity of New South Wales (UNSW), where he also
holds an Adjunct Lecturer position. He is broadly
interested in the research field of software en-
gineering and programming languages, particu-
larly interested in static and dynamic program
analysis for software bug detection and compiler
optimizations. He worked as a software engineer

in Program Analysis Group for Memory Safe C project in Oracle Lab
Australia. He was an Australian IPRS scholarship holder, a keynote
speaker at EuroLLVM and a Best Paper Award winner at CGO, and has
been awarded an Australian Discovery Early Career Researcher Award
(DECRA) 2017-2019.

Yao Wan received the B.S degree in the Colleage
of Software Engineering, Northeastern University,
China, in 2014. He is currently working toward
the Ph.D degree in the College of Computer Sci-
ence, Zhejiang University. His research interests
include machine learning and data mining.

19

Zhuo Zhao received the B.S. and Ph.D. degrees
in computer science from The Hong Kong Uni-
versity of Science and Technology, in 2010 and
2015, respectively. He is currently an Associate
Professor with the College of Computer Science,
Zhejiang University. His research interests in-
clude machine learning and data mining.

Jian Wu received his B.S. and Ph.D. Degrees
in computer science from Zhejiang University,
Hangzhou, China, in 1998 and 2004, respec-
tively. He is currently a full professor at the Col-
lege of Computer Science, Zhejiang University,
and visiting professor at University of Illinois
at Urbana-Champaign. His research interests
include service computing and data mining. He
is the recipient of the second grade prize of the
National Science Progress Award. He is currently
leading some research projects supported by

National Natural Science Foundation of China and National High-tech
R&D Program of China (863 Program).

Philip Yu received the B.S. degree in electri-
cal engineering from National Taiwan Univer-
sity, Taipei, Taiwan, in 1972, the M.S. and Ph.D.
degrees in electrical engineering from Stanford
University, Stanford, CA, USA, in 1976 and 1978,
respectively, and the M.B.A. degree from New
York University, New York, NY, USA, in 1982. He
is currently a Disthinguished Professor with the
Department of Computer Science, University of
Illinois at Chicago (UIC), Chicago, IL, USA, and
also holds the Wexler Chair in Information and

Technology. Before joining UIC, he was with the Software Tools and
Techniques Department, IBM Thomas J. Watson Research Center, where
he was a Manager. His main research interests include big data, data
mining (especially on graph/network mining), social network, privacy
preserving data publishing, data stream, database systems, and Internet
applications and technologies. Dr. Yu is currently a Fellow of the ACM.

Guandong Xu received the Ph.D. degree in
Computer Science from Victoria University, Aus-
tralia. He is currently a Professor of School of
Software and the Advanced Analytics Institute
at University of Technology Sydney. He has au-
thored three monographs with the Springer and
the CRC Press, and 100+ journal and conference
papers. His current research interests include
data science and data analytics, Web data min-
ing, behaviour analytics, recommender systems,
predictive analytics, social network analysis. Dr.

Xu has served in the Editorial Board or as Guest Editor for several
international journals. He is the Assistant Editor-in-Chief of the World
Wide Web Journal.

View publication statsView publication stats

https://www.researchgate.net/publication/339834974

