IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014 107

Detecting Memory Leaks Statically
with Full-Sparse Value-Flow Analysis

Yulei Sui, Ding Ye, and Jingling Xue, Senior Member, IEEE

Abstract—We introduce a static detector, SaseR, for detecting memory leaks in C programs. Leveraging recent advances on sparse
pointer analysis, SaABER is the first to use a full-sparse value-flow analysis for detecting memory leaks statically. Saser tracks the flow of
values from allocation to free sites using a sparse value-flow graph (SVFG) that captures def-use chains and value flows via
assignments for all memory locations represented by both top-level and address-taken pointers. By exploiting field-, flow- and context-
sensitivity during different phases of the analysis, Saser detects memory leaks in a program by solving a graph reachability problem on
its SVFG. SaBer, which is fully implemented in Open64, is effective at detecting 254 leaks in the 15 SPEC2000 C programs and seven
applications, while keeping the false positive rate at 18.3 percent. Saser compares favorably with several static leak detectors in terms
of accuracy (leaks and false alarms reported) and scalability (LOC analyzed per second). In particular, compared with FasTcHeck (which
analyzes allocated objects flowing only into top-level pointers) using the 15 SPEC2000 C programs, Saser detects 44.1 percent more
leaks at a slightly higher false positive rate but is only a few times slower.

Index Terms—Memory Leaks, sparse value-flow analysis, static analysis, pointer analysis

1 INTRODUCTION

HIS paper introduces the first static detector, SABER,
which is fully implemented in the Open64 compiler, for

detecting memory leaks in C programs by performing a
full-sparse value-flow analysis. Table 1 compares SABER
with several static memory leak detectors based on pub-
lished and self-produced data on their accuracy in analyz-
ing some or all of the 15 SPEC2000 C programs (totalling
620 KLOC). Table 2 focuses on scalability, i.e., LOC/sec
taken in analyzing the programs handled by each detector.
These speed numbers are rough estimates, since these
detectors have been implemented in different programming
languages (e.g., C++ and Java), executed on different
machines and applied to different sets of programs.

Nevertheless, Tables 1 and 2 show that SABer provides a
good tradeoff between scalability and accuracy in finding
memory leaks with a low rate of false positives. These
results, together with those reported later on analyzing
seven applications (totalling 1.7 MLOC), show that SABErR
has met its design objectives and challenges, as discussed
below.

Like these static detectors compared, SABER is not sound.
Section 6.4 summarizes where and why SABer may fail to
report certain leaks in a program.

1.1 Design Objectives

To find memory leaks statically in a C program, a leak anal-
ysis reasons about a source-sink property: every object created
at an allocation site (a source) must eventually reach a free

o The authors are with Programming Language and Compilers Group,
School of Computer Science and Engineering, University of New South
Wales, Sydney, Australia, 2035.

Manuscript received 16 Jan. 2013; revised 12 Nov. 2013; accepted 15 Jan.
2014; date of publication 23 Jan. 2014; date of current version 4 Mar. 2014.
Recommended for acceptance by M. Dwyer.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2014.2302311

site (a sink) during any execution of the program. The anal-
ysis involves tracking the flow of values from sources to
sinks through a sequence of memory locations represented
by both top-level and address-taken pointers in the pro-
gram. In order to be scalable and accurate, its underlying
pointer analysis must also be scalable and accurate.

Current static detection techniques include AtHENA [13]
(user specification), CONTRADICTION [22] (data-flow analysis),
SATURN [33] (Boolean satisfiability), Sparrow [11] (abstract
interpretation), CLaNG [10] (symbolic execution) and Fast-
cHECK [3] (sparse value-flow analysis). Two approaches
exist: iterative data-flow analysis and sparse value-flow analysis.
The former tracks the flow of values iteratively at each point
through the control flow while the latter tracks the flow of
values sparsely through def-use chains or static single
assignment (SSA) form. The latter is faster as the informa-
tion is computed only where necessary using a sparse repre-
sentation of value flows. Among all published static leak
detectors, FastcHECK is the only one in the latter category
and all the others fall into the former category. However,
FastcHECK is limited to analyzing allocation sites whose val-
ues flow only into top-level pointers but ignores the remain-
ing ones otherwise. Its sparse representation maintains
precise def-use chains only for top-level pointers, which is
obtained using the standard def-use analysis designed for
scalars without the need to perform a pointer analysis.

Therefore, as shown in Tables 1 and 2, FasTcHECK is the
fastest but not the most accurate. The other prior tools are
significantly slower but can be more accurate as is the case
for ATHENA, SATURN and SPARROW, because they reason about
the flow of values through both top-level and address-taken
pointers, albeit iteratively rather than sparsely.

This research draws its inspiration from the FastcHeck
work [3]. We aim to build SaBer by using for the first time a
full-sparse value-flow analysis for all memory locations.
SaBeR tracks the flow of values from allocation to free sites
using a sparse graph representation that captures def-use

0098-5589 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

108

TABLE 1
Comparing Accuracy in Analyzing the 15 SPEC2000 C
Programs, Where “Fault Count” Is the Number of
True Faults Detected

SABER

Leak Detector Fault Counts Fa%{s:tio(sol/:l)ve
ATHENA [13] 53 : 57 10: 22
CONTRADICTION [22] 26 : 43 56 : 25
CLANG [10] 27 : 85 25:19
SPARROW [11] 81:77 16 : 17
FASTCHECK [3] 59 : 85 14:19

The data for the CLanG analyzer and SaABer are from this paper while the
data for the other tools are from the papers cited. Note that per1bmk is
not analyzed by Sparrow because their “parser cannot accept many of
its files”, gcc is not analyzed by ContrapicTiON “because all warnings
referred to data allocated via alloca”, and ammp, art, equake and
mesa are not analyzed by ATHENA. In each of the last two columns, SABER
is compared with each detector D using the SPEC2000 C programs ana-
lyzed by D in the form of “D’s data : SaBER’s data”.

chains and value flows via assignments for both top-level
and address-taken pointers. The edges in the graph are
annotated with guards that represent branch conditions
under which the value flow happens. Like FASTCHECK, SABER
uses the guard information to reason about sink reachability
on all paths. SABER is expected to be as accurate as SPARROW
yet only slightly slower than FastcHeck. This is feasible since
full-sparse value-flow analysis can now be done more effi-
ciently and accurately than before by leveraging recent
advances on sparse pointer analysis [7], [8], [14], [31], [38].

1.2 Challenges

As shown in Tables 1 and 2, SPARROW is more accurate than
FastcHeck but a lot slower. To combine the best of both
worlds, SABER needs to make a good balance between scal-
ability and accuracy. SABer must be lightweight when rea-
soning about the flow of values from allocation sites
through the def-use chains for address-taken pointers,
which are ignored by Fastcheck. In addition, such def-use
chains must be accurate enough to allow more leaks to be
detected. Finally, the false positive rate must be kept low.

1.3 Our Solution

SaBER detects memory leaks using a full-sparse value-flow
analysis. Top-level pointers do not require a pointer analy-
sis to track the flow of values across them. However, for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014

Detect Leaks via
—! Graph Reachability
on SVFG

Build Full- L)
Sparse SSA

Build
SVFG

Perform
Pre-Analysis

Fig. 1. Structure of the Saser detector.

address-taken pointers, a pointer analysis is required due to
the existence of indirect defs and uses through pointers. A
traditional data-flow analysis computes the pointer infor-
mation at every program point by respecting the control
flow in the CFG of a program. This is costly as it propagates
pointer information blindly from each node in the CFG to
its successors without knowing if the information will be
used there or not. In contrast, a sparse pointer analysis [7],
[8], [31], [38] propagates the pointer information from vari-
able defs directly to their uses along their def-use chains,
but, unfortunately, the def-use information can only be
computed using the pointer information. To break the cycle,
a sparse pointer analysis typically proceeds in stages: def-
use chains are initially approximated based on some fast
pointer analysis and then refined in a sparse manner.

SaBER proceeds in four phases, as shown in Fig. 1. Their
functionalities are described below, with details given in
Sections 4.1,4.2, 4.3, 4.4. To balance scalability and accuracy,
SABER exploits field-, flow- and context-sensitivity during its
analysis.

Phase 1: Pre-analysis. This is applied to the program to dis-
cover its pointer (and aliasing) information reasonably
efficiently and accurately. To this end, we resort to
flow- and context-insensitive Andersen’s pointer anal-
ysis with offset-based field sensitivity and callsite-sen-
sitive heap cloning for malloc wrappers.

Phase 2: Full-sparse SSA. This is built for each function
individually, by considering all memory locations. We
use a balanced model to represent the locations
accessed indirectly at loads, stores and callsites. To
improve accuracy, the pointer information obtained
by pre-analysis is further refined sparsely with an
intraprocedural flow-sensitive pointer analysis.

Phase 3: Sparse value-flow graph (SVFG). A sparse repre-
sentation that captures def-use chains and value flows
via assignments for all memory locations in the pro-
gram, called a sparse value-flow graph, is constructed
based on the full-sparse SSA form. Each def-use edge
is annotated with a guard that captures the branch
conditions between the def and the use in the

TABLE 2
Comparing Scalablity (LOC/Secs Taken) in Analyzing the SPEC2000 C Programs Handled by Each Detector,
as Described in the Caption of Table 1

Leak Detector Size Speed Machine

(KLOC) | (LOC/sec) (CPU and Memory)
ATHENA [13] 344 50 2.33 GHz Intel Xeon 4-core, 16GB memory
CONTRADICTION [22] 321 300 3.0 GHz Pentium 4, memory (size not given)
CLANG [10] 620 400 Same as for SABER
SPARROW [11] 465 284 3.2 GHz Pentium 4, 4GB memory
FASTCHECK [3] 671 37,900 3.2 GHz Pentium D, 3GB memory
SABER 620 10,220 3.0 GHz Intel Core2 Duo, 16 GB memory

The speed numbers for AtHena, CoNTRADICTION and Sparrow are calculated from the analysis times reported for the individual benchmarks in the
papers cited. The speed number for FAsTcHECK is reported for all the 15 SPEC2000 C programs and bash and sshd together. The speed numbers

for CLanG and SABER are obtained in this paper.

SUI ET AL.: DETECTING MEMORY LEAKS STATICALLY WITH FULL-SPARSE VALUE-FLOW ANALYSIS 109

TABLE 3
Six Types of Statements, Where p and ¢ Are Local or Global
Variables, v Is a Local or Global Variable, or a Heap Object,
and & Uniquely Identifies a Callsite

[Name | Syntax ‘
Address | p = &wv
Copy p=gq
Load p = xq
Store *D = q
Call p=F(-..q,...)
Return return p

program. Such guards are generated on-demand only
when some allocation sites are analyzed during the
leak detection phase.

Phase 4: Leak detection. This is performed by solving a
graph reachability problem context-sensitively on the
SVFG, starting from allocation sites (sources) and
moving towards their reachable free sites (sinks).

The novelty lies in infusing field-sensitivity (by distin-
guishing different fields in a struct), flow-sensitivity (by
tracking flow of statements) and context-sensitivity (by dis-
tinguishing different call sites of a function) at different
phases of the analysis to balance scalability and accuracy
judiciously.

1.4 Contributions

e SaBER is the first that finds memory leaks by using a
full-sparse value-flow analysis to track the flow of
values through all memory locations and the first
major client for demonstrating the benefits of sparse
pointer analysis.

e SABER uses a new SVFG to maintain value flows for
all memory locations, which may also be useful for
other fault detection tools.

e SaBer is effective at finding 254 leaks in the
15 SPEC2000 C programs and seven C applications
while keeping the false positive rate at 18.3 percent.

e SABER compares favorably with several static leak
detectors in terms of accuracy and scalability (as
shown in Tables 1 and 2). In particular, compared
with FastcHeck (which analyzes allocated objects
flowing only into top-level pointers) using the
15 SPEC2000 C programs, SABER detects 44.1 percent
more leaks at a slightly higher false positive rate but
is only a few times slower.

2 PROGRAM REPRESENTATION

SaBER is designed to analyze fully-fledged C programs.
The concepts of local variables, global variables, heap
objects, pointers and memory locations are used in the
standard manner. In particular, a memory location is
identified by either a local variable or a global variable,
or a heap object.

In the canonical form, as shown in Table 3, a statement in
a C program is one of the following: (1) an assignment of
the form, p = &v (address), p = ¢ (copy), p = *¢ (load) or
xp = q (store), (2) a call statement, p = .7(...,q,...), at call-
site k, where 7} is understood to be a function pointer (or a

function in the special case), and (3) a return statement,
return p. Here, p and ¢ are local or global variables and v is a
local or global variable, or a heap object. Finally, each non-
void function has a unique return statement.

During the conversion to SSA, three new types of opera-
tors are introduced: ®, i, and x. The ® functions are added
at join points as is standard. In SSA form, each variable (or
location) is defined exactly once in the program text. Dis-
tinct definitions of a variable are distinctly versioned. At a
join point in the control-flow graph (CFG) of the program,
all versions of the same variable reaching the point are com-
bined using a ® function, producing a new version for the
variable.

Following [4], [6], potentially indirect uses (defs) at loads
(stores) are identified by using u (x) functions. To enable
the tradeoffs between efficiency and accuracy to be made,
such indirectly accessed locations are represented by mem-
ory regions.

Definition 1 (Memory Regions). A (memory) region is a set
of memory locations that may be indirectly read (MAY-USE)
or modified (MAY-DEF) at a statement.

Each load p = *¢ is annotated with a May-Use set, 0,
which is a set of u functions, such that every u(R) denotes
a region R that may be potentially read at the load. Simi-
larly, each store *p = ¢ is annotated with a May-Def set, §,
which is a set of x functions, such that every R = x(R)
indicates a region R that may be potentially defined at the
store.

To understand this asymmetric treatment of © and y,
suppose R = x(R) (associated with *p=¢) becomes
R, = x(R,) after SSA conversion. If p uniquely points to R,
which must represent a single concrete memory location,
then R,, can be strongly updated. R,, receives whatever ¢
points to and the information in R, is ignored. Otherwise,
R, must incorporate the pointer information from both R,
and q.

Every callsite is annotated with a May-Use set 6 and a
May-Def set § to account for its interprocedural reference
and modification side-effects, respectively. Every return
statement in a function is annotated with a May-Use set 6 to
represent the set of regions that may be indirectly returned
to a caller of the function.

When converted to SSA form using a standard algorithm,
each p(R) is treated as a use of R and each R = x(R) is
treated as both a def and use of R.

For a statement s, we will uniformly identify its may-use
set 6 and its may-def set & as [s;. However, it is understood
that (1) 6 =6= @ (for address and copy statements),
(2) 8§ = @ (for load and return statements), and (3) § = & (for
store statements).

3 A MOTIVATING EXAMPLE

We use an example in Fig. 2 to highlight why SABErR can
detect its two leaks with a full-sparse value-flow analysis
while FastcHECK can find only one of them. This example is
adapted from a real scenario in wine in Fig. 13d (one of the
applications used in our evaluation). In Fig. 2a, readBuf is
called in a for loop in SeriealReadBuf. Every time when
readBuf is called, a single-char buffer formed by two objects

110

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014

1 void SerialReadBuf() {

2 for (n=0; n<100; n++) {) Cond : *tmp != "\n’

3 char** buf = readBuf (); | SerialReadBuf: . P \

4 char* tmp = *buf; i i

‘ <-- -
5 if (tmp != "\n’) 3 | readBuf 'l@ @
: 170, S . ! L o ’
6 print(%s", "mp) | | [Dmbuf, = malloc)} S @@
LA | !

8 continue; 3 ® bufy = readBuf(mBufy = malloc(): Do

9 freeBuf (buf); i ® Ri = x(Ro) Ry = x(Ro) h @
10} | D () | Vi
11 ! | return mBufg J ' Cond
12 char** readBuf() { i (Y
13 char** mBuf = malloc(); //o | | C'Oﬂd-‘ *@,
14 *mBuf = malloc(); / /o’ 3 [v
15 / /... (write into *mBuf); ! freeBuf: \ @
}g return mBuf; | ® Ro=. " \ '.‘ H

i © (R !

18 void freeBuf(char** fBuf) { i g freeBuf(bufo) 20 = *fBufo i 5 @
19 char* z = *{Buf; !) free(zo) ! \
20 free(z); [free(fBufo) | 6 r-->1)
21 LE=T=T 35T
2}

(a) Input program

Fig. 2. A motivating example.

is created: o at line 13 and ¢’ at line 14. There are two cases. If
the buffer contains a char that is not ’‘\n’, the char is
printed and then both o and ¢ are freed. Otherwise, both
objects leak.

We do not show how the flow of values is tracked into
“tmp, i.e., into o' (with u and x functions), as this is irrele-
vant to the leak detection for o and o'.

Definition 2 (Points-to Sets). For a pointer p, ps(p) is a set of
locations possibly pointed to by p

Phase 1: Pre-analysis. We compute pointer information
using (flow- and context-insensitive) Andersen-style
analysis. The issues regarding field sensitivity and heap
cloning (discussed in Section 4.1) are not relevant here.
The following points-to sets are found:

ps(o) = {0}

ps(buf) = ps(mbuf) = ps(fbuf) = {o}

Phase 2: Full-Sparse SSA. For this example, one region R is
introduced to represent the singleton {o}, where o
denotes an abstract heap object created at line 13.
According to (1), R is aliased with *buf, *mbuf and
“fouf. Then the loads, stores, callsites and return state-
ments in the program are annotated with n and x to
make their indirect defs and uses explicit. For the store
at line 14, R = x(R) is added as R may be defined at the
store. The loads at lines 4 and 19 are annotated with
w(R) since R may be read there. The callsite at line 3 is
associated with R = x(R) as R may be modified in
readBuf. Similarly, u(R) is added for the callsite at
line 9 as R may be read in freeBuf. Finally u(R) is
added for the return at line 16 as R is implicitly returned
to its callers. Note that Ry = is added in freeBuf as an
implicit def as it receives its values from outside.

Fig. 2b gives the SSA form for each function derived in
the standard manner.
Phase 3: SVFG. This can be built on the SSA form. As
shown in Fig. 2c, the graph captures the def-use edges
and value flows via assignments for o and o.

(b) Full-sparse SSA

(c) SVFG (with its unlabelled
edges being guarded by true)

Phase 4: Leak Detection. Proceeding similarly as in FAST-

CHECK [3], SABER checks if o and o' leak or not by solving

a graph reachability on the SVFG separately in each

case. Each def-use edge has a quard that captures branch

conditions between the def and use in the interprocedural

CFG of the program (given in Fig. 2b). All such guards

are generated on-demand. As both o and o reach a free

site along the if-branch Cond = *tmp ! = “\n’. So SABER

reports the leak warnings for both objects along the else
branch.

FastcHECK can find the leak of o but not o’ since o flows

into top-level pointers only but o’ does not.

4 THE SABER DETECTOR

SaBER detects memory leaks in a program by proceeding in

the four phases given in Fig. 1. In this section, we describe
these four phases in turn.

4.1 Pre-Analysis

Initially, we conduct a pre-analysis to compute the pointer
information in a program reasonably quickly and accu-
rately. We use Andersen’s inclusion-based analysis, because
it is the most precise among all flow- and context-insensitive
pointer analyses and because it is scalable to millions of
lines of code in minutes.

To improve precision further, our pre-analysis is offset-
based field-sensitive. Different fields of a struct are distin-
guished. However, arrays are considered monolithic. Heap
objects are modeled with context-sensitive heap cloning for
allocation wrappers. All wrappers are identified and treated
as allocation sites. Then the objects originating from an allo-
cation site are represented by one single abstract object.

Allocation wrappers are detected similarly as in
FastcHeck [3]. A function f is marked as an allocator if f
reveals a value flow from an allocation source to the return
statement of f via a sequence of local variables. In our
implementation, we make use of Open64’s external function

summaries to identify all allocation sources such as
malloc.

SUI ET AL.: DETECTING MEMORY LEAKS STATICALLY WITH FULL-SPARSE VALUE-FLOW ANALYSIS 111

After the pre-analysis, the points-to set ps(v) for each
pointer v is available. Each pointed-to target is either an
abstract stack location (identified by a local or global vari-
able) or an abstract heap object. The points-to sets in Fig. 2a
are given in (1).

Since our pre-analysis is flow- and context-insensitive,
SABER starts to exploit flow- and context-sensitivity from this
point to improve its accuracy. To eliminate some spurious
def-use chains for local variables in a function, we perform
an intraprocedural sparse flow-sensitive pointer analysis to
refine the points-to results.

4.2 Building Full-Sparse SSA Form

Our interprocedural full-sparse memory SSA is built modu-
larly for each function. Top-level pointers are put into SSA
just like scalars. To expose the memory locations indirectly
accessed at loads, stores and callsites, we must ensure that
the resulting sparse def-use chains are both accurate enough
and amenable to fast traversal to satisfy the design objec-
tives of SaBER. For loads and stores, the indirect defs and
uses are directly available after pre-analysis. For callsites,
we perform a lightweight Mod-Ref analysis based again on
the points-to information discovered at pre-analysis (Sec-
tion 4.2.1). By performing both for a function, the memory
regions accessed in (Section 4.2.2) and the SSA for (Sec-
tion 4.2.3) the function are obtained.

Just like FastcHECK [3] and SparRrOw [11], SABER makes the
following assumption.

Assumption 1. Heap objects flowing (directly) into a global vari-
able are considered not to leak.

This is because an object pointed by a global variable
may be used any time during program execution. How to
find Java-style memory leaks (via global variables in C) is
beyond the scope of this paper.

4.2.1

Definition 3 (Nonlocal Locations). Consider a memory loca-
tion ¢ that is not represented by a global variable but accessed
in a function f. We say that { represents a local location if (1)
¢ is locally declared in f and (2) f does not appear in any
recursion cycle, and a nonlocal location otherwise. We write
Localy (NonLocaly) to represent the set of all local (nonlocal)
locations accessed in f.

Performing the Mod-Ref Analysis

Given a function f, the Mod-Ref analysis determines the set
U (D) of the nonlocal memory locations in f that may be
indirectly read (modified) when f is executed, denoted as
F f:U,D. Due to Assumption 1, we do not track the side
effects on global memory locations. During the analysis,
each statement s in a function f, denoted ast+ f | s: U, D, is
analyzed individually. The rules used are given in Fig. 3.
Our Mod-Ref analysis is sound in the sense that ¢/ and D in
F f:U,D record all the nonlocal locations in NonLocaly
read and modified by f, respectively.

The root causes for the interprocedural side-effects U/
and D in a function f are loads and stores. For a load
p = *q, ps(¢) may contain nonlocal locations read in f
([I-LD]). Similarly, [I —ST] collects nonlocal locations
in ps(¢) that may be modified at a store. In contrast,
address, copy and return statements do not contribute

[I=ADD) = 1 =t 5,0
I-COPY

: S IV ET RN
[I-RET]

- flreturnp: 9, o

U = {v|veps(q) nve NonLocaly}

I-1D
[] Fflp=%q:U,@
[I-ST] D = {v|veps(p) A ve NonLocals}
Ffl#p=q:2,D
$1,...,8n are the statements in f
= flsi:U,D;
U = (|J, U:)\Localy
_ D = (|, Di)\Localy
[I-PROC] —F U D
Callees(Fr) = {g1,--.,9n} F gi Ui, D;
Nz, is the set of nonlocal locations accessed
at % and visible inside f
[I—CALL] Z/{:Ngkﬁuiui 'D:NngﬁUi'Di

Ffl_=%():UD
Fig. 3. The Mod-Ref analysis.

any side effects according to [I-ADD], [I-COPY] and
[I-RET].

For a callsite ./}, the most conservative Mod-Ref analysis
is to assume that the set of all nonlocal locations passed into
this callsite, V,, may be read and modified by its callees
invoked directly/indirectly. The notation Callees(./})
denotes the set of callees possibly invoked at the callsite ..
This naive approach is inaccurate since an overwhelmingly
large number of unrealizable def-use chains would be cre-
ated across the functions. Instead, we perform a refined
analysis for the callees invoked at 7, to filter out spurious
Mod-Ref information. In the presence of recursion, [I-
CALL] and [I-PROC] are recursively applied until a fixed
point is reached. Note that in [I-PROC], all local locations
in Localy introduced by analyzing a callsite in f are
removed.

4.2.2 Generating Memory Regions

There are many solutions depending on how the memory
is partitioned. At one extreme, FasTcHECK [3] assumes that
all dereference expressions are essentially aliased with
one special region. This coarsest partitioning makes it fast
but too inaccurate to analyze allocation sites whose values
flow into this special region. At the other extreme, distinct
locations in ps(v) for a pointer v are distinct regions
aliased with *v. This finest partitioning would make an
analysis accurate but traverse too many def-use chains to
be efficient.

SABER adopts a balanced memory model to partition the
locations accessed in a function according to the points-to
information at loads and stores and the Mod-Ref informa-
tion at callsites.

By Definition 1, a memory region is a set of memory loca-
tions indirectly accessed. In SaBEr, the set of memory
regions, denoted Ry, for a function f is created as follows.
There are three kinds of regions, formed based on Local;
and NonLocal; (Definition 3):

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014

= sl
[S-ADD] e —
[p = dal§
[S—-COPY] I-5=0o
Y
(so1py P =*dls ReRy Ropslg)#2
gu={uR)} =0
[5-ST] [sp=ql§ ReR; Rnps(p) #9
b6=2 §u={R=xR)
= fjk(i)]ﬂ %L :UTD
[S—CSMU] ReRy Rl +#92
0 u={u(R)}
[7:‘9\16(7)]57 - %, :U,D
S-CSCHI ReRy RnD+#wo
[J 6 u={R = x(R)}
0 .
[S-RET] [return |5 —f:UD ReRy RnD#9

0 u={uR)} 6=0

Fig. 4. Annotating the may-uses and may-defs at the statements of a
function f with 1 and x functions.

Global Region. All global variables in the program are rep-
resented by one GLOBAL region, as also in FAsTCHECK
[3] and Sparrow [11]. Due to Assumption 1, heap
objects flowing into GLOBAL are assumed not to leak.

Nonlocal Regions. For every #p at a load - - - = *p or a store
*p =, a nonlocal region {v|v € ps(p) Av € NonLocaly}
is created. For a callsite .7, wheret- .= .7 ,(.) U,D,a

nonlocal region {v}, where v € NonLocaly, is created
for every variable v € (U U D).
Local Regions. Every local variable v € Localy is in its own
local region, {v}. For every #p at a load = *p or a store
*p = §, a local region {v}, where v € Localy is created
for every ve ps(p). For a callsite .74, where
F_=%():U,D, a local region {v}, where
v € Localy, is created for every v € (U U D).
It is understood that Ry never contains a region R that is
a strict subset of R’ € Ry. In this case, R is redundant (and
should be removed) since an access to R’ always implies an
access to R.
We have modeled the memory this way because it pro-
vides a good tradeoff between scalability and accuracy as
validated in our experiments.

4.2.3 Constructing the SSA

Once all regions in a function are identified, may-defs and
may-uses at its loads, stores, callsites and its return state-
ment are exposed by adding u and x functions and then the
conversion to SSA can take place using a standard SSA algo-
rithm [4], [6].

The detailed rules are given in Fig. 4. Recall from Section 2
that [s]] indicates that statement s is associated with a may-
use set 6 and a may-def set é. In order to initialize a nonlocal
region R initially accessed in a function f, a dummy state-
ment of the form “R = s.” is introduced at its entry to serve
as its initial def. After the SSA conversion is done, R at the

left-hand side has version 0 as it expects to “receive” values
from its callers. This is illustrated using freeBuf in Fig. 2b. As
address and copy statements do not have may-defs and
may-uses, there is no need to insert any p or x ([S-ADD]
and[S-COPY]). For loads and stores with indirectly
accessed regions, aliases are recognized as overlapping
regions and accounted for explicitly by adding p functions
([s-LD]) and x functions ([S-ST]). Similarly, given the
Mod-Ref information at a callsite, aliased regions are
inserted in the form of x and yx functions to represent may-
uses ([S-CSMU]) and may-defs ([S-CSCHI]). Finally, a
1(R) function is added to the return statement of f for every
nonlocal region R that may be modified since R may be
implicitly returned to its callers ([S-RET]).

Let us revisit our example given in Fig. 2a. Based on (1),
only one nonlocal region relevant to leak detection is found
for every function in the program: R = {o}. Thus, the SSA
form for the program is obtained as shown in Fig. 2b.

Let us explain the rules in Fig. 4 by considering one more
example in Fig. 5. There are two functions, foo and bar.
We focus on analyzing foo with and without a call to bar.
In foo, p,q,v and w are local locations while z,y and z are
nonlocal locations accessed (Fig. 5a). The relevant points-to
sets found by pre-analysis are given in Fig. 5b. There are
four regions created in Fig. 5¢c by proceeding as described in
Section 4.2.2. The notation R(vi,...,v,) stands for a region
R that represents variables vy, ...,v,. For bar, which is
omitted, we are only interested in its side-effects as assumed
in Fig. 5d when it is called in foo.

Let us first consider foo without a call to bar as illus-
trated Fig. 5e. For the load ---=#p, *p is aliased with
R(v), R(xz,y) and R(z,z). So the three p functions are
inserted ([S-LD]). For the store xq = - - -, the three x func-
tions are inserted by applying [S-ST]. As R(z,y) and
R(x,z) are the nonlocal regions modified in foo, they are
associated in the form of u functions with the return state-
ment of foo ([S-RET]).

Let us move to Fig. 5f when foo contains a callsite for
bar, with its Mod-Ref information assumed as in Fig. 5d.
Since U = {v} and D = {y}, two nonlocal regions, R(v) and
R(y), are created at this callsite. R(v) already exists since it
was created earlier in Fig. 5c. However, R(y) is redundant
and thus removed since R(y) is a subset of R(x,y) created
earlier. R(v) is aliased with &/ and R(z,y) is aliased with D.
The aliased regions are inserted in the form of 1 and y for the
callsite ([S-CSMU] and [S-CSCHI]). Inboth Figs. 5e and 5f,
the function foo can be put into SSA in the standard manner.

4.3 Building SVFG

Once a function is in SSA, the def-use chains in the function
are available, but these are insufficient for SABER to check
leaks caused interprocedurally. In this section, we describe
how to build our SVFG to capture def-use chains and value
flows by assignments within and across the procedural
boundaries.

The SVFG of a program is kept simple. The only state-
ments reachable directly or indirectly from all allocation
sites being analyzed need to be considered. Its nodes repre-
sent variable definitions, except for one caveat regarding
indirect uses added as p functions to a callsite explained

SUI ET AL.: DETECTING MEMORY LEAKS STATICALLY WITH FULL-SPARSE VALUE-FLOW ANALYSIS

113

R(w) = x(Rw))

w(R(,y))
return;

(R, 2))

(e) SSA without call to function bar

(a) Variables: (b) Points-to: (c) Region partitioning: (d) Callsite Mod-Ref:
Input | locals: p,q,v,w | ps(p) ={z,y,v} |locals: R(v), R(w) Fbar:U,D
nonlocals : x,y, z | ps(q) ={z,z,w} | nonlocals: R(z,y), R(z,z) | U={v}, D={y}
R(z,y) N ps(p) # 0, R(z, 2) Nps(p) # 0, R(v) Nps(p) # 0
R(@,y) N ps(a) # 0. R(z,2) N ps(q) # 0, R(w) 1 ps(q) # 0 Ru)nu#0 Ray)nD#0
void fool(...) { void foo(...) {
(R n(R@,y)) 1R, 2)) H(R(v)) p(R(z,y)) p(R(z, 2))
.. =%p . =%p
Output | 4= q=...

R(w) = x(Rw))
R(z,2) = x(R(z,2)) R,y =x(R(=,y))
n(R@))

bar(...)

R(z,y) = x(R(x,y))

(R, y)) p(Rz, 2))

return;

}
(f) SSA with call to function bar

Fig. 5. An example for illustrating the construction of SSA for address-taken pointers.

below. After SSA conversion, a region R is split into multi-
ple versions as R;, where ¢ > 0, We write R; for the def site
of a memory region R with version ¢. For a local variable p;,
which forms a region by itself, the def site is often denoted
pi for brevity. For a global variable g;, which is abstracted as
the unique GLOBAL regig\\(Section 4.2.2), its def site is g;,
which is equivalent to GLOBAL.

The bulk of the task involved in building the SVFG lies in
adding its edges to capture def-use chains and value flows
via assignments. The ﬂow of values, denoted between a
pair of definitions R SR , indicates that the values flow
from the def site of region R; to the def site of R;, where k
represents a callsite id for context-sensitive reachability
analysis and is omitted if the flow is intraprocedural.

The rules used are given in Fig. 6, with each rule illus-
trated by an example in Fig. 7. By applying [V-COPY], [V-
MU], [V-CHI] and [V-PHI] to a function, its intraproce-
dural def-use chains are added. In [V-COPY], instead of
linking g; to the use g; at a copy statement and then linking
the use to p;, we add one single edge p; — ¢; directly. We
do the same in the other rules. In [V-MU], for each u(R;)
function associated with a load p; = *g;, the value flows
from the def site R, to p;. In [V-CHI] for a store, Rt — R
signifies a weak update to region R, using the old informa-
tion in R, and can be ignored if a strong update is possible
(as described in Section 2). For example, in Fig. 6¢, the value
flow from line 2 to line 4 is invalid since p; points to a single,
concrete location (if foo does not appear a recursion cycle).
For a @ operation, the value flows from the two branches
into the def site at the left-hand side ([V-PHI]).

There are three rules for dealing with interprocedural
value flow; these rules look complex but are also conceptu-
ally simple. An allocation site is marked as a source and a
free site as a sink. As before, Callees(.7) stands for a map-
ping from 7 to a set of callees. [V-CSPAR] captures the
value flows for the standard parameter passing and return
for top-level pointers. In this rule, PAR,(q;) stands for the
corresponding formal parameter of ¢; in SSA (version 0)

and RET,(p;) identifies the unique SSA variable returned in
function g, where g € Callees(.7}). [V-CSCHI] accounts for
the “implicit” value returns for address-taken pointers.
R, — R, in this rule is needed just like the case for [V-
CHI] if a weak update on R; is performed so that the old
points-to information in R, is preserved. Similarly, [V-
CSMU] models the “implicit” parameter passing for
address-taken pointers by treating the site of (R;), denoted
by u(R:), as a pseudo formal parameter (def) site. This is
crucial because we must record the control-flow paths
under which the value flow happens in order to reason
about memory leaks interprocedurally.

[V-CoPY] M
i «— ‘IJ
U [p;i = *QjA]g, (u(Ry)) € b
pi— Ry
[V-CHI] [+p; = Qj]5 (Rt = x(Rs)) € d
Rt «— Rs Rt «— (j}
= B(gs
(v-pHT) — PP = (qzrmc) _
Pi<—4q; Pi<— 4k
_ 7z _ - T
[V-CSPAR] [pi ﬂ : .,qi-‘; <)z g)ge Callees(Fy,)
PARy(q;) <> q; Pi <> RETy(p:)
=7,(1% ge Callees(Fy,)
R, [%

[V-CSMU] () € — —
Ui(Ry) < (Rt) w(Ry) «— Ry
L=Z:)]¢ geCallees(Fy)

R = x(Rs) € d
[V-CSCHI] r = x(Hs) €

)i

R, < DY(R,) R; — R,

Fig. 6. Rules used for building SVFG.

114

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014

... foo(...) { ... foo(..){ ... foo(..){ ... foo(...) {
= 1: ¢ =&v; @ 1: r=&v; @ 1: p=&r; if(...)
5 2: g =& 2: 7 =&v; 1: p=&v;
"8 3 ¢ =& © else
S| 2 m=a: @ pr) @ strong 2 py=&ur;
=% 31 pr=x*q update
g 4 xp1=qi;
S ry = X(r1) @ 3: p3=2(pr,p2); ®

} } } }

(a) V-COPY (b) V-MU (c) V-CHI (d) V-PHI

... foo(..){ ... foo(..) { ... foo(...) {
L p(R(z,y)2) pr=
= 1: a;=&v; 2: u(R(z,z)2) @ 1: R(z,y)2 = x(R(z,y)1)
5 2: 7 =bar(a); ® 3: bar(p): (?a
3 (5o) O\ /G 2 bar(n);
gl Jpar | .bar(p) 3 R(z,y)s = x(R(z,9)2) ®
a 4: R(x,y)o=... @ }
8| 3: .. bar(p){ ©) l ... bar(p) {
=)gar
4: return q; 5: p(R(z,y)o) ©) *PL = ...
=P 4 R(z,y)1 = x(R(z,9)o) @
} } }
(e) V-CSPAR (f) V-CSMU (2) V-CSCHI

Fig. 7. Examples for illustrating the seven rules given in Fig. 6.

Let us now take a closer look at the technical details
behind [V-CSMU] and [V-CSCHI]. Given a function
Fg:U;D, we can apply the rules in Fig. 3 to build
ENT, = {R € R;| RNU # @}, which denotes the set of non-
local regions that may be read in g, and EXT, =
{R e R,|RUD # &}, which denotes the set of nonlocal
regions that may be modified or the regions returned to a
caller at the exit of g (captured by [S-RET]). By construc-
tion, each SSA variable in ENT, has version 0 as it expects
to “receive” values from a caller of g. Similarly, each SSA
variable in X7, has the largest version for the underlying
variable as it contains the final value defined in g. For
freeBuf in Fig. 2, ENTtreepus = {Ro}. The def “Ry =--”
added in freeBuf serves to receive its values from outside.
For readBuf, we have EXTyeaapus = {1}

Given a u(R;) at callsite = »4(_), for each callee g, we
define U/(R;) = {R € ENT,| RN R, # &}. We regard u(R;)
as a pseudo formal parameter, 11(R;), so that R, is first prop-
agated to p(R;) and then to each region in U}(R,), by [V-
csMU]. This realizes the implicit parameter passing for
address-taken pointers. Given a R; = x(R;), we define
Di(R,) ={R € EXT,| RN R, # @} to identify all regions in
EXT, that alias with region R,. By [V-CSCHI], an edge is
added from every region in D{(R;) to R; (to realize the
implicit value returns for address-taken pointers).

To achieve context-sensitive reachability analysis during
leak detection, call and return edges are labelled with call-
site information in the standard manner. In Rules [V-
CSPAR], [V-CSMU] and [V-CSCHI], the call edges are
labelled with the open parenthesis (4 and the return edges
with the close parenthesis){. During leak detection, realiz-
able interprocedural value flows correspond to paths con-
taining properly nested parentheses and context-sensitivity
is achieved by solving a context-free language (CFL) reach-
ability problem as demonstrated in [16], [23], [26], [27], [28].

Let us see how the SVFG in Fig. 2c is built. The part corre-
sponding to the source () tracks the flow of o through the
top-level pointers only into the sink @), as is the case in FasT-
cHECK [3]. The other part that tracks the flow of o’ through

the address-taken pointers, starting from the source) and
ending at the sink (. Its edges are constructed as follows:
@® «— @by [V-CSCHI],@ «— (G «— @by [V-CSMU],® «— @
by [V-MU], and @ «— ® by [V-CSPAR].

4.4 Leak Detection
Once the SVFG is built, the guards on its edges are com-
puted on-demand to capture path conditions under which
the value flow happens in the program. The guard informa-
tion is used to reason about sink reachability on all paths.
SaBER proceeds similarly as FastcHECK except that SABER uses
Binary Decision Diagrams (BDDs) to encode paths while
FastcHecK uses a SAT solver to reason about them.

Given a source object, src, created at an allocation site,
the sink reachability algorithm proceeds in the following
two stages:

Some Path Analysis. We find the set of nodes, denoted F ;.
and called a forward slice, reachable from src in the
SVFG. This is context-sensitive by matching call and
return edges to rule out unrealizable interprocedural
flows of values [23], [27], [28]. Let S,,.. be the set of
sinks, i.e., free sites reached in F.. If S, = &, then
src definitely leaks. In this case, src is known not to
reach a sink along some control-flow paths. If src
reaches GLOBAL along some control-flow paths, the
leak detection phase stops (for src), assuming that src
does not leak (Assumption 1).

All Path Analysis. We refine F,. into a backward slice,
denoted Bi,., that consists of only nodes on paths con-
necting src to a sink in Sy.. Then we perform an all-
path analysis to check that src reaches at least a sink
in S, on every control-flow path that src flows to. We
report a leak warning if src does not reach a sink in
Sgre On some (one or more) control-flow paths. Such
faults are called conditional leaks.

We now describe how to solve our all-path graph reach-

ability problem. For a sink ¢gt in Sy, let vipaths(src, tgt) be
the set of all value-flow paths from src to tgt in the SVFG.

SUI ET AL.: DETECTING MEMORY LEAKS STATICALLY WITH FULL-SPARSE VALUE-FLOW ANALYSIS 115

Recursion is bounded so that recursive callsites are invoked
at most once. For each value-flow path P € vipaths(src, tgt),
viguard(P) is a Boolean formula that encodes the set of con-
trol-flow paths that the underlying value reaches in the pro-
gram, from src to tgt. By convention, true denotes the set
of all control-flow paths between a pair of points. Like
recursion, loops are bounded to at most one iteration. Thus,
we have:

FREED(src) = \/ \/ viguard(P) (2)

tgte€Ssre PEvipaths(sre,tgt)

which signifies the set of control-flow paths reaching a sink in
Ssre from sre. If FREED(src) # true, a leak warning is issued,
indicating that src leaks along the control-flow paths specified
by =FREED(src).

To compute vfguard(P), let vfedges(P) be the set of all
value-flow edges in P. For each (p, q) € vfedges(P), we write
cfguard(p,q) as a Boolean formula to represent the set of

control-flow paths in the program on which the def p

reaches its use at the def g site, denoted by cfpaths(p,q).
Thus, we have:

viguard(P) = /\
(;)\ :1\) evfedges(P)

cfguard(p, q). (3)

There are two cases. If (p, q) is a call or return edge as marked in
[CS — CSPAR], [CS — CSMU] and [CS CSCHI] in Fig. 6,

then cfguard(p,q) = true trivially since |cfpaths(p,q))| = 1.

Otherwise, p and g are two program points in the same function.

There can be many control-flow paths in cfpaths(p,). Let each
path @Q € cfpaths(p,q) be uniquely identified by pguard (Q).
Thus, we have:

cfguard(,q) = \/

QchpatbsG)\. :1\)

pguard(Q). (4)

To compute pguard(Q)), we assign a Boolean condition to
every edge in a CFG. If a node is a branch point, a unique
Boolean guard C'is generated. The true branch is assigned C
and the false branch —C'. Otherwise, the unique outgoing edge
is given true. Let F(Q) be the set of all edges in @ and
eguard(e) the guard on edge e € F(Q). Finally, we have:

pguard(Q) = /\ eguard(e). (5)
e€E(Q)
E’re-analysisil [Full-Sparse SSA :|

Eaarse Value-Flow Gra;£|

cfguard(vg, w3)

void foo(...) { Bo ©5:v0=...

Bo vo = ..; e l true
By for (k=0; k<10; k++) { B1 «—
By if(n<?2) o !
B3 w1 = vo; Ba

else —Cs Cs
By return; Bs / \

} W : wa = Vg By Bs
Bs wa =wo; truel W] :wy = vo
Bg }

Bs

Oy <&reede < 10) cfguard(ss, @) = Ci A Ca

—C1 v (C1 A Ca)

Cs encode (n < 2)

Fig. 8. Encoding paths with Boolean guards.

There is one caveat as illustrated in Fig. 8 using a portion
of a backward slice regarding how the exit of a loop is han-
dled. Note that cfguard(vy, w;) = C; A Cy because there is
true , G

only one path from 7 to wy: Q := By—— B; — By = B;s.

So cfguard(vy, wy) = pguard(Q) = Cy ACs. To compute
cfguard (0y,ws), there are two paths to consider: (1) Q; :=
true | —C; true _ C) Cs

0—>B1—>Br and (2) QQ —B0—>Bl—>B2—>Bg
true

=25 B, — Bs. Recall that the analysis bounds a loop to at
most one iteration. For (),, entering the loop is described by
(' but exiting it is by —C';. As in FASTCHECK, SABER drops the
exit condition —C; in order to make (), feasible. Thus,
pguard(@Q1) = —~C, and pguard(Q2) = Cy A Ch.
= pguard(Q;) V pguard(Qs) =-C;V

Finally,

cfguard(vy, ws) (CLA

Cs).

Consider Fig. 2c. There are two objects o0 and o to be ana-
lyzed. For each source, there is one value-flow path connect-
ing it to one sink. Cond represents the guard assigned to the
true if-branch. So cfguard(®),®) = cfguard((®),®) = Cond,
capturing the branch condition in each case. Thus,
FREED(0) = FREED(0') = Cond. So both are considered to
leak on paths =Cond since Cond # true.

5 THE SABER IMPLEMENTATION

We have implemented SaBer in Open64, an open-source
industry-strength compiler, at its interprocedural analysis
(IPA) phase, as shown in Fig. 9. IPA performs global

[Value-Flow Slices]

| Mod-Ref Intra- |
Analysis Refinement

1
SSA
Builder

Andersen's
Analysis

| Process
mu

SVFG
Builder

P

Process Process I
chi hi

o028

Mu/Chi
Generator

Memory
Regions

Fig. 9. An implementation of Sager in the Open64 compiler.

BDD Manager
Path Encoder
Path Simplifier

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014

analysis by combing information from its IPL (Local part of
its Interprocedural phase, which collects summary informa-
tion local to a function). SABER operates on its High WHIRL
intermediate representation, which preserves high-level
control flow constructs, such as DO _LOOP and IF, and is
ideal for value-flow analysis. In the latest Open64 release,
its WHIRL SSA form is still intraprocedural and used
mainly to support intraprocedural optimizations. We have
extended it by using the Alias Tags provided in Opené4 to
represent memory regions, thereby obtaining an SVFG for
leak detection. In Fig. 9, the four modules, Andersen’s anal-
ysis, Intra-Refinement, Wrapper Detector and BDD, are
from Opené64. All the remaining modules are developed
by us.

Unlike FastcHeck, which reasons about paths using a
SAT solver, SaBer encodes paths using BDDs. There are
some advantages for doing so. First, the number of BDD
variables used (for encoding branch conditions) is kept
to a minimum. Second, it plays up the strengths of
BDDs by exposing opportunities for path redundancy
elimination. Third, the paths combined at a join point
are effectively simplified (e.g.,, with C;V —-C; being
reduced into true).

Following [3], a test comparing the allocated value
against NULL is replaced with an appropriate truth value.
For example, if p = malloc () is analyzed, p == null is
replaced by false since the analysis considers only the
cases where the allocation is successful. This simplification
is generalized to tests of the form g == e, where e is an
expression [3].

To guarantee efficiency without losing much accuracy,
the size of a backward slice is bounded by 100 nodes. As
illustrated in Fig. 12 and discussed in Section 6.2, the back-
ward slices in a program are mostly small, with no more
than 10 SVFG nodes. A source is ignored if the limit is
exceeded by its backward slice. No new leaks are found in
the programs evaluated after the limit has been increased
to 500.

6 EXPERIMENTAL EVALUATION

We evaluate SaBer using the 15 SPEC2000 C programs (620
KLOC) and seven open-source applications (1.7 MLOC),
listed in Table 4. We compare SaBerR with ATHENA [13] (user
specification), CoNTRADICTION [22] (data-flow analysis), SPAR-
row [11] (abstract interpretation), CLANG, which stands here
for its static analyzer (version checker-259) [10] (symbolic
execution) and Fasrcheck [3] (sparse value-flow analysis).
Of these tools, only FastcHeck and CLANG are publicly avail-
able. By using SPEC2000, a comparison between SABEr and
these tools is made possible based on the data available in
their papers.

Given a program, the analysis time of SABER is reported as
the average time over three runs. Similarly, the compile time
of Open64 is also calculated this way.

When assessing SABER, we consider three criteria: (1) prac-
ticality (its competitiveness against other detectors), (2) effi-
ciency (its analysis time) and (3) accuracy (its ability to detect
memory leaks with a low false positive rate). Our results
presented and analyzed below show that Saser has
achieved its design objectives outlined earlier. All our

TABLE 4
Program Characteristics
Characteristics

Program #Functions | #Pointers #Loads #Allc?cation #Eree

/Stores Sites Sites
ammp 182 9829 1636 37 30
art 29 600 103 11 1
bzip2 77 1672 434 10 4
crafty 112 11883 3307 12 16
equake 30 1203 408 29 0
gap 857 61435 | 16841 2 1
gcc 2256 134380 | 51543 161 19
gzip 113 3004 586 3 3
mcf 29 1317 526 4 3
mesa 1109 44582 | 17302 82 76
parser 327 8228 2597 1 0
perlbmk 1079 54816 | 16885 148 2
twolf 194 20773 8657 185 1
vortex 926 40260 11256 9 3
vpr 275 7930 2160 130 68
bash 2700 17830 6855 112 58
cluster 96 3214 1241 124 178
droplet 468 15111 4129 251 193
httpd 3000 60027 | 18450 21 18
icecast 603 15098 9779 235 235
sendmail 2656 107242 | 22191 296 136
wine 77829 | 1330840 | 137409 571 231

experiments were done on a platform consisting of a 3.0
GHZ Intel Core2 Duo processor with 16 GB memory, run-
ning RedHat Enterprise Linux 5 (kernel version 2.6.18).

6.1 Practicality

Tables 1 and 2 compare SaBER with several other static leak
detectors using some or all of the 15 SPEC2000 C programs.
In Table 2, the total size of the SPEC2000 C programs ana-
lyzed by each tool is given. Note that the same benchmark
may have different code sizes if its different versions are
used. The data for CLANG and SaBer are produced in this
work and the data for the others are obtained from their
cited papers. As remarked earlier in Section 1, speed num-
bers should be regarded as rough estimates.

SaBER reports 85 faults among 105 leak warnings while
SrarrOW reports 81 among 96 warnings (without being able
to compile perlbmk [11]). FastcuHeck detects 59 faults
among 67 warnings. ATHENA finds about the same number
of leaks as FastcHECK with a lower false positive rate but is
much slower. Both ConTraDICTION and CLANG find much
fewer leaks. SABER detects consistently more faults than the
others while keeping its false positive rate at about 19 per-
cent for SPEC2000. In addition, SABER achieves this level of
accuracy by running a few times slower than FastcHEck but
is a lot faster than the other tools.

To compare Saser further with FastcHEck and CLANG,
which are open-source tools, we have manually checked all
the leak warnings issued. In the case of FASTCHECK, one of its
authors graciously provided us their fault report. SABER suc-
ceeds in finding a superset of the faults reported by each.
SaBeR always detects no fewer faults than FastcHECK because
SaBER’s value-flow graph is more precise. SABER performs
better than CLANG because CLANG is intraprocedural. During
our experiments, its “experimental.unix.Malloc” checker is

SUI ET AL.: DETECTING MEMORY LEAKS STATICALLY WITH FULL-SPARSE VALUE-FLOW ANALYSIS 117

TABLE 5
SaBer’s Fault Counts and Analysis Times

Program Size Time Fault #False

(KLOC) (secs) Count Alarms
ammp 13.4 0.55 20 0
art 12 0.01 1 0
bzip2 47 0.04 1 0
crafty 21.2 0.83 0 0
equake 1.5 0.04 0 0
gap 715 4.00 0 0
gcc 230.4 21.21 42 5
gzip 8.6 0.08 1 0
mcf 2.5 0.03 0 0
mesa 61.3 10.10 7 4
parser 11.4 0.28 0 0
perlbmk 87.1 18.52 8 4
twolf 20.5 2.12 5 0
vortex 67.3 2.90 0 4
vpr 17.8 0.31 0 3
bash 100 22.03 8 2
cluster 10.7 1.81 12 4
droplet 33.2 29.70 9 3
httpd 128.1 10.65 0 0
icecast 22.3 5.54 13 5
sendmail 115.20 32.97 5 0
wine 1338.1 421.60 122 23
total 2368.0 585.32 254 57

used to enable leak detection. By analyzing a function indi-
vidually without considering its callers and callees, the
information from outside (via its parameters and returns at
callsites) is assumed to be unknown or symbolic. Thus, any
objects created inside callees cannot be analyzed, thereby
causing CLANG to miss many faults.

In addition to SPEC2000, we have also evaluated SABER
using seven open-source C applications, totalling 1.7
MLOC: wine-0.9.24 (a tool that allows windows appli-
cations to run on Linux), icecast-2.3.1 (a streaming
media server), bash-3.1 (a UNIX shell), cluster-3.0
(clustering algorithms), droplet-3.0 (a cloud storage
client library), httpd-2.0.64 (an Apache HTTP server)
and sendmail-8.14.2 (an internet email server).

Table V summarizes the accuracy and analysis times for
the 15 SPEC2000 C programs and seven applications. In
wine, the largest in our suite, SABER finds 122 faults with 23
false positives in about 421.6 secs, i.e., which is roughly the
amount of time taken in compiling wine under “-02”. Over-
all, SaBER finds 254 leaks at a false positive rate of 18.3 per-
cent. To the best of our knowledge, SABER is the fastest leak
detector scalable to millions of lines of code at this accuracy.

6.2 Efficiency

SaBER is fully implemented in the Open64 compiler. We
investigate and analyze its efficiency further by comparing
the analysis times used by Saser with the compile times
consumed by Open64 under “-O2” for our test suite. As
shown in Fig. 10, both are similar across all the programs,
indicating that SABER is promising to be incorporated into
an industry-strength compiler for static leak detection.

For some small and medium programs such as art,
ammp, equake, gzip, mcf, parser and vpr, SABER’s anal-
ysis times are significantly less than Open64’s compile
times. For some large programs like droplet, mesa,

Saber B QOpenb4 (-02)

L IHH

on\Q \Q :? 66‘ &‘Q
&

100.00

10.00 r
le M ANRRANEN
&

4@ (@

Time (seconds)

Fig. 10. Comparing SaBer’s analysis times and Open64’s compile times
(under “-02").

perlbmk sendmail and wine. SABER’s analysis times are
slightly longer since these programs each have a relatively
large number of abstract heap objects to be analyzed as
shown in Table 4. For gcc, the largest in SPEC2000, SABER
can analyze it faster than Open64 compiles it. This is the
case because the most of the backward slices considered
during all-path analysis are small. The effectiveness of solv-
ing our sink reachability problem in backward rather than
forward slices is illustrated in Fig. 12.

SABER analyzes a program by going through its four
phases in Fig. 9. To understand their relative costs, Table 4
gives some basic characteristics about the programs being
analyzed. For each program, Columns 2-6 give the number
of functions, pointers, loads/stores, abstract objects (i.e.,
allocation sites) and free sites in the program. The presence
of these many loads/stores indicates the importance of
tracking the values flowing into address-taken pointers in
this work. Fig. 12 analyzes the leak detection phase further,
by comparing the percentages of nodes in SVFG and func-
tions present in the forward slices F,. built during some-
path analysis and those in the backward slices Bj,. built
during all-path analysis (Section 4.4). Recall that it is on B,,.
that SABER reasons about sink reachability on all paths. Most
of the backward slices are smaller, not exceeding 10 SVFG
nodes.

From Fig. 11, we can examine SABER’s analysis times dis-
tributed among its four phases in our test suite. In total,
their percentage distributions are pre-analysis (30.1 per-
cent), full-sparse SSA (14.3 percent), SVFG (34.9 percent)
and leak detection (20.7 percent). The pre-analysis and
SVFG phases together dominate the analysis times for all
the programs. The SSA phase seems to take some noticeable

L Pre—AnaIysis BFull-Sparse SSA OSVFG OlLeak Detection

0%

>
'@ Q\Q égbc? 6‘ q\\ %
6

60% IIIIII

40%

100%
LIy
I IIIII |

@Q 'b.o’lﬂq‘ P 6&9@ QF'O iR & 09° {’0‘ &6‘\‘{@*’ AQ

Fig. 11. Percentage distribution of SaBer’s analysis times among its four
phases.

118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014

®Traversed SVFG Nodes in Forward Slices (%) B Traversed Functions in Forward Slices (%)
Traversed SVFG Nodes in Backward Slices (%) " Traversed Functions in Backward Slices (%)

45 70

40 60

35 [|

B

= r H - l I |

25 40

20 i I 11 30 11 I |

2 I » 111 .

10 1 M N 1

RS j 0 1]

s La | AN N TN . \ ok L1 Ll kb IRUNT NS
AP AN RER S P S &S $ X d S SN RSO CRIRS P LI F S S PN
KA LOFRERE LSO R £ S & &S PRI S F & R F IR P & &
&% 0@0 & $ T Qé&{@ R &oq RS ,,x\;‘éo & TEE S ¥ EEFS & P &°Q v\oe:&&“ i“é

Fig. 12. Traversed functions (%) and SVFG nodes (%) in forward F,,. and backward B;,. slices.

fractions of the total times in some large programs, such as
gce, httpd and wine, which have relatively a large num-
ber of loads/stores (and callsites). In the case of ammp,
bzip2, gzip, mcf, vpr and parser, few pointers and allo-
cation sites are found (Table 4) and their analysis times are
all within 1 sec (Table 5). So the percentage distributions
should be interpreted in this context.

Finally, the leak detection phase is relatively fast since, as
shown in Table 4, the portions of the SVFGs being consid-
ered during all-path analysis are small. On average, only
6.48 percent of the functions and 5.08 percent of the nodes
in the SVFGs are traversed. In the case of gap, parser and
httpd, which are medium programs with many pointers,
little times are consumed in this phase. A glance at Table 4
reveals that these programs each have few abstract heap
objects to be checked. In gap, most of its computations are
done on global data structures. In parser and httpd, a
large pool of memory is allocated at the beginning and used
frequently after. In twolf and vpr, there are many alloca-
tion sites but most of the objects created reach GLOBAL as
discovered during some-path analysis. In contrast, mesa,
perlbmk, bash, droplet and icecast stay longer than
the other programs in the leak detection phase, because
their backward slices By, are relatively large (Table 4).
Some programs such as gcc, sendmail and wine have
many allocation sites but are relatively fast to analyze in
this phase. This is because many of their objects are either
never freed or reach GLOBAL during some-path analysis.
As for wine, SABER starts with 571 abstract objects. After the
some-path analysis is done, there are 105 that are never
freed and 270 that reach GLOBAL. So only 196 objects need
to be further checked relatively more costly during all-path
analysis.

6.3 Accuracy

We examine the causes for some interesting leaks reported
by SaBER to analyze further its accuracy. In the FAsTCHECK
paper [3], the 15 SPEC2000 C programs and bash are also
considered. When comparing SaBer with FastcHeck, we
refer to the fault report on these programs communicated to
us by one of its authors. We also examine six representative
scenarios with some leaks detected by Saper but missed by
Fastcueck to highlight the importance of tracking value
flows into address-taken pointers.

As shown in Table 5, SABER finds 254 faults with 57 false
positives, achieving a false positive rate of 18.3 percent. Let
us consider SPEC2000 first. All the faults (20) in ammp are
conditional leaks, caused when functions do not free

memory when returning on errors. All these faults can also
be found by FastcHeck as they require only value-flow anal-
ysis for top-level pointers. All faults reported in gcc are
due to mis-handling of strings. Most of these (with three
inside loops) are related to calls to concat. For mesa, all
the seven faults found by SaBer but missed by FAsTCHECK
require value-flow analysis for address-taken pointers.
Some conditional leaks at a switch statement and some
never-freed leaks are discussed below. Among the eight
faults reported for perlbmk by SaBER, only two are also
reported by Fasrtcueck. The remaining six involve heap
objects being passed into a field of a local struct variable or
passed outside from a callee via dereferenced formal
parameters.

Let us move to the seven applications, of which only
bash is also analyzed by Fastcheck [3]. In bash, FAsTcHECK
finds two of the eight faults found by Saser. For the other
six faults, two share a similar pattern. A function allocates
two objects, one to a base pointer p and one to *p. If the sec-
ond allocation for #p fails, it returns without freeing the
object allocated for p. In the case of icecast, with 12 faults
reported, three are related to mis-handling of strings and
the other nine (with some analyzed below) all happen when
a function does not free objects that are allocated but unsuc-
cessfully inserted into a list. SABER detects two conditional
leaks in sendmail at switch statements. SaBer finds 122
faults in wine, with 105 never freed and the remaining ones
as conditional leaks (caused for a variety of reasons). A sce-
nario similar to our motivating example is discussed below.

Below we examine six representative scenarios mesa in
SPEC2000 and cluster, droplet, icecast and wine in
open-source code. There are a total of nine leaks: seven
require value-flow analysis for address-taken pointers and
two can be found by analyzing top-level pointers only.

Consider the code region from mesa given in Fig. 13a. At
lines 362 and 385, two heap objects are allocated and
assigned to textImage and its field Data, respectively.
However, both objects are conditional leaks when the for-
mat of test Image created does not match any that is listed
at the switch statement. In this case, the function returns
directly at line 478, without freeing the two heap objects
allocated earlier.

Consider the code fraction for initializing some arrays in
cluster shown in Figs. 13b and 13c. In Fig. 13b, u and v
are used as two-dimensional arrays and w and m as one-
dimensional arrays. However, when the condition at line
1,187 holds, the one-dimensional arrays created at lines
1,170 and 1,179 for initializing u and v, respectively, are not

SUI ET AL.: DETECTING MEMORY LEAKS STATICALLY WITH FULL-SPARSE VALUE-FLOW ANALYSIS 119
//teximage.c //data.c
344: static struct gl_texture_image * 1161: const char* PerformGenePCA(FILE* coor, ...){
image_to_texture(GLcontext *ctx, 1165: double** u = malloc(_rows*sizeof (doublex*));
const struct gl_image *image){ 1166: double** v = malloc(nmin*sizeof (doublex));
1167: double* w = malloc(nminxsizeof (double));
349: struct gl_texture_image *texImage; 1168: double* m = malloc(_columns*sizeof (double));
362: texImage = gl_alloc_texture_image(); 1169: for (i = 0; i < _rows; i++)
1170: { ulil = malloc(_columns*sizeof(double)); e = =
385: texImage->Data = (GLubyte *)malloc c = = q 1171: if (tulil) break; .
(numPixels * components); ' 1172: }
451: switch (texImage->Format) { 1178: for (i = 0; i < nmin; i++) .
452: case GL_ALPHA: ' 1179: { v[i] = malloc(nmin*sizeof(double)); . e e ef
' 1180: if (1v[i]) break; '
454 break; . 1181:
.. 1187: if (tu || tv 1] tw |1t '
476: default: 1188: { if (w) free(uw); if (w) free(w); '
478: return NULL; 1189: if (v) free(v); if (m) free(m);
b 1192: return "Memory allocation error"; <—@
786: return texImage; 1193: }
1259: }
(a) Relevant leaky code in mesa (b) Relevant leaky code in cluster
//cluster.c //backend.c
2905: doublex* distancematrix (int nrows, ...){ 365: dpl_status_t
L 366: dpl_posix_list_bucket(dpl_ctx_t *ctx,
2982: matrix = malloc(n*sizeof(doublex)); = = = « const char *bucket,...)
2983: if (matrix==NULL) return NULL; ' 418: while (1)
2984: matrix[0] = NULL; . 419: {
420: iret = readdir_r(dir, &entry, &entryp);
2986: for (i = 1; i < n; i++)]
2987: { matrix[i] = malloc(i*sizeof(double)); ' 441: common_prefix = malloc(sizeof (...));
2988: if (matrix[i]==NULL) break; ' 448: common_prefix->prefix = strdup(buf); - - -
2989: 449: if (NULL == common_prefix->prefix) '
2990: if (i < n) /* break condition encountered */ ' 450: {
2991: {j=1i; (] 451: ret = DPL_ENOMEM; '
2992: for (i = 1; i < j; i++) free(matrix[il); 452: goto end;]
2993: return NULL; <—@ 453: } '
2994: i 491: i '
e 512: if (NULL !'= common_prefix)
3001: return matrix 513: free(common_prefix); h——@
3002: } 527: }

(c) Relevant leaky code in cluster

(d) Relevant leaky code in droplet

//avl.c
42: avl_node *avl_node_new (void *key,avl_node *parent)

45: avl_node * node = alloc (sizeof (avl_node));
47: if (!'node) return NULL; ® e e = @ @ = ® @)
49: else { '
50: node->parent = parent;
58: return node; 4
¥ [
+ '
116: int avl_insert (avl_tree * ob, void * key){ '
120: avl_node* node = avl_node_new(key, ob->root);
121: if (lnode) return -1; e @ ® = ® ® = = !
128: } '
//auth_htpasswd.c .
120: static void htpasswd_recheckfile
(htpasswd_auth_state *htpasswd){ '
123: avl_tree *new_users; '
157: new_users = avl_tree_new (compare_users, NULL); .
159: while (get_line(passwdfile, line, MAX_LINE_LEN)) '
{
161: int len; !
162: htpasswd_user *entry; [}
174: entry = calloc (1, sizeof (htpasswd_user)); N
176: entry->name = malloc (len);
180: avl_insert (new_users, entry); <—@'
¥

(e) Relevant leaky code in icecast

//ungif.c
891: GifFileType* DGifOpen(void *userData,
InputFunc readFunc) {
898: GifFile = malloc(sizeof (GifFileType));
905: Private = malloc(sizeof (GifFilePrivateType));
911: GifFile->Private = (void#*)Private;
938: return GifFile; - @ o o @ o & o = =
}
945: int DGifCloseFile(GifFileType * GifFile) {
952: Private = GifFile->Private;
964: free(Private);
972: free(GifFile);
974: return GIF_OK;
¥

//olepicture.c

- ® ® ® ® ® ® ® ®© o « 4

1002: static HRESULT OLEPicturelImpl_LoadGif
(OLEPictureImpl *This, BYTE *xbuf)

{

1006: GifFileType *gif;

1021: gif = DGifOpen((void*)&gd, _gif_inputfunc);

1030: if (gif->ImageCount<1){

1031: FIXME("GIF stream does ..7\n");

1032: return E_FAIL; @
}

1194: DGifCloseFile(gif);

1195: HeapFree (GetProcessHeap(),0,bytes) ;

1196: return S_O0K;

(f) Relevant leaky code in wine

Fig. 13. Six scenarios with conditional leaks requiring value-flow analysis for address-taken variables.

freed. A similar case happens in Fig. 13c, except that the
one-dimensional arrays pointed by the individual elements
of the two-dimensional matrix array are freed but matrix
itself leaks at line 2993.

Consider the code region from droplet given in Fig. 13d.
Two heap objects are allocated and assigned to common__
prefix and its field prefix at lines 441 and 448. Only the
object pointed by common_prefix is freed but the other is not.

Let us look at the two leaks in icecast as shown in
Fig. 13e. At lines 174 and 176, entry and its field name are
assigned a heap object each. Subsequently at line 180,
avl_insert is called to insert entry into the new_users
list. However, the insertion fails when the test at line 121 in
avl_insert succeeds. Then the two objects leak. There are
nine occurrences of this leak pattern in icecast.

Finally, we discuss the two leaks in wine in Fig. 13f, which
are similar to the two illustrated in our motivating example.

In function OLEPictureImpl_LoadGif,GifOpenis called
atline 1,021 so that two heap objects are allocated at lines 898
and 905: one is passed to gif and the other to the field pri-
vate of GifFile. At the end of OLEPictureImpl_
LoadGif, thereis a call to DG1ifCloseFile to free the two
objects. However, the two objects are never freed when the
test at line 1030 sitting between the two calls evaluates to true.

6.4 Limitations

Like nearly all static memory leak detectors, SABER is neither
complete (by issuing false positives) nor sound (by missing
faults).

The false positives happened for several different rea-
sons: not recognizing infeasible paths (in mesa, bash
and wine), treating multi-dimensional arrays monolithi-
cally (in vpr), bounding the number of loop iterations

120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014

(in vortex, icecast and wine) and approximating
aliases conservatively in terms of memory regions (in
perlbmk and wine).

Similarly, the false negatives also happened for several
different reasons. Static detectors analyze usually the first N
iterations of a loop or recursion cycle. To compare SABER
with FastcHECK, N =1 is also used. Thus, SABER shares the
same limitations as FAsTCHECK in these aspects. When N = 2,
SaBER has managed to detect one more leak (in function
symbol_search in wine). In the worst case, all the itera-
tions of a loop or recursion cycle must be analyzed to avoid
missing any leaks. This is the case, for example, when one
loop is used to initialize different elements of an array with
different heap objects but another loop is used to free all the
objects but the last.

In addition, both SaBer and FastcHECK, like many other
tools, are not sound in handling pointer arithmetic by treat-
ing, for example, an occurrence of = + e as an occurrence of
2. Like other tools, SABER may also miss faults due to impre-
cision in modelling the heap. For example, an abstract heap
object that represents two different concrete objects along
two different call paths is considered not to leak if the
abstract object is freed along one of the two paths.

Saser handles global variables similarly as in FastcHeck
and Sparrow. This is not sound since the leaks reachable by
GLOBAL are not tracked.

Finally, SaBer ignores an allocation source if its backward
slice exceeds a given threshold. This may potentially cause
some leaks to go undetected.

7 RELATED WORK

There are a number of reported attempts on memory leak
detection using static analysis [3], [9], [10], [11], [13], [22],
[30], [33] or dynamic analysis [1], [5], [20], [35], [36]. The
SABER approach can speed up existing static techniques by
using a full-sparse representation to track the flow of values
through assignments.

Static Memory Leak Detection. There has been a lot of
research devoted to checking memory leaks statically [3],
[9], [11], [15], [22], [32]. SaTurN [33] reduces the problem of
memory leak detection to a boolean satisfiability problem
and then uses a SAT solver to identify errors. Its analysis is
context-sensitive and intraprocedurally path-sensitive. So
SATURN can find some leaks missed by Saper. By solving
essentially a constraint formulation of a data-flow analysis
problem, however, SATURN scales to around 50 LOC/sec (on
a 2.8 GHz Intel dual Xeon with 4 GB memory) when analyz-
ing some common programs [33]. BDDs are also used previ-
ously to represent and reason about program paths [31],
[34]. Atnena [13] finds path-sensitive faults guided by user
specifications, without handling some language features
such as function pointers. SABER resolves function pointers
during its pre-analysis. CLANG [10] is a source-code analysis
tool that can find memory leaks in C and Objective-C pro-
grams based on symbolic execution. Being intraprocedural,
it assumes unknown or symbolic values for the formal
parameters of a function and the returned values from its
callsites. Sparrow [11] relies on abstract interpretation to
detect leaks in C programs. It models a function using a
parameterized summary and uses the summary to analyze

all the call sites to the function. FastcHECk [3] detects mem-
ory leaks by using a semi-sparse representation to track the
flow of values through top-level pointers only. It is fast but
limited to analyzing allocation sites whose values flow into
top-level pointers only. CONTRADICTION [22] performs a back-
ward data-flow analysis to disprove the presence of mem-
ory leaks. Crouseau [9] is a flow- and context-sensitive
memory leak detector, based on an ownership model. Com-
pared to the other tools, CONTRADICTION and CLOUSEAU issue
relatively more false positives. SABER as presented in this
paper is the first static tool for detecting memory leaks using
a full-sparse value-flow graph.

Dynamic Memory Leak detection. Such tools [1], [5], [18]
detect leaks by instrumenting and running a program
based on test inputs. However, dynamic detectors tend
to miss faults although their false positive rates can be
kept low. For example, we ran valgrind [18] on the same
15 SPEC2000 C programs using the reference inputs pro-
vided. More than 90 percent leaks reported by SABER can-
not be detected.

Sparse Pointer Analysis. Unlike iterative data-flow pointer
analyses, their recent sparse incarnations [7], [8], [14], [31],
[38] avoid propagating information unnecessarily guided
by pre-computed def-use chains. Earlier, Hardekopf and
Lin presented a semi-sparse flow-sensitive analysis [8]. By
putting top-level pointers in SSA, their def-use chains can
be exposed directly. Recently, they have generalized their
work by making it full-sparse [7]. This is done by using
Andersen-style flow-insensitive pointer analysis to compute
the required def-use information in order to build SSA for
all variables. Yu et al. [38] introduced LevPA, a flow- and
context-sensitive pointer analysis on full-sparse SSA.
Pointer resolution and SSA construction are performed
together, level by level, in decreasing order of their points-
to levels. All pointer analyses require a heap cloning
method to partition the infinite-sized heap into a finite a
number of abstract objects [12], [21], [29].

Interprocedural Side-Effect Analysis. There are techniques
for computing interprocedural modification side-effects for
FORTRAN [2], C [24] and Java with a closed-world assump-
tion [17], [25] and in the presence of dynamic class loading
[19], [37]. SaBER uses a Mod-Ref analysis that restricts itself
to the modification and reference side-effects on nonlocal
memory locations (due to Assumption 1).

8 CONCLUSION

Memory leaks are common errors affecting many programs
including OS kernels, desktop applications and web serv-
ices. In this paper, we have introduced SABER, a static detec-
tor for finding memory leaks in C programs. By using a full-
sparse value-flow graph to track the flow of values from
allocation to free sites through both top-level and address-
taken pointers, SaBer is effective at finding leaks in
SPEC2000 and seven open-source applications, by detecting
a total of 254 leaks at a false positive rate of 18.3 percent.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
valuable comments. This work was supported by the

SUI ET AL.: DETECTING MEMORY LEAKS STATICALLY WITH FULL-SPARSE VALUE-FLOW ANALYSIS

Australian Research Council (ARC) grants, DP110104628
and DP130101970, and a grant from Oracle Labs.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

D. Bruening and Q. Zhao, “Practical Memory Checking with Dr.
Memory,” Proc. IEEE/ACM Ninth Ann. Int’l Symp. Code Generation
and Optimization (CGO '11), 2011.

D. Callahan and K. Kennedy, “Analysis of Interprocedural Side
Effects in a Parallel Programming Environment,” |. Parallel and
Distributed Computing, vol. 5, no. 5, pp. 517-550, Oct. 1988.

S. Cherem, L. Princehouse, and R. Rugina, “Practical Memory
Leak Detection using Guarded Value-Flow Analysis,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation
(PLDI "07), 2007.

F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich, “Effective Repre-
sentation of Aliases and Indirect Memory Operations in SSA
Form,” Proc. Sixth Int'l Conf. Compiler Construction (CC '96), 1996.
J. Clause and A. Orso, “LEAKPOINT: Pinpointing the Causes of
Memory Leaks,” Proc. ACM/IEEE 32nd Int’l Conf. Software Engi-
neering (ICSE '10), 2010.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck,
“Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph,” ACM Trans. Programming Languages
and Systems, vol. 13, no. 4, pp. 451-490, Oct. 1991.

B. Hardekopf and C. Lin, “Flow-Sensitive Pointer Analysis for
Millions of Lines of Code,” Proc. IEEEJACM Ninth Ann. Int’l Symp.
Code Generation and Optimization (CGO '11), 2011.

B. Hardekopf and C. Lin, “Semi-Sparse Flow-Sensitive Pointer
Analysis,” Proc. 36th Ann. ACM SIGPLAN-SIGACT Symp. Princi-
ples of Programming Languages (POPL "09), 2009.

D.L. Heine and M.S. Lam, “A Practical Flow-Sensitive and Con-
text-Sensitive C and C++ Memory Leak Detector,” Proc. ACM SIG-
PLAN Conf. Programming Language Design and Implementation
(PLDI "03), 2003.

http://clang-analyzer.llvm.org/, 2014.

Y. Jung and K. Yi, “Practical Memory Leak Detector Based on
Parameterized Procedural Summaries,” Proc. Seventh Int’l Symp.
Memory Management (ISMM "08), 2008.

C. Lattner, A. Lenharth, and V. Adve, “Making Context-Sensitive
Points-To Analysis with Heap Cloning Practical for the Real
World,” Proc. ACM SIGPLAN Conf. Programming Language Design
and Implementation (PLDI '07), pp. 278-289, 2007.

W. Le and M.L. Soffa, “Generating Analyses for Detecting Faults
in Path Segments,” Proc. Int'l Symp. Software Testing and Analysis
(ISSTA '11), 2011.

L. Li, C. Cifuentes, and N. Keynes, “Boosting the Performance of
Flow-Sensitive Points-To Analysis Using Value Flow,” Proc. 19th
ACM SIGSOFT Symp. and 13th European Conf. Foundations of Soft-
ware Eng. (FSE '11), 2011.

V.B. Livshits and M.S. Lam, “Tracking Pointers with Path and
Context Sensitivity for Bug Detection in C Programs,” Proc. Ninth
European Software Eng. Conference held jointly with 11th ACM SIG-
SOFT Int’l Symp. Foundations of Software Eng. (FSE "03), 2003.

Y. Lu, L. Shang, X. Xie, and J. Xue, “An Incremental Points-to
Analysis with CFL-Reachability,” Proc. 22nd Int’l Conf. Compiler
Construction (CC '13), pp. 61-81, 2013.

R. Madhavan, G. Ramalingam, and K. Vaswani, “Purity Analysis:
An Abstract Interpretation Formulation,” Proc. 18th Int’l Conf.
Static Analysis (SAS '11),2011.

N. Nethercote and J. Seward, “Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation,” Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation (PLDI "07),
2007.

P.H. Nguyen and J. Xue, “Interprocedural Side-Effect Analysis
and Optimisation in the Presence of Dynamic Class Loading,”
Proc. 28th Australasian Conf. Computer Science (ACSC '05), pp. 9-18,
2005.

G. Novark, E. Berger, and B. Zorn, “Efficiently and Precisely
Locating Memory Leaks and Bloat,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI "09), 2009.
E. Nystrom, H. Kim, and W. Hwu, “Importance of Heap Speciali-
zation in Pointer Analysis,” Proc. Fifth ACM SIGPLAN-SIGSOFT
Workshop Program Analysis for Software Tools and Eng. (PASTE '04),
pp- 43-48,2004.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

121

M. Orlovich and R. Rugina, “Memory Leak Analysis by Contra-
diction,” Proc. 13th Int’l Conf. Static Analysis (SAS '06), 2006.

T. Reps, S. Horwitz, and M. Sagiv, “Precise Interprocedural Data-
flow Analysis via Graph Reachability,” Proc. 22nd ACM SIG-
PLAN-SIGACT Symp. Principles of Programming Languages (POPL
'95),1995.

B.G. Ryder, W.A. Landi, P.A. Stocks, S. Zhang, and R. Altucher,
“A Schema for Interprocedural Modification Side-Effect Analysis
with Pointer Aliasing,” ACM Trans. Programming Languages and
Systems, vol. 23, no. 2, pp. 105-186, Mar. 2001.

A. Salcianu and M.C. Rinard, “Purity and Side Effect Analysis for
Java Programs,” Proc. Sixth Int'l Conf. Verification, Model Checking,
and Abstract Interpretation (VMCAI '05), pp. 199-215, 2005.

L. Shang, Y. Lu, and]. Xue, “Fast and Precise Points-to Analysis
with Incremental CFL-Reachability Summarisation: Preliminary
Experience,” Proc. IEEEJACM 27th Int’l Conf. Automated Software
Eng. (ASE 12), pp. 270-273,2012.

L. Shang, X. Xie, and]. Xue, “On-Demand Dynamic Summary-
Based Points-to Analysis,” Proc. 10th Int’l Symp. Code Generation
and Optimization (CGO "12), 2012.

M. Sridharan and R. Bodik, “Refinement-Based Context-Sensitive
Points-To Analysis for Java,” Proc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation (PLDI "06), 2006.

Y. Sui, Y. Li, and J. Xue, “Query-Directed Adaptive Heap Cloning
for Optimizing Compilers,” Proc. IEEE/ACM Int’l Symp. Code Gen-
eration and Optimization (CGO "13), pp. 1-11, 2013.

Y. Sui, D. Ye, and J. Xue, “Static Memory Leak Detection Using
Full-Sparse Value-Flow Analysis,” Proc. Int’l Symp. Software Test-
ing and Analysis (ISSTA '12),2012.

Y. Sui, S. Ye, J. Xue, and P. Yew, “SPAS: Scalable Path-Sensitive
Pointer Analysis on Full-Sparse SSA,” Proc. Ninth Asian Conf. Pro-
gramming Languages and Systems (APLAS '11), 2011.

E. Torlak and S. Chandra, “Effective Interprocedural Resource
Leak Detection,” Proc. ACM/IEEE 32nd Int’l Conf. Software Eng.
(ICSE '10), 2010.

Y. Xie and A. Aiken, “Context-and Path-Sensitive Memory Leak
Detection,” Proc. 10th European Software Eng. Conference held jointly
with 13th ACM SIGSOFT Int’l Symp. Foundations of Software Eng.
(FSE "05), 2005.

Y. Xie and A. Aiken, “Saturn: A Scalable Framework for Error
Detection Using Boolean Satisfiability,” ACM Trans. Programming
Languages and Systems, vol. 29, article 26, 2007.

G. Xu, M. Bond, F. Qin, and A. Rountev, “LeakChaser: Helping
Programmers Narrow Down Causes of Memory Leaks,” Proc.
32nd ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI '11), 2011.

G. Xu and A. Rountev, “Precise Memory Leak Detection for Java
Software Using Container Profiling,” Proc. 30th Int’l Conf. Software
Eng. (ICSE "08), 2008.

J. Xue, P.H. Nguyen, and]. Potter, “Interprocedural Side-Effect
Analysis for Incomplete Object-Oriented Software Modules,”
J. Systems and Software, vol. 80, no. 1, pp. 92-105, 2007.

H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang, “Level by Level:
Making Flow- and Context-Sensitive Pointer Analysis Scalable for
Millions of Lines of Code,” Proc. IEEEJACM Eighth Ann. Int’l
Symp. Code Generation and Optimization (CGO "10), 2010.

Yulei Sui received the bachelor’'s and master’s
degrees in computer science from Northwestern
Polytechnical University, Xi’'an, China, in 2008
and 2011. He has been working toward the PhD
degree in programming languages and compilers
group at the University of New South Wales since
2010. He is broadly interested in the research
field of software engineering and programming
languages, particularly interested in static and
dynamic program analysis for software bug
detection and compiler optimizations. He was a

research intern in the Program Analysis Group for Memory Safe C proj-
ect in Oracle Lab Australia in 2013. He was an Australian IPRS scholar-
ship holder and a Best Paper Award winner at CGO "13.

122

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.2, FEBRUARY 2014

Ding Ye received the bachelor's degree in infor-
mation security from the Huazhong University of
Science and Technology, Wuhan, China, in 2008,
and the master’s degree in computer science from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China, in 2011. He
has been working toward the PhD degree under
the supervision of Professor Jingling Xue at the
University of New South Wales, Australia, since
2011. His research interests include program anal-
ysis and compiler techniques.

Jingling Xue received the BSc and MSc degrees
in computer science and engineering from Tsing-
hua University in 1984 and 1987, respectively,
and the PhD degree in computer science and
engineering from Edinburgh University in 1992.
He is currently a professor in the School of Com-
puter Science and Engineering, University of
New South Wales, Australia, where he heads the
Programming Languages and Compilers Group.
His main research interest has been program-
ming languages and compilers for about 20 years.
He is currently supervising a group of postdocs and PhD students on a
number of topics including programming and compiler techniques for
multi-core processors and embedded systems, concurrent programming
models, and program analysis for detecting bugs and security vulnerabil-
ities. He is currently an associate editor of the |IEEE Transactions on
Computers, Software: Practice and Engineering, International Journal of
Parallel, Emergent and Distributed Systems, and Journal of Computer
Science and Technology. He has served in various capacities on the
Program Committees of many conferences in his field.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

