
Permission Analysis of Health and Fitness Apps in
IoT Programming Frameworks

Mehdi Nobakht∗,Yulei Sui‡,Aruna Seneviratne§,Wen Hu∗,
∗School of Computer Science and Engineering, UNSW, Sydney, Australia

‡Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
§School of Electrical Engineering and Telecommunications, UNSW, Sydney, Australia

Abstract—Popular IoT programming frameworks, such as
Google Fit, enable third-party developers to build apps to store
and retrieve user data from a variety of data sources (e.g.,
wearables). The problem of overprivilege stands out due to the
diversity and complexity of IoT apps, and developers rushing
to release apps to meet the high demand in the IoT market.
Any incorrect API usage of the IoT frameworks by third-party
developers can lead to security risks, especially in health and
fitness apps. Protecting sensitive user information is critically
important to prevent financial and psychological harms.

This paper presents PGFIT, a static permission analysis tool
that precisely and efficiently identifies overprivilege issues in
third-party apps built on top of a popular IoT programming
framework, Google Fit. PGFIT extracts the set of requested
permission scopes and the set of used data types in Google Fit-
enabled apps to determine whether the requested permission
scopes are actually necessary. In this way, PGFIT serves as a
quality assurance tool for developers and a privacy checker for
app users. We used PGFIT to perform overprivilege analysis on
a set of 20 Google Fit-enabled apps and with manual inspection,
we found that 6 (30%) of them are overprivileged.

Index Terms—IoT Programming Frameworks; Permissions;
Least Privilege; Static Program Analysis;

I. INTRODUCTION

The Internet of Things (IoT) consists of embedded devices
(e.g., wearables and smart home devices) that generate data,
and end applications (e.g. mobile apps) that consume data and
optionally take actions. Recently, programming frameworks
have emerged which enable programmers to develop third-
party apps to process such data. In particular, IoT program-
ming frameworks for health and fitness-tracking are receiving
more attention due to the popularity of wearables, smart
watches and the proliferation of third-party IoT apps. Google
Fit [1], Apple’s HealthKit [2], Samsung Digital Health Plat-
form [3], and Microsoft’s HealthVault [4] are a few examples
of such platforms.

As a representative IoT programming framework, Google
Fit paves the way for third-party app programmers to effi-
ciently write health and fitness apps by providing high-level
centralized APIs, without the need to understand low-level
implementation details. Google Fit also has a central cloud-
based repository that allows a user to store and retrieve health
and fitness-related data from multiple apps and devices (e.g.,
activity trackers and smart watches).

Google Fit APIs provide access to data with specified
permissions associated with a Google user account. Google

Fit uses OAuth protocol to authorize third party apps by
obtaining consent from users to access fitness information.
Authorized apps are then allowed to store or read the user’s
fitness information. Google Fit blends the stored data from
a variety of apps and makes them available to the user and
authorized apps on behalf of the user. As far as we know, apart
from Google Fit’s own app, 43 health and fitness apps based
on the Google Fit programming framework are available on
the market (e.g., exercise activities trackers, heart rate monitors
and calorie counters [5]). These apps are developed by, among
others, Motorola, Intel, Sony, Adidas and Nike.

An IoT app on Android needs to be authorized before it can
access user health and fitness data. The Android permission
system always asks the user to authorize an app by popping up
a dialog screen listing the permission scopes with ”deny” and
”allow” buttons (see Figure 1). The user can choose only one
or the other. Providing proper permission scopes is important
to avoid overprivilege, as it exposes user to the risk of leaking
private user information. Protecting sensitive user information
is important, yet our studies indicate that many apps request
access to more data than they actually need to perform their
functions; leads the apps to significant overprivilege.

Granting the permissions in any app requires that third-party
developers understand the usage of APIs in IoT frameworks.
Giving unnecessary permissions to an app may expose users to
privacy risks, e.g., leaking sensitive user information, such as
blood pressure levels, activity data or user physical locations,
to friends, health care providers or even health insurance
companies. The increasing deployment of various third-party
apps on top of IoT platforms raises security and privacy risks.
It is important to ensure that granted permissions will not be
abused. However, detecting overprivileges is challenging due
to the sheer size of modern IoT apps and the complications
of API usage in IoT programming frameworks.

This paper focuses on discovering overprivilege permissions
to access user data within IoT platforms. In particular, we anal-
yse a dataset of apps working with the Google Fit framework
to determine how they adhere to the least-privilege principle
to protect sensitive user data. To this end, we perform com-
prehensive studies in the Google Fit access control mechanism
to gain insights into their structure and key requirements. We
have summarized the scopes of permission access and data
types used in existing Google Fit APIs.

We present PGFIT, a static analysis tool to identify over-



Fig. 1. A Typical Google Fit Consent Screen.

privileged apps developed upon the Google Fit programming
framework. We formulate the permission analysis as a source-
sink graph reachability problem. PGFIT introduces context-
sensitive reachability analysis into overprivilege detection in
IoT apps. By considering event-driven callbacks in Android
apps, PGFIT performs control-flow reachability analysis to
obtain the program slices from a source node (a Google Fit
API call which grants a permission scope) to a sink node
(an API call which consumes data types). An overprivilege is
reported in an app if a permission granted at a source node is
never used (based on the data types) in any of its sink nodes.
We have evaluated PGFIT on a set of 20 third party apps
developed upon Google Fit. Our analysis found that 6 (30%)
of them are overpriviledged.

The paper makes the following key contributions:
• We have identified the overprivilege issues in the IoT

apps built upon the existing popular IoT programming
framework Google Fit.

• We present PGFIT, a static analysis tool that introduces
context-sensitive reachability analysis into overprivilege
detection in apps on top of IoT programming frameworks.

• We have implemented PGFIT as a tool and evaluated
it over a set of 20 IoT Apps built on Google Fit. With
manual inspection of overprivileged apps, it turned out
that 6 (30%) of them are overprivileged.

II. BACKGROUND AND OUR STUDIES OF GOOGLE FIT

Google Fit is a health and fitness-tracking platform de-
veloped by Google which uses sensors in a user’s activity
tracker or mobile device to record physical fitness activities
such as walking or cycling. It also enables the user to measure
the stored information against their fitness goals in order to
provide a comprehensive view of fitness activities. Google
Fit, with its open programming framework, enables third-party
developers to build health and fitness apps to collect, insert,
or query user fitness-related data. As such, Google Fit-enabled
apps upload such data to a central repository. The stored data
related to a user belongs to the user and is associated with

the user’s Google account. Google Fit blends a user’s data
collected from various sources and makes it available to the
user and to authorized third-party apps from a single place at
any time. In this way, users are able to query the stored fitness
data and to track their progress.

A. Overview

The central repository of Google Fit can be accessed by
Android and Web apps. Google Fit thus provides two sets of
APIs: Android APIs and Web REST API. Google Fit APIs for
Android devices have two main functionalities; (i) to provide
access to data streams from sensors embedded in Android
devices and sensors available in companion devices such as
wearables, and (ii) to provide access to data history and to
allow apps to obtain the stored data. Android apps in these
two scenarios can be seen as data sources and data sinks
respectively. Google Fit REST API, however, is not supposed
to connect to any sensor. Thus, it is intended to access user
data in the fitness store. REST API can be used by any Web
browser on any platform. Since our study involves permission
analysis on Android fitness apps, we focus on the Google Fit
Android APIs interface.

B. Connecting to Google Play

To use Google APIs such as authentication, Map, and
Google Fit, a Google-enabled app must first connect to Google
Play services using Google common API. Once connected to
Google Play services, the app can call Google API methods.
To connect to Google APIs, a third-party app must create an
instance of GoogleAPIClient which provides a common
entry point to all Google Play. The GoogleAPIClient
provides methods that allow the app to specify what Google
APIs are required and the desired authorization scopes.

To analyse a Google Fit-enabled app, we used the publicly
available Google Fit API [6] and collected all information
about Google Fit API interface methods. We additionally used
Google developer documents [7] and collected information
regarding Google common API methods which are typically
used in fitness apps. The collected specification from Google
common APIs and Google Fit APIs includes method names,
descriptions, and target classes. We saved the collected spec-
ification in a list to be used later to identify Google Fit API
calls and Google common API calls.

More specifically, a Google-enabled app should invoke
addAPI method and pass the required API token as an
input parameter to specify what Google API is required. The
required Google APIs appear as string literals in the field
of Api class and the values of Google APIs strings are
documented by Google references. For example, an app that
requires access to raw sensor data streams must add Sensors
API to enable this part of Google Play services.

C. Fitness Data Representation

Google Fit defines high-level representations for fitness data
stored in its repository, in order to make it easier for apps to
interact with the fitness store on any platform and to extract the



required information. The Data Types representation in Google
Fit abstracts away details for apps wishing to access fitness
data. In this way Google Fit removes unnecessary details such
as how the data is being collected or what sensors, hardware
or even apps are being used.

To illustrate how this device-independent abstraction works,
consider a case where a user uses two different Google Fit-
enabled apps to record their activities. The first app tracks
cycling activities by using sensors in a wearable device. The
other app records walking activities by utilizing embedded
sensors in the user’s smart phone. Both apps expose raw sensor
data from hardware sensors to Google Fit. Each value in such
streams of data contains information about the user’s activity.
The user can later use a third app to extract total calories
expended over a time interval. For this purpose, the third app
can use com.google.calories.expended data type to
query such information from Google Fit Store and deliver it
to the user. In this way, Google Fit abstracts away any details
from available data points in the fitness store.

D. Permissions and User Controls

Google Fit requires user consent before apps can access
user fitness data. Apps must obtain authorization by spec-
ifying the scope of access to fitness data and the level of
access. Google Fit classifies fitness data into four different
data types: activity, biometric, location, and nutrition. The
variation of fitness data types with read and write privileges
creates a set of 8 different authorization scopes. For instance,
the FITNESS_ACTIVITY_READ scope provides read-only
access to all data related to a user’s activities.

Google Fit provides an OAuth-based authentication service
for apps to obtain required authorization scopes. OAuth ser-
vice involves a multi-step authorization dialogue over HTTPS
between three entities: Google Fit cloud backend, the app
wishing to access fitness data, and the user who owns the
fitness data. The app first must specify one or more scopes of
access. Once Google Fit receives the app request, the user is
prompted to grant the app the required permissions. The user
must approve or deny the request at once. Figure 1 shows a
consent screen for the Google Fit app developed by authors.

Once the user approves the app request to access the user’s
fitness data, Google Fit sends the authorization code to the
app and upon app acknowledgement sends an access token.
Having acquired a scoped OAuth bearer token, the app can
make Google Fit API calls to access all fitness data types
defined by that scope.

More specifically, a Google-enabled app should invoke
addScope method with the required OAuth scope as an input
parameter to specify the required authorization scope. Google
Fit defines authorization scopes as string literals. In most cases,
these strings are passed directly to the addScope method.
However, in some cases, an instance of Scope class from
Google common API is created to return Google Fit scope
strings. In these cases, the constructor method of this class
accepts a Uniform Resource Identifier (URI) string to indicate

Google Fit-related Class Files
(Sec. III-A)APK

Intermediate Representation
(Sec. III-B)

Permission Scopes
(Sec. III-C)

Locations of
Google-defined

Data Types
(Sec. III-D)

Google Data Types
(Sec. III-E)

Overprivilege computation
(Sec. III-F)

Report Unnecessary
Granted

Permission Scopes

Fig. 2. An overview of PGFIT.

the intended scope. The values of URI strings are documented
in Google Fit API.

As seen in Figure 1, authorization of Google Fit-enabled
apps is coarse-grained; multiple permission scopes to access
fitness data types are granted at once. Thus, the user should
grant permission to the app to access all requested scopes or
deny all. While this coarse-grain authorization can improve
the simplicity and stability of Google Fit platform, it also
leaves users with no option to grant or deny permission scopes
separately.

III. PGFIT - DESIGN AND IMPLEMENTATION

We developed a static analysis tool called PGFIT, which an-
alyzes Google Fit-enabled Android apps in order to determine
whether the requested authorization scopes are indeed needed.
PGFIT takes a given Android Application Package (APK) file
as input and performs analysis on it to compute Google Fit
scope overprivilege. We assume apps are not obfuscated and
can be analyzed by ASM API. An overview of PGFIT is
shown in Figure 2 and through the following sections, each
phase will be explained.

A. Identifying Google-related Class Files

In the first phase, PGFIT takes a given APK as input
and employs dex2jar [8] to generate an equivalent JAR file
containing Java class files. One of the challenges in analyzing
obtained JAR files from Android Google Fit-enabled apps is
the sheer size of the JAR files.

To overcome this challenge, we first collected all informa-
tion about Google Fit API method names and Google Fit-
defined data type names from the publicly-available Google
Fit APIs [6] and stored the Google Fit-related string names in
a set. Then, PGFIT searches for entries in the aforementioned
set among all compiled class files of the JAR file. The output
is a list of compiled class files related to Google Fit. In this
way class files with no Google Fit API calls are filtered out.



B. Intermediate Representation

We need to convert the compiled class files to the interme-
diate representation suitable for our analysis. PGFIT takes the
list of compiled class files and visits all of their methods to
extract all method invocations. This list of method invocations
also includes Google API invocations which are called in the
fitness app. PGFIT stores this list of method invocations and
other related information, including caller and callee classes
and target methods along with their descriptors.

PGFIT examines every method invocation in the above
list to determine whether it is a Google Fit API call or
belongs to Google common APIs. It takes every method
invocation and compares (i) the method name, (ii) method
description, and (iii) the target class of method with the Google
Fit specification obtained from Google API references, as
explained in Section II-B. If the invocation matches Google Fit
API, PGFIT, it then labels it with the corresponding Google Fit
API interfaces. The list of method invocations is then refined
to contain only Google common API calls or Google Fit APIs.

C. Extracting Permission Scopes

In this phase, PGFIT runs multiple threads to analyze every
method invocation in the list of Google Fit-related method
invocations to discover (i) what Google Fit APIs have been
requested to connect and (ii) what authorization scopes have
been requested. PGFIT obtains this information from Google
common API method calls. Google Fit-enabled apps use
addAPI and addScope methods to connect to the required
APIs and specify the scope of access.

PGFIT searches in the list of Google Fit-related method
invocations for the above two methods. The method invocation
which adds a scope must satisfy two conditions: (i) it must be
addScope method of Builder class whose methods are
used to configure the instance of GoogleAPIClient at the
main entry point of Google Play services , and (ii) it must have
either a string parameter whose value is a scope permission
value or an instance of Scope which in turn returns Google
Fit scope strings.

D. Identifying the Locations of Google-defined Data Types

In order to discover all Google-defined data types that a
Google Fit-enabled app uses, we first need to identify the
procedures that may consume such data types. Analyzing all
procedures of the app with a large number of class files is
an inefficient and resource-intensive task. Thus, PGFIT aims
to identify potential procedures containing Google Fit method
invocations which may use Google-defined data types.

Obviously the procedure in which the app requests the
required permission scopes is more likely to contain method
invocations which use Google-defined data types. Thus, all
the following statements and called procedures immediately
after the point where the permissions are requested should be
analyzed. To this end, PGFIT searches for Google-defined data
types in a given app by analyzing all statements and procedures
after a permission scope is requested. PGFIT is aware of the
starting point of analysis, as explained in the previous section.

Algorithm 1: Overprivilege Computation
Input : nsrc

Output: Overprivilege reports for each source node
1 Procedure OVERPRIVILEDGECOMPUTATION(nsrc)
2 foreach nsrc ∈ SRC do
3 D ← REACHABILITYANALYSIS(nsrc) ;
4 Let D′ be a set of Google-defined data types of nsrc;
5 if D ∩D′ = ∅ then
6 report overprivilege nsrc

7 end
8 end

E. Extracting Google-Defined Data Types

Once potential procedures with Google-defined data type
consumption are identified, PGFIT analyzes every statement of
these procedures. It first builds a call graph over the procedures
under examination and performs a forward traversal of the
graph looking for any Google API method invocation which
consumes a Google-defined data type. Arguments of a method
can be passed by value or by reference. In cases where a
reference to the data type is passed to the method invocation,
PGFIT backward traverses the graph to find the value of the
reference and obtain the actual Google-defined data type.

Typically, tasks and functionalities in mobile apps are spread
across several procedures and end classes. Thus, it is necessary
to perform inter-procedural analysis [9] which operates across
all class files within the app. Since the information flows both
from the caller procedure to its callee and in the opposite
direction, we use call graphs to inform which procedure calls
which. A call graph is a set of nodes (vertices) and edges such
that each node represents either a call site (a place where a
procedure is invoked) or a procedure and an edge represents
the connection or relationship between the call site and the
procedure. More specifically, PGFIT uses Inter-procedural
Control Flow Graph (ICFG) consisting of a set of nodes and
a set of edges.

A forward reachability analysisis performed to compute the
data types of every source node nsrc ∈ SRC, which is a pro-
gram statement where permission scopes are requested. SNK
denotes the set of program statements consuming Google-
defined data types. PGFIT performs a forward traversal on
the ICFG of the analyzed program from every source node
nsrc to find its sinks.

F. Overprivilege Computation

Algorithm 1 computes whether a source node nsrc is
overprivileged by comparing the two sets of data types D
and D′, where D is computed through reachability analysis as
explained in the previous section and D′ is the associated data
types of nsrc immediate available from Google Fit APIs. An
overprivilege is reported if D∩D′ = ∅ since an authorization
permission scope in D is not permitted in D′. For example,
if PGFIT does not retrieve any data type (i.e., D = ∅) for a



permission scope whose corresponding data types are D′ , it
will report an overpriviledge warning because D ∩D′ = ∅.

IV. ANALYSIS RESULTS

We applied PGFIT to a set of 20 fitness applications built
upon Google Fit to identify the occurrence of overprivilege
regarding authorization scopes.

A. Dataset Collection

The input to PGFIT are Google Fit-enabled Android appli-
cations. We used a publicly-available tool and downloaded ap-
plications that are free and have no region restriction imposed
by Google Play. In addition, since PGFIT performs permis-
sion analysis by inspecting compiled class files of a fitness
application, As of November 2017, there are 43 Google Fit-
enabled applications available on Google Play Store. From this
set of apps, we selected all the apps that are publicly available
and not obfuscated as PGFIT is not intended for obfuscated
code. We used dex2jar in combination with JD tool [10] and
discarded string-obfuscated applications. Overall, our dataset
consisted of 20 Google Fit-enabled fitness applications.

B. Result

We have run PGFIT on our dataset of 20 fitness ap-
plications. During the first phase PGFIT discovers that 14
applications contained Google Fit API calls in one compiled
class file, while in 6 applications Google Fit API calls and data
types were distributed in more than one class. This shows that
performing static analysis over all compiled class files of an
application is unnecessary. For example, Runtastic is a health
and fitness application to help users measure their activities
(walking, running, jogging or biking) against goals they set.
The APK file of the application contains 3,507 compiled class
files, while Google Fit API methods and procedures are being
employed among 3 class files.

Meanwhile, PGFIT reports the fitness services that an appli-
cation requested to connect to. The statistics of the extracted
connection request to Google APIs are presented in Table I. As
shown in the table, History API and Sessions API are at the top
of the list of most prevalent in the set of 20 apps evaluated. The
former enables an application to access the fitness data history
that was inserted or recorded using other applications or itself.
The latter provides a functionality to create sessions when a
user performs a fitness activity. The Config API is another
popular fitness service, employed mainly to disconnect from
Google Fit. Other fitness services, which provide functionality
to store fitness data, are Recording API and Sensors API.
However, these fitness services are less prevalent, meaning
most fitness applications read fitness data from Google Fit
rather than writing the fitness data to Google Fit, which is
against Google Fit principles.

We performed overprivilege analysis on 20 fitness applica-
tions in our dataset and PGFIT initially reported 7 overprivi-
leged warnings. To validate the warnings, we used JD tool to
decompile the Google Fit-related compiled class files in the 7
reported overpirvileged apps. We then manually investigated

TABLE I
STATISTICS OF CONNECTION REQUEST TO FITNESS SERVICES IN A SET OF

20 GOOGLE FIT-ENABLED APPLICATIONS

Fitness Service # of Apps

HISTORY API 14 (70%)
SESSIONS API 14 (70%)
CONFIG API 12 (60%)
RECORDING API 8 (40%)
SENSORS API 5 (25%)

TABLE II
UNNECESSARY SCOPE PERMISSIONS IN 20 APPS

Authorization Scope # of Apps

SCOPE ACTIVITY READ WRITE 5 (83%)
SCOPE BODY READ WRITE 4 (66%)
SCOPE LOCATION READ WRITE 2 (33%)
SCOPE BODY READ 1 (16%)

the reconstructed source codes and found that one of them was
a false alarm. The false alarm was caused by the conservative
analysis of PGFIT in identifying the location of Google-
defined data types. In the false reported app, there was a
procedure which can be invoked by user interaction where
Google-defined data types are used.

Out of 20 fitness applications in our dataset, PGFIT along
with manual verification found 6 applications that request at
least one authorization scope but never use any data types
corresponding to that scope. This is undesirable, because
it allows an adversary to abuse this vulnerability to leak
sensitive information from a victim’s fitness data. Table II
reports the unnecessary permissions among these 6 applica-
tions. For example, 5 out of 20 apps grant permission scope
SCOPE ACTIVITY READ WRITE, but the permission is
never used in these apps; that is 83% of overprivileged apps.
One example of Google Fit-enabled applications that exhibits
overprivilege is 8fit; a personal trainer providing workout
routines and healthy meal plans tailored to a user. This
application requests access to 3 authorization scopes but does
not use any data type related to any of the requested scopes.

V. RELATED WORK

There are two lines of research most closely related to
ours: IoT security and least-privilege principle. This section
summarizes research work in IoT security and then discuss
techniques which we adopted in performing security analysis.

IoT Security. In recent years, much research has been
conducted in the context of IoT security. Research in this
domain mainly focused on three aspects: Devices, Protocols,
Platforms. In IoT device security, Ronen et al. classified
attacks on IoT devices based on how the attacker deviates from
the designed functionality to achieve a different effect and
demonstrated potential attacks on smart lighting systems [11].
In [12], authors identified unauthorized access to the Philips
Hue smart light due to plaintext data communication and



proposed a network-level solution to monitor smart home
network along with a machine learning detection mechanism
to identify malicious activity. In IoT protocol security, re-
searchers warned how security flaws in IoT-specific protocols
such as ZigBee [13] and Zwave [14] make devices vulnerable
to compromise.

Research into IoT platform security is still in the early
stages. There has been effort in analyzing security concerns
on programming frameworks, in particular hub-based plat-
forms [15], [16]. More recently Fernandes et al. performed
analysis of the Samsung-owned SmartThings programming
framework for smart home applications [17]. Although Smart-
Things is a closed systems and third-party applications are run
on a proprietary cloud backend, the authors managed to access
the source code of applications and discovered security design
flaws in SmartThings platforms and other common vulnera-
bilities such as revealing sensitive information caused by the
lack of sufficient protection on protocols operating between
the cloud backend and the client-side hub. In comparison,
our work can be applied on both cloud-based and hub-based
configuration and is not limited to closed source applications.

Least-privilege Principle. Limiting applications privilege
can lower potential security and privacy risks, however, there
is a trade-off between the complexity of the permission control
model and enforcing least-privilege. This is evidenced by a
large body of prior research work [18], [19]. Recently, there
are a set of static analysis tools attempting to address the
challenge of creating a permission map for Android such
as Stowaway [20] and PScout [21]. Stowaway used unit
testing and feedback directed API to observe the required
permissions for each API call. PScout is another tool which
improved Stowaway and used static reachability analysis be-
tween permission checks and API calls to extract permission
specification from the Android OS source code. More recently,
Backes et al. built AXPLORER [22] tool to conduct an Android
permission analysis which achieves a map that is more precise.

Our work is similarly motivated, however, these previ-
ous investigations analyzed permissions granted to third-party
applications to access hardware and software resources on
physical devices. In contrast to prior work, we focuse on
permissions granted by the user to applications to access their
private data on the cloud.

VI. CONCLUSIONS

We have studied Google Fit, a popular IoT programming
framework, to determine how well Google Fit-enabled third-
party apps adhere to the least-privilege principle when request-
ing user consent to access sensitive data. Analyzing permission
on these apps is challenging due to the closed-source system
and the sheer size of compiled class files.

We have developed PGFIT, a static analysis tool which
takes a given Google Fit-enabled app as input and extracts
the set of authorization scopes along with the used Google-
defined data types in an app, by performing graph reachability

analysis to compute overprivilege. We applied PGFIT to 20
Android Google Fit-enabled applications to investigate how
well third-party applications follow least-privilege principle
and with the help of manual inspection discovered 30% of
them were overprivileged. Adding support in PGFIT to iden-
tify the procedures which can be invoked via user interaction
with the app or another’s app interaction and may consume
Google-defined data types is part of future work. This will
improves PGFIT to prevent causing false alarms.

REFERENCES

[1] Google. (2017, November) Google Fit. [Online]. Available: https:
//www.google.com/fit/

[2] Apple. (2017, November) HealthKit. [Online]. Available: https:
//developer.apple.com/healthkit/

[3] Samsung. (2017, November) Samsung Digital Health. [Online].
Available: http://developer.samsung.com/health

[4] Microsoft. (2017, November) HealthVault. [Online]. Available: https:
//www.healthvault.com

[5] Google. (2017, November) Apps work with Google Fit. [Online]. Avail-
able: https://play.google.com/store/apps/collection/promotion 3000e6f
googlefit all

[6] Google. (2017, November) Google Fit Developer Reference. [Online].
Available: https://developers.google.com/android/reference/com/google/
android/gms/fitness/Fitness

[7] ——. (2017, November) Google Developer Reference. [Online].
Available: https://developers.google.com/android/reference/com/google/
android/gms/common/package-summary

[8] (2017, November) dex2jar. [Online]. Available: https://github.com/
pxb1988/dex2jar

[9] T. Reps, “Program Analysis via Graph Reachability,” in ILPS ’97, 1997,
pp. 5–19.

[10] (2017, November) Java Decompiler. [Online]. Available: http://jd.
benow.ca/

[11] E. Ronen and A. Shamir, “Extended Functionality Attacks on IoT
Devices: The Case of Smart Lights,” in EuroS&P ’16, March 2016,
pp. 3–12.

[12] M. Nobakht, V. Sivaraman, and R. Boreli, “A Host-Based Intrusion
Detection and Mitigation Framework for Smart Home IoT Using Open-
Flow,” in ARES, 2016, pp. 147–156.

[13] L. Jun. (2017, November) I’m A Newbie Yet I Can Hack ZigBee -
Take Unauthorized Control Over ZigBee Devices. [Online]. Available:
https://www.defcon.org/html/defcon-23/dc-23-speakers.html#Li

[14] S. G. Behrang Fouladi. (2017, November) Security Eval-
uation of the Z-Wave Wireless Protocol. [Online]. Avail-
able: https://sensepost.com/cms/resources/conferences/2013/bh zwave/
Security%20Evaluation%20of%20Z-Wave WP.pdf

[15] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks,” in USENIX Security ’16, 2016, pp. 531–548.

[16] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, “ContexIoT: Towards Providing Contextual Integrity to
Appified IoT Platforms,” San Diego, CA, February 2017.

[17] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging
Smart Home Applications,” in S&P ’16, May 2016, pp. 636–654.

[18] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner, “How
to Ask for Permission,” in HotSec’12, 2012, pp. 7–7.

[19] A. P. Felt, K. Greenwood, and D. Wagner, “The Effectiveness of
Application Permissions,” in WebApps ’11, 2011, pp. 7–7.

[20] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” in CCS ’11, 2011, pp. 627–638.

[21] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the
Android Permission Specification,” in CCS ’12, 2012, pp. 217–228.

[22] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisger-
ber, “On Demystifying the Android Application Framework: Re-Visiting
Android Permission Specification Analysis,” in USENIX Security ’16,
2016, pp. 1101–1118.


