FCCA: Hybrid Code Representation for Functional
Clone Detection Using Attention Networks

Wei Hua, Yulei Sui, Yao Wan, Guangzhong Liu, and Guandong Xu

Abstract—Code cloning, which reuses a fragment of source
code via copy-and-paste with or without modifications, is a
common way for code reuse and software prototyping. However,
the duplicated code fragments often affect software quality,
resulting in high maintenance cost. The existing clone detectors
using shallow textual or syntactical features to identify code
similarity are still ineffective in accurately finding sophisticated
functional code clones in real-world code bases.

This paper proposes FCCA, a deep-learning-based code clone
detection approach on top of a hybrid code representation by
preserving multiple code features, including unstructured (code
in the form of sequential tokens) and structured (code in the form
of abstract syntax trees and control-flow graphs) information.
Multiple code features are fused into a hybrid representation
which is equipped with an attention mechanism that pays
attention to important code parts and features that contribute to
the final detection accuracy. We have implemented and evaluated
FcCA using 275,777 real-world code clone pairs written in Java.
The experimental results show that FCCA outperforms several
state-of-the-art approaches for detecting functional code clones
in terms of accuracy, recall and F1 score.

Index Terms—Code clone detection, code representation, deep
neural network, attention mechanism.

I. INTRODUCTION

In software development, not “reinventing the wheel” is
a double-edged sword. Reusing code from other software
projects, a.k.a code cloning saves time and manpower, but
it can also add significant high maintenance costs for the
following key reasons [1], [2]: (a) Redundancy. Excessive
use of code clones during software development breaks the
principles of encapsulation. Unnecessary clones introduce un-
managed copy-and-pastes, which makes advancing the project
difficult for subsequent developers [3], [4]; (b) Licensing and
plagiarism. Many developers reuse code from other projects
through open-source platforms (e.g., GitHub) without knowing
the licensing terms and conditions of that use. The obvious
result is serious copyright issues [5], and (c) Reliability and
security. Cloning code from untrusted third-party libraries or
buggy programs also poses big challenges to software analysis
and testing [6], because it requires additional efforts to debug,
refactor and integrate this type of cloned code [7], [8], [9].

Wei Hua and Guangzhong Liu are with the College of Information
Engineering, Shanghai Maritime University, Shanghai 201306, China. (E-
mails: huawei03 @stu.shmtu.edu.cn, gzhliu@shmtu.edu.cn)

Yao Wan is with Zhejiang University, Hangzhou, Zhejiang, P. R. China.
(E-mail: wanyao@zju.edu.cn)

Yulei Sui and Guandong Xu are with University of Technology Sydney,
NSW 2008, Australia. (E-mails: {Yulei.Sui,Guandong.Xu} @uts.edu.au)

* Corresponding authors: Yulei Sui, Guangzhong Liu and Guandong Xu.
The work of this paper was done during the first author’s visiting at University
of Technology Sydney (UTS), Australia.

Existing Efforts and Limitations. Code clone detection
is a fundamental way of improving software quality during
software development and evolution. Standard practice divides
code clones into four general categories based on complexity:
textual clones (Type-I), lexical clones (Type-II), syntactic
clones (Type-IIl), and functional clones (Type-1V) [2], [10].

Most researches to date have centered on detecting Types
I-IIT clones [10], [11], [12], [13], [14]. The detection strate-
gies usually start with converting source code into a bag-
of-tokens or abstract syntax trees (ASTs). Clone detection is
then performed by statistically counting tokens to identify the
similarity between two code fragments by applying a distance
metric. Although many of these strategies have been successful
at detecting their target clone types, few of them have achieved
high accuracy in detecting Type-IV clones, which is the most
difficult type for clone detection. Type-IV clones are functional
clones, i.e., two fragments of code that do the same thing but
not necessarily in the same way. They are the most textually
unlike and the most difficult to detect.

Insights. Hybrid representation learning (HRL) [15], [16],
[17], [18] has recently emerged as a promising branch of deep
representation learning, demonstrating its power in embedding
heterogeneous information into an unified low dimensional
space. The resulting representation is particularly useful for
supporting better modeling of complex data, such as source
code. Furthermore, the concept of attention mechanism, has
emerged out of representation learning and is now developing
into an important mechanism of precision enhancement. Be-
yond boosting performance in a wide range of applications,
attention mechanism is also playing a key role in improving
the explainability of deep learning models, benefiting machine
translation [19], machine reading comprehension [20], image
captioning [21] and document classification [22].

This paper aims to develop the first integration of attention
mechanism into a code clone detection task, and moreover, to
use this attention to locate the elusive Type-IV functional code
clones. Our approach relies on hybrid code representations that
capture both structured and unstructured information while the
attention mechanism interprets and weights the contributions
of the code’s features to offer improved accuracy when de-
tecting complicated functional code clones.

A Motivating Example. Figure 1 (middle) shows two
simple code snippets to better illustrate our motivations. These
snippets are Type-IV functional clones. Corresponding ASTs
for these snippets are shown on the left and the control-
flow graphs (CFGs) appear on the right. At the different
granularities, different code representations reflect different
code features. In this paper, we are concerned with three

public int Func(int power) h
1

}return Zpommmmmmmm T
//comment clone 4

h8

i 2+ { "‘~:::—A_ _____
i3 int ret = 1; Tu-l . |
E 4~ if (power>0){ l s h?/\b
' 5 while (power != 0) 0 4,/h3
| 6- ‘ [REOPR ha
i 7 ret = ret * power ;! ¥ \:5
s : power - - =~ — .l
A A ___ ¥ 9 I T _?‘Z—_'> h?
T Power To b } w2 EE | hé
E 11 return r‘ét’;/ E
2 ; CFG A
Text source code A
T, :'__l_v_p_u_lﬂw‘_c_ﬁﬁt_ _CT_o_rl_e'__l‘i_(_wji:E:)__{"____:_:: __________ ‘—j hi
= 2 int z=1; TTTTE e 2 — e
Lo3ef (p0)] i «—
| . ' : " h4 ——» p5
o4y for(int i = p; 1> 0; 1--){1 === +=* ¥ «—
P z=p*i; } i S S

Text source code B

Fig. 1: A motivating example.

granularities:

(a) Lexical features (text). The simplistic approach to
handling source code is to treat the source code as a se-
ries of tokens. For an example, a post-decrement operator
“power——;” and a pre-decrement operator “~-power;” are
functionally different (highlighted in the red frame in text
source code A). Intuitively, it is easy to capture the difference
between two such operations in a text representation, whereas
syntactical (i.e., AST) and structured (i.e., CFG) representa-
tions cannot fully differentiate between a post-decrement and
a pre-decrement. This is because, unlike text representations,
neither includes sequential information. Therefore, the lexical
feature (code tokens, i.e., text) have become a basic and
essential feature for code clone detection.

(b) Syntactical features (AST). ASTs are a common way
to represent syntactical statement-related features in source
code [23], [14], [24]. In Figure 1, the method statements
“ret = ret x power;” at line 7 in “Func ()” and “z
= p * i;” atline 5 in “CloneT4 ()” can be represented
using the same operation, i.e., “Binary Expr” (multiplica-
tion) when using an AST with two child nodes (* denotes
multiplication in the two statements). However, source code
in the form of plain texts or CFGs cannot fully capture this
syntactical similarity.

(c) Structured features (CFG). Compared to the syntactical
level, structured features represent source code at a higher
level, reflecting logic flows and program execution orders. Fig-
ure 1 demonstrates that the two code snippets are recognizably
alike when formulated as control-flow graph, with the pink
node as the only difference. Both snippets contain an “if”
statement and a loop with similar logic and program control-
flows. Each node in the CFG (hl1,h2,h3,..., h;) denotes a
statement in the code snippet. In this case, using ASTs or
plain texts cannot capture this type of structure information
because neither is capable of accurately reflecting the program

control-flows.

In summary, a precise clone detector requires a hybrid
code representation that can comprehensively preserve hetero-
geneous code features at all these three levels (i.e., lexical,
syntactic, and structured). Simply relying on an individual
feature may result in inaccurate prediction results. Further-
more, the detection mechanism operating on top of the hybrid
representation should be able to pay attention to important
code parts in the presence of different features to improve
overall detection accuracy.

Our Solution and Contributions. Our solution is FCCA-
a learning approach based on hybrid representations for func-
tional code clone detection. FCCA preserves both unstructured
and structured information in code representations at three
granularities: texts (in the form of sequential code tokens),
ASTs and CFGs. The three representations are then fused
into a common latent space to represent code features in a
comprehensive way. By training a deep-learning model with
an attention mechanism, the model considers the importance
of these three features of a program when measuring the
similarity between pairs of code fragments. A further benefit
of incorporating this attention mechanism is that it enhances
the explainability and flexibility of the deep-learning based
model. We summarize the main contributions of this paper as
follows.

o We propose FCCA, a new framework for functional code
clone detection. FCCA is based on hybrid representations
that preserve and fuse heterogeneous structured and un-
structured code information from text, AST, and CFG
representations.

e To the best of our knowledge, this work is the first
to integrate an attention mechanism into a code clone
detection scheme and demonstrate its advantages. The
insights provided by our efforts to train a deep-learning
network with an attention mechanism should enrich our

TABLE I: Code clone samples of Type I, Type 1I, Type III,
and Type IV.

1| // original code 1
public int main(int m, int n)

/[Type |
public int main(int m, int n)

{
4 if (m>0) 4 if (m>0)
5 n=m+1; 5 n=m+1;
6 return n; 6 return n;
7} 7 // some comment
s}
/I Type |l 1 /[Type 1Nl
public int funcT2(int u, int v) 2 public int funcT3(int u, int v)
4 if (u>0) 4 int p=0;
5 v=U+1; 5 p=u;
6 return v; 6 if (p>0)
7|} 7 v=p+1;
8 return v;
o}
/I Type IV

public int funcT4(int v,int u)

refurn v >0?(v+1) :u;

A B W

general understanding of how this powerful technology
can be used to improve the accuracy of clone detection.
« We have conducted extensive experiments using the
dataset from BigCloneBench [25], which is a benchmark
dataset consisting of well-labeled clone pairs. The results
show that FCCA outperforms the state-of-the-art clone
detectors. Our tool and the dataset is publicly available
at https:// github.com/preesee/ CodeCloneDetection.
Organization. The reminder of this paper is organized as
follows. Section II introduces necessary background knowl-
edge of code cloning, code representations, deep recurrent
neural network and attention mechanisms. Section III presents
the framework of FCCA and its main modules in details.
Section IV provides details of the evaluation, including the
dataset, experiment setup, experiment results and our findings
from the experiments. Section V presents the discussion on the
strength, threats to validity and limitations of our approach.
Section VI discusses the related works. Finally, we conclude
this paper in Section VII.

II. BACKGROUND

This section presents the preliminary knowledge of the
techniques used in our approach. We begin with definitions
of the different types of code clones, following previous prac-
tices [10], [26]. We then review three basic code representation
methods with simplified notations. Likewise, we introduce the
deep recurrent neural network and attention mechanism we
use in this paper.

A. Clone Type Definitions

Clone types defines the level of similarity for a pair of
code fragments. If a pair of code fragments are cloned, their
similarity level is one of the following.

Clone Type-I (Textual Clone). The code fragments are
identical except for differences in white-space, layout and
comments.

Clone Type-I1I (Lexical Clone). The code fragments are
identical except for differences in identifier names and literal
values, and the exceptions listed for Type-I.

Clone Type-IIl (Syntactic Clone). The code fragments
are syntactically similar but differ at the statement level;
statements may have been added, modified, and/or removed.
The differences listed for Type-I and Type-II clones may also
apply.

Clone Type-1V (Functional Clone). These code fragments
are semantically similar in terms of what they do but different
in how they do it.

Table I provides Java code samples for each of the four
clone types. Note that there is no specification for a mini-
mum syntactical similarity in a Type-III clone pair, and the
lack of consensus about this similarity in previous literature
often makes it difficult to distinguish between Type-III and
Type-IV clones. Hence, the clone detection benchmark BIG-
CLONEBENCH [10], [25] sets out some range bands of syntac-
tical similarity to create finer-grained subcategories of Type-
III and Type-IV clones. The range bands and corresponding
subcategories are:

o Very Strongly Type-III (VST3) clones have a syntactical
similarity between 90% (inclusive) and 100% (exclusive).

o Strongly Type-III (ST3) in 70-90%.

e Moderately Type-III (MT3) in 50-70%.

o Weakly Type-Ill/Type-IV (WT3/4) in 0-50%.

The focus of this paper is on Weakly Type-III/Type-IV
functional clones as defined above.

B. Code Representations

There are three main approaches to representing source code
in the existing literature.

Token-based Code Representation. The code fragment is
broken down into a sequence of tokens and the frequency
of each token appears in a document is counted with the
bag-of-words representation [10]. The similarity of each pair
is either calculated with a matching algorithm (e.g., Jaccard
similarity) or the distance between the two code fragments is
measured after embedding the bags-of-words in latent spaces.
However, abstracting code in the form of token sequences
produce a high number of false positives since these techniques
ignore the structural information in source code. As a result,
their precision is usually insufficient for analyzing complicated
clones, such as Type-III and Type-IV clones.

AST-based Code Representation. Code representations take
the form of abstract syntax trees (ASTs) [13], [24]. Code
clones are detected by measuring the similarity between corre-
sponding ASTs or their sub-trees. For a clear illustration, let 7
be an AST of a code fragment c. 7 only has one root node with
no parent, and consists of n code tokens. Each token is a node
on 7, which has only one parent. Once a tree representation
of a fragment c has been generated, it can be converted into a
vector comprising a sequence of tokens [toky, toka, ..., tok,]
by traversing 7. Comparing the ASTs of two code fragments
provides a distance value that quantifies the similarity between
the two code fragments [23].

Graph-based Code Representation. Graph representations
of programs [27], such as program dependency graphs (PDG)
[28], control-flow graphs (CFG) and call graphs, can be used
to model structural information of code. We use CFGs in
our hybrid learning model to preserve the high-level control-
flow execution information. A control-flow graph of a code
fragment (or a function) is denoted as G = (V, &), consisting
of a set of n vertices V = {v1,v2,...,v,} and a set of
m directed edges & = {ey,e2,...,en} [29]. Each node v;
represents a code statement and each edge e; connects two
nodes, signifying the control-flow or execution order between
two statements. Thus, the graph depicts the logic structure and
the execution sequence of a code fragment.

In summary, different types of code representations reflect
different aspects of the source code, which means a wide
variety of code features can be detected. However, for code
clone detection, it is important to design a hybrid yet accurate
representation that can reflect important code features to better
model the code semantics.

C. Deep Recurrent Neural Network

A simple neural network usually consists of three layers
(i.e., an input layer, a hidden layer and an output layer), with
each layer comprising a set of nodes. Computation happens in
the nodes (similar to neuron-like switches): a node accepts
input from raw data and/or its predecessors and combines
it with a set of coefficients or weights to either amplify or
diminish the input. The result is then passed to its successor
nodes. The outputs from the last (output) layer are combined
and fed into an activation function to determine whether the
result should be progressed further and therefore, affect the
final outcome. Further progression could be assigning, for
example, a classification task. If the signal passes through,
the network is activated.

The difference between a deep neural network (DNN)
and a simple neural network is that DNNs have more than
one hidden layer between the input and output layers, i.e.,
the data must pass through more layers of nodes, and this
multi-step process typically results in more powerful pattern
recognition. DNNs are artificial neural networks inspired by
the neural architecture of a human brain. They can find
the correct mathematical manipulation to capture appropriate
correlations between input and outputs, such as linear/non-
linear relationships.

Recurrent Neural Networks (RNNs) leverage the advantages
of DNNs but are specifically designed to handle sequential
data. Given a sequence X = [z1,xa,...,z7] as the input,
at each time step ¢ € [1,T], each input x; may impact the
entire representation of the sequence X, then, a hidden-state
vector h; is generated as a proxy representation for the current
representation at step t. To handle the sequence data, h; is
updated through the following equation:

h; = 0(Wx; + Uh;_,), (D

where x; is word embedding of input x; at time step ¢, W is a
weight matrix connecting the inputs to the hidden-state vector,
and U is a weight matrix on the hidden-state vector from the

previous time step h;_;. The activation function o filters less
useful information for a client application and transfers useful
information to the next input x; for consecutive processing
of the sequence X. There are many options for an activation
function. A typical example is a sigmoid function.

One major advantage of RNNs is that RNNs are able
to connect previous data to the present information for an
accurate prediction. For example, in computer vision, RNNs
are used to improve pattern recognition by leveraging previous
video frames to better understand the present frame.

Our goal is to apply the benefits of RNNs to functional
code clone detection. The essence of the idea is to model the
composition of features by capturing the complex non-linear
relations between these features to detect the functional code
clones. The distance between two embedding vectors of two
code tokens in the latent space can be very different with
respect to different code representations (e.g., the vectors of
two consecutive tokens in plain texts may not be close to each
other if these tokens are embedded based on the tree structure
(e.g., AST)). Thus, the relations of these tokens on different
code representations should be considered in holistic manner
when designing the recurrent neural network to improve the
overall accuracy in clone detection.

D. Attention Mechanism

RNNs are often used to model sequential information by
considering time steps. However, this means that an RNN
would treat all tokens in a sequence as being equally important,
likely causing imprecise results for complicated client appli-
cations, such as code clone detection. However, integrating
an attention mechanism into the training process of an RNN
could be an effective method of enhancing existing deep-
learning architectures to suit more complex tasks. Attention
mechanisms help networks pay attention to the important
parts of the input sequences so as to focus on learning and
representing the correlations between the inputs and outputs
in a more precise way.

An intuitive way to explain how attention mechanisms work
is to revisit the motivating example of our code snippets, as
illustrated in Figure 1. It is natural for developers to pay
attention to keywords when reviewing the functionality of code
snippets because they often reflect important control-flow/loop
information in the source code. An attention mechanism places
weights on the important items in an input, such as keywords
“for” and “while”, operators on ASTSs, branch or joint
nodes on the CFGs.

An attention mechanism is to compute an dependency score
between elements from two sources [30]. Given the token
embedding of a code sequence X = [z1,23,...,27] and
a vector representation of a query ¢, the goal of attention
mechanism is to return an attention value.

The attention score of query over the i-th token z; can be
defined as Equation 2.

a(zi,q) = f(xi,q),)

where x; and q denote the embedding of z; and g, respectively.
The scores are then normalized over the 7' tokens of X and

(a) Hybrid Code

Java code pair 1
p Representation

—+

4‘* (b) Attention + Fusion

4‘ (c) Model learning 4‘

LSTM

6) txt
htxt v X
) —> TEXTA > O 128 t) Attention 2
Code snippet
A (0] 7
Tree-LSTM 174 :
O 1z vt o g G
> AST A —_— 00— > Attention —> 2 g. =
0 5 i 4
S GCN :
wea MY v,lo P
L CFG A > O > Attention =
5 19
I
r¥
LST™M 1 3)
° 128 vt T
—> TEXT B > O > Attention E]
Code snippet o) -
B 1 b
Tree-LSTM v b
] O 1x28 vy) a8
> AST B > O > Attention —> 32 ; P
' o 53 Lo
GCN - e
) v
O e M N
] CFGB > O > Attention
O
Fig. 2: The overview of FCCA architecture.
transformed into a probability distribution using a softmax h, h, hs hs
function as shown in Equation 3. {Vo‘d ma'”() T T T T T
S Se

exp(f(xi, CI))
St exp(f(xi,q)’

where «(z;,q) indicate the weight that x; contributes its
information to ¢. Function f(-), which is used to measure
the dependency or similarity between two vectors of two code
tokens, will be detailed in Section III-B using specific attention
functions for different code representations.

The final attention embedding vector v(X) of X is a
weighted sum of the vectors of all the tokens in x computed
using Equation 4:

3)

OZ(IZ‘, Q) =

“4)

T
E alx;,q
=1

ITI. PROPOSED APPROACH

Figure 2 gives the overview of our clone detection approach
using hybrid code representation with attention networks. It
consists of three major components (a) the representations of
source code at the lexical, syntactical and structural levels; (b)
attention and feature fusion layers for each type of represen-
tation; and (c) the model training process, which contains a
loss function.

In our model, the RNNSs, the attention mechanisms and the
feature fusion layers work together as additional layers that
give higher weight to the salient tokens for each code represen-
tation. This method provides an effective way of understanding
the importance of tokens among different features. These
attention-empowered RNNs also represent a step forward
towards an explainable deep-learning architecture. The aim of
the loss function is to measure the similarity between fused

m=m - n; “’“o—» —»o—»o—»o

. T T T w, sz w, TXA w,

n
(a) A sample of tokenization for source code.

Equations 5-10

10 "~

TSy hen

5\

Cornhesg
| N—

(b) Convert source code to vectors.

Fig. 3: Lexical level code representation and token-based
LSTM model.

hybrid representations and back propagate the error value to
train the model until the training process converges.

A. Hybrid Code Representation

An ideal representation should be able to comprehensively
preserves code features. We detail our hybrid code represen-
tation and its fusion as follows:

(a) Lexical Level. Raw source code in the form of plain
texts may contain noises that do not relate to the code’s

functionality, such as, redundant code comments, unused ref-
erence libraries or variables, unused code snippets for testing
etc. These noises which may affect the clone detection are
removed before our code embedding. The pre-processed texts
of source code are segmented into a sequence of tokens.
For example, with the Java method: “main () {int m=m
- n; }”, the text are tokenized into a textual sequence ‘{’,
‘main()’, ‘int’, ‘m’, ‘n’, ‘=’, ‘}’ (Figure 3(a) demonstrates
the tokenization process).

Next, the RNNs are used to handle the sequential tokens.
There are several variants of RNN, we apply Long Short-
Term Memory (LSTM) [31], [32] in our model to process
sequential information. The LSTMs can capture sequential
features given a token sequence X = [z1,Z3,...,z7] as
the inputs converted from the source code, where T is the
length of the sequence. Figure 3(b) shows the inner structure of
an LSTM where the component details are represented using
Equations 5-10 highlighted in yellow. The current memory cell
c; (the important component of LSTM that saves the long-
distance information for the input sequence) and hidden state
h; are updated for each token z; at time step t:

ip =0c(W;x; + Ujh;_1 + by), 4)
fi =o0(Wysx; +Ush;_1 +by), (6)
¢; = tanh(W.x; + Uchi—1 + b,), @)
¢, =fOci1+i OC, @®)

o, =0(Wyx; +U,h;1 +b,),)

himt =0+ ©® tanh(ct), (10)

where x; denotes the word embedding of z;, i, f;, ¢,
and o; denote an input gate, a forget gate, a state for
updating the memory cell and an output gate, respectively.
W, W; W, W, and U;,U;,U,., U, are weight metrics.
b;, b, b., b, are bias vectors, o(-) is the activation function,
and the operator ©® is element-wise multiplication between
vectors. After all processes, the final output of the method
containing the sequential features of a code snippet is repre-
sented by a vector hi*t.

(b) Syntactic Level. The same Java method can also be
parsed into a tree at the statement level by an AST-based
LSTM [33]. Figure 4(a) demonstrates the conversion from
a simple Java statement “m=m-n” to an AST. Although the
lexical-level for the two statements “m=m-n” and “a=a-b”
are different, at the lexical level, they are regarded as clones
since they both perform the same operation, i.e., “~”, reflected
in their corresponding ASTs.

To capture this syntactical information, we selected a tree-
based LSTM to parse ASTs. The difference between a tree-
based LSTM and the sequential LSTM used for the lexical
representations is that a tree-based LSTM accepts two inputs
from two child nodes of one parent at one time step. Fig-
ure 4(b) shows this data processing method with an AST-based
LSTM. Equations 11-16 are highlighted in yellow.

N
i :U(Wixt+ZU?hm+bi), (11)

n=1

hy
void main()
{
m=m - n; »
. m
a=a-b; » @ m e

(a) (b)

(a) A sample of converting two code state-
ments “m = m - n” and “a = a - b”
to the same AST.

Equations 11-16

1 18 16
hyy \

AST based LSTM Unit},

(b) AST based LSTM data process unit.

Fig. 4: Syntactic level code representation and AST-based
LSTM model.

N
n=1
N
ét = tanh(WcXt + Z W?hfn + bc)a (13)
n=1
N
cy = thnG)Ctn*Fit@éta (14)
n=1
N
o = o(Wox; + »_ Ulhy, + b,), (15)
n=1
h%*" = o; ® tanh(c;). (16)

Note that N denotes the number of children of an AST,
where the value of IV varies for different AST nodes, which
may cause problems in sharing parameters [13]. To simplify
the process, we convert the generated ASTs into binary trees
in two steps — a method also used by Hui et al. and Wan et
al. [13], [33]: (1) Split the nodes with more than two children,
then generate a new right child node together with the previous
left child as its children. All children except the left-most
child become children of the new node and this operation is
performed recursively in a top-down way until only nodes with
0, 1 and 2 children are left; (2) Combine the left nodes with
its children.

(c) Structural Level. We adopt the Graph Convolutional
Networks (GCNs) in [34] as the base graph neural networks
to model CFGs. GCN is known to generalize well-established
neural models to work on arbitrarily structured graphs. The
main idea of the graph convolution is to use a multi-layer

if (power>0){
while (power != 0)

I
ret = ret * power;;
power--; |

2
8
4
5
6~ {
7
8
9

(a) CFG of Func.

Input Convolution Layer
>
crG R (1,2,..) 2 Output
4 —
LY hr
vi >0 1)
«— ol
v2 — v3 f ‘:A
— e <18 RelU 7
4 o ez N
T e M —_/ . @
v8 Vs e >~ - P
’// v [oy 7 o1 ~
- < |
6 J e
£~
)
- Pz Graph-level features
»

for global classification

Graph Convolutional Network

(b) Embed CFG in the vector representations using graph convolutional
networks.

Fig. 5: Structured level representation of code through convo-
lutional network.

neural network that operates directly on a graph and induces
the embedding vectors of nodes based on the features of their
neighborhood nodes. In this section, we briefly introduce the
process of the graph modeling for CFGs. A CFG G = (V, £) of
a Java method consists of a set of nodes V = {vy,va,..., 05},
where we use program statements and a set of edges E to
represent control-flows between nodes. Intuitively, we use the
vectorized code statements to denote the features of the CFG
nodes. In Figure 5(a), the box “statements” above “Func”
represents the collection of the code statements of “Func”.
Doc2Vec [35] converts the statements into their corresponding
vectors. Let H® = {hy,hy,...,hy} denote the original
features, i.e., a set of vectors by generated by Doc2Vec. We
then use the GCNs to compute the representation of the nodes
on a CFG. The convolutional operation follows Equation 17:

H(H_l) _ f(H(l),A) _ U(D_lAH(l)W(l))7 17

where A = A + Iy represents the adjacency matrix of the
graph G with added self-connections. Iy is the identity matrix,
DNn‘ = Zj Aij represents the diagonal matrix, and WO s
a trainable weight matrix. We use the o(-) to denote the
activation function, H) = {h/ h},... hiy} to denote the
matrix of activation in the [t layer [34], [36]. We propose
to train the GCN to learn the distributed representation of the
graph G for its structured information.

As illustrated in Figure 5(b), in the GCN, at least one learn-
able linear transformation layer (i.e., the convolutional layer)
is required to transform the input features together with the

graph structure into the aggregated graph representations. The
goal is to use the GCNs to learn the structure information from
the CFGs following: H! = ConvLayers(H, A) (Equation
17), which accepts H® € RY*F where the t-th row, h; is
the vector to represent node v; by Doc2Vec [37], [35]. F is
the feature dimension of each node in the latent embedding
vector. A is the adjacency matrix representing the control-
flows to model its graph structure. The function ConvLayers
produces a node-level output matrix H' € RV*F ", which is an
output feature matrix for all the nodes on G using the (14 1)-
layer convolutional neural network (I starts from 0). In our
experiment, we used a single-layer GCN. Graph-level outputs
can be obtained by using pooling operation [38].

B. Attentions and Feature Fusion

Since code in the form of tokens, ASTs and CFGs may
affect the final accuracy of clone detection at lexical, syntac-
tical and structure levels differently, we apply the attention
mechanisms individually to the above representations. This
multimodal approach can capture important information in
different code representations. We first introduce the attention
mechanism to model source code at the token (or text) and
AST levels. Then, we describe the graph attention model to
embed CFGs. First, we leverage the attention mechanism of
processing documents [22], [32] to produce the embedding
vector v¥®® for modeling code tokens. Given an input code
fragment consists of the tokens X = [z1,29,..., 27|, where
the length of the code fragment is 7T'. After the input sequence
has been processed through the LSTMs, h; computed by
Equation 10 represents the hidden vector for x,. The attention
mechanism uses the following three equations:

ul™ = tanh(W!*'h{™ 4 biot), (18)
i ex utth . uiﬂ:t
a?t T bt tatT)t ty’ (19)
>iop exp(ui™’ ! - ulr)
T
viTt — Z o{imt . hizt. (20)
t=1

In Equation 18, an one-layer MLP (MultiLayer Perceptron)
(i.e., tanh) is used to retrieve u’** as a hidden representation
of hi®t, Wit is a shared weight matrix, b’** is a bias vector.
Both are randomly initialized and are trained as parameters.

Equation 19 calculates a normalized importance weight
value through a softmax expression for ¢-th token, denoted
as af®t. ul** is a context vector. Note that u’** is randomly
initialized and jointly learned during the model training pro-
cess. There are a few options to implement the similarity
measure function f(-) in Equation 2 [39], [19]. To mitigate
the computational load of the weights on the networks, we
choose the dot-product to calculate the similarity scores, ie.,
u%xtT . uzxt.

Equation 20 computes the v** for the code sequence, where
is the weighted representation of the target code fragment (i.e.,
a weighted sum of all the vectors based on their weights).

Similarly, the representation at the syntactical level is pro-

cessed with the following equations:

uf*! = tanh(W2shy™ 4 b2st), 1)

ast — exp(utaStT i ugSt) (22)
' Zi:/1 exp(uf’ u(f'St)7
N/
Vast _ Z attzst . hg5t7 (23)

t=1
where N’ is number of nodes on an AST of the target code,
which can be different from the number of tokens of the code.
h¢t in Equation 21 is computed from the output of hidden
representation in Equation 16.

For the attention mechanism when embedding CFGs, we
apply the graph attention networks [40] to produce the latent
vector for each node by considering the importance of its
neighborhood nodes. We use e;; to indicate the importance
of node ¢’s features to node ¢. We then normalize them across
all choices of 7 using a softmax function.

€y = f(WhtaWhl)a
oy = exp(es;)
' ZkeNt exp(etk),

where the attention function f is a single-layer feedforward
neural network [40]. W is a layer-specific weight matrix and
applied to every node on the CFG. Note that we only compute
et; for nodes i € N;, where N; is the neighborhood of node
t (including t) on the CFG.

We can then obtain hj}, which denotes the structured repre-
sentation of a CFG processed by the convolutional layers and
an activation function o, which is ReLU, using the following
equation:

(24)

h; = O'(Z Othh,L)
iGN(t)

(25)

All the embedding vectors of the nodes on a CFG are
iteratively computed by GCN. We assume every function has
one exit node h..;;. We choose h/ ., as the final embedding
vector of the CFG, ie., v¢/9 =h/ ...

Once the vectors for the three different code representations
are generated, they are concatenated to produce a hybrid
representation. The hybrid representation is then fed into
an one-layer linear network, which can be denoted by the

following equation:

v =Wy, [vI" vt vel9] + by, (26)

where v denotes the final hybrid code representation. Wy,
balances the composition of the textual, syntactic and the
structural features in the resulting hybrid representation, and
by, turns the model a bias towards final convergence when
training the model.

C. Model Learning

Given a set of code pairs and their corresponding clone types
D = {((a1,b1),31),---((a5,bi), i) - .- ((an, bn), yn) }s
where a; and b; denote a pair of code fragments, y; de-
notes the labeled clone type of a code pair, ie., y; €
C = {Cy,C1,05,C5,C4}, where C; denotes non-clone
and C4,C5,C5,Cy denote the four clone types labeled in
BigCloneBench. The similarity measurement function sim

calculates Manhattan distance [41] between two hybrid code
representations by using the following equation:

Zap = sim(a,b)= exp(—||v® — vb||1) € (0,1), 27

where v® and v® are calculated by Equation 26 for a and
b respectively. Since the set of distances ||[v® — v?||; are in
the range (0,00), an exponential function exp(-) is used to
normalize the distance values into an interval from 0 to 1
exclusively, where z,;, = 0 means the two code fragments a
and b are exactly the same.

We then conduct the final training to build a model
to classify code pairs into five types (a non-clone and
four clone types/classes). We utilize a Softmax Regres-
sion [42] (i.e., the softmax), an extension of logistic regres-
sion [43] for training a multi-classifier. We have a training
set {(xal,bl ’ yl)v (xaz,bwa) s (xaubmyi) s (xGNJJN?yN)}’
where x,, 5, denotes the Manhattan distance between code
fragments a; and b; computed by Equation 27.

Given a Manhattan distance = as an input, our multi-class
classification hypothesis hy(z), which estimates the probabil-
ity p(y = C;|x) of each clone type (i.e., Cp, ..., C4), and then
produces a 5H-dimensional vector (whose elements sum to 1)
for input z, indicates its probabilities of the five classes:

[9(CT .7
Ply=Col;0) C o
9(C1IT 4
p(y:Cﬂm,H) 1 €
g(C2)T
ho(z)= |p(y=C2l;0) _24 e € ©)Tw ’
p(y=Csla;0) h=0 e
p(y:Cél‘x’H) 60(04)TCE

S (28)
where § = [9(C0); 9(C1). 9(C2) 9(Cs). 9(C4)] are our model’s
parameters, which are learned from model training by mini-
mizing the following cost function:

N 4
L0)==> > 1{y; = Cx}logp(y = Cilz;0), (29)

i=1 k=0
where 1{-} denotes the indicator function, i..,
1{a true statement} = 1 and 1{a false statement} = 0.

p(y = Clz;0) is the calculation for the probability of each
clone type under the input z. The hypothesis estimation for a
softmax is defined as follows:

exp(H(CR) T) .
> =1 exp(0€)

IV. EXPERIMENTS

p(yi=Crlz;0) =

(30)

In this section, we first describe the dataset used in our
experiments and then we introduce the implementation details
and evaluation methods. Furthermore, we discuss and analyze
the experiment results, aiming at answering the following three
research questions:

RQ1I. How does FccA perform in comparison to the state-
of-the-art approaches?

RQ2. How do different representation settings impact the
effectiveness of FCCA when detecting functional code clones?

RQ3. How do the attention networks used in FCCA (plus
the different code features) contribute to the accuracy of the
final results?

A. Feature Engineering: Pre-process & Feature Extraction

Our model focuses on the task of clone detection at the
method level. All the available Java files in IJaDataset2.0
for successful compilation are listed in our dataset, which
provides a database consisting of well-labeled clone pairs.
To construct ASTs of the Java files, we used Antlr! (version
4), which is a tool for code analysis suitable for multiple
programming languages [44]. In addition, Antlr also provides
APIs to parse source code into tokens. We used the built-
in visitor APIs from Antlr to traverse the AST for each Java
method. We also employed Soot [45], a widely used static code
analysis framework to extract the CFG of each Java method for
compilable Java files. After CFGs created, we built the feature
vector of each CFG node. The feature vectors of CFG nodes
were generated by using Doc2Vec [37], a commonly used
text embedding technique. Source files that are not compilable
were discarded. Methods containing equal or fewer than five
lines of code were also ignored, because they were considered
trivial methods. The resulting ASTs and CFGs were stored in
Dot files for post-processing and data analytics.

B. Data Collection

We conducted our experiments using the clone pairs from
IJaDataset2.0% [46], which has been widely used for evaluating
code clone detectors. It contains manually-labeled method-
level clone pairs. In our experiments, we mainly focus on
functional clones (i.e., Weakly Type-IIl and Type IV as de-
scribed in Section II-A). Building CFGs requires programs to
be compiled into Java . class files. However, some programs
in the [JaDataset2.0 are incomplete. Thus, their corresponding
CFGs cannot be obtained. We compiled as many source files
as possible to generate their corresponding CFGs by using
Soot [45]. Finally, we collected 6,351 compilable Java files,
275,777 method-level clone pairs and 269,032 non-clone pairs.
It is worth mentioning that the non-clone pairs and the clone
pairs in [JaDataset2.0 are all labeled by domain experts [13],
[10]. In addition, we also manually validated 100 samples
in negative samples to ensure that the non-clone pairs were
obtained in a fair manner. Table II shows an overview of the
dataset. Note that the percentage value (%) is the proportion of
each clone type among all clone types. In our experiments, we
randomly split the dataset into 6:2:2 (60% for model training,
20% for validation and the remaining for testing). 4,000 code
pairs were randomly selected for validation to avoid over-
fitting during training. To handle the imbalanced data, we used
the standard SMOTE method to balance the samples for Type-
I Type-II, and Type-III clone pairs>.

C. Implementation Details

All experiments were conducted on a server with 2.2 GHz
Intel Core i7 CPU, 64GB memory, and a NVIDIA P6000

Uhttps://github.com/antlr/antlr4/blob/master/doc/index.md
Zhttps://github.com/clonebench/BigCloneBench
3https://imbalanced-learn.readthedocs.io/en/stable/over_sampling.html

TABLE II: Overall information for the dataset (clone pairs).

Clone Type wise-pairs %
Type-1 7,757 2.81
Type-IL 3,301 1.12
MType-II1 7,390 2.67
SType-III 4,279 1.56
Type-1V 253,050 91.75

GPU, running Red Hat 7.0.

The neural network model has a 128-dimensional hidden
state h; of each LSTM layer to handle code features (i.e.,
the code tokens). Each layer of the neural network contains
memory cells C; where each cell C' is qualified with a time
stamp ¢ to indicate its position in this cell sequence. The
cells in LSTM contain the sequential information of each
feature equipped with the attention mechanism. The weights in
the network were initialized with the small random Gaussian
distribution which is widely used in many deep-learning
models [49], [41]. We employed Word2Vec* to tokenize the
code fragments.We adopted Antlr4 to parse the source code to
ASTs first, and traversed the ASTs via the APIs provided by
Antlr4. We eventually collected a dictionary at word (token)
level by 58,426 tokens. We set up the exception process of
the data scope that they were marked as ‘“unknown” and
initialized with randomly generated vectors of the tokens were
out of vocabulary. For a quick experiment setup, we refer to
hyper-parameters used in Siamese network model as the initial
settings [41].

We applied a 5-fold cross-validation to train and evaluate
our model. The collected dataset was partitioned into 5 subsets,
where we picked 1 subset as the testing set each time and the
remaining 4 subsets were used as the training set. Then, we
repeated the experiments for 5 times and each time we used a
different subset. Note that the experiments were all conducted
for the clones at the method-level to ensure that the comparison
between our tool and the baselines is fair.

D. Comparison Methods

We selected the following six state-of-the-art baselines to

validate the effectiveness of our proposed FCCA:

e DECKARD [23] is a classical AST-based detector that
generates characteristic vectors for each AST of a pro-
gram using predefined rules. We used the experiment
results reported in [13], [48] for reference.

e DLC [14] is a recursive-neural-network-based detector
that measures code similarity using Euclidean distance.
We used the experiment results from the papers [14], [48]
for reference.

e SOURCERERCC [10] is a bag-of-words-based clone de-
tection tool. The results were generated using their open-
source tool.

o CDLH [13] is a deep-learning-based clone detection ap-
proach that uses ASTs as representations of code features.
Since the authors do not provide detailed experimental

“http://radimrehurek.com/gensim/models/Word2 Vec.html

TABLE III: Parameter settings for the different tools.

Tool

Parameters

DECKARD [23]

Min tokens: 100, stride: 2, similarity threshold: 0.9

DLc [14] Hidden layer size: 400, epoch: 25, initial learning rate: 0.003, clipping gradient range: (-5.0, 5.0), A for L2 regularization: 0.005
SOURCERERCC [10] Min length: 6 lines, similarity: 70%

CDLH [13] Code length for learned binary hash codes: 32, word embeddings of length: 100

TBCNN [47] Convolutional layer dim size: 300, dropout rate: 0.5, batch size: 10

DEEPSIM [48] Layers size: 88-6, (128x6-256-64)-128-32, epoch: 4, initial learning rate: 0.001, A for L2 regularization: 0.00003, dropout: 0.75

Plain Text Size of hidden states: 128, embedding size: 300, epoch: 50, initial learning rate: 0.001, batch size: 32

AST Size of hidden states: 128, embedding size: 300, epoch: 50, initial learning rate: 0.001, batch size: 32

CFG Embedding size: 64, epoch: 50, initial learning rate: 0.001, batch size: 16

Plain Text + ATTN Size of hidden states: 128, embedding size: 300 epoch: 50, clipping gradient range: (-1.2, 1.2), initial learning rate: 0.001, batch size: 32
AST + ATTN Size of hidden state: 128, embedding size: 300, epoch: 50, clipping gradient range: (-1.2, 1.2) initial learning rate: 0.001, batch size: 32
CFG + ATTN Epoch: 50, initial learning rate: 0.001, batch size: 32

Fcca Size of hidden states: 128 (Text), 128 (AST), embedding size: 300 (Text), 300 (AST), 64 (CFG), clipping gradient range: (-1.2, 1.2)

Epoch: 50, initial learning rate: 0.0005, dropout: 0.6, batch size: 32

settings and their open-source implementation, we used
the experiment results reported in their paper. In fact, this
approach is a subset/instance of FCCA. We implemented
CDLH by using FCCA when only ASTs features were
considered.

o« TBCNN [47] is a Tree-based CNN model which adopts
convolutional networks to process ASTs. We have also
compared FccAa with TBCNN (implemented by our-
selves) to evaluate the performance between the LSTM-
based and CNN-based methods.

o DEEPSIM [48] is a recent deep-learning-based approach
of clone detection, which uses a semantic matrix that
encodes control- and data-flow information of source
code. We cannot reproduce the results when analyzing
BigCloneBench using their online tool due to configura-
tion problems. Thus, we refer to the results from their
paper.

Precision (P), Recall (R), and F1 scores were used as the
evaluation metrics. The configurations of all the methods are
provided in Table III. To evaluate the performance of different
clone detectors, we adopted three metrics, i.e., Precision (P),
Recall (R) and FI1 scores, which has been widely adopted in
the evaluation of classification tasks.

E. Execution Time and Scalability

TABLE IV: Time performance.

Method Prediction time Training time
SOURCERERCC 42s -
CDLH 90s 45,317s
TBCNN 86s 41,168s
FCCA 91s 46,769s

We evaluated the execution time of the baseline approaches
with the same dataset as that used in FCCA. We compared
our approach with SOURCERERCC, CDLH, and TBCNN for

4000 4

w
=]
=]
o
L

2000

Time Cost (s)
| |

1000 + / ~

10 20 30 40 50 60 70 80 90 100
Loaded Data Percentage (%)

Fig. 6: Scalability analysis by loaded data percentage.

execution time by running the corresponding implementations.
For DECKARD, DLC and DEEPSIM, we directly used their
data reported in their papers. As all the tools need to extract
the tokens and ASTs before the prediction processes, we
excluded the pre-process time. Table IV reports the time
performance of the tools. SOURCERERCC which uses the non-
learning-based approach to detect the clone pairs, required
less time to find clones [10]. Further, the tool which is not
a learning-based approach does not need a training process.
As mentioned before, we resorted to a variant of FCCA which
only considers the AST feature to approximate the time cost
for CDLH. TBCNN was efficient compared to the other two
baselines using only 41,168s for training. FCCA had more
computational cost since it required to fuse the three types
of code representations. It took 936s in the training for each
epoch and approximately 13 hours (46,769s) to complete the
model training with 275K code clone pairs and 269K non-
clone pairs.

Scalability. To evaluate the scalability of our proposed

approach, we randomly selected 50K code pairs from Big-
CloneBench and calculated its running time. Figure 6 shows
the result when evaluating FCCA’s scalability. We can observe
that FCCA successfully scaled to our large dataset, with a
proportionally increased training time regarding the percentage
of the loaded data size.

F. Results and Analysis

TABLE V: Precision, recall and F1 results when comparing
FccA with the existing clone detectors. The best scores are
highlighted in boldface.

Method Precision Recall F1

DECKARD [23] 0.93 0.02 0.03
DLc [14] 0.95 0.01 0.01
SOURCERERCC [10] 0.88 0.02 0.03
CDLH (AST) [13] 0.92 0.74 0.82
TBCNN [47] 0.90 0.81 0.85
DEEPSIM [48] 0.97 0.98 0.98
Fcca 0.98 0.97 0.98

TABLE VI: F1 values with respect to the different clone types.
The best scores are highlighted in boldface.

Method T1 T2 ST3 MT3 WT3/T4
DECKARD [23] 0.73 0.71 0.54 0.21 0.02
DLc [14] 1.0 0.97 0.60 0.03 0.00
SOURCERERCC [10] 0.94 0.93 0.77 0.1 0.00
CDLH [13] 1.0 1.0 0.94 0.88 0.82
TBCNN [47] 1.0 1.0 0.93 0.80 0.86
DEEPSIM [48] 0.99 0.99 0.99 0.99 0.97
Fcca 1.0 1.0 0.95 0.97 0.98

RQ1: How does FCCA perform in comparison to the
six selected state-of-the-art approaches? Table V shows
the comparison in terms of precision, recall and F1 scores.
Table VI shows a detailed comparison of the F1 scores for each
clone type (T1, T2, ST3, MT3, WT/T4) between FCCA and the
six other tools. The results of DECKARD, DLC and DEEPSIM
correspond to those reported in their papers [23], [14], [13].
The experimental results indicate that FCCA outperforms all
the other approaches in terms of precision. As shown in
Table VI, FccA also performed better than all the other
approaches for the most complex clone types WT3 and T4.
We discuss the results of the six tools below:

o DECKARD had relatively low F1 scores on the Type-MT3
and Type WT3/T4 clones with 0.21 and 0.02, respectively
(Table VI). The low score is because functional code
clones account for a large portion of the experimental
dataset.

e DLC had a higher precision (0.95) than DECKARD,
However, it also had a lower recall (0.01) and an F1 score
(0.01), meaning that using latent features extracted with

deep learning techniques without considering structured
feature failed to detect functional code clones.

e SOURCERERCC performed slightly better than
DECKARD and DLcC. However, this single-feature
token-based clone detector was imprecise when

detecting WT3/T4 clones (Table VI).

e CDLH [13] has an F1 score of 0.82 (Table V). All
scores were better than the three above competitors given
the AST-based code representation at the syntactic level.
However, the syntactic-level single-feature representation
resulted in a low recall rate (0.74), which indicated some
important structural information may have been missed.

o« TBCNN achieved the F1 score of 0.85. We can observe
that, as a tree-based CNN, TBCNN performed better than
CDLH, whereas did not outperform FcCA. Based on
our investigation, it is mainly because the convolutional
layers ignore the long distance contextual information
between two elements (tokens or nodes on AST) of
the source code at the syntactical level, whereas the
contextual information is the influential feature to the
prediction results. On the contrary, benefiting from the
attention mechanism, LSTM-based approach outperforms
the TBCNN-based approach by 0.98 (to TBCNN’s 0.86)
in terms of the F1 score.

« DEEPSIM is a recent clone detector that leverages struc-
tured information, including control- and data-flows of a
program. As shown in Table V, FCCA achieved overall
better precision than that by DEEPSIM and the same
F1 score. In terms of the clone types, Table VI shows
FccA with a better F1 score than DEEPSIM on the most
complicated clone types WT3/T4, because of FCCA’s
comprehensive hybrid code representation with atten-
tions.

TABLE VII: The effectiveness of individual features and their
combinations. The best scores are highlighted in boldface.

Feature Name Precision Recall F1

PLAIN TEXT 0.83 0.81 0.82
AST 0.84 0.80 0.81
CFG 0.66 0.71 0.68
TEXT+AST+CFG 0.86 0.85 0.86
TEXT+AST+CFG + ATTN (FCCA) 0.98 0.97 0.98

RQ2: How do different representation settings impact
the effectiveness of FCCA when detecting functional code
clones?

Table VII shows the results when using a single feature and
combinations of features. A cursory observation reveals that
the model based on individual features had relatively lower
precision, recall and F1 scores. The plain text-based model
performed almost as well as the AST-based model. This is
mostly because both models used the same tokens in the
embedding layer. The model based on AST alone was able
to identify similar code fragments at the syntactic level, even
with very different tokens that shared little lexical information.

Train Accuracy

0.9

0.8 +

Validation Accuracy

1.0 4

0.9 1

0.8

>
2
5 0.7
3
2
0.6 1
! ’,’ - - Plain TXT
os{ / o AST
! —- CFG
N TEXT+AST+CFG
04 1 —— TEXT+AST+CFG + ATTN
0 10 20 30 40 50
Epochs
(b) Validation Accuracy
Validation Loss
L - - Plain TXT
14 \ == AST
H —-- CFG
2] 0 - TEXT+AST+CFG
A —— TEXT+AST+CFG + ATTN
\
\
g0 N
g NN,
o084 M \
= N
] T N
T 06 | oy el L TTTTTm T T
> B el P
R N
0.4 1 -
021
0.0 1

Epochs

(d) Validation Loss

Fig. 7: Comparisons of accuracy and loss during training and validation for each feature.

>
3 0.7
E
3
ES
0.6
iy - - Plain TXT
051] —-- AST
! —-- CFG
04l ;e TEXT+AST+CFG
1 —— TEXT+AST+CFG + ATTN
0 10 20 30 40 50
Epochs
(a) Training Accuracy
Train Loss
164 | - - Plain TXT
H —-=- AST
IEE I —-- CFG
B - TEXT+AST+CFG
L24 o —— TEXT+AST+CFG + ATTN
(AN
L0+ v ™
@ v S\
] % \
- 0.8 LN
= i
" 06 e T T T e
0.4
0.2
0.0
0 10 20 30 40 50
Epochs
(c) Training Loss
X 1
o 0.9 0. 88 l Attention 09
.83
08 . 0.8
= Non-Attention ,;
07
06 o
0 05
04
04 03
03 0.2
02 0.1
01 [
0 Plain Text
Plain Text AST

TexHAST*CFG

(a) Comparison of Precision

0.720.71

CFG

(b) Comparison of Recalls

>

1
85 u Attention s 0. 8581 o 858 Attention
= Non-Attention o 0'3)168 =N i
07 . on-Attention
0.
05
04
03
0.2
01
0
CFG

Text+AST+CFG Plain Text AST Plain
Text+AST+CFG

(c) Comparison of F1 score

Fig. 8: Comparisons of different feature with the attention mechanism for Precision, Recall and F1 score.

However, AST representations contained more syntactical in-
formation, which was likely responsible for the slightly better
performance. Compared to plain text and AST, CFG alone
achieved relatively low scores. When fused with the text and
AST features, it boosted the FCCA s overall efficacy. In terms
of the F1 scores, the relative improvements were 4% (text),
5% (AST) and 18% (CFG). These improvements demonstrated
how low-level texts, ASTs and high-level control/flow infor-
mation complement each other to reveal relatively complicated
functional clones. However, the improvement with these two
types of features capped at 5%. The attention mechanism is
responsible for the remainder of the improvement. Figure 7
illustrates FCCA’s training and validation phase. Figure 7(a)

shows that the initial accuracy of FCCA with a single feature
was higher than all the other models at the beginning of the
training phase, which demonstrates that fusing the features
helps the model capture the comprehensive unstructured and
structured code information. Figure 7(b) shows the consistency
of the results in the validation stage. Figure 7(c) depicts the
training loss during the training epochs for each model, and
Figure 7(d) shows the scenarios for validation loss. Overall,
FccA achieved the best results and the charts demonstrate
that the attention mechanism indeed pay attention to important
aspects of the code features to improve the performance of
code clone detection.

RQ3: The effectiveness of the attention networks and the

contributions of different code features to the final accuracy.
The results of the experiments so far show that incorporating
attention mechanism into the learning framework resulted in
an overall improvement in FCCA s performance. However, to
analyze this impact in more detail, we conducted tests with
each type of representation both with and without the attention
mechanism placing weights on each token and without. The
results in Figure 8 show the across-the-board improvements
with the attention mechanism with all types of representations.
Without even fully tuning the hyper-parameters, there was up
to a 13% improvement in F1 score. It was mainly because
all the three features improve the performance respectively
then the improvements were summed up together to make the
overall performance of FCCA significantly increase up to 0.98
on the F1 score.

According to these evaluations, FCCA’s ability to detect
complicated code clones, particularly Type-III and Type-IV
clones, showed superior to the six state-of-the-art tools in
terms of both accuracy and recall.

V. DISCUSSION
A. Strength of FCCA

We have identified three advantages of FCCA that may
explain its effectiveness in code clone detection: (a) FCCA rep-
resents the source code snippets from its multiple modalities
(i.e., tokens, AST and CFG), which contain complementary
information for the final code representation. (b) Equipped
with an attention mechanism, FCCA can capture the important
parts from different code representations for each modality,
as to boost the performance of code clone detection when
comparing with the other baselines in this paper. (c) Our
proposed approach is an unified framework to learn the hybrid
representation of source code for detecting functional clones.

B. Threats to Validity and Limitations

There are four main threats to the validity. First, we used
previously published results in several baselines (e.g., DLC,
CpLH and DEEPSIM). This is because the experiment settings
of DLC and CDLH are not clearly introduced. It is also unclear
to us about the configurations, particularly the data format,
to run the experiment for DEEPSIM. However, directly using
the reported data from the existing papers does not allow
for a more fine-grained qualitative comparison, for example,
counting and analyzing each clone fragment between FCCA
and others.

Second, it is true that the experiment results are sensitive to
the configurations of the tools correspondingly. This paper,
however, does not focus on hyper-parameter tuning, which
is an orthogonal source of precision. Nevertheless, we have
carefully listed the parameters used in our approach and
reported the configurations of the other tools in Table III to
allow subsequent researchers to reproduce the experiments in
the future.

The third threat is that the granularity of the clone detection
can be different (e.g., DECKARD [23] finds clone fragments
in code block level, as opposed to finding clones at the
method level). Because our model partially works on top of the

compiled Java code to obtain the complete control-flow graph
of a program, currently it is not able to analyze incomplete
source code which is not compilable.

The last threat lies in the training time. As we conducted
the experiments on the large-scale corpus, which contains over
250 million lines of code (MLOC) [10], the training time is
indeed very long to produce a precise hybrid representation.
It is still a big challenge to optimize the model to shorten the
training time.

VI. RELATED WORK

In this section, we briefly review the related studies from
three perspectives, namely deep code representation, attention
mechanism and code clone detection.

A. Deep Code Representation

With the successful development of deep learning, many
researchers have developed diverse code representations for
source code. In [47], Mou et al. use a tree-structured convo-
lutional neural network (Tree-CNN) to learn the distributed
vector representations from code snippets for program classi-
fication. Similarly, Wan et al. [33], [18], [50] apply the tree-
structured recurrent neural network (Tree-LSTM) to extract
the important information from ASTs for the task of code
summarization. Inspired by this approach, we consider using
the graph representation together with tokens and ASTs to
build a comprehensive hybrid code representation. Xiao et
al. [51] apply graph embedding to perform static detection
of a wide variety of vulnerabilities. This approach provides a
solution to detection of control-flow-related software vulner-
abilities using CFGs as the major code representation. Zhang
et al. [52] present a hybrid representation learning for familial
clustering of weakly-labeled Android malware by preserving
heterogeneous information from multiple sources, including
the results of static code analysis, the meta-information of an
Android app, and the raw-labels of antivirus engines.

B. Attention Mechanism

Attention mechanism has shown remarkable success in
many artificial intelligence domains such as neural machine
translation [19], image captioning [53], image classifica-
tion [54] and visual question answering [55]. The attention
mechanisms can enhance the original models to capture the
necessary parts of visual or textual inputs. Visual attention
models selectively pay attention to small regions in an image
to extract important features and reduce the size of information
to process. Some methods have recently adopted the visual
attention to improve models for image classification [56], [57],
image generation [58], image captioning [59], visual question
answering [60], [61], [62], etc. Attention mechanisms are also
helpful for NLP tasks to find semantic or syntactic input-output
alignments under the encoder-decoder framework, which can
effectively process the long-term dependency in texts. These
solutions have been successfully applied to many NLP tasks
including machine translation [19], text generation [63], sen-
tence summarization [33], [39] and question answering [64].

Nam et al. propose a multi-stage co-attention learning frame-
work to refine the attentions based on memory of previous
attentions. In [65], Paulus et al. combine the inter- and
intra-attention mechanism in a deep reinforcement learning
model to improve the performance for the task of abstractive
text summarization. In [66], Zhang et al. incorporate a self-
attention mechanism into convolutional generative adversarial
networks to improve the performance.

C. Code Clone Detection

Code clone detection is a classical task in software en-
gineering. Many tools have been developed in the past few
years. NICAD [12] is a lightweight, language-specific parser-
based clone detector for detecting clones Type I-III, which
only considers the textual features of source code. Rather
than string matching, the proposed detector transforms the
problem of code clone detection into a statistical clustering
problem. However, the tool is unable to effectively detect
functional clones. DECKARD [23] captures the codes structural
information via the ASTs of source code by using a statistical
model to cluster the codes. The approach is not limited at the
method level, but can detect clones for code fragments.

SOURCERERCC [10] is a tool that detects clones using a
fast bag-of-tokens model. It has shown good detection results
for Type-III clones, which is also a baseline in this paper.
However, since the bag-of-tokens model discards sequential
and structural information, it suffers from low precision and
accuracy when detecting Type-IV clones. In this paper, we
have conducted the comparison with SOURCERERCC at the
method level by running its tool. Our model produces better
result than SOURCERERCC for functional clones.

DLcC [14] introduces an approach based on a language
model, in which, clone detection is a recursive learning proce-
dure designed to adequately represent fragments that serve as
constituents of higher-order components. DLC leverages deep
learning during the source code pre-processing step.

CDLH [13] is an end-to-end learning model for code clone
detection. The model learns hash functions, structure informa-
tion, and representations of code fragments using an AST-
based LSTM by taking both lexical and syntactical code
features into account. CDLH is basically a subset of our
approach and was evaluated as also outlined in Section IV.

DEEPSIM [48] is a recent tool that encodes both control-
and data-flows into a compact semantic feature matrix to
identify functional code clones. The tool uses a feed-forward
neural network to learn the similarity from the semantic feature
matrices between two code snippets. Compared to DEEPSIM,
FccA offers a more straightforward methodology for feature
fusion. When combined with an attention mechanism, FCCA
yields better precision than DEEPSIM’s results for functional
clone detection.

OREO [67] stacks several LSTM layers with good perfor-
mance results reported from a 4-layer deep-learning model,
containing 200 units in each layer. With this method, the ap-
proach was able to identify a special type of clones (so-called
Twilight Zone) between clone Types-III and IV. However, as
also mentioned in their paper, OREO failed to achieve good
performance when detecting clones of Type-IV.

VII. CONCLUSION

In this paper, we have proposed a new code clone detector
based on a hybrid code representation that preserves hetero-
geneous code features in a compact low-dimensional latent
space. Equipped with an attention mechanism, FCCA analyzes
each token under different code features and then pays atten-
tion to the tokens that make the important contributions to final
detection accuracy. The result is an overall performance im-
provement in deep-learning-based clone detection. Extensive
experiments were conducted with 275,777 real-world clone
pairs. The resulting precision, recall, and F1 scores show that
FccA outperforms several state-of-the-art approaches.

VIII. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
helpful comments. This research is supported by National
Natural Science Foundation of China (Grant No. 61672338
and 61373028) and partially supported by the Australian
Research Council (Grant No. DP200101374, LP170100891
and DP200101328)

REFERENCES

[11 Q. Tu et al., “Evolution in open source software: A case study,” in
Proceedings 2000 International Conference on Software Maintenance.
IEEE, 2000, pp. 131-142.

[2] R. Koschke, “Survey of research on software clones,” in Dagstuhl Sem-
inar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2007.

[3] 1. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
1998, pp. 368-377.

[4] M. Suzuki, A. C. de Paula, E. Guerra, C. V. Lopes, and O. A. L. Lemos,
“An exploratory study of functional redundancy in code repositories,”
in 2017 IEEE 17th International Working Conference on Source Code
Analysis and Manipulation (SCAM). 1EEE, 2017, pp. 31-40.

[5] B. Muddu, A. Asadullah, and V. Bhat, “Cpdp: A robust technique for
plagiarism detection in source code,” in 2013 7th International Workshop
on Software Clones (IWSC). IEEE, 2013, pp. 39-45.

[6] G. Xiao, Z. Zheng, and H. Wang, “Evolution of linux operating system
network,” Physica A: Statistical Mechanics and its Applications, vol.
466, pp. 249-258, 2017.

[71 M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works)
http:/fwww. thoughtworks. com/Continuous Integration. pdf, vol. 122,
p- 14, 2006.

[8] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on. 1EEE, 2009, pp. 485-495.

[9] Z.Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
software Engineering, vol. 32, no. 3, pp. 176-192, 2006.

[10] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: scaling code clone detection to big-code,” in Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on.
IEEE, 2016, pp. 1157-1168.

[11] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670,
2002.

[12] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in Program Comprehension, 2008. ICPC 2008. The 16th IEEE Interna-
tional Conference on. 1EEE, 2008, pp. 172-181.

[13] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code.” in IJCAI, 2017, pp. 3034-3040.

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 87-98.

S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network
representation,” in AAAI, 2016, pp. 1895-1901.

C. Shi, B. Hu, W. X. Zhao, and S. Y. Philip, “Heterogeneous information
network embedding for recommendation,” TKDE, vol. 31, no. 2, pp.
357-370, 2019.

Y.-H. H. Tsai, P. P. Liang, A. Zadeh, L.-P. Morency, and R. Salakhutdi-
nov, “Learning factorized multimodal representations,” in /CLR, 2019.
Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, “Multi-
modal attention network learning for semantic source code retrieval,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2019, pp. 13-25.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

O. Levy, M. Seo, E. Choi, and L. Zettlemoyer, “Zero-shot relation ex-
traction via reading comprehension,” arXiv preprint arXiv:1706.04115,
2017.

A. Show, “Tell: Neural image caption generation with visual attention,”
Kelvin Xu et. al.. arXiv Pre-Print, vol. 23, 2015.

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proceedings of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2016, pp.
1480-1489.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96-105.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, p. 40, 2019.

J. Svajlenko and C. K. Roy, “Bigcloneeval: A clone detection tool
evaluation framework with bigclonebench,” in Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on. 1EEE,
2016, pp. 596-600.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
software engineering, vol. 33, no. 9, 2007.

J. Yousefi, Y. Sedaghat, and M. Rezaee, “Masking wrong-successor con-
trol flow errors employing data redundancy,” in 2015 5th International
Conference on Computer and Knowledge Engineering (ICCKE). 1EEE,
2015, pp. 201-205.

M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in Proceedings of the 30th international conference on Software engi-
neering. ACM, 2008, pp. 321-330.

F. E. Allen, “Control flow analysis,” in ACM Sigplan Notices, vol. 5,
no. 7. ACM, 1970, pp. 1-19.

T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “Disan: Direc-
tional self-attention network for rnn/cnn-free language understanding,”
in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

Y. Wang, M. Huang, L. Zhao et al., “Attention-based Istm for aspect-
level sentiment classification,” in Proceedings of the 2016 conference on
empirical methods in natural language processing, 2016, pp. 606-615.
Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,
“Improving automatic source code summarization via deep reinforce-
ment learning,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 2018, pp. 397—
407.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, 2014, pp.
1188-1196.

M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” arXiv preprint arXiv:1711.00740, 2017.
A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Sami-
nathan, “subgraph2vec: Learning distributed representations of rooted
sub-graphs from large graphs,” arXiv preprint arXiv:1606.08928, 2016.
D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs

(39]

[40]
[41]

[42]
[43]

[44]
[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

for learning molecular fingerprints,” in Advances in neural information
processing systems, 2015, pp. 2224-2232.

A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” arXiv preprint arXiv:1509.00685,
2015.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity.” in AAAI, vol. 16, 2016, pp. 2786-2792.
http://deeplearning.stanford.edu/tutorial/supervised/SoftmaxRegression/.
D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic
regression. Springer, 2002.

T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers. 1BM Corp., 2010, pp. 214-224.

J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on. 1EEE, 2015, pp. 131-140.

L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

G. Zhao and J. Huang, “Deepsim: deep learning code functional similar-
ity,” in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2018, pp. 141-151.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672—
2680.

W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, and
G. Xu, “Reinforcement-learning-guided source code summarization via
hierarchical attention,” IEEE Transactions on software Engineering,
2020.

X. Cheng, H. Wang, J. Hua, M. Zhang, G. Xu, L. Yi, and Y. Sui, “Static
detection of control-flow-related vulnerabilities using graph embedding,”
in 2019 24th International Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE, 2019, pp. 41-50.

Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. Tsang, and W. Zhou,
“Familial clustering for weakly-labeled android malware using hybrid
representation learning,” IEEE Transactions on Information Forensics
and Security, 2019.

Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with
semantic attention,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 4651-4659.

T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang, “The
application of two-level attention models in deep convolutional neural
network for fine-grained image classification,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 842-850.

J. Lu, J. Yang, D. Batra, and D. Parikh, “Hierarchical question-image
co-attention for visual question answering,” in Advances In Neural
Information Processing Systems, 2016, pp. 289-297.

V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in Advances in neural information processing systems, 2014,
pp. 2204-2212.

M. E Stollenga, J. Masci, F. Gomez, and J. Schmidhuber, “Deep
networks with internal selective attention through feedback connections,”
in Advances in neural information processing systems, 2014, pp. 3545—
3553.

K. Gregor, 1. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,
“Draw: A recurrent neural network for image generation,” arXiv preprint
arXiv:1502.04623, 2015.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International conference on machine learning,
2015, pp. 2048-2057.

Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, “Stacked attention
networks for image question answering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 21—
29.

C. Xiong, S. Merity, and R. Socher, “Dynamic memory networks for
visual and textual question answering,” in International conference on
machine learning, 2016, pp. 2397-2406.

K. J. Shih, S. Singh, and D. Hoiem, “Where to look: Focus regions for
visual question answering,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 4613-4621.

[63]

[64]

[65]
[66]

[67]

J. Li, M.-T. Luong, and D. Jurafsky, “A hierarchical neural autoencoder
for paragraphs and documents,” arXiv preprint arXiv:1506.01057, 2015.
A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in International
conference on machine learning, 2016, pp. 1378—1387.

R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for
abstractive summarization,” arXiv preprint arXiv:1705.04304, 2017.

H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention gen-
erative adversarial networks,” arXiv preprint arXiv:1805.08318, 2018.
V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V. Lopes, “Oreo:
Detection of clones in the twilight zone,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM,
2018, pp. 354-365.

