

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

Fig. 1. Reported buffer overflow vulnerabilities in the past decade, listed as
CWE-119 in the NVD database [39].

systems, language runtimes, and much of the libraries for Java
and C#), embedded software (e.g., device drivers) as well as
server and database applications. Due to powerful language
features such as explicit memory management and pointer arith-
metic, software written in C and C++ makes up the major-
ity of performance-critical code running on most computing
platforms. Unfortunately, these unsafe language features often
lead to memory corruption errors, including spatial errors (e.g.,
buffer overflows) and temporal errors (e.g., use-after-free), un-
dermining reliability and security.

This paper focuses on eliminating spatial errors, which di-
rectly result in out-of-bounds memory accesses of all sort and
buffer overflow vulnerabilities, for C. As a long-standing prob-
lem, buffer overflows remain to be one of the highly ranked vul-
nerabilities, as revealed in Fig. 1, with the data taken from the
National Vulnerability Database (NVD) [39]. In particular, spa-
tial errors persist today, as demonstrated by a recently reported
Heartbleed vulnerability in OpenSSL (CVE-2014-0160).

Several approaches exist for detecting and eliminating spa-
tial errors for C/C++ programs at runtime: guard zone-based
(by placing a guard zone of invalid memory between memory
objects) [23], [24], [41], [47], [64], object-based (by maintain-
ing per-object bounds metadata) [1], [8], [10], [13], [26], [46],
pointer-based (by maintaining per-pointer metadata) either in-
line [2], [25], [40], [43], [60] or in a disjoint shadow space
[9], [18], [34], [36]. These approaches can be implemented in
software via instrumentation, at source level as in [13], [36], and
[47] or binary level as in [24], and [41], accelerated in hardware
[9], [34] or by a combination of both [18], [35]. As no suggested
hardware support is available yet, the software industry typically
employs software-only approaches to enforce spatial safety.

Detecting spatial errors at runtime via instrumentation is con-
ceptually simple but can be computationally costly. A program is
instrumented with shadow code, which records and propagates
bounds metadata and performs out-of-bounds checking when-
ever a pointer p is used to access memory, i.e., dereferenced at
a load · · · = ∗p or a store ∗p = · · ·. Such bounds checking can
be a major source of runtime overheads, particularly when the
program contains a large number of loads/stores inside loops or
recursive functions.

Performing bounds checking efficiently is significant as it
helps improve code coverage of a spatial-error detection tool.
By being able to test against a larger set of program inputs
(due to reduced runtime overheads), more input-specific spa-
tial errors can be detected and eliminated. To this end, both
software- and hardware-based optimizations have been dis-
cussed before. For example, a simple dominator-based redun-
dant check elimination [36] enables the compiler to avoid the
redundant bounds checks at any dominated memory accesses.
As described in [35] and also in the recently announced MPX
ISA extensions from Intel [7], new instructions are proposed to
be added for the purposes of accelerating bounds checking (and
propagation).

In this paper, we present a WP-based compiler approach to
eliminating redundant bounds checks by performing both in-
tra and interprocedural optimizations. By reducing the high
overheads incurred in bounds checking at runtime, we can sig-
nificantly increase code coverage of a spatial-error detection
tool so that more spatial errors can be detected. Our approach
not only complements prior bounds checking optimizations but
also applies to any aforementioned spatial-error detection ap-
proach (in software or hardware or both). Based on the notion
of weakest precondition (WP), its novelty lies in guarding a
bounds check at a pointer dereference inside a loop, where the
WP-based guard is hoisted outside the loop, so that its false-
hood implies the absence of out-of-bounds errors at the deref-
erence, thereby preventing the corresponding bounds check to
be performed redundantly inside the loop. In addition, a sim-
ple value-range analysis allows multiple memory accesses to
share a common guard, reducing further the associated bounds
checking overheads. Finally, we apply loop unswitching to a
loop to trade code size for performance so that some bounds
checking operations in some versions of the loop are eliminated
completely.

We demonstrate the effectiveness of our WP-based op-
timizations by taking SOFTBOUND [36] as the baseline.
SOFTBOUND, with an open-source implementation available in
low-level virtual machine (LLVM), represents a state-of-the-art
compile-time tool for detecting spatial errors. By adopting
a pointer-based checking scheme with disjoint metadata,
SOFTBOUND provides source compatibility and completeness
when enforcing spatial safety for C. By performing instrumenta-
tion at source level instead of binary level as in MemCheck [41],
SOFTBOUND can reduce MemCheck’s overheads significantly
as both the original and instrumentation code can be optimized
together by the compiler. However, SOFTBOUND can still be
costly, with performance slowdowns exceeding 2X for some
programs.

To boost the performance of SOFTBOUND, we have devel-
oped a new tool, called WPBOUND, which is a refined version
of SOFTBOUND, also in LLVM, by incorporating our WP-based
compiler approach comprising both intra and interprocedural
WP-based optimizations. Our evaluation shows that WPBOUND

is effective in reducing SOFTBOUND’s instrumentation over-
heads while incurring some small code size increases for the
majority of the programs evaluated.

In summary, the contributions of this paper are:

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUI et al.: ELIMINATING REDUNDANT BOUNDS CHECKS IN DYNAMIC BUFFER OVERFLOW DETECTION USING WEAKEST PRECONDITIONS 3

1) a WP-based compiler approach comprising both intra and
interprocedural optimizations for reducing bounds check-
ing overheads for C programs;

2) a WP-based source-level instrumentation tool,
WPBOUND, for enforcing spatial safety for C pro-
grams;

3) an implementation of WPBOUND in LLVM; and
4) an evaluation on 20 C programs selected from SPEC

and MediaBench, showing that WPBOUND reduces
SOFTBOUND’s average runtime overhead from 77% to
47% (by a reduction of 39%), with small code size in-
creases.

The rest of this paper is organized as follows. Section II
provides some background for this work. Section III moti-
vates and describes our WP-based instrumentation approach.
Section IV evaluates and analyses our approach. Section V dis-
cusses additional related work and Section VI concludes.

II. BACKGROUND

In this section, we review briefly how SOFTBOUND [36] works
by adopting a pointer-based checking scheme. In Section V, we
will discuss some additional related work on guard zone- and
object-based approaches in detail.

Fig. 2 illustrates the pointer-based metadata initialization,
propagation and checking abstractly in SOFTBOUND with the
instrumentation code highlighted in gray. Instead of maintaining
the per-pointer metadata (i.e., base and bound) inline [2], [25],
[40], [43], [60], SOFTBOUND uses a disjoint metadata space to
achieve source compatibility.

The bounds metadata are associated with a pointer whenever
a pointer is created, as illustrated in Fig. 2(a). The types of
base and bound are typically set as char* so that spatial errors
can be detected at the granularity of bytes. Here, the base of p,
denoted p bs, points to the first byte in a, and the bound of p,
denoted p bd, points to one past its end. For q, q bs and q bd
are initialized appropriately. These metadata are propagated on
pointer-manipulating operations such as copying and pointer
arithmetic, as illustrated in Fig. 2(b).

When pointers are used to access memory, i.e., dereferenced
at loads or stores, spatial checks are performed [see Fig. 2(c)
and (d)] by invoking the sChk function shown in Fig. 2(e). The
base and bound of a pointer are available in a disjoint shadow
space and can be looked up in a global map GM. Given a pointer
p pointing to another pointer, GM[p] → bs and GM[p] → bd return
the base and bound of the pointer ∗p pointed to by p, respectively.
Note that during program execution, p in GM[p] evaluates to the
r-value ∗p as desired. GM can be implemented in various ways,
including a hash table or a trie. For each spatial check, five × 86
instructions, cmp, br, lea, cmp and br, are executed on ×86,
incurring a large amount of runtime overheads, which will be
significantly reduced in our WPBOUND framework.

To detect and prevent out-of-bounds errors at a load · · · = ∗p
or a store ∗p = · · ·, two cases are distinguished depending on
whether p is a pointer to a nonpointer scalar [see Fig. 2(c)] or
a pointer [see Fig. 2(d)]. In the latter case, the metadata for the
pointer ∗p (i.e., the pointer pointed by p) in GM is retrieved for
a load · · · = ∗p and updated for a store ∗p = · · ·.

Fig. 2. Pointer-based instrumentation with disjoint metadata. (a) Memory al-
location. (b) Copying and pointer arithmetic. (c) Loads and stores for nonpointer
variables. (d) Loads and Stores for pointer variables. (e) Spatial checks.

III. METHODOLOGY

As shown in Fig. 3, WPBOUND, which is implemented in
the LLVM compiler infrastructure, consists of one analysis
phase, one intraprocedural optimization phase and one inter-
procedural phase. Their functionalities are briefly described in
Section III-A, illustrated by an example in Section III-B, and
finally, explained further in Sections III-D–III-F.

A. WPBound Framework

The functionalities of the three phases in WPBOUND are de-
scribed below. The rationale behind each phase will be further
illustrated by a motivating example in Section III-B.

1) Value Range Analysis: This analysis phase computes con-
servatively the value ranges of pointers dereferenced at
loads and stores, leveraging LLVM’s scalar evolution

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 3. Overview of the WPBOUND framework.

pass. The value range information is used for the WP
computations in the intra and interprocedural transforma-
tion phases, where the instrumentation code is generated.

2) Intraprocedural Bounds-Checking Elimination: In this
WP-based intraprocedural bounds-checking elimination
phase, we proceed in three stages:

a) Loop-Directed WP Abstraction: In this first stage,
we insert spatial checks for memory accesses (at
loads and stores). For each access in a loop, we re-
duce its bounds checking overhead by exploiting but
not actually computing exactly the WP that verifies
the assertion that an out-of-bounds error definitely
occurs at the access during some program execu-
tion. As value-range analysis is imprecise, a WP is
estimated conservatively, i.e., weakened. For con-
venience, such WP estimates are still referred to as
WPs. For each access in a loop, its bounds check
is guarded by its WP, with its evaluation hoisted
outside the loop, so that its falsehood implies the
absence of out-of-bounds errors at the access, pre-
venting its check to be made redundantly inside the
loop.

b) WP Consolidation: During this second stage, we
consolidate the WPs for multiple accesses, which
are always made to the same object, into a single
one, in order to reduce the number of WPs used.

c) WP-Driven Loop Unswitching: During the last
stage, we trade code size for performance by ap-
plying loop unswitching to a loop so that the in-
strumentation in its frequently executed versions is
effectively eliminated.

3) Interprocedural WP Hoisting: This phase allows our
WP-based approach to be applied across the procedu-
ral boundaries. Our WP-based interprocedural optimiza-
tion performs a context-sensitive whole-program analysis
to hoist recursively some WP checks along call chains
to further reduce their runtime instrumentation overhead
incurred.

B. Motivating Example

We explain how WPBOUND works with a program in C (rather
than in its LLVM low-level code) given in Fig. 4. In the program
shown in Fig. 4(a), there are a total of five memory accesses in
function bar, four loads (lines 21, 24, 29, and 32) and one
store (line 34), with the last three contained in a for loop. With
the unoptimized instrumentation (as obtained by SOFTBOUND),

each memory access triggers a spatial check (highlighted in
gray). To avoid cluttering, we do not show the medadata initial-
ization and propagation, which are irrelevant to our WP-based
optimizations.

1) Value Range Analysis: We compute conservatively the
value ranges of all pointers dereferenced for memory ac-
cesses in the program, by using LLVM’s scalar evolution
pass. For the five dereferenced pointers, we obtain their
value ranges as follows:

&p[k] : [p + k× SP, p + k× SP]
&p[k + 1] : [p + (k + 1) × SP, p + (k + 1) × SP]
&a[i− 1] : [a, a + (L− 1) × S]

&b[i] : [b + S, b + L× S]
&a[i] : [a + S, a + L× S]

where the two constants, S and SP, are defined at the be-
ginning of the program in Fig. 4(a), and L is the upper
bound of the for loop spanning lines 27–36. The values
of a, b and L (used in bar) are obtained from their cor-
responding formal parameters x, y, and N at the callsite
in line 9 of foo.

2) Loop-Directed WP Abstraction: According to the value
ranges computed above, the WPs for all memory accesses
at loads and stores are computed (weakened if necessary).
The WPs for the three memory accesses in the for loop
are found conservatively and hoisted outside the loop to
perform a WP check by calling wpChk given in Fig. 4(a),
as shown in Fig. 4(b). The three spatial check calls to
sChk at a[i-1], b[i] and a[i] that are previously
unconditional (in SOFTBOUND) are now guarded by their
WPs, wp_a1, wp_b and wp_a2, respectively.
Note that wp_a1 is exact since its guarded access
a[i-1]will be out-of-bounds whenwp_a1 holds. How-
ever, wp_b and wp_a2 are not since their guarded ac-
cesses b[i] and a[i] will never be executed if ex-
pression t < . . . in line 30 always evaluates to false.
In general, a WP for an access is constructed so that its
falsehood implies the absence of out-of-bounds errors at
the access, thereby causing its spatial check to be elided.
The WPs for the other two accesses p[k] and p[k +
1] are computed similarly but omitted in Fig. 4(b).

3) WP Consolidation: The WPs for accesses to the same ob-
ject are considered for consolidation. The code in Fig. 4(b)
is further optimized into the one in Fig. 4(c), where the
two WPs forp[k] andp[k + 1] are merged ascwp_p
and the two WPs for a[i - 1] and a[i] as cwp_a.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUI et al.: ELIMINATING REDUNDANT BOUNDS CHECKS IN DYNAMIC BUFFER OVERFLOW DETECTION USING WEAKEST PRECONDITIONS 5

Fig. 4. Motivating example. (a) Unoptimized instrumentation. (b) Loop-directed WP abstraction. (c) WP consolidation. (d) WP-Driven Loop unswitching.
(e) Interprocedural WP hoisting.

Thus, the number of wpChk calls has dropped from 5 to
3 (appearing in lines 3, 11, and 12).

4) WP-Driven Loop Unswitching: By applying loop
unswitching, we obtain the code given in Fig. 4(d). The
two WPs in the loop, cwp_a and wp_b, are merged as
cwp_a || wp_b, enabling the loop to be unswitched.
The if branch at lines 6–14 is instrumentation-free. The
else branch at lines 16–27 proceeds as before with
the usual spatial checks performed. The key insight for
trading code size for performance this way is that the
instrumentation-free loop version is often executed more
frequently at runtime than its instrumented counterpart in
real programs.

5) Interprocedural WP Hoisting: In Fig. 4(d), the function
bar contains the two WP checks made by calling wpChk
in lines 3 and 4. Performing WP checks this way can
be costly when bar is called frequently by foo. We
can significantly reduce such instrumentation overhead by
hoisting the two wpChk calls from bar interprocedurally
to the point just above the for loop in foo, as shown
in lines 3 and 4 of Fig. 4(e). Of course, hoisting WPs

this way requires an appropriate parameter mapping to be
performed, with a mapped to x, b to y and L to N. In
addition, two global boolean shadow variables, gcwp_a
and cwp_b, have been introduced to enable the hoisted
WPs to be used interprocedurally.

C. Low-Level Virtual Machine Intermediate Representation

WPBOUND, as shown in Fig. 3, works directly on the LLVM-
IR, LLVM’s intermediate representation (IR). As illustrated in
Fig. 5, all program variables are partitioned into a set of top-level
variables (e.g., a, x and y) that are not referenced by pointers,
and a set of address-taken variables (e.g., b and c) that can
be referenced by pointers. In particular, top-level variables are
maintained in SSA (Static Single Assignment) form so that each
variable use has a unique definition, but address-taken variables
are not in SSA form.

All address-taken variables are kept in memory and can only
be accessed (indirectly) via loads (q = ∗p in pseudocode) and
stores (∗p = q in pseudocode), which take only top-level pointer
variables as arguments. Furthermore, an address-taken variable

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

Fig. 5. LLVM-IR (in pseudocode) for a C program (where x and y are top-
level temporaries introduced). (a) C. (b) LLVM-IR (in pseudocode).

can only appear in a statement where its address is taken. All
the other variables referred to are top-level.

In the rest of this paper, we will focus on memory accesses
made at the pointer dereferences ∗p via loads · · · = ∗p and stores
∗p = · · ·, where pointers p are always top-level pointers in the
IR. These are the points where the spatial checks are performed
as illustrated in Fig. 2(c) and (d).

Given a pointer p (top-level or address-taken), its bounds
metadata, base (lower bound) and bound (upper bound), are
denoted by pbs and pbd , respectively, as shown in Fig. 2.

D. Value Range Analysis

We describe this analysis phase for estimating conservatively
the range of values accessed at a pointer dereference, where
a spatial check is performed. We conduct our analysis based
on LLVM’s scalar evolution pass (see Fig. 3), which calculates
closed-form expressions for all top-level scalar integer variables
(including top-level pointers) in the way described in [55]. This
pass, inspired by the concept of chains of recurrences [4], is
capable of handling any value taken by an induction variable at
any iteration of its enclosing loops.

A scalar integer expression in the program can be represented
as a SCEV (SCalar EVolution expression):

e := c | v | O | e1 + e2 | e1 × e2 | 〈e1 ,+, e2〉�.

Therefore, a SCEV can be a constant c, a variable v that cannot
be represented by other SCEVs, or a binary operation (involving
+ and × as considered in this paper). In addition, when loop
induction variables are involved, an add recurrence 〈e1 ,+, e2〉�
is used, where e1 and e2 represent, respectively, the initial value
(i.e., the value for the first iteration) and the stride per iteration
for the containing loop �. For example, in Fig. 4(a), the SCEV
for the pointer &a[i] contained in the for loop in line 27 is
〈a,+, sizeof(int)〉�27 , where the subscript �27 stands for the
loop at line 27. Finally, the notation O is used to represent any
value that is neither expressible nor computable in the SCEV
framework.

When performing our range analysis, we ensure that the func-
tional equivalence between a program and its transformed pro-
gram is preserved in the following sense. According to the range
analysis rules given in Fig. 6, the WP-generating SCEV expres-
sions involving + and ∗ will not throw any runtime exceptions.
For example, the division operator/is not considered. In addition,
we handle unsigned and signed integers in the standard manner.

Fig. 6. Range analysis rules.

The range of every scalar variable will be expressed in the form
of an interval [e1 , e2]. We handle unsigned and signed values
differently due to possible integer overflows. According to the
C standard, unsigned integer overflow wraps around but signed
integer overflow leads to undefined behavior. To avoid potential
overflows, we consider conservatively the range of an unsigned
integer variable as [O,O]. For operations on signed integers, we
assume that overflow never occurs. This assumption is common
in compiler optimizations. For example, the following function
(with x being a signed int):

bool foo(int x) { return x + 1 < x; }

is optimized by LLVM, GCC, and ICC to return false.
The rules used for computing the value ranges of signed inte-

ger and pointer variables are given in Fig. 6. [TERMI] suggests
that both the lower and upper bounds of a SCEV, which is c,
v or O, are the SCEV itself. [ADD] asserts that the lower (up-
per) bound of an addition SCEV e1 + e2 is simply the lower
(upper) bounds of its two operands added together. When it
comes to a multiplication SCEV, the usual min and max func-
tions are called for, as indicated in [MUL]. If min(V) and
max(V) cannot be solved statically at compile time, then [O,O]
is assumed. For example, [i, i + 10] × [2, 2] ⇓ [2i, 2i + 20] but
[i, 10] × [j, 10] ⇓ [O,O], where i and j are scalar variables
(which can contain either positive or negative values). In the
latter case, the compiler cannot statically resolve min(V) and
max(V), where V = {10i, 10j, ij, 100}.

For an add recurrence, the LLVM scalar evolution pass com-
putes the trip count of its containing loop �, which is also rep-
resented as a SCEV tc(�). A trip count can be O since it may
neither be expressible nor computable in the SCEV formula-
tion. In the case of a loop with multiple exits, the worst-case
trip count is picked. Here, we assume that a trip count is always
positive. However, this will not affect the correctness of our
overall approach, since the possibly incorrect range information
is never used inside a nonexecuted loop.

In addition to some simple scenarios demonstrated in our
motivating example, our value range analysis is capable of han-
dling more complex ones, as long as LLVM’s scalar evolution

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUI et al.: ELIMINATING REDUNDANT BOUNDS CHECKS IN DYNAMIC BUFFER OVERFLOW DETECTION USING WEAKEST PRECONDITIONS 7

is. Consider the following double loop:

for (int i = 0; i < N; ++ i) // L1
for (int j = 0; j < = i; + + j) // L2

a[2 ∗ i + j] = . . . ; // a declared as int∗.

The SCEV of &a[2 ∗ i+j], i.e., a+2 ∗ i+j is given
as 〈〈a,+, 2 × sizeof(int)〉L1,+, sizeof(int)〉L2 by scalar
evolution, and tc(L1) and tc(L2) are N and 〈0,+, 1〉L1 + 1,
(i.e., i +1), respectively. The value range of &a[2 ∗ i +
j] is then deducted via the rules in Fig. 6 as:

[a, a + 3 × (N− 1) × sizeof(int)].

Since the maximum values of i and j are both
N - 1, the upper bound for a + (2 ∗ i + j) ×
sizeof(int) is therefore a + (2 ∗ (N - 1) + (N -
1)) × sizeof(int), which simplifies to a + 3 ∗ (N -
1) × sizeof(int).

E. Intraprocedural Bounds-Checking Elimination

We describe how WPBOUND generates the instrumentation
code for a program during its intraprocedural optimization
phase, based on the results of value range analysis. We only
discuss how bounds checking operations are inserted in its
three stages since WPBOUND handles metadata initialization
and propagation exactly as in SOFTBOUND, as illustrated in
Fig. 2.

1) Loop-Directed WP Abstraction: During this first stage,
we compute the WPs for all dereferenced pointers and inserts
guarded or unguarded spatial checks for them. As shown in
our motivating example, we do so by reasoning about the WP
for a pointer p at a load · · · = ∗p or a store ∗p = · · ·. Based
on the results of value range analysis, we estimate the WP
for p according to its Memory Access Region (MAR), denoted
[pmar

lb , pmar
ub). Let the value range of p be [pl, pu]. There are two

cases:
a) pl �= O ∧ pu �= O: [pmar

lb , pmar
ub) = [pl, pu + sizeof

(∗p)). As a result, its WP is estimated to be

pmar
lb < pbs ∨ pmar

ub > pbd

where pbs and pbd are the base and bound of p
(Section III-C). The result of evaluating this WP, called
a WP check, can be obtained by a call to wpChk
(pmar

lb , pmar
ub , pbs , pbd) in Fig. 4(a).

b) pl = O ∨ pu = O: The MAR of p is [pmar
lb , pmar

ub) =
[O,O) conservatively. The WP is set as true.

In general, the WP thus constructed for p is not the weakest
one, i.e., the one ensuring that if it holds during program execu-
tion, then some accesses via ∗p must be out-of-bounds. There
are two reasons for being conservative. First, value range anal-
ysis is imprecise. Second, all branch conditions [e.g., the one in
line 30 in Fig. 4(a)] affecting the execution of ∗p are ignored
during this analysis, as explained in Section III-B.

However, by construction, the falsehood of the WP for p
always implies the absence of out-of-bounds errors at ∗p, in
which case the spatial check at ∗p can be elided. However, the

converse may not hold, implying that some bounds checking
operations performed when the WP holds are redundant.

After the WPs for all dereferenced pointers in a program are
available, INSTRUMENT (F) in Algorithm 1 is called for each
function F in the program to guard the spatial check at each
pointer dereference ∗p by its WP when its MAR is neither
[O,O) (in which case, its WP is true) nor loop-variant. In this
case (lines 4–6), the guard for p, which is loop-invariant at point
s, is hoisted to the point identified by POSITIONINGWP(), where
it is evaluated. Note that the first parameter of POSITIONINGWP()
expects a program point to be specified. When calling it in line
3, “∗p” stands for the program point where p is accessed. The
spatial check at the pointer dereference ∗p becomes conditional
on the guard. Otherwise (line 7), the spatial check at the deref-
erence ∗p is unconditional as is the case in SOFTBOUND.

Note that an access ∗p may appear in a set of nested loops.
POSITIONINGWP returns the point just before the loop at the
highest depth for which the WP for p is loop-invariant and p
(representing the point where ∗p occurs) otherwise.

Let us return to Fig. 4(b). The MAR of b[i] in line 11 is
[b + SZ, b + (L + 1) × SZ), whose lower and upper bounds are
invariants of the for loop in line 6. With the WP check, wp_b,
evaluated in line 5, the spatial check for b[i] inserted in line
10 is performed only when wp_b is true.

Compared to SOFTBOUND that produces the unguarded in-
strumentation code as explained in Section II, our WP-based
instrumentation may increase code size slightly. However, many

