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Abstract—Spatial errors (e.g., buffer overflows) continue to be
one of the dominant threats to software reliability and security
in C/C++ programs. Presently, the software industry typically
enforces spatial memory safety by instrumentation. Due to high
overheads incurred in bounds checking at runtime, many program
inputs cannot be exercised, causing some input-specific spatial
errors to go undetected in today’s commercial software. This paper
introduces a new compile-time approach for reducing bounds
checking overheads based on the notion of weakest precondition
(WP). The basic idea is to guard a bounds check at a pointer deref-
erence inside a loop, where the WP-based guard is hoisted outside
the loop, so that its falsehood implies the absence of out-of-bounds
errors at the dereference, thereby avoiding the corresponding
bounds check inside the loop. This WP-based approach is
applicable to any spatial-error detection approach (in software or
hardware or both). To evaluate the effectiveness of our approach,
we take SOFTBOUND, a compile-time tool with an open-source
implementation in low-level virtual machine (LLVM), as our base-
line. SOFTBOUND adopts a pointer-based checking scheme with
disjoint metadata, making it a state-of-the-art tool in providing
compatible and complete spatial safety for C. Our new tool, called
WPBOUND, is a refined version of SOFTBOUND, also implemented
in LLVM, by incorporating our WP-based compiler approach
comprising both intra and interprocedural optimizations. For a set
of 20 C benchmarks selected from SPEC and MiBench,WPBOUND
reduces the average runtime overhead of SOFTBOUND from 77%
to 47% (by a reduction of 39%), with small code size increases.

Index Terms—Programming environments, reasoning about
programs, runtime, software engineering.

ACRONYMS AND ABBREVIATIONS

WP Weakest precondition.
LLVM Low-level virtual machine.
GCC GNU compiler collection.
ICC Intel C++ Compiler.
SPEC Standard performance evaluation corporation.
OO Object-oriented.
CWE Common weakness enumeration.
CVE Common vulnerabilities and exposures.
NVD National Vulnerability Database.
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IR Intermediate representation.
SCEV SCalar evolution expression.
MPX Intel memory protection extensions.
ISA Instruction set architecture.
SSA Static single assignment form.
MAR Memory access region.
SCC Strongly connected components.
Clang Front-end for the LLVM compiler.

NOTATION

e Expression.
c Constant.
v Variable.
� Loop.
L Loop nest forest.
F Procedure.
W Worklist.
S Size of an integer.
SP Size of a pointer.
cs Callsite.
O Incomputable SCEV.

Address of a variable:

[e1 , e2 ] Interval range.
〈e1 ,+, e2〉� Add recurrence for loop �.
e ⇓ [e1 , e2 ] Value range deduction.
s Program point.
p C pointer.
p[k] C array with index k.
∗p = .. Store.
... = ∗p Load.
CallSites(F ) Set of callsites calling F.
Callers(F ) Set of procedures calling F.
V Set of values.
max(V ) Maximum value in set V.
min(V ) Minimum value in set V.
wpp Weakest precondition for pointer p.
pmar

lb Lower bound of memory access region mar.
pmar

ub Upper bound of memory access region mar.
sChk Spatial check.
wpChk Weakest precondition check.
r Return value of weakest precondition check.

I. INTRODUCTION

TOGETHER with its OO incarnation C++, C is widely
used for implementing systems software (e.g., operating
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Fig. 1. Reported buffer overflow vulnerabilities in the past decade, listed as
CWE-119 in the NVD database [39].

systems, language runtimes, and much of the libraries for Java
and C#), embedded software (e.g., device drivers) as well as
server and database applications. Due to powerful language
features such as explicit memory management and pointer arith-
metic, software written in C and C++ makes up the major-
ity of performance-critical code running on most computing
platforms. Unfortunately, these unsafe language features often
lead to memory corruption errors, including spatial errors (e.g.,
buffer overflows) and temporal errors (e.g., use-after-free), un-
dermining reliability and security.

This paper focuses on eliminating spatial errors, which di-
rectly result in out-of-bounds memory accesses of all sort and
buffer overflow vulnerabilities, for C. As a long-standing prob-
lem, buffer overflows remain to be one of the highly ranked vul-
nerabilities, as revealed in Fig. 1, with the data taken from the
National Vulnerability Database (NVD) [39]. In particular, spa-
tial errors persist today, as demonstrated by a recently reported
Heartbleed vulnerability in OpenSSL (CVE-2014-0160).

Several approaches exist for detecting and eliminating spa-
tial errors for C/C++ programs at runtime: guard zone-based
(by placing a guard zone of invalid memory between memory
objects) [23], [24], [41], [47], [64], object-based (by maintain-
ing per-object bounds metadata) [1], [8], [10], [13], [26], [46],
pointer-based (by maintaining per-pointer metadata) either in-
line [2], [25], [40], [43], [60] or in a disjoint shadow space
[9], [18], [34], [36]. These approaches can be implemented in
software via instrumentation, at source level as in [13], [36], and
[47] or binary level as in [24], and [41], accelerated in hardware
[9], [34] or by a combination of both [18], [35]. As no suggested
hardware support is available yet, the software industry typically
employs software-only approaches to enforce spatial safety.

Detecting spatial errors at runtime via instrumentation is con-
ceptually simple but can be computationally costly. A program is
instrumented with shadow code, which records and propagates
bounds metadata and performs out-of-bounds checking when-
ever a pointer p is used to access memory, i.e., dereferenced at
a load · · · = ∗p or a store ∗p = · · ·. Such bounds checking can
be a major source of runtime overheads, particularly when the
program contains a large number of loads/stores inside loops or
recursive functions.

Performing bounds checking efficiently is significant as it
helps improve code coverage of a spatial-error detection tool.
By being able to test against a larger set of program inputs
(due to reduced runtime overheads), more input-specific spa-
tial errors can be detected and eliminated. To this end, both
software- and hardware-based optimizations have been dis-
cussed before. For example, a simple dominator-based redun-
dant check elimination [36] enables the compiler to avoid the
redundant bounds checks at any dominated memory accesses.
As described in [35] and also in the recently announced MPX
ISA extensions from Intel [7], new instructions are proposed to
be added for the purposes of accelerating bounds checking (and
propagation).

In this paper, we present a WP-based compiler approach to
eliminating redundant bounds checks by performing both in-
tra and interprocedural optimizations. By reducing the high
overheads incurred in bounds checking at runtime, we can sig-
nificantly increase code coverage of a spatial-error detection
tool so that more spatial errors can be detected. Our approach
not only complements prior bounds checking optimizations but
also applies to any aforementioned spatial-error detection ap-
proach (in software or hardware or both). Based on the notion
of weakest precondition (WP), its novelty lies in guarding a
bounds check at a pointer dereference inside a loop, where the
WP-based guard is hoisted outside the loop, so that its false-
hood implies the absence of out-of-bounds errors at the deref-
erence, thereby preventing the corresponding bounds check to
be performed redundantly inside the loop. In addition, a sim-
ple value-range analysis allows multiple memory accesses to
share a common guard, reducing further the associated bounds
checking overheads. Finally, we apply loop unswitching to a
loop to trade code size for performance so that some bounds
checking operations in some versions of the loop are eliminated
completely.

We demonstrate the effectiveness of our WP-based op-
timizations by taking SOFTBOUND [36] as the baseline.
SOFTBOUND, with an open-source implementation available in
low-level virtual machine (LLVM), represents a state-of-the-art
compile-time tool for detecting spatial errors. By adopting
a pointer-based checking scheme with disjoint metadata,
SOFTBOUND provides source compatibility and completeness
when enforcing spatial safety for C. By performing instrumenta-
tion at source level instead of binary level as in MemCheck [41],
SOFTBOUND can reduce MemCheck’s overheads significantly
as both the original and instrumentation code can be optimized
together by the compiler. However, SOFTBOUND can still be
costly, with performance slowdowns exceeding 2X for some
programs.

To boost the performance of SOFTBOUND, we have devel-
oped a new tool, called WPBOUND, which is a refined version
of SOFTBOUND, also in LLVM, by incorporating our WP-based
compiler approach comprising both intra and interprocedural
WP-based optimizations. Our evaluation shows that WPBOUND

is effective in reducing SOFTBOUND’s instrumentation over-
heads while incurring some small code size increases for the
majority of the programs evaluated.

In summary, the contributions of this paper are:
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1) a WP-based compiler approach comprising both intra and
interprocedural optimizations for reducing bounds check-
ing overheads for C programs;

2) a WP-based source-level instrumentation tool,
WPBOUND, for enforcing spatial safety for C pro-
grams;

3) an implementation of WPBOUND in LLVM; and
4) an evaluation on 20 C programs selected from SPEC

and MediaBench, showing that WPBOUND reduces
SOFTBOUND’s average runtime overhead from 77% to
47% (by a reduction of 39%), with small code size in-
creases.

The rest of this paper is organized as follows. Section II
provides some background for this work. Section III moti-
vates and describes our WP-based instrumentation approach.
Section IV evaluates and analyses our approach. Section V dis-
cusses additional related work and Section VI concludes.

II. BACKGROUND

In this section, we review briefly how SOFTBOUND [36] works
by adopting a pointer-based checking scheme. In Section V, we
will discuss some additional related work on guard zone- and
object-based approaches in detail.

Fig. 2 illustrates the pointer-based metadata initialization,
propagation and checking abstractly in SOFTBOUND with the
instrumentation code highlighted in gray. Instead of maintaining
the per-pointer metadata (i.e., base and bound) inline [2], [25],
[40], [43], [60], SOFTBOUND uses a disjoint metadata space to
achieve source compatibility.

The bounds metadata are associated with a pointer whenever
a pointer is created, as illustrated in Fig. 2(a). The types of
base and bound are typically set as char* so that spatial errors
can be detected at the granularity of bytes. Here, the base of p,
denoted p bs, points to the first byte in a, and the bound of p,
denoted p bd, points to one past its end. For q, q bs and q bd
are initialized appropriately. These metadata are propagated on
pointer-manipulating operations such as copying and pointer
arithmetic, as illustrated in Fig. 2(b).

When pointers are used to access memory, i.e., dereferenced
at loads or stores, spatial checks are performed [see Fig. 2(c)
and (d)] by invoking the sChk function shown in Fig. 2(e). The
base and bound of a pointer are available in a disjoint shadow
space and can be looked up in a global map GM. Given a pointer
p pointing to another pointer, GM[p] → bs and GM[p] → bd return
the base and bound of the pointer ∗p pointed to by p, respectively.
Note that during program execution, p in GM[p] evaluates to the
r-value ∗p as desired. GM can be implemented in various ways,
including a hash table or a trie. For each spatial check, five × 86
instructions, cmp, br, lea, cmp and br, are executed on ×86,
incurring a large amount of runtime overheads, which will be
significantly reduced in our WPBOUND framework.

To detect and prevent out-of-bounds errors at a load · · · = ∗p
or a store ∗p = · · ·, two cases are distinguished depending on
whether p is a pointer to a nonpointer scalar [see Fig. 2(c)] or
a pointer [see Fig. 2(d)]. In the latter case, the metadata for the
pointer ∗p (i.e., the pointer pointed by p) in GM is retrieved for
a load · · · = ∗p and updated for a store ∗p = · · ·.

Fig. 2. Pointer-based instrumentation with disjoint metadata. (a) Memory al-
location. (b) Copying and pointer arithmetic. (c) Loads and stores for nonpointer
variables. (d) Loads and Stores for pointer variables. (e) Spatial checks.

III. METHODOLOGY

As shown in Fig. 3, WPBOUND, which is implemented in
the LLVM compiler infrastructure, consists of one analysis
phase, one intraprocedural optimization phase and one inter-
procedural phase. Their functionalities are briefly described in
Section III-A, illustrated by an example in Section III-B, and
finally, explained further in Sections III-D–III-F.

A. WPBound Framework

The functionalities of the three phases in WPBOUND are de-
scribed below. The rationale behind each phase will be further
illustrated by a motivating example in Section III-B.

1) Value Range Analysis: This analysis phase computes con-
servatively the value ranges of pointers dereferenced at
loads and stores, leveraging LLVM’s scalar evolution



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 3. Overview of the WPBOUND framework.

pass. The value range information is used for the WP
computations in the intra and interprocedural transforma-
tion phases, where the instrumentation code is generated.

2) Intraprocedural Bounds-Checking Elimination: In this
WP-based intraprocedural bounds-checking elimination
phase, we proceed in three stages:

a) Loop-Directed WP Abstraction: In this first stage,
we insert spatial checks for memory accesses (at
loads and stores). For each access in a loop, we re-
duce its bounds checking overhead by exploiting but
not actually computing exactly the WP that verifies
the assertion that an out-of-bounds error definitely
occurs at the access during some program execu-
tion. As value-range analysis is imprecise, a WP is
estimated conservatively, i.e., weakened. For con-
venience, such WP estimates are still referred to as
WPs. For each access in a loop, its bounds check
is guarded by its WP, with its evaluation hoisted
outside the loop, so that its falsehood implies the
absence of out-of-bounds errors at the access, pre-
venting its check to be made redundantly inside the
loop.

b) WP Consolidation: During this second stage, we
consolidate the WPs for multiple accesses, which
are always made to the same object, into a single
one, in order to reduce the number of WPs used.

c) WP-Driven Loop Unswitching: During the last
stage, we trade code size for performance by ap-
plying loop unswitching to a loop so that the in-
strumentation in its frequently executed versions is
effectively eliminated.

3) Interprocedural WP Hoisting: This phase allows our
WP-based approach to be applied across the procedu-
ral boundaries. Our WP-based interprocedural optimiza-
tion performs a context-sensitive whole-program analysis
to hoist recursively some WP checks along call chains
to further reduce their runtime instrumentation overhead
incurred.

B. Motivating Example

We explain how WPBOUND works with a program in C (rather
than in its LLVM low-level code) given in Fig. 4. In the program
shown in Fig. 4(a), there are a total of five memory accesses in
function bar, four loads (lines 21, 24, 29, and 32) and one
store (line 34), with the last three contained in a for loop. With
the unoptimized instrumentation (as obtained by SOFTBOUND),

each memory access triggers a spatial check (highlighted in
gray). To avoid cluttering, we do not show the medadata initial-
ization and propagation, which are irrelevant to our WP-based
optimizations.

1) Value Range Analysis: We compute conservatively the
value ranges of all pointers dereferenced for memory ac-
cesses in the program, by using LLVM’s scalar evolution
pass. For the five dereferenced pointers, we obtain their
value ranges as follows:

&p[k] : [p + k× SP, p + k× SP]
&p[k + 1] : [p + (k + 1) × SP, p + (k + 1) × SP]
&a[i− 1] : [a, a + (L− 1) × S]

&b[i] : [b + S, b + L× S]
&a[i] : [a + S, a + L× S]

where the two constants, S and SP, are defined at the be-
ginning of the program in Fig. 4(a), and L is the upper
bound of the for loop spanning lines 27–36. The values
of a, b and L (used in bar) are obtained from their cor-
responding formal parameters x, y, and N at the callsite
in line 9 of foo.

2) Loop-Directed WP Abstraction: According to the value
ranges computed above, the WPs for all memory accesses
at loads and stores are computed (weakened if necessary).
The WPs for the three memory accesses in the for loop
are found conservatively and hoisted outside the loop to
perform a WP check by calling wpChk given in Fig. 4(a),
as shown in Fig. 4(b). The three spatial check calls to
sChk at a[i-1], b[i] and a[i] that are previously
unconditional (in SOFTBOUND) are now guarded by their
WPs, wp_a1, wp_b and wp_a2, respectively.
Note that wp_a1 is exact since its guarded access
a[i-1]will be out-of-bounds whenwp_a1 holds. How-
ever, wp_b and wp_a2 are not since their guarded ac-
cesses b[i] and a[i] will never be executed if ex-
pression t < . . . in line 30 always evaluates to false.
In general, a WP for an access is constructed so that its
falsehood implies the absence of out-of-bounds errors at
the access, thereby causing its spatial check to be elided.
The WPs for the other two accesses p[k] and p[k +
1] are computed similarly but omitted in Fig. 4(b).

3) WP Consolidation: The WPs for accesses to the same ob-
ject are considered for consolidation. The code in Fig. 4(b)
is further optimized into the one in Fig. 4(c), where the
two WPs forp[k] andp[k + 1] are merged ascwp_p
and the two WPs for a[i - 1] and a[i] as cwp_a.
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Fig. 4. Motivating example. (a) Unoptimized instrumentation. (b) Loop-directed WP abstraction. (c) WP consolidation. (d) WP-Driven Loop unswitching.
(e) Interprocedural WP hoisting.

Thus, the number of wpChk calls has dropped from 5 to
3 (appearing in lines 3, 11, and 12).

4) WP-Driven Loop Unswitching: By applying loop
unswitching, we obtain the code given in Fig. 4(d). The
two WPs in the loop, cwp_a and wp_b, are merged as
cwp_a || wp_b, enabling the loop to be unswitched.
The if branch at lines 6–14 is instrumentation-free. The
else branch at lines 16–27 proceeds as before with
the usual spatial checks performed. The key insight for
trading code size for performance this way is that the
instrumentation-free loop version is often executed more
frequently at runtime than its instrumented counterpart in
real programs.

5) Interprocedural WP Hoisting: In Fig. 4(d), the function
bar contains the two WP checks made by calling wpChk
in lines 3 and 4. Performing WP checks this way can
be costly when bar is called frequently by foo. We
can significantly reduce such instrumentation overhead by
hoisting the two wpChk calls from bar interprocedurally
to the point just above the for loop in foo, as shown
in lines 3 and 4 of Fig. 4(e). Of course, hoisting WPs

this way requires an appropriate parameter mapping to be
performed, with a mapped to x, b to y and L to N. In
addition, two global boolean shadow variables, gcwp_a
and cwp_b, have been introduced to enable the hoisted
WPs to be used interprocedurally.

C. Low-Level Virtual Machine Intermediate Representation

WPBOUND, as shown in Fig. 3, works directly on the LLVM-
IR, LLVM’s intermediate representation (IR). As illustrated in
Fig. 5, all program variables are partitioned into a set of top-level
variables (e.g., a, x and y) that are not referenced by pointers,
and a set of address-taken variables (e.g., b and c) that can
be referenced by pointers. In particular, top-level variables are
maintained in SSA (Static Single Assignment) form so that each
variable use has a unique definition, but address-taken variables
are not in SSA form.

All address-taken variables are kept in memory and can only
be accessed (indirectly) via loads (q = ∗p in pseudocode) and
stores (∗p = q in pseudocode), which take only top-level pointer
variables as arguments. Furthermore, an address-taken variable
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Fig. 5. LLVM-IR (in pseudocode) for a C program (where x and y are top-
level temporaries introduced). (a) C. (b) LLVM-IR (in pseudocode).

can only appear in a statement where its address is taken. All
the other variables referred to are top-level.

In the rest of this paper, we will focus on memory accesses
made at the pointer dereferences ∗p via loads · · · = ∗p and stores
∗p = · · ·, where pointers p are always top-level pointers in the
IR. These are the points where the spatial checks are performed
as illustrated in Fig. 2(c) and (d).

Given a pointer p (top-level or address-taken), its bounds
metadata, base (lower bound) and bound (upper bound), are
denoted by pbs and pbd , respectively, as shown in Fig. 2.

D. Value Range Analysis

We describe this analysis phase for estimating conservatively
the range of values accessed at a pointer dereference, where
a spatial check is performed. We conduct our analysis based
on LLVM’s scalar evolution pass (see Fig. 3), which calculates
closed-form expressions for all top-level scalar integer variables
(including top-level pointers) in the way described in [55]. This
pass, inspired by the concept of chains of recurrences [4], is
capable of handling any value taken by an induction variable at
any iteration of its enclosing loops.

A scalar integer expression in the program can be represented
as a SCEV (SCalar EVolution expression):

e := c | v | O | e1 + e2 | e1 × e2 | 〈e1 ,+, e2〉�.

Therefore, a SCEV can be a constant c, a variable v that cannot
be represented by other SCEVs, or a binary operation (involving
+ and × as considered in this paper). In addition, when loop
induction variables are involved, an add recurrence 〈e1 ,+, e2〉�
is used, where e1 and e2 represent, respectively, the initial value
(i.e., the value for the first iteration) and the stride per iteration
for the containing loop �. For example, in Fig. 4(a), the SCEV
for the pointer &a[i] contained in the for loop in line 27 is
〈a,+, sizeof(int)〉�27 , where the subscript �27 stands for the
loop at line 27. Finally, the notation O is used to represent any
value that is neither expressible nor computable in the SCEV
framework.

When performing our range analysis, we ensure that the func-
tional equivalence between a program and its transformed pro-
gram is preserved in the following sense. According to the range
analysis rules given in Fig. 6, the WP-generating SCEV expres-
sions involving + and ∗ will not throw any runtime exceptions.
For example, the division operator/is not considered. In addition,
we handle unsigned and signed integers in the standard manner.

Fig. 6. Range analysis rules.

The range of every scalar variable will be expressed in the form
of an interval [e1 , e2 ]. We handle unsigned and signed values
differently due to possible integer overflows. According to the
C standard, unsigned integer overflow wraps around but signed
integer overflow leads to undefined behavior. To avoid potential
overflows, we consider conservatively the range of an unsigned
integer variable as [O,O]. For operations on signed integers, we
assume that overflow never occurs. This assumption is common
in compiler optimizations. For example, the following function
(with x being a signed int):

bool foo(int x) { return x + 1 < x; }

is optimized by LLVM, GCC, and ICC to return false.
The rules used for computing the value ranges of signed inte-

ger and pointer variables are given in Fig. 6. [TERMI] suggests
that both the lower and upper bounds of a SCEV, which is c,
v or O, are the SCEV itself. [ADD] asserts that the lower (up-
per) bound of an addition SCEV e1 + e2 is simply the lower
(upper) bounds of its two operands added together. When it
comes to a multiplication SCEV, the usual min and max func-
tions are called for, as indicated in [MUL]. If min(V ) and
max(V ) cannot be solved statically at compile time, then [O,O]
is assumed. For example, [i, i + 10] × [2, 2] ⇓ [2i, 2i + 20] but
[i, 10] × [j, 10] ⇓ [O,O], where i and j are scalar variables
(which can contain either positive or negative values). In the
latter case, the compiler cannot statically resolve min(V ) and
max(V ), where V = {10i, 10j, ij, 100}.

For an add recurrence, the LLVM scalar evolution pass com-
putes the trip count of its containing loop �, which is also rep-
resented as a SCEV tc(�). A trip count can be O since it may
neither be expressible nor computable in the SCEV formula-
tion. In the case of a loop with multiple exits, the worst-case
trip count is picked. Here, we assume that a trip count is always
positive. However, this will not affect the correctness of our
overall approach, since the possibly incorrect range information
is never used inside a nonexecuted loop.

In addition to some simple scenarios demonstrated in our
motivating example, our value range analysis is capable of han-
dling more complex ones, as long as LLVM’s scalar evolution
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is. Consider the following double loop:

for (int i = 0; i < N; ++ i) // L1
for (int j = 0; j < = i; + + j) // L2

a[2 ∗ i + j] = . . . ; // a declared as int∗.

The SCEV of &a[2 ∗ i+j], i.e., a+2 ∗ i+j is given
as 〈〈a,+, 2 × sizeof(int)〉L1,+, sizeof(int)〉L2 by scalar
evolution, and tc(L1) and tc(L2) are N and 〈0,+, 1〉L1 + 1,
(i.e., i +1), respectively. The value range of &a[2 ∗ i +
j] is then deducted via the rules in Fig. 6 as:

[a, a + 3 × (N− 1) × sizeof(int)].

Since the maximum values of i and j are both
N - 1, the upper bound for a + (2 ∗ i + j) ×
sizeof(int) is therefore a + (2 ∗ (N - 1) + (N -
1)) × sizeof(int), which simplifies to a + 3 ∗ (N -
1) × sizeof(int).

E. Intraprocedural Bounds-Checking Elimination

We describe how WPBOUND generates the instrumentation
code for a program during its intraprocedural optimization
phase, based on the results of value range analysis. We only
discuss how bounds checking operations are inserted in its
three stages since WPBOUND handles metadata initialization
and propagation exactly as in SOFTBOUND, as illustrated in
Fig. 2.

1) Loop-Directed WP Abstraction: During this first stage,
we compute the WPs for all dereferenced pointers and inserts
guarded or unguarded spatial checks for them. As shown in
our motivating example, we do so by reasoning about the WP
for a pointer p at a load · · · = ∗p or a store ∗p = · · ·. Based
on the results of value range analysis, we estimate the WP
for p according to its Memory Access Region (MAR), denoted
[pmar

lb , pmar
ub ). Let the value range of p be [pl, pu ]. There are two

cases:
a) pl �= O ∧ pu �= O: [pmar

lb , pmar
ub ) = [pl, pu + sizeof

(∗p)). As a result, its WP is estimated to be

pmar
lb < pbs ∨ pmar

ub > pbd

where pbs and pbd are the base and bound of p
(Section III-C). The result of evaluating this WP, called
a WP check, can be obtained by a call to wpChk
(pmar

lb , pmar
ub , pbs , pbd ) in Fig. 4(a).

b) pl = O ∨ pu = O: The MAR of p is [pmar
lb , pmar

ub ) =
[O,O) conservatively. The WP is set as true.

In general, the WP thus constructed for p is not the weakest
one, i.e., the one ensuring that if it holds during program execu-
tion, then some accesses via ∗p must be out-of-bounds. There
are two reasons for being conservative. First, value range anal-
ysis is imprecise. Second, all branch conditions [e.g., the one in
line 30 in Fig. 4(a)] affecting the execution of ∗p are ignored
during this analysis, as explained in Section III-B.

However, by construction, the falsehood of the WP for p
always implies the absence of out-of-bounds errors at ∗p, in
which case the spatial check at ∗p can be elided. However, the

converse may not hold, implying that some bounds checking
operations performed when the WP holds are redundant.

After the WPs for all dereferenced pointers in a program are
available, INSTRUMENT (F ) in Algorithm 1 is called for each
function F in the program to guard the spatial check at each
pointer dereference ∗p by its WP when its MAR is neither
[O,O) (in which case, its WP is true) nor loop-variant. In this
case (lines 4–6), the guard for p, which is loop-invariant at point
s, is hoisted to the point identified by POSITIONINGWP(), where
it is evaluated. Note that the first parameter of POSITIONINGWP()
expects a program point to be specified. When calling it in line
3, “∗p” stands for the program point where p is accessed. The
spatial check at the pointer dereference ∗p becomes conditional
on the guard. Otherwise (line 7), the spatial check at the deref-
erence ∗p is unconditional as is the case in SOFTBOUND.

Note that an access ∗p may appear in a set of nested loops.
POSITIONINGWP returns the point just before the loop at the
highest depth for which the WP for p is loop-invariant and p
(representing the point where ∗p occurs) otherwise.

Let us return to Fig. 4(b). The MAR of b[i] in line 11 is
[b + SZ, b + (L + 1) × SZ), whose lower and upper bounds are
invariants of the for loop in line 6. With the WP check, wp_b,
evaluated in line 5, the spatial check for b[i] inserted in line
10 is performed only when wp_b is true.

Compared to SOFTBOUND that produces the unguarded in-
strumentation code as explained in Section II, our WP-based
instrumentation may increase code size slightly. However, many
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WPs are expected to be true in real programs. Instead of the five
instructions, cmp, br, lea, cmp, and br, required for perform-
ing a spatial check, sChk, two instructions, cmp and br, are
usually executed to test its guard only.

2) WP Consolidation: During this second stage, we conduct
an intraprocedural analysis to combine the WPs corresponding
to a set of memory accesses to the same object (e.g., the same
array) into a single one to be shared [e.g., cwp_p and cwp_a
in Fig. 4(c)]. If a pointer dereference is not in a loop, its spatial
check is not guarded according to Algorithm 1 (since s = p in
line 3). By combining its WP with others, we will also make
such a check guarded as well [e.g., cwp_p in Fig. 4(c)].

Algorithm 2 is simple. Given a function F , where W ini-
tially contains all pointers dereferenced at loads and stores

in F (line 1), we start with G = {p} (line 4). We then add
iteratively all other pointers q1 , . . . , qn in F (lines 6–15) to
G = {p, q1 , . . . , qn}, so that the following properties hold:

1) Proposition 1: All these pointers point to the same object.
If q selected in line 6 does not point to the same object as
p, p′lb or p′ub will be O, causing s′p = ε (due to line 22).
In this case, q will not be added to G (line 11).

2) Proposition 2: The WPs for these pointers are invariants
with respect to point sp found at the end of the foreach
loop in line 6 (due to lines 23–27). As all variables in V
(line 23) are in SSA form, the definition of v in line 25 is
unique.

When |G| > 1 (line 16), we can combine the WPs in G into
a single one, cwpG (line 17), where [pmar

lb , pmar
ub ) is constructed

to be the union of the MARs of all the pointers in G. Note that
wpChk is called only once since ∀q ∈ G : qbs = pbs ∧ qbd =
pbd by construction. In lines 18–20, the spatial checks for all
pointers in G are modified to use cwpG instead.

Consider Fig. 4(c) again. The MARs for a[i-1] in line
15 and a[i] in line 20 are [a, a + L× SZ) and [a + SZ, a +
(L + 1) × SZ), respectively. The consolidated MAR is [a, a +
(L + 1) × SZ), yielding a WP cwp_a weaker than the WPs,
wp_a1 and wp_a2, for a[i-1] and a[i], respectively. The
WP check cwp_a is inserted in line 11, which dominates a[i-
1] and a[i] in the CFG. The spatial checks for a[i-1] and
a[i] are now guarded by cwp_a.

3) WP-Driven Loop Unswitching: During this last stage of
our intraprocedural optimization phase, we apply loop unswitch-
ing, a standard loop transformation, to a loop, as illustrated in
Fig. 4(d), to unswitch some guarded spatial checks, so that
its guards are hoisted outside the loop, resulting in their re-
peated tests inside the loop being effectively removed in some
versions of the loop. However, unswitching all branches in a
loop may lead to code growth exponential in its number of
branches.
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To avoid code explosion, we apply Algorithm 3 to a function
F to process its loops inside out. For a loop � (line 2), we first
partition a set S of its guarding WPs selected in line 3 into a few
groups (discussed below in more detail) (line 5). We then insert
a disjunction wpπ built from the WPs in each group π just before
� (line 7). As wpπ is weaker than each constituent wp, we can
replace each wp by wpπ at the expense of more spatial checks
(lines 8–9). Finally, we unswitch loop � so that each spatial check
guarded by wpπ is either performed unconditionally (in its true
version) or removed (in its false version). As these “unswitched”
checks will not be considered again (line 3), our algorithm will
eventually terminate.

Let us discuss the three conditions used in determining a set
S of guarding WPs to unswitch in line 3. Condition (1) instructs
us to consider only guarded special checks. Condition (2) avoids
any guarding WP that is loop-variant since it may be introduced
by Algorithm 2. Condition (3) allows us to exploit a sweet-
spot to make a tradeoff between code size and performance for
real code. Without (3), S tends to be larger, leading to weaker
wpπ ’s than otherwise. As a result, we tend to generate fewer
loop versions, by trading performance for code size. With (3),
the opposite tradeoff is made.

In line 5, there can be a number of ways to partition S. In
general, a fine-grained partitioning eliminates more redundant
bounds checks than a coarse-grained partitioning, but results
in more code versions representing different combinations of
instrumented and uninstrumented memory accesses. Note that
the space complexity (i.e., code expansion) of loop unswitching
is exponential to |Π|, i.e., the number of partitions.

To keep code sizes manageable in our implementation of this
algorithm, we have adopted a simple partitioning strategy by
setting Π = {S}. Together with Conditions (1)–(3) in line 3,
this partitioning strategy is effective in practice.

Let us apply our algorithm to Fig. 4(c) to unswitch the for
loop, which contains two WP guards, cwp_a and wp_b. Merg-
ing the two WP guards and then unswitching the loop yields
the final code in Fig. 4(d). There are two versions for the loop:
the instrumentation-free version appears in lines 6–14 and the
instrumented one in lines 16–27.

F. Interprocedural WP Hoisting

In our interprocedural phase, we apply our WP-based ap-
proach across the procedural boundaries to reduce instrumenta-
tion overhead further. Given a function F called from inside a
loop l, the basic idea is to hoist some WP checks made in the
callee function F outside the loop l so that these WP checks are
performed just once before the loop begins rather than repeat-
edly every time when F is called. This optimization is illustrated
earlier in Fig. 4(e), with the two WP checks inbar being hoisted
outside the for loop at line 5. Presently, our optimization pro-
vides benefits for a WP check only if it can be moved backwards
across the boundaries of some loops.

Given a function F , INTERWP in Algorithm 4 is applied
recursively to hoist some WP checks from F to its callers in-
terprocedurally along its call chains. Our algorithm is context
sensitive when hoisting a WP check out of a callee function

into its different calling contexts. For a function pointer used
to call a function at a callsite, we apply a flow-sensitive pointer
analysis introduced in [63] to find its callee functions, i.e., its
indirect call graph edges soundly and precisely. As is standard,
recursion cycles discovered in the call graph of the program are
collapsed into Strongly Connected Components. A WP check
is not hoisted from a callee function F into its callers if F is
involved in a recursion cycle (line 1).

Every WP check r = wpChk(pmar
lb , pmar

ub , . . .) in the callee
F is potentially a candidate to be hoisted (line 4). Let Fcs be
a caller function containing a callsite cs at which F is called.
Note that the base and bounds metadata are propagated across
the functions using a shadow stack mechanism, as discussed in
Section II. However, the actual parameters in WP checks (i.e.,
pmar

lb and pmar
ub ) that are hoisted from a callee are replaced ex-

plicitly by the pointers in the caller scope by an interprocedural
parameter mapping performed at compile time (lines 6–10). To
ensure that r = wpChk(pmar

lb , pmar
ub , . . .) is well-defined in Fcs ,

the WP check can be mapped from F to Fcs if the bounds
pmar

lb and pmar
ub (inferred by our intraprocedural SCEV anal-
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Fig. 7. Interprocedural WP hoisting in hmmer.

ysis) involve only constants, globals or formal parameters of
F (line 5). In this case, any formal parameter of F that ap-
pears in wpChk(pmar

lb , pmar
ub , . . .) can be replaced by its corre-

sponding actual parameter q at the callsite cs in Fcs to obtain
wpChk′

cs(q
mar
lb , qmar

ub , . . .).
After the interprocedural parameter mapping has been

performed, the hoisted WP check becomes r′ = wpChk′
cs

(qmar
lb , qmar

ub , . . .), where r′ is a newly created global variable.
PLACEWP is called to insert it in the caller Fcs (line 9), at either
a point outside a loop identified by POSITIONINGWP (line 16) or
the point just before callsite cs, represented by “cs” (line 18).
All the uses of r for the original WP check (line 4) are replaced
by r′ (line 10). The old WP check (line 4) in F can be safely
removed (line 11).

However, hoisting a WP check from a callee into its multiple
calling contexts may cause it to be replicated multiple times.
To strike a balance between code size and performance, our IN-
TERWP algorithm can be applied in a demand-driven manner to
some user-specified functions, e.g., top few frequently executed
functions in a program.

In Fig. 7, we apply our interprocedural optimization to a
code fragment extracted from a hot function FChosse() in
hmmer, a real program used in our experimental evaluation.
An array pointed by p is read in line 309 in FChoose(),
which is a frequently executed function in hmmer (see Fig. 9).
FChoose() is called in line 336 from inside a loop con-
tained in another function SampleCountvector. Our in-
terprocedural phase is able to hoist the WP check for p in
FChoose() outside the loop in SampleCountvector so
that the WP check is no longer performed redundantly in
FChoose().

IV. EVALUATION

The goal of this evaluation is to demonstrate that our WP-
based tool, WPBOUND, can significantly reduce the runtime
overhead of SOFTBOUND, a state-of-the-art instrumentation tool
for enforcing spatial memory safety of C programs.

Fig. 8. Compilation workflow.

A. Implementation Considerations

Based on the open-source code of SOFTBOUND, we have im-
plemented WPBOUND also in LLVM (version 3.3). In both cases,
the bounds metadata are maintained in a separate shadow space.
Like SOFTBOUND, WPBOUND handles a number of issues iden-
tically as follows. Array indexing (also for multiple-dimensional
arrays) is handled equivalently as pointer arithmetic. The meta-
data for global pointers are initialized, by using the same hooks
that C++ uses for constructing global objects. For external func-
tion uses in uninstrumented libraries, we resort to SOFTBOUND

’s library function wrappers (see Fig. 8), which enforce the spa-
tial safety and summarize the side effects on the metadata. For
a function pointer, its bound equals to its base, describing a
zero-sized object that is not used by data objects. This prevents
data pointers or nonpointer data from being interpreted as func-
tion pointers. For pointer type conversions via either explicit
casts or implicit unions, the bounds information simply prop-
agates across due to the disjoint metadata space used. Finally,
we do not yet enforce the spatial safety for variable argument
functions.

B. Experimental Setup

All experiments are conducted on a machine equipped with
a 3.00 GHz quad-core Intel Core2 Extreme X9650 CPU and
8GB DDR2 RAM, running on a 64-bit Ubuntu 10.10. The
SOFTBOUND tool is taken from the SoftBoundCETS open-source
project (version 1.3) [36], [37], configured to enforce spatial
memory safety only.

Table I lists a set of 20 benchmarks, including 14 SPEC
benchmarks and six MediaBench benchmarks, used in our eval-
uation. We have selected 10 from the 12 C benchmarks in the
SPEC2006 suite, by excluding gcc and perlbench since
both cannot be processed correctly under SOFTBOUND (as de-
scribed in its README). In addition to SPEC2006, we have
included four loop-oriented SPEC2000 benchmarks, ammp,
art, gzip and twolf, in our evaluation. These benchmarks
are frequently used in the literature on detecting spatial errors
[1], [23], [35], [36], [47]. To broaden the scope of our evalua-
tion, we have also selected six loop-oriented and array-intensive
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Fig. 9. Top three most frequently executed functions in a program (with their execution times given as percentages of the program’s total execution time).

TABLE I
BENCHMARK STATISTICS (IN ABSOLUTE TERMS)

WP-Based Instrumentation

Benchmark #Functions #Loads #Stores #Loops #SCS B #wpa #wpc #wpl #wpi |wpl | max |w p l |

ammp 180 3705 1187 650 3962 516 2673 150 2 4.2 54
art 27 471 182 158 461 84 34 46 0 2.0 6
bzip2 68 2570 1680 545 2414 324 1114 116 1 3.2 59
djpeg 339 6434 3715 1109 8339 1232 4936 330 9 4 81
h264ref 517 20 984 8277 2698 25 626 3820 10 668 743 9 5.9 235
hmmer 472 8345 3608 1667 8644 1586 3434 502 2 3.7 48
gobmk 2477 16 598 4458 2470 15 875 2079 6280 606 0 3.8 38
gsmencode 60 775 434 99 961 102 672 34 6 3.2 40
gsmdecode 60 776 434 99 960 102 672 34 8 3.2 40
gzip 72 936 711 257 1096 83 118 56 1 1.5 7
lbm 18 244 114 32 319 278 282 10 0 27.8 76
libquantum 96 604 317 144 572 140 358 34 0 4.1 35
mcf 26 347 224 76 472 37 216 13 0 2.6 9
milc 236 3443 1094 544 3266 571 1556 97 19 7.7 49
mpeg2enc 71 1753 507 294 1628 366 367 74 24 5.1 108
mpeg2dec 58 1204 565 203 1215 210 323 54 18 4.5 39
mesamipmap 931 12 474 7748 1755 18 432 2620 13 073 642 7 4.9 87
sjeng 133 3318 1950 430 3618 170 1208 49 0 3.5 30
sphinx3 320 4628 1359 1240 4260 654 1735 343 14 2.2 41
twolf 188 9781 3304 1253 9328 532 2683 195 0 2.8 32
Mean 317 4970 2093 786 5572 775 2620 206 6 5.0 56

#SCS B denotes the number of spatial checks inserted by SOFTBOUND. #wpa is the number of wpChk calls inserted (i.e., the number of wpp in line 5 of
Algorithm 1). #wpc represents the number of unconditional checks reduced by WP consolidation. #wpl is the number of merged WPs by loop unswitching (i.e.,
the number of non-empty S at line 3 of Algorithm 3). #wpi is the total number of hoisted WP checks from the top three hot functions in a program (see Fig. 9) by
applying our WP-based inter-procedural optimization. |wpl | and max |w p l |, respectively, stand for the average and maximum numbers of the WPs used to build a
disjunction (i.e., the average and maximum sizes of nonempty S at line 3 of Algorithm 3).

embedded benchmarks from Mediabench, djpeg, which are
gsmencode, gsmdecode, mesamipmap, mpeg2enc, and
mpeg2dec, covering a number of application domains includ-
ing image processing, speech processing, video compression,
and 3-D graphics.

C. Methodology

Fig. 8 shows the compilation workflow for both SOFTBOUND

and WPBOUND in our experiments. All source files of a program

are compiled under the “-O2” flag and then merged into one bit-
code file using LLVM-link. The instrumentation code is inserted
into the merged bitcode file by a SOFTBOUND or WPBOUND

pass. Then the bitcode file with instrumentation code is linked
to the SOFTBOUND runtime library to generate binary code, with
the link-time optimization flag “-O2” used to further optimize
the instrumentation code inserted.

To analyze the runtime overheads introduced by both tools,
the native (instrumentation-free) code is also generated under
the “-O2” together with link-time optimization.
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To maintain a good balance between code size and perfor-
mance, our WP-based interprocedural optimization (given in
Algorithm 4) is designed to be demand driven. In our experi-
ments, we have applied it only to the top three most frequently
executed functions in a program. Such hot functions are iden-
tified by profiling using gprof (with the “-pg” option turned
on when each C file is compiled). In practice, the number of
hot functions selected in a program can be determined as a
user-tunable parameter to allow a tradeoff to be made between
performance gains and code size increases.

D. Instrumentation Results

Let us first discuss the instrumentation results of the 20 bench-
marks according to the statistics given in Table I.

In Column 6, we see that SOFTBOUND inserts an average of
5572 spatial checks for each benchmark. Note that the number
of spatial checks inserted is always smaller than the number of
loads and stores added together. This is because SOFTBOUND has
eliminated some unnecessary spatial checks by applying some
simple optimizations including its dominator-based redundant
check elimination [36] (with its “BOUNDSCHECKOPT” op-
tion turned on). This set of optimizations is also performed by
WPBOUND as well.

In Columns 7–12, we can observe some results collected for
WPBOUND. According to Column 7, there is an average of 775
wpChk calls inserted in each benchmark by Algorithm 1 (for
WP-based instrumentation), causing slightly over 1/7 of the
spatial checks that are inserted by SOFTBOUND to be guarded.
According to Column 8, Algorithm 2 (for WP consolidation)
has made an average of 2620 unconditional checks guarded
(with respect to an average of 5572 spatial checks) for each
benchmark. According to Column 9, Algorithm 3 (for loop
unswitching) has succeeded in merging an average of 206 WPs
at loop entries in each benchmark.

According to Column 10, our WP-based interprocedural op-
timization (Algorithm 4) has successfully hoisted a total of 120
WP checks in 13 out of 20 benchmarks out of their top three hot
functions, which are listed in Fig. 9. For these 13 benchmarks,
there are relatively more WP checks hoisted in mpeg2enc,
milc, mpeg2dec, sphinx3, djpeg, and h264ref than
in gsmdecode, mesamipmap, gsmencode, ammp, hm-
mer, gzip, and bzip2. For the remaining seven benchmarks,
their hot functions do not benefit from our interprocedural op-
timization for various reasons. In twolf and lbm, the ar-
rays in their hot functions are accessed via local variables.
In mcf, its hot functions are involved in recursion. In these
three benchmarks, no WP check can be successfully hoisted out
of their hot functions. In gobmk and sjeng, there are fewer
array operations in loops. In art and libquantum, some
WP checks can be hoisted out of their hot functions but the
hoisted WP checks reside in a loop such that they are loop-
variant. So the overall effect is that no WP check can be further
optimized.

Overall, the average number of the WPs combined
to yield one disjunctive WP is 5.0 (Column 11), peak-
ing at 235 constituent WPs in one disjunctive WP in

Fig. 10. Bitcode file sizes after instrumentation (normalized with respect to
native code).

the Mode_Decision_for_4x4IntraBlocks function in
h264ref (Column 12).

By performing WP-based compiler optimization, WPBOUND

results in slightly larger code sizes than SOFTBOUND, as com-
pared in Fig. 10. This happens due to (1) the wpChk calls
introduced, (2) the guards added to some spatial checks, (3)
code duplication caused by loop unswitching, and (4) context-
sensitive replication of WP checks by interprocedural WP hoist-
ing. Compared to uninstrumented native code, the geometric
means of code size increases for SOFTBOUND and WPBOUND

are 1.54× and 1.87×, respectively. This implies that WPBOUND

has made an instrumented program about 21.4% larger than
SOFTBOUND on average. In general, the code explosion prob-
lem is well contained due to the partitioning heuristics used in
our WP-based loop unswitching as discussed in Section III-E3
and the demand-driven interprocedural optimization introduced
in Section III-F. Note that there is no obvious correlation be-
tween bitcode file sizes and performance slowdowns (shown in
Fig. 11 and discussed below). For example, some bounds checks
are hoisted from a loop to prevent them from being repeat-
edly performed inside. However, such instrumented instructions
may be infrequently or never executed at runtime (under certain
inputs).

Finally, the analysis times spent by WPBOUND at compile
time are all small, with 20.01 s for gobmk and less than 5 s for
each of the remaining 19 benchmarks.

E. Performance Results

To understand the effects of our WP-based approach on per-
formance, we compare WPBOUND and SOFTBOUND in terms
of their runtime overheads in terms of execution time, dynamic
number of bounds checks performed, dynamic number of in-
structions performed, and memory consumption.

1) Execution Times: Fig. 11 compares WPBOUND and
SOFTBOUND in terms of their runtime slowdowns over the native
code (as the uninstrumented baseline). The average overhead of
a tool is measured as the geometric mean of overhead of all
benchmarks analyzed by the tool.
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Fig. 11. Execution time (normalized with respect to native code).

SOFTBOUND exhibits an average overhead of 77%, reach-
ing 180% at h264ref. By using our intraprocedural WP-
based instrumentations alone, WPBOUNDIntra has reduced
SOFTBOUND’s average overhead from 77% to 51%, with the
top three largest reductions achieved at hmmer (41.7%), gs-
mencode (36.1%) and mpeg2dec (35.7%). For lbm, which
is the best case for both tools, SOFTBOUND and WPBOUND Intra

suffer from only 3.7% and 0.9% overheads, respectively. In this
benchmark, the pointer load and store operations that are costly
for in-memory metadata propagations [as shown in Fig. 2(e)] are
relatively scarce. In addition, SOFTBOUND ’s simple dominator-
based redundant check elimination identifies 60% of the checks
as unnecessary.

When our WP-based interprocedural optimization is also en-
abled, WPBOUND becomes more efficient than WPBOUND Intra .
The average runtime overhead has dropped further from 51%
to 47%. We can observe relatively large overhead reductions
achieved in 6 out of 20 benchmarks, 1) ammp (from 36% to
28%), 2) h264ref (from 52% to 40%), 3) milc (from 60% to
48%), 4) mpeg2enc (from 38% to 28%), 5) mpeg2dec (from
38% to 29%) and 6) sphinx3 (from 50% to 40%). Although
some WP checks have also been hoisted interprocedurally in
bzip2, h264ref, and gzip (see Table I), their improve-
ments are negligible. There are two main reasons behind. First,
the hoisted checks originate from a hot function that takes only
a small percentage of the total execution time in its containing
program (e.g., 6.46% for sendMTFValues in bzip2 ). Sec-
ond, some WP checks in a hot function are hoisted only to its
immediate callers but not further up along its call chains (as in
h264ref and gzip ).

Forgobmk andsjeng, WPBOUND runs slightly more slowly
than SOFTBOUND. There are three reasons behind. First, many
array operations (e.g., in gobmk ) reside in loops that have
loop-variant bounds, which prevent subsequent WP-based opti-
mizations such as WP consolidation, WP-driven loop unswitch-
ing, and interprocedural WP hoisting from being applied.
Second, the SCEV analysis is imprecise in these two

benchmarks, causing the WP checks for some loops to be quite
conservative so that some redundant bounds checks are still
performed inside these loops. Finally, SOFTBOUND has already
eliminated a substantial number of redundant checks in these
two benchmarks by using its dominator-tree based optimization
[38] (in the default setting). The opportunities for eliminating
more bounds checks are relatively small.

2) Dynamic Check Count Reduction: Fig. 12 shows the ra-
tios of the dynamic number of checks, i.e., calls to wpChk and
sChk executed under WPBOUND over the dynamic number of
checks, i.e., calls to sChk executed under SOFTBOUND (in per-
centage terms). On average, WPBOUND performs only 35.8% of
SOFTBOUND’s checks, comprising 30.2% sChk calls and 5.6%
wpChk calls. For every benchmark considered, the number of
checks performed by WPBOUND is always lower than that per-
formed by SOFTBOUND. This confirms that the WPs constructed
by WPBOUND for real code typically evaluate to true, causing
their guarded checks to be avoided.

By comparing Figs. 11 and 12, we observe that WPBOUND

is usually effective in reducing bounds checking overheads in
programs where it is also effective in reducing the dynamic
number of checks performed by SOFTBOUND. This has been
the case for benchmarks such as hmmer, gsmencode, and
mpeg2dec. As for bzip2, WPBOUND still preserves 85% of
SOFTBOUND’s checks, thereby reducing its overhead from 78%
to 73% only.

We also observe that a certain percentage reduction in
the dynamic number of checks achieved by WPBOUND does
not translate into execution time benefits at the same mag-
nitude. On average, WPBOUND has reduced SOFTBOUND’s
dynamic check count by 64.2% but its overhead by 39%
only. There are two reasons. First, a wpChk call is more
expensive than an sChk call since the first two arguments
in the former case specifying a MAR can involve complex
expressions. Second, WPBOUND is not designed to improve
metadata propagation, which can be another major source of
overheads.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

Fig. 12. Percentage of dynamic number of checks performed by WPBOUND over SOFTBOUND at runtime.

Fig. 13. Dynamic instruction counts (normalized with respect to native code).

3) Dynamic Instruction Count: Fig. 13 compares
WPBOUND and SOFTBOUND in terms of the dynamic
number of instructions executed (normalized with respect to
native code). We used the perf tool, which rely on hardware
performance counters, to measure dynamic instruction count.
On average, SOFTBOUND results in 2.56× instructions executed
per benchmark. By performing our WP-based compiler
optimization, WPBOUND has reduced 2.56× to 1.99×, by
avoiding many redundant bounds checks performed inside
loops. Note that the results presented in Fig. 13 correlate
reasonably well with those presented in Fig. 12. In the case
of lbm, WPBOUND has achieved a reduction of 38.4% with
respect to the number of instructions executed by SOFTBOUND

but is only marginally faster (as explained earlier). According
to [36], lbm has a high data cache miss rate of one miss
every 20 instructions. As a result, the resulting low IPC
provides plenty of spare execution capacity to hide SoftBound
overheads.

4) Memory Consumption: Fig. 14 shows the peak memory
usage of WPBOUND and SOFTBOUND at runtime (normalized
over native code). As WPBOUND is designed to eliminate re-
dundant runtime bounds checks performed by a spatial-error
detection tool such as SOFTBOUND while maintaining the same
metadata information, WPBOUND (1.57×) consumes almost the
same amount of memory as SOFTBOUND (1.56×).

F. Discussion

We discuss two principal directions along which WPBOUND

can be further improved. One possible avenue for future re-
search is to develop sophisticated range analysis techniques to
improve the precision of WP checks. In practice, the most of the
source code in a program are free of buffer overflow bugs. The
more precise the range analysis is, the more precise the WPs will
be. With precise WPs in place, many redundant bounds checks
inside loops can be avoided. In our current implementation, the
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Fig. 14. Memory consumption (normalized with respect to native code).

range analysis based on SCEV expressions is often conservative
in the sense that the estimated ranges of values are sometimes
crude overapproximations of their actual runtime ranges. In this
case, some spatial checks inside a loop may still be performed
unnecessarily. To sharpen the precision of WP checks, more
advanced SCEV analysis techniques (e.g., by considering inter-
procedural path sensitivity) are needed.

Another possible research direction is to employ some sophis-
ticated loop-oriented analysis and transformation techniques
to increase the number of WP checks performed. Our WP-
based approach is loop-oriented. WPBOUND may achieve some
small performance improvements over SOFTBOUND on some
programs that are neither loop oriented nor array intensive. In
these cases, relatively few bounds checks can be hoisted outside
their containing loops. Furthermore, WPBOUND may not be ef-
fective even for some loop-oriented programs if the memory
access regions (MARs) computed for some arrays by our range
analysis are loop-variant (preventing the corresponding bounds
checks from being hoisted outside). In this case, the effective-
ness WPBOUND can be potentially improved if some advanced
loop analysis and transformation frameworks such as Polly [20]
are used.

Finally, WPBOUND can be applied directly to enforce spatial
safety for systems programming languages such as C, C++,
and Objective-C. For managed languages, such as Java and
C#, array bounds are checked automatically by their underlying
virtual machines at runtime. The WP-based idea can also be
used to eliminate bounds checks when generating byte code in
JIT compilers, such as Java HotSpot VM [57].

V. RELATED WORK

In addition to the pointer-based approaches described in
Section II, we now review guard zone-based and object-based
approaches for enforcing spatial safety and discuss some other
related work on bounds check elimination and static analysis.

A. Guard Zone-Based Spatial Safety

Guard zone-based approaches [23], [24], [41], [47], [64]
enforce spatial safety by placing a guard zone of invalid

memory between memory objects. Continuous overflows
caused by walking across a memory object’s boundary in small
strides will hit a guard zone, resulting in an out-of-bounds er-
ror. In the case of overflows with a large stride that jumps over
a guard zone and falls into another memory object, an out-
of-bounds error will be missed. As a result, these approaches
provide neither source compatibility nor complete spatial safety.

B. Object-Based Spatial Safety

In object-based approaches [1], [8], [10], [13], [26], [46], the
bounds information is maintained per object (rather than per-
pointer as in pointer-based approaches). In addition, the bounds
information of an object is associated with the location of the
object in memory. As a result, all pointers to an object share the
same bounds information. On every pointer-related operation, a
spatial check is performed to ensure that the memory access is
within the bounds of the same object.

Compared to pointer-based approaches, object-based ap-
proaches usually have better compatibility with un-instrumented
libraries. The metadata associated with heap objects are properly
updated by interpreting malloc and free function calls, even
if the objects are allocated or deallocated by uninstrumented
code. Unlike pointer-based approaches, however, object-based
approaches do not provide complete spatial safety, since sub-
object overflows (e.g., overflows of accesses to arrays inside
structs) are missed.

Note that our WP-based optimization can be applied to guard
zone- and object-based approaches, although we have demon-
strated its effectiveness in the context of a pointer-based ap-
proach, which has recently been embraced by Intel in a recently
released commercial software product [17].

C. Bounds Check Elimination

Bounds check elimination, which reduces the runtime over-
head incurred in checking out-of-bounds array accesses for Java,
has been extensively studied in the literature [5], [14], [15], [33],
[42], [44], [57], [58]. One common approach relies on solv-
ing a set of constraints formulated based on the program code
[5], [15], [42], [44]. Another is to speculatively assume that
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some checks are unnecessary and generate check-free special-
ized code, with execution reverted to unoptimized code when
the assumption fails [14], [57], [58].

Loops in the program are also a target for bounds check
elimination [33]. Some simple patterns can be identified, where
unnecessary bound checks can be safely removed.

SOFTBOUND [36] applies simple compile-time optimizations
including a dominator-based redundant check elimination to
eliminate unnecessary checks dominated by other checks.

In our earlier work [61], WPBOUND applies only intrapro-
cedural optimizations to accelerate runtime detection of spatial
memory errors. This paper extends that to include also interpro-
cedural WP hoisting to reduce redundant bounds checks further.
Our WP-based compiler approach complements prior work by
making certain spatial checks guarded so that a large number of
spatial checks are avoided conditionally.

D. Static Analysis

A significant body of work exists on statically detecting and
diagnosing buffer overflows [3], [6], [11], [12], [16], [19], [21],
[28], [29], [32], [45], [56], [59]. Due to its approximation na-
ture, static analysis alone finds it rather difficult to maintain
both precision and efficiency, and generally has either false pos-
itives or false negatives. However, its precision can be improved
by using modern pointer analysis [22], [27], [48], [49], [51],
[63], [65] and value-flow analysis [30], [31], [52]–[54] tech-
niques. Recently, static value-flow analysis has been combined
with dynamic analysis to reduce instrumentation overheads in
detecting uninitialised variables [62]. So existing static analysis
techniques can be exploited to compute WPs more precisely for
our WP-based instrumentation.

In addition, the efficiency of static analysis techniques can be
improved if they are tailored to specific clients. Dillig et al. [11]
have recently proposed a static analysis to compute the pre-
conditions for dictating spatial memory safety conservatively.
Rather than analyzing the entire program, their static analysis
works in a demand-driven manner, where the programmer first
specifies a code snippet as a query and then the proposed static
analysis infers a guard to ensure spatial memory safety for the
code snippet. Such analysis uses logical abduction and is thus
capable of computing the weakest and simplest guards. In con-
trast, our work is based on the symbolic analysis of LLVM’s
scalar evolution and thus more lightweight as an optimization
for whole-program spatial-error detection.

VI. CONCLUSION

In this paper, we introduce a new WP-based compiler ap-
proach comprising both intra and interprocedural optimizations
to enforce spatial memory safety for C. Our approach comple-
ments existing bounds checking optimizations and can be ap-
plied to any spatial-error detection approaches. Implemented on
top of SOFTBOUND, a state-of-the-art tool for detecting spatial
errors, our instrumentation tool, WPBOUND, provides compat-
ible, comprehensive and efficient spatial safety. For a set of C
benchmarks evaluated, WPBOUND, can substantially reduce the
runtime overheads incurred by SOFTBOUND with small code

size increases. In future work, we will develop techniques to en-
force effectively spatial safety for C++ and multithreaded code
bases [50].
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