
Dynamic Transitive Closure-Based Static Analysis through
the Lens ofQuantum Search
JIAWEI REN, University of New South Wales, Australia

YULEI SUI, University of New South Wales, Australia

XIAO CHENG, University of New South Wales, Australia

YUAN FENG, University of Technology Sydney, Australia

JIANJUN ZHAO, Kyushu University, Japan

Many existing static analysis algorithms suffer from cubic bottlenecks because of the need to compute a

dynamic transitive closure (DTC). For the first time, this paper studies the quantum speedups on searching

subtasks in DTC-based static analysis algorithms using quantum search (e.g., Grover’s algorithm). We first

introduce our oracle implementation in Grover’s algorithm for DTC-based static analysis and illustrate our

quantum search subroutine. Then, we take two typical DTC-based analysis algorithms: context-free-language

reachability and set constraint-based analysis, and show that our quantum approach can reduce the time com-

plexity of these two algorithms to truly subcubic (𝑂 (𝑁 2

√
𝑁polylog(𝑁))), yielding better results than the upper

bound (𝑂 (𝑁 3/log𝑁)) of existing classical algorithms. Finally, we conducted a classical simulation of Grover’s

search to validate our theoretical approach, due to the current quantum hardware limitation of lacking a

practical, large-scale, noise-free quantummachine. We evaluated the correctness and efficiency of our approach

using IBM Qiskit on nine open-source projects and randomly generated edge-labeled graphs/constraints. The

results demonstrate the effectiveness of our approach and shed light on the promising direction of applying

quantum algorithms to address the general challenges in static analysis.

CCS Concepts: • Computer systems organization → Quantum computing; • Software and its engi-
neering→ Automated static analysis.

Additional Key Words and Phrases: CFL-reachability, Set constraint-based analysis, Grover’s search

1 INTRODUCTION
Static analysis plays a crucial role in approximating the runtime behavior of programs without the

need for actual execution, enabling a wide range of applications such as program optimization [10,

26], software vulnerability detection [24, 49, 55, 56, 60] and code embedding [16–18, 53]. However, a

cubic bottleneck [34] has appeared as a common issue in various static analysis algorithms, such as

context-free-language (CFL) reachability [37, 38, 42], recursive statemachine (RSM) reachability [15],

and set constraint-based analysis [3, 33]. Overcoming this cubic time complexity is a significant

but highly challenging task.

Existing Efforts and Challenges. To better understand the cubic bottleneck, Melski and

Reps [42] relate the data-flow reachability to the problem of CFL-reachability. Later, Heintze

Authors’ addresses: Jiawei Ren, University of New SouthWales, Sydney, Australia, jiawei.ren@student.unsw.edu.au; Yulei Sui,

University of New South Wales, Sydney, Australia, y.sui@unsw.edu.au; Xiao Cheng, University of New South Wales, Sydney,

Australia, xiao.cheng@unsw.edu.au; Yuan Feng, University of Technology Sydney, Sydney, Australia, yuan.feng@uts.edu.au;

Jianjun Zhao, Kyushu University, Fukuoka, Japan, zhao@ait.kyushu-u.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1049-331X/2024/1-ART1

https://doi.org/10.1145/3644389

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3644389

1:2 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

and McAllestert [34] formulate the subtyping and data-flow reachability problems as 2-way nonde-

terministic pushdown automata (2NPDA [2]) and prove that they are 2NPDA-complete such that it

is difficult to find a subcubic solution. Previous studies [15, 42] have shown that many of these static

analysis approaches are inter-convertible (e.g., CFL-reachability and set constraint-based analysis)

and even equivalent (e.g., CFL-reachability and RSM-reachability). This observation highlights the

shared intrinsic structures that contribute to the cubic bottleneck.

The primary reason for the 𝑂 (𝑁 3) bottleneck is that these algorithms are based on dynamic
transitive closure (DTC) [34, 36, 48] — maintaining the reachability information in a directed graph

between arbitrary pairs of vertices while the graph is dynamically changing [31]. DTC-based static

analysis algorithms are partially dynamic and incremental, i.e., only vertex/edge insertions occur

without deletions. The searching subtask in a DTC-based analysis is a repeated procedure aiming to

find new reachable information for each vertex/edge. It occupies a significant portion of the total

analysis time to ensure the convergence and soundness of the underlying algorithm. Taking the

CFL-reachability algorithm as an example, given 𝑁 vertices in an input graph, the algorithm stores

the initial edges in a worklist and performs the 𝑂 (𝑁)-time searching subtask for each edge in the

worklist to find new reachable vertices. As the worklist is dynamically updated until convergence,

the repetition of searching subtasks is bounded by the total number of edges which is 𝑂 (𝑁 2),
resulting in 𝑂 (𝑁 3) as the total complexity.

It is challenging to break through this cubic bottleneck for general DTC-based analysis. The

existing efforts to improve the efficiency of DTC-based static analysis fall into two categories. One

is to reduce the complexity without sacrificing precision. Chaudhuri [15] improves the searching

subtasks of CFL-reachability by adapting fast set operations, reducing the total complexity to

𝑂 (𝑁 3/log𝑁) as the best classical upper bound, which achieves a logarithmic factor speedup over

cubic. Boolean Matrix Multiplication (BMM) implies that the transitive closure problem can be

solved in truly subcubic time [61], but it works for a restricted version of DTC-based static analysis.

An algorithm is truly subcubic if it runs in 𝑂 (𝑁 3−𝜖) time for some 𝜖 > 0. For instance, Chatterjee

et al. show that solving Dyck-CFL-reachability, a restricted version of CFL-reachability working

on the Dyck language in general graphs, is BMM hard [14]. However, the truly subcubic 𝑂 (𝑁 3−𝜔)
bound of CFL-reachability cannot be obtained without obtaining 𝑂 (𝑁 3−𝜔)-time combinatorial

algorithms for BMM [20, 59].

Another way to speed up DTC-based analysis is to trade precision for efficiency or solve a

subset of DTC-based problems with reduced complexity. Taking points-to analysis as an example,

Steensgaard’s conditional unification approach [51] achieves an almost linear complexity but yields

imprecise results compared to inclusion-based Anderson’s analysis [8]. As another example, Dyck-

CFL-reachability [64] can be solved using bidirected trees and graphs in linear time. However, the

approach only works on a special case (i.e., the Dyck language) of CFL-reachability analysis.

Insights and Objectives. Pushing the limit of classical algorithms to reduce the complexity of

general DTC-based static analysis is extremely hard, with no truly subcubic solution (the best upper

bound is 𝑂 (𝑁 3/log𝑁)) for decades. This work seeks inspiration from an emerging field: quantum

computing, which has been well-progressed during the past few years and has shown promising

results for many applications. However, applying quantum techniques to address classical problems

in the area of programming languages (e.g., cubic bottleneck in static analysis) is still an open

question. Our study found that quantum search with a well-designed oracle can solve classical

program analysis problems more efficiently. This paper makes the first step by proposing a new

quantum search oracle for fundamental DTC-based static analyses and proving that breaking

through the cubic bottleneck to truly subcubic is feasible.

Grover’s algorithm or Grover’s search [30] offers a quadratic speedup on unsorted search

problems, whereas the classical approach needs a linear time. A few applications have applied

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:3

Grover’s search to classical searching problems. In particular, traditional graph searching can be

improved using Grover’s algorithm. For example, Dürr et al. [23] present the quantum speedups

for minimum spanning tree, connectivity, strong connectivity, and single-source shortest path

problems. Ambainis and Špalek [7] propose a quantum breadth-first search algorithm. The key to

the effectiveness (in terms of efficiency and consistency with classical results) of Grover’s search

lies in its oracle design and implementation. In this work, we aim to explore a highly efficient oracle

that works with probability amplification as an alternative subroutine for searching subtasks in

DTC-based static analysis to reduce their total complexity.

Our Solution. For the first time, we present the quantum speedups on DTC-based static analysis

algorithms in this paper. Our approach involves utilizing Grover’s algorithm to handle the core

searching subtasks within dynamic transitive closures. However, applying Grover’s algorithm

as a subroutine to solve classical problems is not straightforward. Because quantum algorithms

operate on quantum inputs, we must first encode classical information into quantum states (or

encode classical functions into quantum oracles, as required by Grover’s search) to solve static

analysis problems, which is a non-trivial task; well-thought-out designs must be invented to

avoid the exponential slowdown in the encoding process. To address this, we demonstrate the

use of QRAM [29] to load classical data into a quantum superposition, enabling consistent results

with classical algorithms while dealing with the I/O problem in DTC-based static analysis. In

addition to input encoding and oracle design, solving (deterministic) static analysis problems using

quantum subroutines also requires taming the probabilistic nature of quantum computing. Quantum

algorithms are inherently probabilistic [11], and with some small probability, Grover’s search may

return inconsistent results compared to classical methods. To reconcile the deterministic nature

of static analysis with the probabilistic nature of quantum algorithms, we apply a probability

amplification technique [12] (because each output of Grover’s search can be verified in constant

time) to reduce the error probability to a desirable level to produce consistent outputs.

We take two typical DTC-based algorithms, CFL-reachability [48] and set constraint-based

analysis [33], as our two client applications. As acknowledged by previous efforts, it is hard to find

a subcubic procedure for DTC-based static analysis [34]. We address this challenge by presenting a

general approach to reducing the overhead of key searching subtasks, which contributes most to

the cubic bottleneck and can be replaced by our quantum search subroutine rather than changing

the entire structure of the algorithms. For instance, when searching for new reachable vertices

of a given edge in an edge-labeled graph during CFL-reachability analysis, the time complexity

is reduced from linear to square root using our search subroutine. The total cost is thus reduced,

contributed by the cost reduction in each searching subtask. We prove that the (worst-case expected)

time complexity of our approach yields a truly subcubic result𝑂 (𝑁 2.5polylog(𝑁)) (the exponent of
polylog(𝑁) is two) rather than the best-known upper bound by the classical solution. It’s important

to note that current limitations in quantum hardware present obstacles to the practical use of

Grover’s search today. Therefore, we need to clarify two general assumptions prevalent in the

quantum community: the availability of large-scale, noise-free quantum machines and the QRAM

model, both of which are discussed in detail in Section 7. It is essential to understand that these

assumptions confine the primary contribution of this paper to a theoretical improvement in the

time complexity of the cubic bottleneck in DTC-based static analysis, given the current state of

technology.

In summary, we make the following contributions:

• We propose the first truly subcubic complexity solution for DTC-based static analysis al-

gorithms equipped with quantum subroutines. The time complexity of two applications:

CFL-reachability (Theorem 4.2) and set constraint-based analysis (Theorem 5.2), is improved

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:4 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

to 𝑂 (𝑁 2.5polylog(𝑁)) by replacing classical exhaustive search with the quantum search

subroutine to reduce the overall overhead.

• To apply the quantum search subroutine, we present an efficient oracle implementation

of Grover’s search based on the QRAM model [29] (Section 3.2), which supports loading

classical data into quantum superposition in𝑂 (polylog(𝑁)) time, hence making the algorithm

practical without affecting the actual speedup. To ensure consistent results with those by

the classical approaches, we employ a probability amplification technique to tame further

the probabilistic nature of the quantum search (Section 3.3). We formulate the quantum

search subroutine for DTC-based static analysis in Algorithm 3 and show that our quantum

subroutine produces consistent outputs with classical counterparts.

• We evaluate both the efficiency and correctness of our approach compared to classical meth-

ods.We use nine real-world programs and randomly generated edge-labeled graphs/constraints

for evaluation using estimations and simulations based on IBM Qiskit [4] (Section 6).

2 BACKGROUND ON QUANTUM COMPUTING
This section provides a brief background of quantum computing and Grover’s search, which serve

as the preliminaries of our approach.

2.1 Quantum Bit andQuantum Measurement
In classical computation and information, the bit is the fundamental concept, which can be either

0 or 1 at a time. The quantum bit (qubit) is an analogous concept for quantum computation and

information. Quantummechanics use Dirac notation, and a state 𝑥 in classical computing is denoted

as |𝑥⟩ in quantum computing, pronounced "ket 𝑥 ." A qubit state can be |0⟩ or |1⟩, like classical
computing. It can also be a superposition |𝜙⟩, the linear combination of states |0⟩ and |1⟩, written as:

|𝜙⟩ = 𝑎0 |0⟩ + 𝑎1 |1⟩, where 𝑎0 and 𝑎1 are complex numbers and |𝑎0 |2 + |𝑎1 |2 = 1. The superposition

of an 𝑛-qubit system is the linear combination of all possible states of 𝑛 classical bits (which we

call computational basis states in this paper), written as: |𝜙⟩ = ∑
2
𝑛−1
𝑖=0 𝑎𝑖 |𝑖⟩, where 𝑎𝑖 are complex

numbers and

∑
2
𝑛−1
𝑖=0 |𝑎𝑖 |2 = 1.

The advantage of a quantum system is its ability to be in multiple computational basis states at

the same time. Specifically, a classical bit can be in either 0 or 1 at a time, but a qubit can be in a

superposition, representing |0⟩ and |1⟩ at the same time. For an 𝑛-qubit system, a quantum system

can represent 2
𝑛
computational basis states at the same time, which offers more power on some

problems than classical systems.

Quantum measurement is the way to observe the state of qubits. Suppose we have an arbitrary

superposition |𝜙⟩ = ∑
2
𝑛−1
𝑖=0 𝑎𝑖 |𝑖⟩; we can measure |𝜙⟩ to get its state. However, we cannot see what

exact superposition it is. We can only get a computational basis state 𝑖 after measurement. The

measurement operation on qubits makes the superposition state collapse to one of the computational

basis states |𝑖⟩ with probability |𝑎𝑖 |2.

2.2 Quantum Gate
The quantum circuit model [19] is developed to enable quantum parallelism on qubits. The basic

operations of the circuit model are called quantum gates. There are two categories: single-qubit

gates and multi-qubit gates.

Single-qubit gates are operations on a single qubit. They turn a qubit state into another state.

Here, we discuss X gate and Hadamard gate.
X gate, also called a quantum NOT gate, performs logical NOT in quantum computing. When

applying the 𝑋 gate on the two computational basis states, the state turns from |0⟩ and |1⟩ to |1⟩

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:5

and |0⟩, respectively. For an arbitrary superposition, it swaps the coefficient of computational basis

states:

𝑋 (𝑎0 |0⟩ + 𝑎1 |1⟩) = 𝑎0 |1⟩ + 𝑎1 |0⟩

Hadamard gate is another typical gate. In general, the effect of the Hadamard gate is:

𝐻 (𝑎0 |0⟩ + 𝑎1 |1⟩) =
𝑎0 + 𝑎1√

2

|0⟩ + 𝑎0 − 𝑎1√
2

|1⟩

Hadamard gate has a specific usage when applied on |0⟩ and |1⟩ to generate a superposition

with an equal probability of observing 0 or 1, which is widely used in algorithms such as Grover’s

search:

𝐻 (|0⟩) = 1

√
2

(|0⟩ + |1⟩) = |+⟩

𝐻 (|1⟩) = 1

√
2

(|0⟩ − |1⟩) = |−⟩

Multi-qubit gates work on two or more qubits. We show the CNOT gate and Toffoli gate.
The CNOT gate, also called the CX gate, operates on two qubits. The effect is to flip the state of

the target qubit if and only if the control qubit is |1⟩. Suppose the first qubit is the control qubit
and the second qubit is the target qubit, then:

𝐶𝑁𝑂𝑇 (𝑎0 |00⟩ + 𝑎1 |01⟩ + 𝑎2 |10⟩ + 𝑎3 |11⟩) =
𝑎0 |00⟩ + 𝑎1 |01⟩ + 𝑎2 |11⟩ + 𝑎3 |10⟩

The Toffoli gate is a gate that works on three qubits: two control qubits and one target qubit.

The effect is to apply X gate on the target qubit if and only if both control qubits are |1⟩. Suppose
the first two qubits are control qubits and the third qubit is the target qubit, then:

Toffoli(𝑎0 |000⟩ + 𝑎1 |001⟩ + 𝑎2 |010⟩ + 𝑎3 |011⟩ +
𝑎4 |100⟩ + 𝑎5 |101⟩+𝑎6 |110⟩ + 𝑎7 |111⟩) =
𝑎0 |000⟩ + 𝑎1 |001⟩ + 𝑎2 |010⟩ + 𝑎3 |011⟩ +
𝑎4 |100⟩ + 𝑎5 |101⟩+𝑎6 |111⟩ + 𝑎7 |110⟩

Especially when setting the target qubit to |0⟩, the effect is the same as computing logical AND

(used in the implementation section) of two control qubits and storing the result in the target qubit:

Toffoli(𝑎0 |000⟩ + 𝑎1 |010⟩ + 𝑎2 |100⟩ + 𝑎3 |110⟩) =
𝑎0 |000⟩ + 𝑎1 |010⟩ + 𝑎2 |100⟩ + 𝑎3 |111⟩

2.3 Quantum Parallelism
Quantum parallelism [43] is a quantum-mechanical effect we can use to build algorithms. In

many applications, such as search, the problem is often given as a Boolean function 𝑓 , which is

solved by querying 𝑓 several times. To employ a quantum algorithm to solve this problem, the

first step is to encode the function 𝑓 with a unitary 𝑈𝑓 , called a quantum oracle. Given the effect

of superposition, we can compute 𝑓 (𝑥) for all 𝑥 simultaneously by querying the oracle just once

(using a superposed state containing all |𝑥⟩’s).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:6 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

(a) (b)

Fig. 1. Quantum parallelism

Figure 1(a) shows a typical circuit design for such a unitary. The input state is a superposition

including all computational basis states 𝑥 , and the results 𝑓 (𝑥) are stored in the ancilla qubit. The

general effect is:

𝑈𝑓 (
2
𝑛−1∑︁
𝑥=0

𝑎𝑥 |𝑥⟩ |𝑦⟩) =
2
𝑛−1∑︁
𝑥=0

𝑎𝑥 |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩

However, taking advantage of the benefit of quantum parallelism is often challenging. To illustrate,

consider the case when setting the ancilla qubit to |0⟩ in Figure 1(b). The effect of this oracle is:

𝑈𝑓 (
|00⟩ + |10⟩

√
2

) = |0, 𝑓 (0)⟩ + |1, 𝑓 (1)⟩
√
2

Although we have computed and stored the information of 𝑓 (𝑥) for all 𝑥 in the last qubit, we

cannot retrieve them by simply measuring the qubits. The restriction is the same as the limitation

of measurement. We can only get one result: 0, 𝑓 (0) or 1, 𝑓 (1) from one measurement because

state |𝜙⟩ is a superposition. The superposition will collapse to a computational basis state when

being measured. In general, suppose the input is an 𝑛-qubit register, then we can only get one pair

of results: 𝑥 , 𝑓 (𝑥) when being measured, though 2
𝑛 𝑓 (𝑥) are evaluated simultaneously. Thus, we

need ingenious ways to harness the power of quantum parallelism.

... ...

Fig. 2. Phase kickback

Phase kickback trick is a mechanism to retrieve information. The trick is to set the ancilla

qubit as |−⟩ = |0⟩−|1⟩√
2

, as shown in Figure 2. The phase kickback trick marks the state |𝑥⟩ satisfying
𝑓 (𝑥) = 1 with a minus sign, which can be further utilized in algorithms like Grover’s search. The

effect of this trick is:

𝑈𝑓 (
2
𝑛−1∑︁
𝑥=0

𝑎𝑥 |𝑥⟩ |−⟩) =
2
𝑛−1∑︁
𝑥=0

(−1) 𝑓 (𝑥)𝑎𝑥 |𝑥⟩ |−⟩

2.4 Grover’s Search
Grover’s search is the crucial technique to improve DTC-based static analysis algorithms in this

paper. It solves the problem of finding a target 𝑥 satisfying 𝑓 (𝑥) = 1 from an unsorted search space

with 𝑁 elements in 𝑂 (
√
𝑁) time, whereas classical methods solve it in𝑂 (𝑁) time. We say that 𝑥 is

a target in the following illustration when 𝑓 (𝑥) = 1. We say 𝑥 is a nontarget when 𝑓 (𝑥) = 0.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:7

Oracle Diffuser

|0〉 / H⊗n Uf 2 |s〉 〈s| − I

Repeat O(
√

N) times.

1

Fig. 3. Grover’s search

The procedure of Grover’s search has three components:

Initialization: This step aims to construct an equal-probability superposition with all compu-

tational basis states. Recall when applying a Hadamard gate on |0⟩, a superposition with equal

probability of |0⟩ and |1⟩ is generated:

𝐻 (|0⟩) = 1

√
2

(|0⟩ + |1⟩) = |+⟩

In general, after applying 𝑛 Hadamard gates on 𝑛 qubits all initialized with |0⟩, the superposition
consists of all computational basis states with equal probability:

𝐻 (|0⟩) ⊗ 𝐻 (|0⟩) ⊗ . . . ⊗ 𝐻 (|0⟩)

=
|0⟩ + |1⟩

√
2

⊗ |0⟩ + |1⟩
√
2

. . . ⊗ |0⟩ + |1⟩
√
2

=
1

√
2
𝑛

∑︁
𝑥 ∈{0,1}𝑛

|𝑥⟩ (1)

Oracle: The effect of the oracle is to split data into two groups (target or nontarget) simultaneously

by marking those |𝑥⟩ satisfying 𝑓 (𝑥) = 1 with a minus sign:

2
𝑛−1∑︁
𝑥=0

𝑎𝑥 |𝑥⟩ →
∑︁

𝑦: 𝑓 (𝑦)=0
𝑎𝑦 |𝑦⟩ −

∑︁
𝑧: 𝑓 (𝑧)=1

𝑎𝑧 |𝑧⟩ (2)

Diffusion: By applying 2 |𝑠⟩ ⟨𝑠 | − 𝐼 where |𝑠⟩ = 1√
2
𝑛

∑
𝑥 ∈{0,1}𝑛 |𝑥⟩, the amplitude (coefficient) of

|𝑥⟩ with 𝑓 (𝑥) = 1 is increased to improve the probability of observing 𝑥 :

2
𝑛−1∑︁
𝑥=0

𝑎𝑥 |𝑥⟩ →
2
𝑛−1∑︁
𝑥=0

(2𝐴 − 𝑎𝑥) |𝑥⟩ , (3)

where A is the mean of the original amplitudes: 𝐴 = 1

2
𝑛

∑
2
𝑛−1
𝑥=0 𝑎𝑥 .

Grover’s search repeats the oracle and diffusion steps 𝑂 (
√
𝑁) times, as in Figure 3. The number

of repetitions is called Grover iteration, where one Grover iteration consists of one oracle call and

one diffusion process. In each repetition, the amplitudes of the target states are increased to boost

the probability of observing them. Finally, we get a solution of 𝑓 (𝑥) = 1 with a high probability by

measuring the final state.

3 QUANTUM SPEEDUPS FOR DTC-BASED STATIC ANALYSIS
We first introduce a motivating example to describe the quantum speedups in searching subtasks

in Section 3.1. Then, we provide an effective oracle implementation in Section 3.2, yielding the time

complexity 𝑂 (
√
𝑁polylog(𝑁)). We illustrate our quantum searching strategy as a subroutine for

DTC-based static analysis algorithms in Section 3.3. Finally, we explain why our quantum approach

produces consistent results with classical approaches in Section 3.4.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:8 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

Table 1. row 𝑖 and row 𝑗 from an example graph with eight nodes.

𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑝

𝑖 (𝑣2) 0 1 1 0 0 0 1 0

𝑗 (𝑣1) 0 0 0 0 0 0 1 1

3.1 Motivating Example:Quantum Speedups for Searching Subtasks
Dynamic transitive closure-based static analysis algorithms typically consist of several searching

subtasks, which are challenging to improve using classical approaches. To find a way to speed up

DTC-based static analysis algorithms, we are inspired by quantum graph algorithms. The following

gives a motivating example of the quantum speedup on a DTC-based graph reachability analysis.

In a DTC-based static analysis problem, the searching subtask is to find new reachable information

based on current reachability. For illustration, we consider a dynamic transitive closure problem in

a given graph 𝐺 with 𝑁 nodes, where ⟨𝑖, 𝑗⟩ (an edge from 𝑖 to 𝑗) is given, and then the searching

subtask is to look for 𝑘 such that ⟨ 𝑗, 𝑘⟩ exists, but ⟨𝑖, 𝑘⟩ does not. Storing 𝐺 uses the adjacency

matrix model (i.e., an 𝑁 × 𝑁 Boolean matrix 𝐴 where 𝐴[𝑖] [𝑗] = 1 iff ⟨𝑖, 𝑗⟩ ∈ 𝐺). The classical

implementation idea is to retrieve row 𝑗 as vector 𝑣1 and row 𝑖 as vector 𝑣2 from the adjacency

matrix and then to search all indices index such that 𝑣1 [index] = 1 and 𝑣2 [index] = 0, which takes

linear time. If we can apply Grover’s search to find all indices instead of an exhaustive search, we

may have a quadratic speedup for each searching subtask to reduce the total running time.

Consider a DTC example for 𝑁 = 8, where the current processing edge is ⟨𝑖, 𝑗⟩, the row 𝑗 (𝑣1)

and row 𝑖 (𝑣2) from the adjacency matrix are shown in Table 1. Classically, we need to check each

of these eight candidates (corresponding to columns 𝑖 to 𝑝) individually to find new reachable

nodes from 𝑖 . The classical evaluations of the first seven nodes return false, and the last returns

true, resulting in a total of eight processing iterations. By using quantum search, the number of

iterations can be reduced to two by Grover’s search for this example. We use binary numbers here

to represent the node indices (e.g., 000 to 111 for columns 𝑖 to 𝑝) of the eight nodes.

Applying Equation 1 in Grover’s search, the initial superposition can be obtained as:

|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩
√
8

After the oracle step, only the sign of |111⟩ is changed by Equation 2.

|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ − |111⟩
√
8

Using Equation 3 to compute the superposition after diffusion, the mean of all coefficients is
6

8

√
8

,

applying 𝑎𝑛𝑒𝑤 = 2 ∗𝑚𝑒𝑎𝑛 − 𝑎𝑜𝑙𝑑 , and the new superposition is:

1

2

√
8

(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩) + 5

2

√
8

|111⟩

Then, we need to repeat the oracle and diffusion steps. After the oracle step using Equation 2,

only the sign of |111⟩ is changed:

1

2

√
8

(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩) − 5

2

√
8

|111⟩

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:9

In the diffusion step, the mean is
1

8

√
8

. After updating the coefficient using Equation 3, the

superposition is obtained as:

− 1

4

√
8

(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩) + 11

4

√
8

|111⟩

The above process takes two Grover iterations consisting of two oracle calls and two diffusion

processes. The final state has a (11

4

√
8

)2 ≈ 94% chance of getting 111 (Node 𝑝) when measured, so

we have a 94% chance of getting the target 111 (Node 𝑝) in only two iterations using Grover’s

search. Note that the probability of getting a target node can be increased by running the whole

algorithmmore times. For instance, running one additional time will make the probability of getting

a target 94% + 6% × 94% = 99.64%. More generally, we can increase the probability close to 100% by

running Grover’s search 𝑂 (log𝑁) times [12], provided that the output solution can be efficiently

verified. The detail is discussed in Section 3.3. The practical implementation of Grover’s search for

DTC-based static analysis needs to consider the oracle implementation to compute 𝑣1 [𝑖] ∧ ¬𝑣2 [𝑖],
which is omitted in this motivating example. We discuss our oracle design in the following section

(Section 3.2).

3.2 Oracle Implementation
The complexity 𝑂 (

√
𝑁) of Grover’s search discussed in Section 2.4 is the query complexity, which

measures the number of calls to an oracle without knowing its internal design. A quantum algorithm

with smaller query complexity does not necessarily mean it will have the actual speedup because

the cost of implementing the circuit for the oracle can be high. To obtain the overall time complexity,

this section details the oracle implementation of our quantum search approach.

There are two challenges in implementing an efficient oracle without adversely impacting the

time complexity. The first challenge is how to encode classical data into quantum superposition.

Loading classical data into a quantum computer is an important and emerging topic in the quantum

community. As most quantum algorithms are faster than 𝑂 (𝑁), the bottleneck in I/O, which

typically takes time 𝑂 (𝑁), becomes a significant problem in quantum computing. The second

challenge is how to implement the classical procedure in quantum computing for DTC-based

analysis. If the cost of implementing the oracle is 𝑂 (𝑁) with respect to the search space size 𝑁 , it

will incur a higher cost than 𝑂 (
√
𝑁) in each searching subtask; hence the overall solution is no

longer superior to the classical one.

Model: We leverage QRAM to implement our oracle. QRAM loads 𝑁 data into quantum super-

position in 𝑂 (polylog(𝑁)) time [29, 44], which will make the theoretical quantum speedup stand

out. Suppose there are 𝑁 = 2
𝑛
classical data stored in a QRAM; the QRAM LOAD operation works

as follows:

2
𝑛−1∑︁
𝑖=0

𝑎𝑖 |𝑖⟩ |0⟩
𝐿𝑂𝐴𝐷−→

2
𝑛−1∑︁
𝑖=0

𝑎𝑖 |𝑖⟩ |𝑑𝑖⟩ ,

where 𝑑𝑖 is the data stored at location 𝑖 . A few feasible implementations of QRAM have been

proposed though there is no physical deployment of QRAM in quantum computers for now. For

Grover’s search, a binary tree structure has been proposed to tackle database applications [43],

which shows the direction of solving the quantum I/O problem. A bucket brigade architecture for a

QRAM [29] is designed to reduce the number of switches from linear to 𝑂 (polylog(𝑁)), providing
exponential speedup on the addressing scheme. Recently, reading and writing querying can be done

in𝑂 (polylog(𝑁)) time using gate parallelism in terms of circuit-depth complexity [44]. Recursively

loading classical data into a quantum machine takes 𝑂 (polylog(𝑁)) time in terms of circuit-depth

complexity [21].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:10 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

Oracle: Given the search space of size 𝑁 , we need 𝑛 = ⌈log𝑁 ⌉ address qubits, two ancilla qubits

set to |0⟩, and one ancilla qubit set to |−⟩. Three steps are then conducted to realize the unitary:

2
𝑛−1∑︁
𝑖=0

𝑎𝑖 |𝑖⟩ →
2
𝑛−1∑︁
𝑖=0

(−1)𝑣1 [𝑖]∧¬𝑣2 [𝑖]𝑎𝑖 |𝑖⟩

for any 𝑎𝑖 . Suppose we are provided with the QRAMs for both 𝑣1 and 𝑣2:

• Step 1: For any input state

∑
2
𝑛−1
𝑖=0 𝑎𝑖 |𝑖⟩, we append ancilla qubits and use QRAM LOAD for 𝑣1

and 𝑣2:

2
𝑛−1∑︁
𝑖=0

𝑎𝑖 |𝑖⟩ |0⟩ |0⟩ |−⟩
𝐿𝑂𝐴𝐷−→

2
𝑛−1∑︁
𝑖=0

𝑎𝑖 |𝑖⟩ |𝑣1 [𝑖]⟩ |𝑣2 [𝑖]⟩ |−⟩

• Step 2:We use a Boolean function 𝑓 = 𝑣1 [𝑖] ∧¬𝑣2 [𝑖] to distinguish targets (solutions of 𝑓 (𝑥) = 1)

from nontargets (solutions of 𝑓 (𝑥) = 0) for DTC-based static analysis. The function can be

implemented by applying an X gate on the second data qubit to compute ¬𝑣2 [𝑖], followed by a

Toffoli gate to compute the result 𝑓 = 𝑣1 [𝑖] ∧ ¬𝑣2 [𝑖] and store it in the last qubit. When setting

the last qubit to |−⟩, the phase kickback (discussed in Section 2.3) works. After this, we need to

apply an X gate on the second data qubit to recover its state to 𝑣2 [𝑖]:
2
𝑛−1∑︁
𝑖=0

𝑎𝑖 |𝑖⟩ |𝑣1 [𝑖]⟩ |𝑣2 [𝑖]⟩ |−⟩ →
2
𝑛−1∑︁
𝑖=0

(−1)𝑣1 [𝑖]∧¬𝑣2 [𝑖]𝑎𝑖 |𝑖⟩ |𝑣1 [𝑖]⟩ |𝑣2 [𝑖]⟩ |−⟩

• Step 3: Finally, we apply the QRAM LOAD one more time to set ancilla qubits to |0⟩, and the

effect of the oracle is realized if the ancilla qubits are omitted:

2
𝑛−1∑︁
𝑖=0

(−1)𝑣1 [𝑖]∧¬𝑣2 [𝑖]𝑎𝑖 |𝑖⟩ |𝑣1 [𝑖]⟩ |𝑣2 [𝑖]⟩ |−⟩ →
2
𝑛−1∑︁
𝑖=0

(−1)𝑣1 [𝑖]∧¬𝑣2 [𝑖]𝑎𝑖 |𝑖⟩ |0⟩ |0⟩ |−⟩

In short, the oracle = LOAD + X + Toffoli + X + (UN)LOAD. The cost of LOAD, and also the

oracle, is 𝑂 (polylog(𝑁)), while the cost of the diffusion operator is 𝑂 (log𝑁) [22]. Thus, the total
time complexity of our implementation of Grover’s search is 𝑂 (

√
𝑁polylog(𝑁)).

Note that our approach needs to mark the found target 𝑥 as a nontarget (i.e., update 𝑣2 [𝑥] = 1)

after each successful search, which can be done efficiently without increasing the cost of the oracle.

In the QRAM model, data can be stored in a classical database [43], and modifying a single item in

the classical database does not impact the quantum circuit. Hence, the complexity of the oracle

remains unaffected.

3.3 Quantum Searching Subroutine for DTC-Based Static Analysis
After discussing the oracle implementation, we can now use time complexity to measure the cost

of our overall approach. To reduce the cost of searching subtasks in DTC-based static analysis

algorithms, we use an approach that is based on a general Grover’s search algorithm. This approach

enables us to locate a single target (𝑓 (𝑥) = 1) within a search space of size 𝑁 , containing𝑀 targets,

with an expected number of queries of 𝑂 (
√︁
𝑁 /𝑀), even without prior knowledge of𝑀 . It is worth

noting that the number of queries corresponds to the calls made to the quantum oracle, where each

Grover iteration comprises one oracle call and one diffusion process. To address the probabilistic

nature of quantum computing, we employ an efficient probability amplification technique to achieve

deterministic static analysis. This approach enhances the probability of obtaining accurate results

with confidence, compensating for the inherent probabilistic outcomes in quantum computations.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:11

Algorithm 1: Grover Search
Input: Quantum oracle 𝑂 𝑓 , iteration number 𝑗

Output: 𝑥 which might be a target

1 Initialize superposition |𝜙⟩ as discussed in Section 3.2 and set iteration = 0

2 for iteration < 𝑗 do
3 |𝜙⟩ = 𝑂 𝑓 |𝜙⟩ // Apply Oracle.

4 |𝜙⟩ = 𝑈𝐷 |𝜙⟩ // Apply Diffusion.

5 iteration += 1

6 Measure according to the computational basis and return the outcome

Algorithm 2: Quantum Search for Finding One out of𝑀 Targets from 𝑁 Elements

Input: Search space size 𝑁 , classical 𝑂 (1)-time verification function VERIFY (x), quantum
oracle 𝑂 𝑓

Output: One target 𝑥 with VERIFY (x) = 𝑇𝑟𝑢𝑒 or -1 meaning no target is found

1 Initialize𝑚 = 1, _ =
6

5
and total = 0

2 𝑗 = randint(0,𝑚) // Choose 𝑗 uniformly at random among

the non-negative integers smaller than 𝑚.

3 𝑥 = Algorithm1(𝑂 𝑓 , 𝑗) // Apply 𝑗 iterations of Grover’s search

and then observe the index register to get an output 𝑥.

4 total += 𝑗

5 if VERIFY (x) == True then
6 return 𝑥 // Successfully find a target 𝑥.

7 else
8 if total ≥

√
𝑁 then

9 return -1 // No target with a high probability.

10 𝑚 = min(_𝑚,

√
𝑁) // Increase 𝑚 for the next attempt.

11 go to line 2 // Try search more times.

We present Algorithm 1 as a formulation of Grover’s search, allowing for a specified number of

Grover iterations (𝑗 queries) as input. By executing 𝑗 iterations of Grover’s search, the probability

of observing targets is increased, although reaching a very high probability is not guaranteed. The

more general implementation of Grover’s search with an unknown number of targets (i.e., 𝑀 is

unknown) [11] is illustrated in Algorithm 2, which finds one target in 𝑂 (
√︁
𝑁 /𝑀) expected queries.

Algorithm 2 begins with a random guess (𝑚 = 1 at Line 1) and iteratively calls Grover’s search

(Line 3) by adjusting the values of𝑚 and 𝑗 (Line 10 and back to Line 2) until a target index is found

(Line 6), or no target is observed after 𝑂 (
√
𝑁) queries, indicated by the return value -1 (Line 9).

Note that although returning 𝑥 at Line 6 ensures that 𝑥 is indeed a target, returning -1 at Line 9

does not necessarily mean no target in the current database. However, repeating the search

√
𝑁

times until claiming so (Line 8) guarantees that the probability of making this type of mistake is

exponentially small [11, Theorem 3].

Lemma 3.1. [11, 23] Algorithm 2 uses Grover’s search and finds one out of 𝑀 targets after an
expected number of at most 0.9

√︁
𝑁 /𝑀 queries (number of calls to the oracle) with a high probability.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:12 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

The output of the subroutine is uniformly at random among the 𝑀 targets. The algorithm does not
need prior knowledge of𝑀 before searching.

Theorem 3.2. The time complexity of Algorithm 2 in DTC-based static analysis problems is
𝑂 (

√︁
𝑁 /𝑀polylog(𝑁)).

Proof. According to Lemma 3.1, the expected query complexity of Algorithm 2 is O(

√︁
𝑁 /𝑀).

Each query consists of two steps: oracle and diffusion with the cost of𝑂 (polylog(𝑁)) and𝑂 (log𝑁),
respectively, yielding the total time complexity𝑂 (

√︁
𝑁 /𝑀polylog(𝑁)). Note that the time complexity

discussed in this paper is the worst-case expected time complexity due to the probabilistic nature

of Grover’s search. □

In DTC-based static analysis, we need to find all𝑀 targets instead of one target. Hence we need

to analyze the cost of finding all𝑀 targets based on Theorem 3.2. To eliminate the possibility of

re-finding a target that was already found in the previous rounds, we need to mark the found target

as a nontarget in QRAM and decrease the number of targets by one in the next search.

Theorem 3.3. All 𝑀 targets from an 𝑁 -size search space can be found in 𝑂 (
√
𝑁𝑀polylog(𝑁))

time.

Proof. As discussed in Section 3.2, data of QRAM can be stored in a classical database. One data

can be modified efficiently in the classical database without increasing the oracle overhead. When

we have found 𝑖 targets, the number of targets in the search space becomes𝑀 − 𝑖 , so the cost of

finding the 𝑖-th target is 𝑂 (
√︁
𝑁 /(𝑀 − 𝑖)polylog(𝑁)). Therefore, the total cost becomes

𝑂 (
√︁
𝑁 /𝑀polylog(𝑁)) +𝑂 (

√︁
𝑁 /(𝑀 − 1)polylog(𝑁)) + · · · +𝑂 (

√
𝑁polylog(𝑁))

=𝑂 (
√
𝑁polylog(𝑁)

𝑀∑︁
𝑘=1

1

√
𝑘
) ≈ 𝑂 (

√
𝑁polylog(𝑁)

∫ 𝑀+1

1

1

√
𝑥
𝑑𝑥)

=𝑂 (2
√
𝑁polylog(𝑁) (

√
𝑀 + 1 − 1)) = 𝑂 (

√
𝑁𝑀polylog(𝑁)) .

In the end, an additional 𝑂 (
√
𝑁polylog(𝑁)) time is needed to claim we have found all targets, but

this does not add to the total (asymptotic) cost. □

Note that even if there are some targets, there is a very small chance that Algorithm 2 may fail

to find them. To deal with this issue, we call Algorithm 2 at most 𝑐 log𝑁 times where 𝑐 is a small

integer (e.g., ≥ 3) for each target (Line 3) in Algorithm 3, hence taming the error probability to

yield consistent results as the classical approach as explained in Section 3.4. An index 𝑥 is returned

after each call (Line 4). If 𝑥 ≠ −1, it is a target (verified in Algorithm 2), then added to the result

list and marked as a nontarget in the following rounds (Lines 5-7) per discussed in Theorem 3.3.

Note that the oracle𝑂 𝑓 is updated at this step without increasing its execution cost, as discussed in

Section 3.2. When a target is found, we restore the iteration and continue looking for the next target
(Line 8). If 𝑥 = −1 (Algorithm 2 claims no target with a high probability), Algorithm 3 continues

searching (Lines 9-10) until Algorithm 2 continuously claims no target 𝑐 log𝑁 times.

We prove that our search subroutine (each time when Algorithm 3 is called) successfully finds all

𝑀 targets from 𝑁 elements with probability at least (1 − 1

𝑁 𝑐)𝑀 (Theorem 3.4). The overall success

probability of applying Algorithm 3 is at least 1 − 1

𝑁 𝑐−2 (Theorem 3.5) when used in DTC-based

static analysis to generate consistent results with the classical counterpart.

Theorem 3.4. Algorithm 3 finds all𝑀 targets from an 𝑁 -size search space in𝑂 (
√
𝑁𝑀polylog(𝑁))

time with a success probability at least (1 − 1

𝑁 𝑐)𝑀 , where 𝑐 is a small integer ≥ 3.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:13

Algorithm 3: Improved Search Subroutine for Finding𝑀 Targets from 𝑁 Elements

Input: Vector 𝑣1 and 𝑣2, search space size 𝑁 , classical 𝑂 (1)-time verification function

VERIFY (x)
Output: List 𝐿 containing all targets

1 Set iteration = 0 and 𝑐 to a small integer (e.g., ≥ 3) // Futher explained in Section 3.4

2 The oracle 𝑂 𝑓 is implemented using the approach discussed in Section 3.2

3 while iteration < 𝑐 log𝑁 do // Probability amplification.

4 𝑥 = Algorithm2(𝑁 , VERIFY , 𝑂 𝑓) // Get candidate 𝑥 in 𝑂 (
√︁
𝑁 /𝑀polylog(𝑁)).

5 if 𝑥 ≠ −1 then
6 L.append(𝑥) // 𝑥 is indeed a target.

7 𝑣2 [𝑥] = 1 // Mark 𝑥 as a nontarget in QRAM.

8 iteration = 0 // Begin searching the next target.

9 else
10 iteration += 1 // Algorithm 2 claims no target exists.

11 return L

Proof. Because Grover’s search is a probabilistic algorithm and each subroutine has a constant

error rate (< 1

2
), we use a classical probability amplification, which bounds the error probability to

𝜖 > 0 by running an algorithm with a constant error rate independently Θ(log(1/𝜖)) times [12].

Because DTC-based static analysis has𝑂 (𝑁 2) targets to find, we set 𝜖 = 1

𝑁 𝑐 , which runs Algorithm 2

at most 𝑐 log𝑁 times (Lines 3-10) to find one target to bound the probability of missing a target

to
1

𝑁 𝑐 . The probability of successfully finding all𝑀 targets is thus at least (1 − 1

𝑁 𝑐)𝑀 , and we are

done. Given Theorem 3.3, the time complexity of Algorithm 3 is 𝑂 (
√
𝑁𝑀polylog(𝑁) × 𝑐 log𝑁) =

𝑂 (
√
𝑁𝑀polylog(𝑁)). Note that probability amplification can be used because an output 𝑥 can be

tested/verified in 𝑂 (1) time using a classical computer. □

Theorem 3.5. The probability of applying Algorithm 3 on DTC-based static analysis to generate
consistent results with the classical approach is at least 1 − 1

𝑁 𝑐−2 , where 𝑐 is a small integer ≥ 3.

Proof. The DTC-based static analysis algorithms generally need to find 𝑂 (𝑁 2) targets. Accord-
ing to Theorem 3.4, the success probability of finding all𝑀 targets from 𝑁 -size search space in one

call to Algorithm 3 is at least (1 − 1

𝑁 𝑐)𝑀 . The DTC-based static analysis calls Algorithm 3 multiple

times to find all solutions. Suppose the 𝑖-th call has𝑀𝑖 targets to find and 0 ≤ 𝑀1 +𝑀2 + · · · ≤ 𝑁 2
.

The success probability of finding all solutions is (1− 1

𝑁 𝑐)𝑀1 × (1− 1

𝑁 𝑐)𝑀2 ×· · · = (1− 1

𝑁 𝑐)𝑀1+𝑀2+... ≥
(1− 1

𝑁 𝑐)𝑁
2 ≥ 1− 1

𝑁 𝑐−2 . Hence, we improve the probability of finding all solutions (consistent results)

in DTC-based static analysis to at least 1 − 1

𝑁 𝑐−2 . □

3.4 Consistent results with the classical method
The deterministic output is a fundamental expectation for most static analysis algorithms, necessi-

tating an explanation of why quantum algorithms can be applied and accepted within the static

analysis community. Our quantum approach is precision-preserving. Though Grover’s search is

probabilistic in nature, Algorithm 2 [11] can almost achieve the certainty of finding the searching

targets. Algorithm 3 (our subroutine) further tames the probability issue to improve Algorithm 2

to find all 𝑀 targets. Note that even the current classical hardware devices have a very small

probability of error, called the hardware failure rate [35]. Therefore, from a practical point of view,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:14 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

i Y

X

i j Y

X

i Zj
k

Z

X
k

Yi j

X

(a) (b) (c) (d)

Fig. 4. Four cases of adding an edge in CFL-reachability

a probabilistic algorithm whose error probability is less than the hardware failure rate is acceptable

(and can be safely regarded as a deterministic one). In this paper, we use probability amplification

to reduce the error probability of our algorithm to a desirable level. Theorem 3.5 shows that our

algorithm produces consistent results with classical algorithms with a probability of at least 1− 1

𝑁 𝑐−2 ,

where 𝑐 is a constant no less than 3. For a large 𝑁 , it is safe to set 𝑐 to 3 because
1

𝑁
is close to 0

if 𝑁 is a very large number. For a smaller 𝑁 , we can adjust 𝑐 to reduce the error probability to

small enough. As an example, if the input size is 𝑁 = 10
4
, we can set 𝑐 = 4 to have a bounded error

probability 10
−8
.

4 APPLICATION I: QUANTUM SPEEDUPS ON CFL-REACHABILITY
In this section, we introduce the quantum speedups on CFL-reachability analysis and then move to

set constraints solved in Section 5. CFL-reachability is a typical algorithm used in multiple static

analysis techniques, like interprocedural slicing, data-flow analysis, shape analysis, etc. In this

section, we first formulate the conventional CFL-reachability algorithm and analyze its complexity

in Section 4.1. After this, we show how to improve it with our search subroutine and analyze

the improved complexity in Section 4.2. Finally, we provide a running example to illustrate the

improvement brought by our quantum solution in Section 4.3.

4.1 Classical CFL-Reachability Algorithm
Definition. Let 𝐶𝐹𝐺 = (Σ,N, P, S) be the context-free grammar (alphabet Σ, nonterminal symbols

N, production rule P, and start symbol S). Given a CFG and an edge-labeled graph 𝐺 = (𝑉 , 𝐸),
where 𝐴 ⟨𝑖, 𝑗⟩ ∈ 𝐺 means a directed edge from 𝑖 to 𝑗 with a terminal or nonterminal 𝐴. An 𝑆-path

is a sequence of edge labels following the path order in 𝐺 . We denote two nodes (Nodes src and
snk) as 𝑆-reachable if there is an 𝑆-path from src to snk.
The CFL-reachability problem has four variants: single-source, single-target, single-source-

single-target, and all-pairs 𝑆-path problems. We consider the all-pairs 𝑆-path problem to find all

𝑆-reachable nodes for each node because this problem is the most complex one and also suffers

the cubic bottleneck. Other three problems can be considered as a subset of the all-pairs S-path

problem and can also benefit from the improvement made to the all-pairs S-path problem.

Algorithm. The pseudocode of CFL-reachability is given in Algorithm 4. The all-pairs CFL-

reachability computes the transitive closure of a graph based on the production rules shown in

Figure 4:

a) Lines 2-5: All nodes have a self-pointed edge labeled with 𝑋 if there is a production rule

𝑋 → 𝜖 .

b) Lines 8-10: Add an edge 𝑋 ⟨𝑖, 𝑗⟩ if there is an edge 𝑌 ⟨𝑖, 𝑗⟩ and a production rule 𝑋 → 𝑌 .

c) Lines 11-14: Add an edge 𝑋 ⟨𝑖, 𝑘⟩ if there are edges 𝑌 ⟨𝑖, 𝑗⟩, 𝑍 ⟨ 𝑗, 𝑘⟩, and a production rule

𝑋 → 𝑌𝑍 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:15

Algorithm 4: CFL-Reachability Baseline Algorithm

Input: Edge-labeled directed graph 𝐺 = (𝑉 , 𝐸), normalized 𝐶𝐹𝐺 = (Σ, 𝑁 , 𝑃, 𝑆)
Output: Set {(𝑖, 𝑗)

��𝑆 ⟨𝑖, 𝑗⟩ ∈ 𝐺 }

1 Initialize worklist𝑊 and add 𝐸 to𝑊

2 foreach production 𝑋 → 𝜖 ∈ 𝑃 do
3 foreach node 𝑣 ∈ 𝑉 do
4 if 𝑋 ⟨𝑣, 𝑣⟩ ∉ 𝐸 then
5 add 𝑋 ⟨𝑣, 𝑣⟩ to 𝐸 and to𝑊

6 while W is not empty do
7 Select and remove an edge 𝑌 ⟨𝑖, 𝑗⟩ from𝑊

8 foreach production 𝑋 → 𝑌 ∈ 𝑃 do
9 if 𝑋 ⟨𝑖, 𝑗⟩ ∉ 𝐸 then
10 add 𝑋 ⟨𝑖, 𝑗⟩ to 𝐸 and to𝑊

11 foreach production 𝑋 → 𝑌𝑍 ∈ 𝑃 do
12 foreach outgoing edge 𝑍 ⟨ 𝑗, 𝑘⟩ from node j do
13 if 𝑋 ⟨𝑖, 𝑘⟩ ∉ 𝐸 then
14 add 𝑋 ⟨𝑖, 𝑘⟩ to 𝐸 and to𝑊

15 foreach production 𝑋 → 𝑍𝑌 ∈ 𝑃 do
16 foreach incoming edge 𝑍 ⟨𝑘, 𝑖⟩ to node i do
17 if 𝑋 ⟨𝑘, 𝑗⟩ ∉ 𝐸 then
18 add 𝑋 ⟨𝑘, 𝑗⟩ to 𝐸 and to𝑊

d) Lines 15-18: Add an edge 𝑋 ⟨𝑘, 𝑗⟩ if there are edges 𝑍 ⟨𝑘, 𝑖⟩, 𝑌 ⟨𝑖, 𝑗⟩, and a production rule

𝑋 → 𝑍𝑌 .

Theorem 4.1. Let |Σ| be the size of the elements of terminals and nonterminals in the normalized
grammar, and 𝑁 be the number of nodes in the graph; then the total cost is 𝑂 (|Σ|3𝑁 3).

Proof. Theremay be𝑂 (|Σ|𝑁) outgoing and incoming edges for each node, so the total number of

edges is bounded by𝑂 (|Σ|𝑁 2). The cost of Lines 1-5 is trivial because the cost of Line 1 is𝑂 (|Σ|𝑁 2),
and the cost of Lines 2-5 is 𝑂 (|Σ|𝑁). The worklist𝑊 may store 𝑂 (|Σ|𝑁 2) edges, so the while loop

in Line 6 may repeat𝑂 (|Σ|𝑁 2) times. The total cost of Lines 8-10 is𝑂 (|Σ|𝑁 2) ×𝑂 (|Σ|) = 𝑂 (|Σ|2𝑁 2).
Lines 11-14 and Lines 15-18 may repeat 𝑂 (|Σ|2𝑁) leading to the total cost of Lines 11-14 and Lines

15-18 being 𝑂 (|Σ|𝑁 2) ×𝑂 (|Σ|2𝑁) = 𝑂 (|Σ|3𝑁 3). In the CFL-reachability problem, we can treat |Σ|
as a constant factor to the number of nodes 𝑁 , so the total cost is bounded by 𝑂 (𝑁 3). □

4.2 Quantum CFL-Reachability Algorithm
To reduce the complexity of the traditional CFL-Reachability algorithm (Algorithm 4), we focus on

improving its searching subtasks (Lines 11-18). In this case, we can use the searching subroutine

(i.e., Algorithm 3 in Section 3.3) to speed up the key searching subtasks. Note that we use the matrix

model (i.e., an 𝑁 ×𝑁 × |Σ| Boolean matrix 𝐴 where 𝐴[𝑖] [𝑗] [𝑌] = 1 iff 𝑌 ⟨𝑖, 𝑗⟩ ∈ 𝐺) to represent the

graph 𝐺 with 𝑁 nodes and |Σ| alphabets, where 𝐺 [𝑖] [:] [𝑋] represents the 𝑖-th row with label 𝑋 ,

and 𝐺 [:] [𝑖] [𝑋] represents the 𝑖-th column with label 𝑋 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:16 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

Hence, Lines 11-14 are replaced by:

foreach 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑋 → 𝑌𝑍 ∈ 𝑃 do
𝑣1 = 𝐺 [𝑗] [:] [𝑍], 𝑣2 = 𝐺 [𝑖] [:] [𝑋]
𝐿 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(𝑣1, 𝑣2, 𝑁 , 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥 : 𝑣1 [𝑥] = 1 𝑎𝑛𝑑 𝑣2 [𝑥] = 0)
foreach 𝑘 𝑖𝑛 𝐿 do

add 𝑋 ⟨𝑖, 𝑘⟩ to 𝐸 and to𝑊

Similarly, Lines 15-18 are replaced by:

foreach 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑋 → 𝑍𝑌 ∈ 𝑃 do
𝑣1 = 𝐺 [:] [𝑖] [𝑍], 𝑣2 = 𝐺 [:] [𝑗] [𝑋]
𝐿 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(𝑣1, 𝑣2, 𝑁 , 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥 : 𝑣1 [𝑥] = 1 𝑎𝑛𝑑 𝑣2 [𝑥] = 0)
foreach 𝑘 𝑖𝑛 𝐿 do

add 𝑋 ⟨𝑘, 𝑗⟩ to 𝐸 and to𝑊

Theorem 4.2. The time complexity of the CFL-reachability algorithm using our quantum search
subroutine is 𝑂 (|Σ|3𝑁 2

√
𝑁polylog(𝑁)).

Proof. The cost of Lines 1-5 and the total cost of Lines 7-10 remain unchanged. The cost of Lines

11-14 and Lines 15-18 are reduced. The cost of finding new edges of Lines 12-14 is reduced from

𝑂 (𝑁) to 𝑂 (
√
𝑁𝑡polylog(𝑁)) according to Theorem 3.4, where 𝑡 (≤ 𝑁) is the number of targets.

Note that for loop cost below the Algorithm 3 is 𝑂 (𝑡), which is less than 𝑂 (
√
𝑁𝑡). Thus, the total

cost of Lines 11-14 becomes: ∑︁
𝑤∈𝑊

∑︁
𝑋→𝑌𝑍

√
𝑁𝑡polylog(𝑁)

≤|Σ|2polylog(𝑁)
∑︁
𝑤∈𝑊

√
𝑁𝑡

≤|Σ|2polylog(𝑁)
√︄∑︁

𝑤∈𝑊
𝑁

√︄∑︁
𝑤∈𝑊

𝑡

≤|Σ|2polylog(𝑁)
√︁
𝑁 × |Σ|𝑁 2

√︁
|Σ|𝑁 2

=𝑂 (|Σ|3𝑁 2

√
𝑁polylog(𝑁))

The first inequality holds because the number of possible 𝑋 → 𝑌𝑍 is bounded by 𝑂 (|Σ|2) for
a fixed 𝑌 . The second inequality is the Cauchy-Schwarz inequality [58]. For the third inequality,

the number of edges is bounded by 𝑂 (|Σ|𝑁 2), and the number of elements𝑤 ∈𝑊 is also bounded

by𝑂 (|Σ|𝑁 2). Thus,
√︁∑

𝑤∈𝑊 𝑁 is bounded by𝑂 (
√︁
𝑁 × |Σ|𝑁 2). Because the algorithm adds 𝑋 ⟨𝑖, 𝑘⟩

to 𝑊 when finding a 𝑋 ⟨𝑖, 𝑘⟩, the term

√︁∑
𝑤∈𝑊 𝑡 is the same as the number of elements that

may appear in worklist𝑊 , which is 𝑂 (
√︁
|Σ|𝑁 2). Finally, the upper bound of this algorithm is

𝑂 (|Σ|3𝑁 2

√
𝑁polylog(𝑁)). Because |Σ| is a constant factor to 𝑁 , the algorithm is bounded by

𝑂 (𝑁 2

√
𝑁polylog(𝑁)). The proof of Lines 15-18 is the same as that of Lines 11-14. Finally, the

algorithm outputs the same results as the classical approach based on Theorem 3.5. □

4.3 Quantum Speedups on a CFL-Reachability Example
Figure 5 gives an eight-node graph example to illustrate the quantum speedups on CFL-reachability.

We aim to show the differences between our approach and the classical method in finding one or

multiple targets on the graph. Note that we omit the logarithmic factor due to a small searching

space (i.e., set the number of iterations to 1 instead of 𝑐 log𝑁 at Line 3 of Algorithm 3). In the

example, we compute the number of quantum iterations and the corresponding success probability

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:17

Z
Yi
Z

j

op

Yk
Z
l

m

Y
X X
i

Z Z
j

op

Yk
Z
l

m

Y
X X
i

Z Z
j

op

Y
X

k
Z
l

m
(a) (b) (c)

n n n

Fig. 5. Example input graph.

at each step. We use the matrix model (i.e., an 𝑁 × 𝑁 × |Σ| Boolean matrix 𝐴 where 𝐴[𝑖] [𝑗] [𝑌] = 1

iff 𝑌 ⟨𝑖, 𝑗⟩ ∈ 𝐺), which has a fixed searching dimension, to represent the graph 𝐺 with 𝑁 nodes

and |Σ| alphabets in the following analysis; therefore, 𝑁 iterations are required to check all the

neighbors of a given node.

The initial graph shown in Figure 5 (a) contains only one production rule: 𝑋 → 𝑌𝑍 . Accordingly,

the worklist𝑊 is initialized with five labeled edges: {𝑌 ⟨𝑖, 𝑗⟩, 𝑍 ⟨ 𝑗, 𝑝⟩, 𝑍 ⟨ 𝑗, 𝑜⟩, 𝑌 ⟨𝑘, 𝑙⟩, 𝑍 ⟨𝑙,𝑚⟩}.
There is no edge added in Line 2 because our example does not contain the production 𝑋 → 𝜖 .

After this, the algorithm enters the while loop (Line 6). The resulting graph and worklist of each

loop iteration for classical computing are as follows:

• Loop Iteration 1: Edge 𝑌 ⟨𝑖, 𝑗⟩ is firstly popped from the worklist𝑊 . There is no execution for

Lines 8-10. Lines 11-14 find new reachable edges because of a production 𝑋 → 𝑌𝑍 . To do this,

Lines 13-14 are repeated eight times based on the matrix model and determine that 𝑋 ⟨𝑖, 𝑝⟩ and
𝑋 ⟨𝑖, 𝑜⟩ should be added to the graph and the worklist. An additional eight iterations are needed

for Lines 17-18 to check incoming edges, but no new edges are found. Then the graph is changed

to Figure 5 (b), and𝑊 = {𝑍 ⟨ 𝑗, 𝑝⟩ , 𝑍 ⟨ 𝑗, 𝑜⟩ , 𝑌 ⟨𝑘, 𝑙⟩ , 𝑍 ⟨𝑙,𝑚⟩ , 𝑋 ⟨𝑖, 𝑝⟩ , 𝑋 ⟨𝑖, 𝑜⟩}.
• Loop Iterations 2-5: Next, 𝑍 ⟨ 𝑗, 𝑝⟩ is selected from𝑊 . Intuitively, the graph is unchanged, but

there are 16 iterations during processing (8 iterations for checking incoming edges and 8 for

checking outgoing edges). Similar processes occur when processing 𝑍 ⟨ 𝑗, 𝑜⟩, 𝑋 ⟨𝑖, 𝑝⟩, and 𝑋 ⟨𝑖, 𝑜⟩.
Each process needs 16 iterations, resulting in a total iteration of 80, and𝑊 = {𝑌 ⟨𝑘, 𝑙⟩ , 𝑍 ⟨𝑙,𝑚⟩}.

• Loop Iteration 6: Then, 𝑌 ⟨𝑘, 𝑙⟩ is selected. Searching for outgoing edges needs eight itera-

tions, and searching for incoming edges needs additional eight iterations. A new edge 𝑋 ⟨𝑘,𝑚⟩
is found and added to the graph, resulting in the graph changing to Figure 5 (c) and 𝑊 =

{𝑍 ⟨𝑙,𝑚⟩ , 𝑋 ⟨𝑘,𝑚⟩}.
• Loop Iterations 7-8: Finally, 𝑍 ⟨𝑙,𝑚⟩ and 𝑋 ⟨𝑘,𝑚⟩ are processed one by one. The graph reaches

a fixed point because no edge is added, but the total number of iterations is increased by 32 up to

128.

When using our search subroutine, the number of iterations in searching tasks is significantly

reduced. Next, we study the number of Grover iterations (one Grover iteration consists of one

oracle call and one diffusion process) and the probability of getting targets. For the 14 cases in

which no target is found in the example, the classical number of iterations is eight in each process.

In quantum search, this is solved by approximate timeout. We set the timeout threshold as

√
𝑁 (Line

8 of Algorithm 2). For this example, the timeout threshold is

√
𝑁 ≈ 3. If the number of iterations

exceeds the threshold, we stop and believe there is no more target. When processing edge 𝑌 ⟨𝑖, 𝑗⟩
in Loop Iteration 1, two edges are added to the graph, which takes eight iterations. In contrast, the

number of iterations is at most 8 in Algorithm 3. The subroutine Algorithm 3 first calls Algorithm 2

to find targets with𝑚 initialized to 1. The superposition modification (omit other qubits except for

the index register) is shown below:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:18 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

We begin with a superposition with an equal probability according to Equation 1:

|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩
√
8

Applying Equation 2, 110 (𝑜) and 111 (𝑝) are marked by the oracle:

|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ − |110⟩ − |111⟩
√
8

Themean of the above superposition is
4

8

√
8

, which means the next superposition using Equation 3

is:

0 × (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩) + 2

√
8

× (|111⟩ + |110⟩)

The probability of getting a target is (2√
8

)2 + (2√
8

)2 = 100%, and we can get either 110 (𝑜) or

111 (𝑝). Suppose we get 110 (𝑜) in this step; the next search is to find 111 (𝑝). The superposition

modification is the same as Section 3.1. We have about a 94% chance of finding target 111 (𝑝). Note

that we also need to deal with the case with no target. In this example, we use 1 (finding either

110 (𝑜) or 111 (𝑝)) + 2 (finding rest) + 3 (no more target) = 6 as the number of iterations using our

approach to deal with outgoing edges from 𝑗 based on edge 𝑌 ⟨𝑖, 𝑗⟩ in Loop Iteration 1. Note that if

we measure the register qubits and unfortunately fail to get the target 111 (𝑝), the subroutine in

Algorithm 3 handles this by doing more repetition, and the following search still has a 94% chance

to output target 111 (𝑝). The probability of getting a target from these two searches is improved to

94% + 6% × (94%) = 99.64%.

When processing outgoing edges from 𝑙 based on edge 𝑌 ⟨𝑘, 𝑙⟩ in Loop Iteration 6, one edge is

added, but eight iterations are needed. In the quantum version, the superposition modification is

like the one in Section 3.1, which has a 94% chance of getting a target, so the number of iterations

here is reduced to 5 in the quantum version. Running the search one more time would increase the

chance to 99.64%, like the previous analysis.

To sum up, the total number of iterations using our approach is 3 × 14 + 6 + 5 = 53 instead of

8 × 16 = 128 for the classical method. In the example above in this section, we give a concrete

example of using our quantum subroutine to reduce the number of iterations with 𝑁 = 8. We show

that case 𝑀 = 0 with approximate timeout and 𝑀 = 1 with more attempts. The case 𝑀 = 2 is a

particular case when𝑀 = 𝑁
4
and the probability of finding a target is a certainty.

5 APPLICATION II: QUANTUM SPEEDUPS ON SET CONSTRAINTS
Set constraints have also been used in many static program analysis applications, including type

inference, inclusion-based analysis, etc. We first detail the original set constraints reduction algo-

rithm (called SC-Reduction) and its complexity in Section 5.1. Then, we present how to improve

the algorithm using our search subroutine and analyze its improved complexity in Section 5.2. We

also give an example to illustrate our improvement in Section 5.3.

5.1 Classical SC-Reduction Algorithm
Definition. A set constraint is a relation of form 𝑉 ⊇ 𝑠𝑒𝑥𝑝 , where 𝑉 and 𝑠𝑒𝑥𝑝 are set expressions.

Set expressions consist of set variables (denoted by 𝑋 , 𝑌 , ...), atomic expression 𝑐 (𝑉1, ...,𝑉𝑟), and
projection pattern 𝑐−1𝑖 (𝑉). 𝑐 is called a constructor in an atomic expression, and 𝑐−1𝑖 (𝑉) asks for
the 𝑖-th element in 𝑉 . In the set constraints problem, a ground term of constructors is an empty

constructor or 𝑐 (𝑉1, ...,𝑉𝑟) if all set variables 𝑉1, ...,𝑉𝑟 are ground terms.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:19

Algorithm 5: SC-Reduction Baseline Algorithm

Input: A collection of set constraints 𝐶

Output: A collection of solved set constraints 𝐶

1 Initialize worklist𝑊 to {𝑋 ⊇ 𝑎 ∈ 𝐶
��
a is a nullary constructor}

2 Mark all set variables as having the property “not ground"

3 while W is not empty do
4 Select and remove a constraint 𝑋 ⊇ 𝑠𝑒𝑥𝑝 from𝑊

5 if 𝑋 ⊇ 𝑠𝑒𝑥𝑝 is of the form 𝑋 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) then
6 foreach constraint 𝑌 ⊇ 𝑐−1𝑖 (𝑋) in 𝐶 do
7 if 𝑌 ⊇ 𝑉𝑖 is not in 𝐶 then
8 Insert 𝑌 ⊇ 𝑉𝑖 into 𝐶 and𝑊

9 foreach constraint 𝑌 ⊇ 𝑋 in 𝐶 do
10 if 𝑌 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) is not in 𝐶 then
11 Insert 𝑌 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) into 𝐶 and𝑊

12 else if 𝑋 ⊇ 𝑠𝑒𝑥𝑝 is of the form 𝑋 ⊇ 𝑌 then
13 foreach constraint 𝑌 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) in 𝐶 do
14 if 𝑉1, ...𝑉𝑟 are all ground then
15 if 𝑋 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) is not in 𝐶 then
16 Insert 𝑋 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) into 𝐶 and𝑊

17 if 𝑋 is not marked as ground then
18 Mark 𝑋 as ground

19 foreach constraint 𝑌 ⊇ 𝑐 (...𝑋 ...) in the original collection of constraints do
20 if all set variables used in 𝑐 (...𝑋 ...) are ground then
21 Insert 𝑌 ⊇ 𝑐 (...𝑋 ...) into W

22 foreach constraint 𝑌 ⊇ 𝑋 in the original collection of constraints do
23 Insert 𝑌 ⊇ 𝑋 into𝑊

Algorithm. The algorithm for set constraints is given in Algorithm 5. Let𝐶 be a collection of set

constraints, and the constraints can be solved by repeating two steps:

a) Add constraint 𝑋 ⊇ 𝑉𝑖 to𝐶 if both 𝑋 ⊇ 𝑐−1𝑖 (𝑌) and 𝑌 ⊇ 𝑐 (𝑉1, ...𝑉𝑟) exist in𝐶 and 𝑐 (𝑉1, ...,𝑉𝑟)
is ground.

b) Add constraint 𝑋 ⊇ 𝑐 (𝑉1, ...,𝑉𝑟) to 𝐶 if both 𝑋 ⊇ 𝑌 and 𝑌 ⊇ 𝑐 (𝑉1, ...,𝑉𝑟) exist in 𝐶 and

𝑐 (𝑉1, ...,𝑉𝑟) is ground.
Theorem 5.1. Let 𝑘 be the number of atomic expressions used in𝐶 , 𝑣 be the number of set variables

used in 𝐶 , 𝑝 be the maximum number of projection constraints that can match with a given constraint
of the form 𝑌 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟), and 𝑁 be the total number of constraints in the original problem; then
the time complexity of this algorithm is 𝑂 (𝑝𝑣𝑘 + 𝑘𝑣2 + 𝑁) = 𝑂 (𝑁 3).

Proof. The number of constraints in format 𝑋 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) is bounded by 𝑂 (𝑘𝑣), and the

number of constraints in format 𝑋 ⊇ 𝑌 is bounded by𝑂 (𝑣2), so the while loop of Line 3 may repeat

𝑂 (𝑘𝑣 + 𝑣2) times. The for loop of Line 6 may repeat 𝑂 (𝑝) times, and the loop of Line 9 may repeat

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:20 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

𝑂 (𝑣) times, so the total time complexity of Lines 5-11 is bounded by 𝑂 (𝑘𝑣 × (𝑝 + 𝑣)). The for loop
of Line 13 may repeat 𝑂 (𝑘) times, and the cost of Line 14 can be ignored because 𝑟 can be seen as

a constant factor. Thus, the total cost of Lines 12-16 is 𝑂 (𝑣2 × 𝑘). The checking cost in Line 17 is

bounded by𝑂 (𝑘𝑣 + 𝑣2). Although there are for loops in Lines 18-23, we can treat them as a constant

factor 𝑂 (𝑟) and 𝑂 (1) for Line 19 and Line 22, respectively. Since 𝑟 is constant, the total number of

propagating ground information in Lines 17-23 is bounded by 𝑂 (𝑁). Thus, the total cost of this
algorithm is 𝑂 (𝑘𝑣𝑝 + 𝑘𝑣2 + 𝑁). Because 𝑘, 𝑣, 𝑝 are proportional to 𝑁 in the worst case, the total

cost can also be written as 𝑂 (𝑁 3). □

5.2 Quantum SC-Reduction Algorithm
To improve the performance, the key is to reduce the searching cost of Lines 5-16. The method is

to employ our quantum search subroutine (Algorithm 3) to replace the exhaustive search. In this

case, Lines 6-8, 9-11, and 13-16 are replaced by applying Algorithm 3. To illustrate, we first consider

all data are stored in the array model: 𝑐𝑜𝑛𝑠_𝑠𝑐 (𝑐𝑜𝑛𝑠_𝑠𝑐 [𝑋] [𝑉1...𝑉𝑟] represents 𝑋 ⊇ 𝑐 (𝑉1, ...𝑉𝑟)),
𝑝𝑟𝑜 𝑗_𝑠𝑐 (𝑝𝑟𝑜 𝑗_𝑠𝑐 [𝑋] [𝑌] [𝑖] represents 𝑋 ⊇ 𝑐−1𝑖 (𝑌)) and 𝑣𝑎𝑟_𝑠𝑐 (𝑣𝑎𝑟_𝑠𝑐 [𝑋] [𝑌] represents 𝑋 ⊇ 𝑌).

Concretely, Lines 6-8 are replaced by:

foreach 𝑉𝑖 ∈ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) do
𝑣1 = 𝑝𝑟𝑜 𝑗_𝑠𝑐 [:] [𝑋] [𝑖], 𝑣2 = 𝑣𝑎𝑟_𝑠𝑐 [:] [𝑉𝑖]
𝐿 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(𝑣1, 𝑣2, 𝑁 , 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥 : 𝑣1 [𝑥] = 1 𝑎𝑛𝑑 𝑣2 [𝑥] = 0)
foreach 𝑌 𝑖𝑛 𝐿 do
Insert 𝑌 ⊇ 𝑉𝑖 into 𝐶 and𝑊

Lines 9-11 are replaced by:

𝑣1 = 𝑣𝑎𝑟_𝑠𝑐 [:] [𝑋], 𝑣2 = 𝑐𝑜𝑛𝑠_𝑠𝑐 [:] [𝑐 (𝑉1, ...,𝑉𝑟)]
𝐿 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(𝑣1, 𝑣2, 𝑁 , 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥 : 𝑣1 [𝑥] = 1 𝑎𝑛𝑑 𝑣2 [𝑥] = 0)

foreach 𝑌 𝑖𝑛 𝐿 do
Insert 𝑌 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) into 𝐶 and𝑊

Lines 13-16 are replaced by:

𝑣1 = 𝑐𝑜𝑛𝑠_𝑠𝑐 [𝑌] [:], 𝑣2 = 𝑐𝑜𝑛𝑠_𝑠𝑐 [𝑋] [:]
𝐿 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(𝑣1, 𝑣2, 𝑁 , 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥 : 𝑣1 [𝑥] = 1 𝑎𝑛𝑑 𝑣2 [𝑥] = 0)

foreach 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) 𝑖𝑛 𝐿 do
if 𝑉1, ...𝑉𝑟 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 then

Insert 𝑋 ⊇ 𝑐 (𝑉1,𝑉2, ...,𝑉𝑟) into 𝐶 and𝑊

Theorem 5.2. The time complexity of the SC-Reduction algorithm using the search subroutine
based on Grover’s search is bounded by 𝑂 (𝑁 2

√
𝑁polylog(𝑁)).

Proof. The proof is similar to that in Theorem 4.2. Let 𝑡𝑖 be the number of targets found if the

search space has i elements. The total cost is the cost of Lines 5-11 (denoted as𝑊𝑖 𝑓) plus the cost of

Lines 12-16 (denoted as𝑊𝑒𝑙𝑠𝑒). Thus, the cost can be written as follows:∑︁
𝑤∈𝑊𝑖 𝑓

𝑐𝑜𝑠𝑡𝐿𝑖𝑛𝑒𝑠5−11 +
∑︁

𝑤∈𝑊𝑒𝑙𝑠𝑒

𝑐𝑜𝑠𝑡𝐿𝑖𝑛𝑒𝑠12−16

=
∑︁

𝑤∈𝑊𝑖 𝑓

(
√︁
𝑝𝑡𝑝polylog(𝑁) +

√
𝑣𝑡𝑣polylog(𝑁)) +

∑︁
𝑤∈𝑊𝑒𝑙𝑠𝑒

√︁
𝑘𝑡𝑘polylog(𝑁)

≤polylog(𝑁) (
√︄ ∑︁

𝑤∈𝑊𝑖 𝑓

𝑝

√︄ ∑︁
𝑤∈𝑊𝑖 𝑓

𝑡𝑝 +
√︄ ∑︁

𝑤∈𝑊𝑖 𝑓

𝑣

√︄ ∑︁
𝑤∈𝑊𝑖 𝑓

𝑡𝑣 +
√︄ ∑︁

𝑤∈𝑊𝑒𝑙𝑠𝑒

𝑘

√︄ ∑︁
𝑤∈𝑊𝑒𝑙𝑠𝑒

𝑡𝑘)

≤polylog(𝑁) (
√︁
𝑘𝑣𝑝

√
𝑣2 +

√
𝑘𝑣2

√
𝑣𝑘 +

√
𝑘𝑣2

√
𝑣𝑘)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:21

=𝑂 (𝑁 2

√
𝑁polylog(𝑁))

The complexity of this algorithm is calculated based on Cauchy-Schwarz inequality. Because the

number of constraints in format 𝑋 ⊇ 𝑐 (𝑉1,𝑉2, . . . ,𝑉𝑟) is bounded𝑂 (𝑘𝑣), the term∑
𝑥 ∈𝑊𝑖 𝑓

𝑝 and the

term

∑
𝑥 ∈𝑊𝑖 𝑓

𝑣 are bounded by 𝑝𝑘𝑣 and 𝑘𝑣2. Similarly, the number of constraints in format 𝑋 ⊇ 𝑌 is

𝑂 (𝑣2), and the term

∑
𝑤∈𝑊𝑒𝑙𝑠𝑒

𝑘 is bounded by 𝑘𝑣2. After finding an element, the algorithm inserts

a new constraint into 𝐶 , so there is a relationship between the sum of 𝑡𝑖 . Because the number of

constraints in format 𝑌 ⊇ 𝑉𝑖 is 𝑂 (𝑣2), the term ∑
𝑤∈𝑊𝑖 𝑓

𝑡𝑝 is 𝑂 (𝑣2). Similarly, because the number

of constraints in format 𝑌 ⊇ 𝑐 (𝑉1,𝑉2, . . . ,𝑉𝑟) is𝑂 (𝑘𝑣), the term∑
𝑤∈𝑊𝑖 𝑓

𝑡𝑣 and
∑

𝑤∈𝑊𝑒𝑙𝑠𝑒
𝑡𝑘 are both

𝑂 (𝑣𝑘). The cost of the other lines remains unchanged and is trivial to the total cost. Since 𝑝, 𝑘, 𝑣

are proportional to 𝑁 , the algorithm is bounded by 𝑂 (𝑁 2

√
𝑁polylog(𝑁)). Finally, the algorithm

generates consistent results with the classical approach based on Theorem 3.5. □

5.3 Quantum Speedups on a Set Constraints Example
Similar to Section 4.3, we give an example to show the improvement of our approach to its classical

counterparts. Supposewe have a constraint with only four variables (𝑈 ,𝑋 ,𝑌 , and𝑍), one constructor

𝑐 , and the constraints we have are 𝑋 ⊇ 𝑌 , 𝑍 ⊇ 𝑐 (𝑋), 𝑋 ⊇ 𝑐 , and𝑈 ⊇ 𝑐−1
1
(𝑍). This covers all three

kinds of constraints in set constraints-based analysis.

The model we use for analysis is the array model, which supports constant access. As we have

four variables and one constructor, the array is 4 × 4 for three kinds of constraints. Given one

variable, iterating all related constraints takes four iterations using the array model.

First, we show the process in the classical computing method. The worklist𝑊 is initialized with

𝑋 ⊇ 𝑐 according to Line 1. Then, Line 2 marks all variables with the "not ground" property. Next,

the program executes into the while loop, and we show each loop iteration as follows.

• Loop Iteration 1: 𝑋 ⊇ 𝑐 is selected. 𝑋 ⊇ 𝑐 satisfies the condition in Line 5, so Lines 6-11 execute.

This process takes eight iterations, but there is no modification to 𝐶 and𝑊 . The program moves

to Line 17 and marks 𝑋 as ground. After iterating Lines 19-21, 𝑍 ⊇ 𝑐 (𝑋) is inserted into𝑊 .

Finally, Lines 22-23 do nothing to𝑊 . Note that the cost of Lines 17-23 is not counted in our

analysis because the classical and improved quantum algorithms share the same code.

• Loop Iteration 2: Then, 𝑍 ⊇ 𝑐 (𝑋) is selected, which meets the condition of Line 5.𝑊 ⊇ 𝑋 is

found and added into𝑊 and 𝐶 , and this searching process needs eight iterations. 𝑍 is marked as

ground. The total iteration is increased by eight, being 16 after this loop iteration.

• Loop Iteration 3:𝑈 ⊇ 𝑋 is selected, which meets the condition in Line 12, but no new constraint

is found during the four iterations. 𝑈 is then marked as ground, and no modification is made

to𝑊 . Because𝑊 is empty, the program stops, and the total number we count for analysis is

8 + 8 + 4 = 20.

In the quantum version, the analysis is the same as in Section 4.3. For case, 𝑀 = 0 (𝑀 is the

number of searching targets), the number of iterations is the approximate timeout threshold, i.e.,√
4 = 2 for this example. For case 𝑀 = 1 in this example, 𝑀 = 𝑁

4
means we have a 100% chance

of finding the target using Grover’s search. Thus, we need 1 + 2 (determine no more targets) = 3

iterations. Specifically, in Loop Iteration 1, the cost is reduced to 1 + 2 + 2 = 5. The cost of Loop

Iteration 2 is reduced to 5 as well. The cost of Loop Iteration 3 is accordingly reduced to 2. Thus, the

total number of iterations using our approach is 12, compared to 20 using the classical approach.

This example has a small constraint size due to the page limitation, leading to a slight difference.

When using constraints of a larger size, the result will appear better.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:22 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

6 EXPERIMENT EVALUATION
Though our work focuses on theoretical implications and complexity analysis of DTC-based static

analysis through the lens of quantum search, this section also provides some additional empirical

evaluation to facilitate the understanding of our theoretical results. This includes (1) the simulation

of our quantum algorithms on IBM Qiskit using randomly generated graphs and constraints for

correctness validation and running time estimation, and (2) the estimation of our performance

improvement using real-world benchmarks given the two aforementioned applications (i.e., CFL-

reachability analysis and SC-reduction).

Implementation. To compare the performance, we implement the baseline algorithms for CFL-

reachability (Algorithm 4) and SC-reduction (Algorithm 5) with the application to alias analysis.

We use an LLVM-based static analysis tool, SVF [54], to generate edge-labeled graphs for CFL-

reachability, and the productions are based on alias analysis [65]. The set constraints are generated

from CFL-reachability using the transformation approach [42].

On the quantum side, quantum algorithms for CFL-reachability and SC-reduction are imple-

mented by replacing the corresponding lines with quantum subroutines (Sections 4.2 and 5.2) where

Grover’s search is simulated by the IBM Qiskit [4] library (in Python) on the qasm_simulator
backend. Similar to existing quantum computing research, we evaluate our approach based on

Qiskit simulation instead of a real quantum machine because of hardware limitations. Most of

the quantum algorithms (ours included) are based on the assumption of large-scale and noise-free

quantum machines, which are unlikely to be available in the foreseeable future. The classical

simulation generates the same result as a quantum machine, which can be utilized for our empirical

study.

However, because classically simulating a quantum algorithm (e.g., Grover’s search) is time-

consuming and requires substantial resources [67], we evaluate efficiency and correctness separately

on different collections of datasets using two different strategies. For correctness, we run our

algorithm on the Qiskit simulator, which can produce the same results as a (noise-free) quantum

machine. However, classically simulating quantum algorithms typically result in exponential

slowdowns. We use small-scale and randomly generated graphs/constraints for our evaluation. For

efficiency, it is clear that we cannot demonstrate the performance of quantum algorithms in classical

simulators. To deal with this problem, we take real-world programs but "statically compute" (or

estimate) the number of iterations used in our quantum algorithm and compare it with the number

of iterations in classical algorithms. For completeness, we also simulate our algorithm on randomly

generated datasets and record the number of quantum iterations required to produce 100% correct

results.

Correctness Evaluation.We randomly generate the edge-labeled graphs and set constraints

using Numpy [32], which is an efficient array library. Since the input data for these two problems

(CFL-reachability and SC-reduction) are usually sparse, we set the probability of generating an

edge/constraint between any two nodes/constraints as 20% to simulate the CFL-reachability/SC-

reduction inputs. Due to the constraints on computational capability in simulating quantum

algorithms, the maximum qubit number in our evaluation is 𝑛 = 8 (on a Macbook Pro 15" with

16GB RAM and 2.6GHz 6-core Intel Core i7 processor) for simulating Grover’s search, which means

only input data with 𝑁 ≤ 256 nodes/constraints are considered. The experiment divides the data

into six categories, each corresponding to a different number 𝑛 ∈ [3, 8] of qubits. We randomly

generate twenty inputs for each category, simulate our quantum approach, and then compare the

results with the classical counterpart for our correctness evaluation. The simulation results show

that both clients by our quantum search approach yield the same results (100% precision and recall)

as those produced by the classical method, showing that our approach is precision-preserving.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:23

0
1
2
3
4
5
6
7
8
9

bake bash dpkg du i3 nano ninja psql tmux

CFL-reachability results

classical iteration quantum iteration

bi
lli

on
s o

f i
te

ra
tio

ns

0

20

40

60

80

100

120

140

bake bash dpkg du i3 nano ninja psql tmux

SC-reduction results

classical iteration quantum iteration

m
ill

io
ns

 o
f i

te
ra

tio
ns

Fig. 7. CFL-reachability (LHS) and SC-reduction (RHS) estimation results comparing the numbers of classical
and quantum iterations in billions and millions, respectively

.

It is interesting to mention that we observe inconsistency when the probability amplification is

removed (i.e., set the number of iterations to 1 instead of 𝑐 log𝑁 at Line 3 of Algorithm 3), which

illustrates the necessity of probability amplification employed in Algorithm 3.

0
50

100
150
200
250
300
350
400
450

0 50 100 150 200 250 300

estimated running time

tim
e

(s
ec

on
ds

)

input size N

Fig. 6. The estimated running times (blue line) calcu-
lated based on Grover iterations from the simulation
under different input sizes. The baseline (orange one)
is the curve for 0.5 × 10

−4𝑁 2.5
log𝑁 .

Efficiency Evaluation. Based on our simula-

tions of randomly generated datasets, we record

the number of Grover iterations required to pro-

duce 100% correct results and estimate the run-

ning time to get the trend of the running time

with different input sizes. Note that we cannot

use the running time of a classical simulator to

estimate the time required for a quantum com-

puter to execute the Grover search subroutine

because otherwise, the Grover search would be

simulated classically with similar time complex-

ity. To address this problem, in our simulation,

we replace the actual running time of simulat-

ing each Grover iteration with the theoretical

estimate log𝑁 . Our goal is to get the trend of

running time for different input sizes 𝑁 . The

estimated running time is shown in Figure 6, which demonstrates that the curve of our running

times (blue line) under different input sizes well aligns with the trend of complexity 𝑂 (𝑁 2.5
log𝑁)

(orange line).

For the sake of completeness, we also use nine open-source programs (shown at the bottom of

Figure 7) but "statically compute" the number of iterations used in our quantum algorithm and

compare it with the number of iterations in classical algorithms. It is hard to compare the running

times between classical and quantum algorithms due to the unavailability of practical quantum

computers. Our static estimation approach is valuable because the cost per iteration is similar in

the classical and quantum cases due to our efficient oracle design in Section 3.2 and the nature of

the problems. The cost of one quantum (Grover) iteration is 𝑂 (polylog(𝑁)), because the cost of
implementing the oracle is𝑂 (polylog(𝑁)) as discussed in Section 3.2, and a feasible implementation

of the diffusion needs 2 log𝑁 Hadamard gates, 2 log𝑁 X gates and 2 log𝑁 Toffoli gates. In our

evaluation, as other lines of Algorithms 4 and 5 remain unchanged, we only compare the number

of iterations from the modified lines (Lines 11-14 and 15-18 of Algorithm 4 and Lines 6-8, 9-11 and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:24 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

13-16 of Algorithm 5). The number of classical iterations is computed from the number of iterations

of the loop at the corresponding lines, and the number of quantum (Grover) iterations is computed

by ⌊0.9
√︁
𝑁 /𝑀⌋ for an 𝑁 -size search space with𝑀 targets based on Lemma 3.1. Figure 7 shows the

estimation results of CFL-reachability and SC-reduction. The program names are shown at the

bottom of the figure, and the sizes of inputs are about 30,000 nodes for CFL-reachability and 50,000

constraints for SC-reduction. The numbers of classical and quantum iterations we obtained are

marked by orange and blue bars, respectively. The reduction rate is about 77% in CFL-reachability

and 51% in SC-reduction.

Data Availability. The implementation and dataset are publicly available at [1].

7 DISCUSSIONS
This paper proposes the first truly subcubic solution for DTC-based static analysis by leveraging

the quantum advantage of Grover’s search. Grover’s search employs an oracle typically defined

by a Boolean function without knowledge of its design. The objective of this paper is to make

necessary components explicit when utilizing Grover’s search in DTC-based static analysis. These

components include the oracle design (Section 3.2), the quantum search subroutine (Section 3.3),

the deterministic expectation of static analysis algorithms (Section 3.4), and finally, how to apply

them (Sections 4 and 5).

Limitations. However, the real-world impact of Grover’s search hinges on two general as-

sumptions prevalent in the quantum community. The first assumption pertains to the existence of

large-scale and noise-free quantum machines. Currently, quantum computing operates in the noisy

intermediate-scale quantum (NISQ) era [46]. The effects of noise on certain quantum algorithms,

including Grover’s search, are noteworthy, given the challenges associated with controlling hard-

ware noise in current NISQ machines [47]. The second assumption involves the utilization of the

well-known QRAM model for loading classical data into qubits. QRAM serves as a crucial infras-

tructure for solving classical problems that require the conversion of classical data into quantum

states (e.g., [6]). QRAM also serves as a fundamental tool for advanced quantum data structures

(e.g., quantum sets [63]). While several papers have proposed feasible implementations of QRAM

(e.g., [21, 29, 43, 44]), no physical deployment currently exists. QRAM has demonstrated efficiency

in terms of circuit-depth complexity [44], but the deployment of fault-tolerant QRAM remains

a challenging task [41]. Although these two assumptions are independent of this paper from an

algorithmic perspective, we restate them here to avoid any potential misinterpretation, with our

primary focus being on the theoretical time complexity breakthrough in the cubic bottleneck of

DTC-based static analysis today.

Future works. This paper improves the time complexity of DTC-based static analysis by replacing

the classical exhaustive search with Grover’s search without altering the structure of the algorithms.

This decision is influenced by the difficulty of finding a subcubic procedure for DTC-based static

analysis, as highlighted in [34]. However, it’s important to note that the conclusion in [34] was

drawn in the classical domain without considering the power of quantum computing. Several

papers demonstrate the potential for further improving the complexity of classical problems using

Grover’s search by modifying algorithm structures (e.g., algorithms in [5]). This can be considered

as a potential future direction for enhancing the time complexity of program analysis problems.

Moreover, we note from [52] that when provided with the specific circuit used to implement the

oracle for the Grover search, there may be potential to optimize the classical algorithm to approach

the theoretical complexity of the quantum algorithm. This concept falls under the umbrella of

quantum-inspired classical algorithms [57]. For future work, we aim to explore the possibility

of designing classical algorithms inspired by the Grover search-based approach in this paper to

achieve a subcubic solution for DTC-based analysis.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:25

8 RELATEDWORK
We limit our discussion to the most relevant work to this paper, including DTC-based static program

analysis and quantum speedups on classical problems.

Static program analysis. This paper aims to improve the worst-case time complexity of two

typical static analysis algorithms, CFL-reachability and set constraint-based analysis, which are

interchangeable and both based on dynamic transitive closure resulting in the algorithm having

cubic complexity, known as a cubic bottleneck [34, 40, 42]. As far as we know, the best upper bound

for CFL-reachability analysis is subcubic (i.e., 𝑂 (𝑁 3/log𝑁)) [15], but there is no truly subcubic

solution. The algorithms with improved complexity only exist in the special case of DTC-based

analysis. For example, a special case of CFL-reachability working on the Dyck language can be

solved using bidirected trees and graphs in linear time [64]. For the BMM application, there is work

that shows that solving Dyck-CFL-reachability on general graphs is BMM hard [14]. Another work

shows the existence of subcubic certificate systems for CFL-reachability [20]. Developing faster

algorithms in classical computing for general DTC-based analysis is highly challenging [51, 64].

This paper takes one step forward in investigating quantum speedups on the cubic bottleneck of

DTC-based analysis. In recent years, the combination of classical program analysis and quantum

computing has received much attention. However, most of them focus on extending classical

techniques to solve problems in quantum programming theory (e.g., abstract interpretation [62],

verification [66] and debugging of quantum programs [39]). We believe that the opposite direction,

that is, using techniques and algorithms of quantum computing to tackle classical problems in

programming languages, is equally important. We hope that this paper provides preliminary

evidence that this goal is achievable, and how.

Quantum speedups. Recently, quantum computing has received much attention due to its

substantial computational power. In 2022, the world’s most extensive quantum computer had 433

qubits, and the 1000-qubit barrier will likely be broken in the near future [27]. Since hardware

development is well-progressed, some quantum algorithms will likely be used in the coming years.

Since hardware development is well-progressed, some quantum algorithms will likely be used in

the coming years. Shor’s algorithm [45, 50] solves integer factorization in polynomial time, whereas

the best-known classical algorithm solves it in exponential time. Grover’s algorithm [30] offers a

quadratic speedup on unsorted search problems, whereas the classical algorithm needs linear time.

These are two well-known algorithms in quantum computing. Quantum counting [11] is to estimate

the number of targets before searching and may be an alternative solution to our approach. We did

not use it in our approach because it is based on phase estimation [43] and requires much more

complex oracles than we need in our quantum search. Specifically, a series of controlled versions of

the currently used oracle is required, which will significantly increase the complexity. The recent

implementation of data structures in quantum superposition [63] involves a quantum set based

on a radix tree and QRAM, serving as an alternative to a quantum oracle. Unfortunately, most

quantum programming languages lack support for the set data structure. Algorithms in quantum

machine learning [9], chemistry [13], and quantum approximate optimization [25] have also been

developed in the past years. Some applications of these algorithms are proven to have an effect

on existing problems. RSA is possibly corrupted by Shor’s algorithm [28]. Graph problems are

improved by Grover’s search, for example, the minimum spanning tree, connectivity, single-source

shortest path [23], breadth-first search, and depth-first search [7].

9 CONCLUSION
This paper presents a quantum approach to speed up DTC-based static analysis algorithms. Its

novelty lies in accelerating the key searching tasks by applying Grover’s search when computing

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:26 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

dynamic transitive closures. To apply the quantum search subroutine, our quantum algorithm

leverages QRAM to implement the oracle for loading classical data into quantum superposition.

Due to the probabilistic nature of the quantum search, we further improve the existing quantum

search subroutine with a probability amplification technique. Taking two static analysis algorithms

as our applications, we prove that CFL-reachability and set constraint-based analysis have time

complexity 𝑂 (𝑁 2

√
𝑁polylog(𝑁)), which is truly subcubic, outperforming the best upper bound.

Our experiment results demonstrate the effectiveness and correctness of our approach. We hope

our approach sheds light on new opportunities to address general challenging problems in static

analysis using quantum computing.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their reviews and suggestions. This research is supported

by Australian Research Grants DP210101348, FT220100391 and DP220102059, and by a generous

Aspire Gift Grant from Google.

REFERENCES
[1] 2024. Artifact: "Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search". https:

//github.com/jiawei-95/tosem-QDTCSA-artifact

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1968. Time and Tape Complexity of Pushdown Automaton

Languages. Information and Control 13 (1968), 186–206. https://doi.org/10.1016/S0019-9958(68)91087-5

[3] A. Aiken and E.L. Wimmers. 1992. Solving Systems of Set Constraints. In 1992 Proceedings of the Seventh Annual IEEE
Symposium on Logic in Computer Science. 329–340. https://doi.org/10.1109/LICS.1992.185545

[4] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher,

Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D.

Córcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González,

Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage,

Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko

Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari

Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel

Marques, Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo,

Nikolaj Moll, Diego Moreda Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan,

Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez

Davila, Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong

Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano

Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe

Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner,

Ismail Yunus Akhalwaya, and Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum Computing.
https://doi.org/10.5281/zenodo.2562111

[5] Andris Ambainis. 2005. Quantum Search Algorithms. arXiv:quant-ph/0504012 [quant-ph]

[6] Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis Prūsis, and Jevgenijs Vihrovs. 2019. Quantum
Speedups for Exponential-Time Dynamic Programming Algorithms. 1783–1793. https://doi.org/10.1137/1.9781611975482.

107

[7] Andris Ambainis and Robert Špalek. 2006. Quantum Algorithms for Matching and Network Flows. In Proceedings of
the 23rd Annual Conference on Theoretical Aspects of Computer Science (Marseille, France) (STACS’06). Springer-Verlag,
Berlin, Heidelberg, 172–183. https://doi.org/10.1007/11672142_13

[8] Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Programming Language. (1994). https:

//www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf

[9] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum

Machine Learning. Nature 549, 7671 (2017), 195–202. https://doi.org/10.1038/nature23474

[10] Rastisalv Bodík and Sadun Anik. 1998. Path-Sensitive Value-Flow Analysis. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’98). Association for

Computing Machinery, New York, NY, USA, 237–251. https://doi.org/10.1145/268946.268966

[11] Michel Boyer, Gilles Brassard, Peter Hoyer, and Alain Tappa. 2005. Tight Bounds on Quantum Searching. Fortschritte Der
Physik-progress of Physics - FORTSCHR PHYS 46 (01 2005), 187 – 199. https://doi.org/10.1002/(SICI)1521-3978(199806)46:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/jiawei-95/tosem-QDTCSA-artifact
https://github.com/jiawei-95/tosem-QDTCSA-artifact
https://doi.org/10.1016/S0019-9958(68)91087-5
https://doi.org/10.1109/LICS.1992.185545
https://doi.org/10.5281/zenodo.2562111
https://arxiv.org/abs/quant-ph/0504012
https://doi.org/10.1137/1.9781611975482.107
https://doi.org/10.1137/1.9781611975482.107
https://doi.org/10.1007/11672142_13
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://doi.org/10.1038/nature23474
https://doi.org/10.1145/268946.268966
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:27

4/5%3C493::AID-PROP493%3E3.0.CO;2-P

[12] Harry Buhrman, Richard Cleve, Ronald de Wolf, and Christof Zalka. 1999. Bounds for Small-Error and Zero-Error

Quantum Algorithms. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS ’99).
IEEE Computer Society, USA, 358. https://doi.org/10.1109/SFFCS.1999.814607

[13] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D.

Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. 2019.

Quantum Chemistry in the Age of Quantum Computing. Chemical Reviews 119, 19 (2019), 10856–10915. https:

//doi.org/10.1021/acs.chemrev.8b00803

[14] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2017. Optimal Dyck Reachability for Data-

Dependence and Alias Analysis. Proceedings of the ACM on Programming Languages 2, POPL, Article 30 (dec 2017),
30 pages. https://doi.org/10.1145/3158118

[15] Swarat Chaudhuri. 2008. Subcubic Algorithms for Recursive State Machines. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’08).
Association for Computing Machinery, New York, NY, USA, 159–169. https://doi.org/10.1145/1328438.1328460

[16] Xiao Cheng, Xu Nie, Ningke Li, Haoyu Wang, Zheng Zheng, and Yulei Sui. 2022. How About Bug-Triggering Paths? -

Understanding and Characterizing Learning-Based Vulnerability Detectors. TDSC (2022). https://doi.org/10.1109/

TDSC.2022.3192419

[17] Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong: Statically Detecting Software

Vulnerabilities Using Deep Graph Neural Network. TOSEM (2021). https://doi.org/10.1145/3436877

[18] Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-Sensitive Code Embedding via Contrastive

Learning for Software Vulnerability Detection. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’22). ACM. https://doi.org/10.1145/3533767.3534371

[19] G. Chiribella, G. M. D’Ariano, and P. Perinotti. 2008. Quantum Circuit Architecture. Physical Review Letters 101 (Aug
2008), 060401. Issue 6. https://doi.org/10.1103/PhysRevLett.101.060401

[20] Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper. 2022. Subcubic Certificates for CFL Reachability. Proceedings
of the ACM on Programming Languages 6, POPL, Article 41 (jan 2022), 29 pages. https://doi.org/10.1145/3498702

[21] John Cortese and Timothy Braje. 2018. Loading Classical Data into a Quantum Computer. ArXiv: Quantum Physics
(2018). https://doi.org/10.48550/arXiv.1803.01958

[22] Sebastian Dörn. 2008. Quantum Complexity of Graph and Algebraic Problems. (2008). https://www.uni-ulm.de/

fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/doern/Dissertation.pdf

[23] Christoph Dürr, Mark Heiligman, Peter Hoyer, and Mehdi Mhalla. 2006. Quantum Query Complexity of Some Graph

Problems. SIAM J. Comput. 35, 6 (2006), 1310–1328. https://doi.org/10.1137/050644719

[24] Sam Estep, Jenna Wise, Jonathan Aldrich, Éric Tanter, Johannes Bader, and Joshua Sunshine. 2021. Gradual Program

Analysis for Null Pointers. In Proceedings of the 35th European Conference on Object-Oriented Programming (ECOOP
2021) (Leibniz International Proceedings in Informatics (LIPIcs)), Manu Sridharan and Anders Møller (Eds.). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Aarhus, Denmark. https://doi.org/10.4230/LIPIcs.ECOOP.2021.3

[25] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approximate Optimization Algorithm. ArXiv:
Quantum Physics (2014). https://doi.org/10.48550/arXiv.1411.4028

[26] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program Dependence Graph and Its Use in

Optimization. ACM Transactions on Programming Languages and Systems (TOPLAS) 9, 3 (jul 1987), 319–349. https:

//doi.org/10.1145/24039.24041

[27] Jay Gambetta. 2022. Quantum-Centric Supercomputing: The Next Wave of Computing. IBM Research Blog (2022).

https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing

[28] Craig Gidney and Martin Ekerå. 2021. How to Factor 2048 Bit RSA Integers in 8 Hours Using 20 Million Noisy Qubits.

Quantum 5 (April 2021), 433. https://doi.org/10.22331/q-2021-04-15-433

[29] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum Random Access Memory. Physical Review
Letters 100 (Apr 2008), 160501. Issue 16. https://doi.org/10.1103/PhysRevLett.100.160501

[30] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for

Computing Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866

[31] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. 2020. Faster Fully Dynamic Transitive Closure in Practice.

ArXiv (2020). https://doi.org/10.48550/arXiv.2002.00813

[32] Charles Harris, K Millman, Stéfan Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor,

Sebastian Berg, Nathaniel Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten Kerkwijk, Matthew Brett, Allan

Haldane, Jaime Río, Mark Wiebe, Pearu Peterson, and Travis Oliphant. 2020. Array programming with NumPy. Nature
585 (09 2020), 357–362. https://doi.org/10.1038/s41586-020-2649-2

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://doi.org/10.1109/SFFCS.1999.814607
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1145/3158118
https://doi.org/10.1145/1328438.1328460
https://doi.org/10.1109/TDSC.2022.3192419
https://doi.org/10.1109/TDSC.2022.3192419
https://doi.org/10.1145/3436877
https://doi.org/10.1145/3533767.3534371
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1145/3498702
https://doi.org/10.48550/arXiv.1803.01958
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/doern/Dissertation.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/doern/Dissertation.pdf
https://doi.org/10.1137/050644719
https://doi.org/10.4230/LIPIcs.ECOOP.2021.3
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1145/237814.237866
https://doi.org/10.48550/arXiv.2002.00813
https://doi.org/10.1038/s41586-020-2649-2

1:28 Jiawei Ren, Yulei Sui, Xiao Cheng, Yuan Feng, and Jianjun Zhao

[33] Nevin Heintze and Joxan Jaffar. 1994. Set Constraints and Set-Based Analysis. In Proceedings of the Second International
Workshop on Principles and Practice of Constraint Programming (PPCP ’94). Springer-Verlag, Berlin, Heidelberg, 281–298.
https://link.springer.com/chapter/10.1007/3-540-58601-6_107

[34] Nevin Heintze and David McAllester. 1997. On the Cubic Bottleneck in Subtyping and Flow Analysis. In Proceedings
of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS ’97). IEEE Computer Society, USA, 342.

https://doi.org/10.1109/LICS.1997.614960

[35] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. 2009. Tolerating Hardware Device Failures in Software. In

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09).
Association for Computing Machinery, New York, NY, USA, 59–72. https://doi.org/10.1145/1629575.1629582

[36] Ioannis Krommidas and Christos Zaroliagis. 2008. An Experimental Study of Algorithms for Fully Dynamic Transitive

Closure. Journal of Experimental Algorithmics (JEA) 12, Article 16 (jun 2008), 22 pages. https://doi.org/10.1145/

1227161.1370597

[37] Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. 2022. Taming Transitive Redundancy for Context-Free Language

Reachability. In OOPSLA. https://doi.org/10.1145/3563343

[38] Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang. 2023. Recursive State Machine Guided Graph Folding for

Context-Free Language Reachability. PLDI (2023). https://doi.org/10.1145/3591233

[39] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. 2020. Projection-Based Runtime Assertions

for Testing and Debugging Quantum Programs. Proc. ACM Program. Lang. 4, OOPSLA, Article 150 (nov 2020), 29 pages.
https://doi.org/10.1145/3428218

[40] Anders Alnor Mathiasen and Andreas Pavlogiannis. 2021. The Fine-Grained and Parallel Complexity of Andersen’s

Pointer Analysis. Proceedings of the ACM on Programming Languages 5, POPL, Article 34 (jan 2021), 29 pages.

https://doi.org/10.1145/3434315

[41] Olivia Di Matteo, Vlad Gheorghiu, and Michele Mosca. 2020. Fault-Tolerant Resource Estimation of Quantum Random-

Access Memories. IEEE Transactions on Quantum Engineering 1 (2020), 1–13. https://doi.org/10.1109/TQE.2020.2965803

[42] David Melski and Thomas Reps. 1997. Interconvertbility of Set Constraints and Context-Free Language Reachability.

In Proceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(Amsterdam, The Netherlands) (PEPM ’97). Association for Computing Machinery, New York, NY, USA, 74–89. https:

//doi.org/10.1145/258993.259006

[43] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667

[44] Alexandru Paler, Oumarou Oumarou, and Robert Basmadjian. 2020. Parallelizing the Queries in a Bucket-Brigade

Quantum RandomAccess Memory. Physical Review A 102 (Sep 2020), 032608. Issue 3. https://doi.org/10.1103/PhysRevA.

102.032608

[45] Yuxiang Peng, Kesha Hietala, Runzhou Tao, Liyi Li, Robert Rand, Michael Hicks, and Xiaodi Wu. 2022. A Formally

Certified End-to-End Implementation of Shor’s Factorization Algorithm. https://doi.org/arXiv.2204.07112

[46] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (01 2018). https://doi.org/10.22331/q-

2018-08-06-79

[47] Daniel Reitzner and Mark Hillery. 2019. Grover Search Under Localized Dephasing. Phys. Rev. A 99 (Jan 2019), 012339.

Issue 1. https://doi.org/10.1103/PhysRevA.99.012339

[48] Thomas Reps. 1997. Program Analysis via Graph Reachability. In Proceedings of the 1997 International Symposium
on Logic Programming (Port Washington, New York, USA) (ILPS ’97). MIT Press, Cambridge, MA, USA, 5–19. https:

//doi.org/10.1016/S0950-5849(98)00093-7

[49] Qingkai Shi, Xiao Xiao, RongxinWu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and Precise Sparse

Value Flow Analysis for Million Lines of Code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New

York, NY, USA, 693–706. https://doi.org/10.1145/3192366.3192418

[50] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum

Computer. SIAM J. Comput. 26, 5 (oct 1997), 1484–1509. https://doi.org/10.1137/S0097539795293172

[51] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg Beach, Florida, USA) (POPL ’96). Association for

Computing Machinery, New York, NY, USA, 32–41. https://doi.org/10.1145/237721.237727

[52] E. M. Stoudenmire and Xavier Waintal. 2023. Grover’s Algorithm Offers No Quantum Advantage. https://doi.org/10.

48550/arXiv.2303.11317

[53] Yulei Sui, Xiao Cheng, Guanqin Zhang, and Haoyu Wang. 2020. Flow2Vec: Value-Flow-Based Precise Code Embedding.

OOPSLA (2020). https://doi.org/10.1145/3428301

[54] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Analysis in LLVM. In Proceedings of the 25th
International Conference on Compiler Construction (Barcelona, Spain) (CC 2016). Association for Computing Machinery,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://link.springer.com/chapter/10.1007/3-540-58601-6_107
https://doi.org/10.1109/LICS.1997.614960
https://doi.org/10.1145/1629575.1629582
https://doi.org/10.1145/1227161.1370597
https://doi.org/10.1145/1227161.1370597
https://doi.org/10.1145/3563343
https://doi.org/10.1145/3591233
https://doi.org/10.1145/3428218
https://doi.org/10.1145/3434315
https://doi.org/10.1109/TQE.2020.2965803
https://doi.org/10.1145/258993.259006
https://doi.org/10.1145/258993.259006
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevA.102.032608
https://doi.org/10.1103/PhysRevA.102.032608
https://doi.org/arXiv.2204.07112
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.99.012339
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/237721.237727
https://doi.org/10.48550/arXiv.2303.11317
https://doi.org/10.48550/arXiv.2303.11317
https://doi.org/10.1145/3428301

Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search 1:29

New York, NY, USA, 265–266. https://doi.org/10.1145/2892208.2892235

[55] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static Memory Leak Detection Using Full-Sparse Value-Flow Analysis. In

Proceedings of the 2012 International Symposium on Software Testing and Analysis (Minneapolis, MN, USA) (ISSTA 2012).
Association for Computing Machinery, New York, NY, USA, 254–264. https://doi.org/10.1145/2338965.2336784

[56] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting Memory Leaks Statically with Full-Sparse Value-Flow Analysis.

TSE (2014). https://doi.org/10.1109/TSE.2014.2302311

[57] Ewin Tang. 2019. A Quantum-Inspired Classical Algorithm for Recommendation Systems. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing (Phoenix, AZ, USA) (STOC 2019). Association for Computing

Machinery, New York, NY, USA, 217–228. https://doi.org/10.1145/3313276.3316310

[58] Thomas Wigren. 2015. The Cauchy-Schwarz inequality : Proofs and applications in various spaces. https://www.diva-

portal.org/smash/get/diva2:861242/FULLTEXT02.pdf

[59] Virginia Vassilevska Williams. 2012. Multiplying Matrices Faster than Coppersmith-Winograd. In Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing (New York, New York, USA) (STOC ’12). Association for

Computing Machinery, New York, NY, USA, 887–898. https://doi.org/10.1145/2213977.2214056

[60] Cheng Xiao, Wang Jiawei, and Sui Yulei. 2024. Precise Sparse Abstract Execution via Cross-Domain Interaction. In 46th
International Conference on Software Engineering (ICSE ’2024). ACM/IEEE. https://doi.org/10.1145/3597503.3639220

[61] Mihalis Yannakakis. 1990. Graph-Theoretic Methods in Database Theory. In Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (Nashville, Tennessee, USA) (PODS ’90). Association for

Computing Machinery, New York, NY, USA, 230–242. https://doi.org/10.1145/298514.298576

[62] Nengkun Yu and Jens Palsberg. 2021. Quantum Abstract Interpretation. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association
for Computing Machinery, New York, NY, USA, 542–558. https://doi.org/10.1145/3453483.3454061

[63] Charles Yuan and Michael Carbin. 2022. Tower: Data Structures in Quantum Superposition. Proc. ACM Program. Lang.
6, OOPSLA2, Article 134 (oct 2022), 30 pages. https://doi.org/10.1145/3563297

[64] Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. 2013. Fast Algorithms for Dyck-CFL-Reachability with

Applications to Alias Analysis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA,

435–446. https://doi.org/10.1145/2491956.2462159

[65] Xin Zheng and Radu Rugina. 2008. Demand-Driven Alias Analysis for C. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 197–208. https://doi.org/10.1145/1328897.

1328464

[66] Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng Ying. 2023. CoqQ: Foundational Verification of

Quantum Programs. 7, POPL, Article 29 (jan 2023), 33 pages. https://doi.org/10.1145/3571222

[67] Yiqing Zhou, E Miles Stoudenmire, and Xavier Waintal. 2020. What Limits the Simulation of Quantum Computers?

Physical Review X 10, 4 (2020), 041038. https://doi.org/10.1103/PhysRevX.10.041038

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2338965.2336784
https://doi.org/10.1109/TSE.2014.2302311
https://doi.org/10.1145/3313276.3316310
https://www.diva-portal.org/smash/get/diva2:861242/FULLTEXT02.pdf
https://www.diva-portal.org/smash/get/diva2:861242/FULLTEXT02.pdf
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/3597503.3639220
https://doi.org/10.1145/298514.298576
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3563297
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/1328897.1328464
https://doi.org/10.1145/1328897.1328464
https://doi.org/10.1145/3571222
https://doi.org/10.1103/PhysRevX.10.041038

	Abstract
	1 Introduction
	2 Background on Quantum Computing
	2.1 Quantum Bit and Quantum Measurement
	2.2 Quantum Gate
	2.3 Quantum Parallelism
	2.4 Grover's Search

	3 Quantum Speedups for DTC-Based Static Analysis
	3.1 Motivating Example: Quantum Speedups for Searching Subtasks
	3.2 Oracle Implementation
	3.3 Quantum Searching Subroutine for DTC-Based Static Analysis
	3.4 Consistent results with the classical method

	4 Application i: Quantum Speedups on CFL-Reachability
	4.1 Classical CFL-Reachability Algorithm
	4.2 Quantum CFL-Reachability Algorithm
	4.3 Quantum Speedups on a CFL-Reachability Example

	5 Application ii: Quantum Speedups on Set Constraints
	5.1 Classical SC-Reduction Algorithm
	5.2 Quantum SC-Reduction Algorithm
	5.3 Quantum Speedups on a Set Constraints Example

	6 Experiment Evaluation
	7 discussions
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

