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Static bug detection has shown its effectiveness in detecting well-defined memory errors, e.g., memory leaks,
buffer overflows and null dereference. However, modern software systems have a wide variety of vulnerabilities.
These vulnerabilities are extremely complicated with sophisticated programming logic and these bugs are often
caused by different bad programming practices, challenging existing bug detection solutions. It is hard and
labour-intensive to develop precise and efficient static analysis solutions for different types of vulnerabilities,
particularly for those that may not have a clear specification as the traditional well-defined vulnerabilities.

This paper presents DEEPWUKONG, a new deep-learning-based embedding approach to static detection of
software vulnerabilities for C/C++ programs. Our approach makes a new attempt by leveraging advanced
recent graph neural networks to embed code fragments in a compact and low-dimensional representation,
producing a new code representation that preserves high-level programming logic (in the form of control- and
data-flows) together with the natural language information of a program. Our evaluation studies the top 10
most common C/C++ vulnerabilities during the past three years. We have conducted our experiments using
105,428 real-world programs by comparing our approach with four well-known traditional static vulnerability
detectors and three state-of-the-art deep-learning-based approaches. The experimental results demonstrate the
effectiveness of our research and have shed light on the promising direction of combining program analysis
with deep learning techniques to address the general static code analysis challenges.
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1 INTRODUCTION

Modern software systems are often plagued with a wide variety of software vulnerabilities. Detecting
and fixing these complicated, emerging and wide-ranging vulnerabilities are extremely hard. The
number of vulnerabilities registered in the Common Vulnerabilities and Exposures (CVE) [1] has
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Table 1. Top 10 most common C/C++ CVEs (in terms of their numbers appear in NVD [1]) from 2017.01.01-
2019.07.20.

Vul Category Description CVE-num

Improper Restriction of Operations

CWEILL9 within the Bounds of a Memory Buffer 4,524

CWE20 Improper Input Validation 2,769

CWE125 Out-of-bounds Read 1,245

CWE190 Integer Overflow or Wraparound 877
Improper Limitation of a Pathname

CWE22 to a Restricted Directory 857

CWE399 Resource Management Errors 699

CWE787 Out-of-bounds Write 534

CWE254 Security Features 483

CWE400 Uncontrolled Resource Consumption 393
Improper Neutralization of Special

CWET8 Elements used in an OS Command 258

increased significantly during the past three years. Statistics show that there are 34,473 newly
registered CVEs and 34,093 of them are above medium-level security from 2017.01.01 to 2019.07.20
according to NVD [1]. Table 1 lists the number of CVEs for the top 10 most Common C/C++
Weakness Enumeration (CWE) vulnerabilities. It can be seen that these vulnerabilities behave
differently with quite different specifications.

Existing efforts. Static bug detection, which approximates the runtime behavior of a program
without running it, is the major way to pinpoint bugs at the early stage of software develop-
ment cycle, thus reducing software maintenance cost. Traditional static analysis techniques (e.g.,
CLANG STATIC ANALYZER [2], COVERITY [3], FORTIFY [4], FLAWFINDER [5], INFER [6], ITS4 [7],
RATS [8], CHECKMARX [9] and SVF [10]) have shown their success in detecting well-defined mem-
ory corruption bugs. However, adapting the existing solutions for detecting a wide variety of
emerging vulnerabilities has two major limitations. First, they rely on static analysis experts to
define specific detection strategies for different types of vulnerabilities, which is labour-intensive
and time-consuming. Second, the effectiveness of the pre-developed detection systems highly
relies on the expertise of the analysis developers and the knowledge of existing vulnerabilities.
The emerging high-level vulnerabilities pose big challenges to existing bug detection approaches,
making it hard to extend the existing bug detectors.

Challenges. We give two real-world vulnerabilities to demonstrate the challenges in identifying
different high-level vulnerabilities. Fig. 1(a) shows a vulnerable code fragment from IPsec-Tools
0.8.2". It contains a remotely exploitable attack when parsing and storing ISAKMP fragments when
missing a conditional guard. The code below the black dotted line is vulnerable and the above one
is safe (after it was fixed by the developer). Most of the two code fragments share the same logic
(omitted here), but they are different in checking the last ISAKMP fragment. Unfortunately, the
conditional check in the vulnerable code is incorrect and inconsistent with many other parts of the
code in this project. This vulnerability took an experienced developer 23 days to eventually find and
fix it”. Fig. 1(b) shows an example of improper resource shutdown or release’. The vulnerable code
fragment does not close an opened file handle if an error occurs. If this is a long running process, it
can run out of file handle resources; therefore, missing the “try/catch” exceptional handling may

1The whole fixing patch is available at http://cvsweb.netbsd.org/bsdweb.cgi/src/crypto/dist/ipsec-tools/src/racoon/isakmp_
frag.c.diff 7r1=1.5&r2=1.5.36.1

Zhttps://nvd.nist.gov/vuln/detail/CVE-2016-10396

3The detailed description is available at https://cwe.mitre.org/data/definitions/404.html
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T 1 item->frag_next = NULL; % ;'Eﬂe* f = fopen(fName, "r");
| 2 item->frag_packet = buf; 3
| 3 if| (isLastFrag(item, iphl) && | ce . .
& 4 | isValidFrag(item, iphl)) | é processFile(f);
3 54
| } SRy, 6 fclose(f);
| 3 InsertNewIten(item, lph;)’ 7 }catch (const std::exception &e){
: k 8 fclose(f);
9

Differeﬁt condition(complex)!

I item->frag_next = NULL; 1 Filex f = fopen(fName, "r");
| . - 2
@ 2 item->frag_packet = buf; -~ . o . |
7’3 3 iﬂ(isLastFrag(item, iphl))§ i processFile(f); Missing try-catch block!
] 4 { e
é 5 InsertNewItem(item, iphl); 5 fclose(f);
6
|
v (a) CVE-2016-10396 (the racoon daemon in IPsec-Tools 0.8.2) (b) CWE-404 (https://cwe.mitre.org/data/definitions/404.html )

Fig. 1. Real-world vulnerabilities that are hard to be automatically identified by traditional static vulnerability
detection approaches. For each example, we list the safe code fragment and the corresponding identified
vulnerable code.

cause program crashes or hang. These high-level bugs are caused by inconsistent business logic
and bad programming practices; therefore, it is challenging for traditional static detectors (e.g.,
memory error detectors) which rely on well-defined specifications to capture these vulnerabilities.

Insights. In reality, the unexpected behaviors of a vulnerable program often manifest in different
aspects of the code features, including code tokens, APIs, and control- and data-flow of a program.
The code pattern can be quite different between vulnerable and safe code because it can reflect the
interprocedural execution order, the logic of a program, and also good/bad programming practices.
There are a handful of efforts in pinpointing vulnerabilities at different levels of granularity (e.g.
program [11], package [12], component [13], file [14], method [15-17] and slice [18]) by combining
machine learning with static bug detection. The general idea is to generate a prediction model
that captures the correlation between vulnerable programs and their (extracted) program features
through sample training. Later, a new program can be predicted as safe or vulnerable based on the
trained prediction model.

However, almost all of them focus on detecting low-level memory errors, e.g., buffer overflows
and use-after-frees. The real-world vulnerabilities are much more complicated (cf. Figure 1), posing
challenges for existing approaches. Moreover, current approaches extract shallow code features
(e.g., code tokens and abstract syntax trees) by directly applying the embedding techniques, such as
Worbp2VEC [19] and Doc2VEc [20], while the comprehensive code features (e.g., control- and data-
dependence) are not precisely preserved in the embedding space. Allamanis et al. [21] have proposed
to use gated graph neural network to represent the syntactic and semantic structure of a program,
aiming at solving two software engineering tasks, i.e., variable renaming and misuses, rather
than detecting general software vulnerabilities. In addition, they did not perform interprocedural
program dependence analysis (by considering pointer aliases), which is essential for real-world
programs since function calls are quite common in modern software projects. Finally, existing
deep-learning-based approaches predict a bug at method or file level in a coarse grained manner. It
is hard to provide a more fine-grained way (e.g., identifying the program slices that may trigger a
bug) for developers to precisely pinpoint a vulnerability.

Our solution. In this paper, we propose DEEPWUKONG, a new deep-learning-based code em-
bedding approach, to detect 10 different types of popular vulnerabilities. Our approach makes a
new attempt by leveraging recent graph neural networks to embed code fragments in a compact
low-dimensional code representation that preserves a program’s high-level control- and data-flow
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Fig. 2. Overview of DEEPWUKONG. Models encoded with vulnerability patterns are saved after training,
which then are loaded to flag whether the target gray code is vulnerable or not.

information, without the need of manually defining rules. Program slices (or XFGs) are first ex-
tracted from code fragments. A slice (or an XFG) is labelled as vulnerable if it contains a vulnerable
statement (vulnerable program statements are all annotated in our ground truth samples) and safe
otherwise. A neural network model is then trained using both these safe and vulnerable program
slices. Both the unstructured and structured code information of a program are embedded when
building our neural networks. The unstructured information is code tokens, while the structured
information is manifested by the connections of nodes on XFG containing both control- and data-
dependence of a program. Both information is fed into the graph neural networks to produce
compact code representation in the latent feature space. By learning the vulnerable and safe pro-
gram slices using recent advances in GNN, DEEPWUKONG supports more precise bug prediction to
localize vulnerabilities at the finer-grained program slice level rather than at the file or method
level.

Overall framework. Fig. 2 shows the overall framework of DEEPWUKONG consisting of two
phases: a training phase and a detecting phase. For the training phase, in (a.1), DEEPWUKONG first
computes the control- and data-dependence over the interprocedural CFG and VFG, with pointer
aliases information being considered, and constructs the Program Dependence Graph (PDG) based
on the control- and data-flow information. In (a.2), DEEPWUKONG generates each slice or XFG (a
subgraph of the PDG) for the program by conducting forward and backward traversal along the
PDG starting from a program point of interest (i.e., slicing criteria) until a fixed-point is reached,
thereby maintaining both the data- and control-flow of a program.

In order to precisely preserve the semantic information of the source code for training a neu-
ral network, DEEPWUKONG first conducts the variable name normalization by mapping user-
defined variables and functions to their canonical symbolic names in (b.1). DEEPWUKONG then uses
Doc2VEc [20] to transform the tokens for each statement (i.e., each node on XFG) of the source
code into vector representations as shown in (b.2).

Next, we obtain both structured (XFG edges) and unstructured information (code tokens in the
form of embedding vectors for each node on XFG) as the inputs of our neural networks as depicted
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in (c.1). Three kinds of graph neural networks are then used to evaluate the performance of our
deep-learning-based approach as illustrated in (c.2). Finally, a trained model is produced for bug
prediction.

For the detecting phase, the control- and data-dependence of a target program is first extracted
(a.1) to produce a set of slices (XFGs) (a.2). For each XFG, after symbolization (b.1) and embedding
(b.2), both its edges and the code tokens of its nodes are used as the features (c.1) to feed into the
previously trained model to predict whether each slice (XFG) of the target program is vulnerable or
not.

We have evaluated DEEPWUKONG using a comprehensive benchmark that contains a list of
105,428 vulnerable program with 104,104 from SARD [22] and 1,324 from two real-world project
(i.e., redis and lua), which are related to the top 10 most common C/C++ vulnerabilities. We have
conducted the experiments by comparing our approach with conventional static detectors, including
FLAWFINDER [5], RATS [8], CLANG STATIC ANALYZER [2], INFER [6], and three deep-learning-based
approaches [15, 16, 18]. We also compare the performance of three different graph neural networks
for our code embedding, including GCN [23], GAT [24] and k-GNNs [25].

The key research contributions of this paper are:

e We propose DEEPWUKONG, a new deep-learning-based approach that embeds both textual
and structured information of code into an comprehensive code representation by leveraging
graph neural networks to support precise static bug detection of 10 types of popular C/C++
vulnerabilities. To enable precise code embedding, we propose a new program slicing approach
to extract complicated high-level semantic features including data- and control-flows of a
program.

e We have conducted our experiments by comparing DEEPWUKONG with the traditional static
bug detectors and three recent learning-based bug detection approaches. Experimental results
show that our deep-learning-based approach outperforms the existing approaches in terms
of informedness, markedness and F1 Score.

e We have contributed a comprehensive reference dataset to our community from real-world
programs, along with all the experiment results in this paper. The data is available at: https:
//github.com/DeepWukong/DeepWukong.

2 MOTIVATING EXAMPLE

Fig. 3 gives an example to show our key idea by going through the three steps in Figure 2. It is
a simplified pseudo code fragment from a real-world web server?. Note that the node number
represents the statement number (line number) of the program. The code tries to establish a server
socket connection. It accepts a request (Nodes 2-6) to store data on the local file system by reading
the message repeatedly via a while loop (Nodes 7-9).

(a) Program slicing. DEEPWUKONG starts with a program point of interest for its slicing. The
program point is usually from an API call or a program point specified by users. We use the API call
“getNextMessageAPI” at Node 7 as an example (highlighted in red), we first obtain its control- and
data-flow related nodes 1, 2, 3, 4, 7, 8, 9, 10 and 11 based on the transitive closure of the union of
control- and data-dependence extracted by SVF [10]. Note that Nodes 4, 9, 10 and 11 are marked blue
because they are control-flow related, Nodes 2 and 3 are marked green because they are data-flow
related, and Nodes 1 and 8 are marked yellow since they are both control- and data-related. The
detailed program slicing algorithm is illustrated in Fig. 4 and Section 3.1.3. The corresponding
statements from slicing (i.e., Nodes 1, 2, 3, 4, 7, 8, 9, 10 and 11) form the nodes of the XFG, while the
control- and data-dependence between different statements contributes to the edges of XFG. For

4https://github.com/mongrel2/mongrel2
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2 char buffer[BUFFER_SIZE]; 2 char VAR2[VAR3];
3 int socket = openSocketConnection(host, port); P 9 Exit(); B vectorll ’
4 if (socket < 0) XFG 10 closeFile(); . ~
. 11 closeSocket (VAR4); ~
® return (FAIL); 1 ( ok unstructured |y o ined
(® printf("valid socket"); s /u‘\ _ information |~ o
7 while (getNextMessageAPI (socket, buffer, BUFFER_SIZE)>0) Z\T\ > Embedding| ] 1,2
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Fig. 3. A real-world program extracted from mongrel2 (a web server). It shows the key idea of DEEP-
WUKONG by going through the three steps in Figure 2.

instance, Node 4 and Node 7 are connected with an Edge 4->7 because Node 7 is control dependent
on Node 4. Node 3 is linked with Node 7 because Node 7 is data dependent on Node 3 (the variable
“socket” defined at Node 3 is used at Node 7).

(b) Code tokens symbolization and embedding. After we obtain the unstructured and struc-
tured code information, i.e., XFG, we then process each node on the XFG by symbolizing their
variable and function names to make a canonical form of the textual representation. We map
user-defined variables and functions to their symbolic names (e.g., variables are named as “VAR0”
and “VAR1”, functions are named as “FUN0” and “FUN1”). For example, we use “FUNO” to repre-
sent function name “WriteDataFromSocketToFile” and “VARO” to represent variable name “host”.
Doc2VEc [20] is then used to transform the textual information, i.e., code tokens, of each node into
a vector representation. For example, “vector1” is the vector representation of the code tokens at
Node 1 (i.e., “int FUNO ( char * VARO, int VAR1)”).

(c) Deep graph neural networks learning. The structured information of the XFG can be
obtained from its edges (i.e., 1->2, 1->3, ..., 8->9). The unstructured code information is the vector
representations in the previous step (i.e., the embedding vectors of nodes on the XFG (i.e., vector1,
vector2, ..., vector11). We then feed the structured and unstructured information to the first layer
of our graph neural networks. A model reflecting the code patterns is learned in the training phase,
which is then used to predict whether a target XFG is vulnerable or not in the detecting phase.

3 DEEPWUKONG

This section further details each component of our approach, including program slicing (Section 3.1),
code tokens symbolization and embedding (Section 3.2) and bug prediction based on deep graph
neural networks (Section 3.3).

3.1 Program Slicing

In order to conduct program slicing, we first generate the Program Dependence Graph (PDG)
by considering both the control-dependence and data-dependence, which are computed over the
interprocedural CFG and VFG (Section 3.1.1). Then we perform code slicing based on a slicing
criteria (i.e., starting traversing from a program point of interest (Section 3.1.2)) to construct each
slice or XFG (a subgraph of the PDG) via forward and backward analysis on the PDG (Section 3.1.3).
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3.1.1 Control- and data-dependence on PDG . A Program Dependence Graph (PDG) is a directed
graph where each node represents an instruction (program statement) and each edge represents a
data- or control-dependence relation between two statements. A control-dependence edge N; — N
means the execution of Nj is determined by Nj, while a data-dependence edge N/ — N '/ represents
that the definition at N is used at N/.

The control-dependence between two statements is computed over the control-flow graph (CFG)
of a program where each node represents an instruction (program statement) and each edge
connects two nodes, signifying the control-flow or execution order between two instructions. CFG
is commonly used in static analysis and compiler optimisations, since it contains the basic execution
path information such as branch conditions. Control-dependence is usually defined in terms of
post-dominance. Given nodes X and Y (X! = Y) on a CFG, we say X post-dominates Y if all paths
from Y to the end of the program traverse through X. Y is control-dependent on X if (1) there exists
a directed path P from X to Y with any Z in P (excluding X and Y) is post-dominated by Y and (2) X
is not post-dominated by Y. We use augmented postdominator tree (APT) [26], which is constructed
in space and time proportional to the size of a program, to calculate the control-dependence of a
program.

Data-dependence is obtained by the def-use relations on the interprocedural value-flow graph
(VFG) [10, 27] of a program. In this graph, each node represents an instruction (i.e., program
statement), and each edge represents a def-use relation of a variable between two statements. Given
nodes X’ and Y’ (X’! = Y’) on a VFG. Y’ is data-dependent on X" if a variable used at Y’ is defined
at X’. Consider two nodes X’ (a definition of a variable v”) and Y’ (a def or use of v’) in VFG, if
there is a path from X’ to Y’ and there is no redefinition of v’, Y’ is data dependent on X".

3.1.2 Program points of interest. Previous studies [18, 28, 29] show that system API calls are widely
used by application programs and the misuse of them is one of the major causes of vulnerabilities.
We use system API calls as the main program point of interest for our slicing. For some vulnerabilities
(e.g., integer overflows, CWE190) which occur when applying arithmetic operators, such as addition
and multiplication operations, we further choose code statements containing arithmetic operators
as the program point of interest to complement the system API calls. We refer to SVF [10] to
automatically identify system API calls (1,449 in total) and we use antlr [30] to identify arithmetic
operators (i.e., +, -, *, /, %), bit-wise operators (&, |, *, ", «, » ), compound assignment expressions
(i.e,+=, -=, "=, /=, %=, »=, «=, &=, " =, |=), and increment/decrement expressions (++, —). For these
identified statements of code, we regard them as the points of interest for our code slicing.

I
int of Sliced statements
?rogram point o Forward:
interest:
statement 7, {8,9,10,11}
(getNextMessageAPl) | | —~ = /| |
Backward:
{1,2,3,4}
— Control-dependence edge All:
--» Data-dependence edge {1,2,34,7,8,9,
2 g 10,11}
(a) Control- and data-dependence on PDG (l;)isiliiciir;é 77777777777 (c) XFG

Fig. 4. An example to demonstrate our slicing by revisiting the code in Figure 3. For the PDG shown in
Fig. 4(a), each node represents a code statement and each edge represents control- or data-dependence
relation. Node 7 is the program point of interest. The algorithm iteratively performs backward and forward
slicing until a fixed-point is reached.
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3.1.3 Slicing. After building the PDG of a program, we perform slicing [31] based on each program
point of interest to produce its corresponding XFG, a subgraph of PDG. The nodes of XFG are
obtained by conducting forward and backward slicing starting from a program point of interest
pi. For the forward slicing, we conduct forward traversal along the PDG starting from p; and get
forward sliced statements set S¢. For the backward slicing, we traverse the PDG starting from p;
to include all the visited statements in Sp,. The statements in both S¢ and Sj, are the final set of
statements (i.e., Sy US;), which preserve both control- and data-flow information of the source code
and form the nodes of the resulting XFG. Note that all the reachable statements from forward or
backward traversal are included in the final set of statements. We then connect those nodes based
on the edges of PDG to produce the final XFG, thereby capturing both control- and data-dependence
of the program.

Example 3.1. Figure 4 shows an example (originated from the code in Figure 3) to illustrate
our slicing approach. We first generate PDG by constructing control-dependence (solid edge) and
data-dependence (dotted edge) (as shown in Fig. 4(a)). After that, we perform forward and backward
traversals along PDG starting from the API call “getNextMessageAPI” at Line 7 to obtain the forward
statements set (Lines 8, 9, 10 and 11) and backward statements set (Lines 1, 2, 3 and 4) to generate
the nodes of XFG (as shown in Fig. 4(b)). Finally, we connect the relevant nodes by following the
edges of PDG, which represent the control- or data-dependence between two nodes. For example,
Node 1 and Node 2 are connected with an edge 1->2 since Node 2 is control dependent on Node 1
(as shown in Fig. 4(c)).

3.2 Code Tokens Symbolization and Embedding

This section will introduce how we perform code token normalization and how to embed code
tokens of each XFG’s node into a vector representation.

3.2.1 Code tokens symbolization. For each constructed XFG, we first perform the embedding of
unstructured code information (i.e., the code tokens of each node on XFG) using Doc2VEc [20].
Before the embedding, we normalize the code tokens into a canonical symbolic form in order to
reduce the noise introduced by personalized naming conventions for program variables to better
preserve the original code semantics.

Qint writeDataFromSocketToFile(char *host, int port){‘
har buff BUFFER_SIZE]; N i N i Symboli
char buffer[ = ]’h int FUN® (char *VAR®, int VAR1){ c;dm: (1:) c;dm: (1Bn) y;\"‘a:elc
[int socket = openSocketConnection(host, port); ‘ SN ) - -
Code (A) and XFG (A) char VAR2[VAR3]; writeDataFromSocketToFile| write FUN@
intwrite (char *h, intp){] 1 s host h VAR®
wri \ p =g [int VAR4 = FUN1(VAR®, VARL);|
char buf[BUF_SIZE]; l port p VARL
[ints = open_socket(h, p);| Symbolic Code and XFG buffer buf VAR2
B) and XFG (B
Code (B) and XFG (8) BUFFER_SIZE BUF_SIZE | VAR3
XFG (A) XFG (8) Symbolic XFG socket s VAR4
openSocketConnection open_socket| FUN1
f n T n
XFG embedding (before XFG embedding (after . .
: g( ) .g( Symbolization Mapping Table
symbolization) symhbolization)___________

Fig. 5. The distraction caused by personalized naming. XFG (B) and XFG (A) have the same semantic but
different user-defined method and variable names.

Example 3.2. Figure 5 gives an example to show that Doc2VEc may imprecisely produce different
vector representations of two cloned code fragments in the latent embedding space due to different
variable naming conventions. XFG (B) is a clone code of XFG (A), which shares the same code se-
mantic information but uses distinct user-defined variables and functions. With our symbolization,
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“writeDataFromSocketToFile”, “host”, “port”, “buffer”, “BUFFER_SIZE”, “socket” and “openSocket-
Connection” in XFG (A), and “write”, “h”, “p”, “buf”, “BUF_SIZE”, “s” and “open_socket” in XFG (B)
are mapped to “FUNO0”, “VARO0”, “VAR1”, “VAR2”, “VAR3”, “VAR4” and “FUN1”, respectively. In a
2-dimensional embedding space, the two embedding vectors are different (with a distance between
vectors A and B) without our symbolization, while normalizing the code tokens will help produce
exactly the same vector.

Following [32], we have replaced the user-defined variables and functions with their symbolic
names, that is, mapping each one with a common identifier together with a separate index (i.e.,
FUNO, FUN1, VARO, VAR1). Note that variables in two different code fragments (XFGs) can be
mapped to the same symbolic name. For example, “buffer” in Code (A) and “buf” in Code (B) are
mapped to the same symbolic name “VAR2”. It is worth mentioning that our symbolization, which
only changes the names of variables, does not affect the semantic of a program.

3.2.2 Code tokens embedding. After symbolization, we will transform the code tokens of each
XFG’s node (i.e., program statement) into a vector using Doc2VEc [20], a widely used technique to
represent documents as low-dimensional vectors. Doc2VEc is an unsupervised model which can
encode the entire code statement instead of an individual code token into a fixed-length vector.
The key algorithm of Doc2VEc is called Distributed Memory version of Paragraph Vector, where a
unique statement-topic token is used to represent the semantic meaning of a statement.

Given a corpus comprising a sequence of tokens wy, wy, ..., wy including a number of code
tokens and statement-topic tokens, the task is to predict a token w; given its surrounding tokens
Wi_ks -.» Wik Within a certain window of size 2k + 1 (or so called a fixed-length context). Tokens
with a similar meaning are close to each other in the latent vector space when maximising the
average log probability of tokens:

| Nk
5 21080 (Wil Wik o Wisk) M
i=k
The calculation of the probability of w; is typically achieved using a multi-classification classifier,

such as softmax:

exp(Yw;)
2 exp(Yuw,)

Here, y,,, stands for the j th element in the unnormalized log-probability distribution vector
for output tokens:

)

P (Wilwig, o, Wink) =

g =Uh (Wi—k, cees Witk V) +b (3)

where each column of V is a unique vector representing each token (i.e., a sequence of code

tokens and statement-topic tokens) and is initialized randomly. U, b are the softmax parameters
and h(-) is a concatenation of token vectors extracted from V.

The representation vectors of the code tokens of a program statement are then trained and
updated automatically using stochastic gradient descent (SGD) [33]. After training, each code token
vector is used to represent the token’s feature while the statement-topic token vector holds the
overall feature of a code statement.

Example 3.3. Figure 6 illustrates the key steps for embedding a code statement into a vector
representation. The inputs are a statement-topic token vector (v5) which represents the topic of
a function declaration statement (“int FUNO ( char * VARO , int VAR1 )”) and eight token vectors
(01, va, ..., vg) which represent code tokens (“int”, “FUNO”, “(*;‘char”, “VAR0”, ", “VAR1”, )”). Those
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Classifier
Concatenate m
vs | 0.13 0.24 0.36
// ‘\ "\\ vi | -0.25 0.33 0.96
v2 | -0.35 -0.43 0.16
(00 OO0 Oy |
Statement-topic vector vs | 0.55-0.29 0.86
int FUNO ( char * VARO , int VARL)  int FUNO ) V' (token vectors matrix)

Fig. 6. An example to explain the usage of DOC2VEC for learning a statement vector. A statement-topic
token represents the topic of a function declaration statement (“int FUNO ( char * VARO , int VAR1)”) and a
code token corpus consisting of eight tokens of the statement including “int”, “FUNO”, “(”,“char”, “VARO”, *,",
“VAR1”, )", which are then used to predict the token (“*”) by concatenating token vectors and applying a
softmax function. A fixed-length statement-topic vector (vs) is obtained after training.

vectors are initialized randomly and are concatenated to produce a fixed-length vector, which is
then used to predict the token “*” (shown in green) by applying a softmax function. The vectors
are updated automatically in the training process. vs can eventually represent the overall feature of
the entire function declaration statement (“int FUNO ( char * VARO , int VAR1 )”), while vy, v, ..., vg
capture the semantics of “int”, “FUNO”, ..., “VAR1”, respectively.

Doc2VEc can provide a more precise embedding of the code statement compared to simply
assembling vectors produced by individual token embedding, because important information may
be lost during the token padding process, which will probably discard essential semantic-related
tokens to produce a fixed-length sequence. Each node in XFG represents a code statement, which
is independently considered as a short document (i.e., sequential words). After the training process
of Doc2VEc, each statement-topic vector is obtained to represent each node of the XFG.

3.3 Deep graph neural networks learning

We leverage a recent proposed graph neural architecture [34] comprising a graph convolutional
layer, a graph pooling layer and a graph readout layer, to perform the graph classification task
for XFGs. To achieve an ideal performance and demonstrate the generality of our approach, we
instantiate our graph convolutional layer by feeding the XFGs into three state-of-the-art deep
graph neural networks to train different prediction models and choose the best one. Note that
these graph neural networks use the same graph pooling and readout layers, while having different
graph convolutional layers.

We first introduce our overall graph neural network architecture to show the full pipeline of
our model. Then, we describe in detail how we adopt these networks in our convolutional layer
and conduct the neural network training process. A detailed exposition of the graph convolutional
layers is presented in appendix A.

3.3.1 Overall graph neural network architecture. Fig. 7 shows a general structure of our neural
network, consisting of several blocks of interleaved graph convolutional/pooling layers (conv-pool
block), a graph readout layer (JK-net-style [35, 36] summary) which integrates features at different
graph scales, and a multilayer perceptron (MLP) [37] for the final prediction. Note that the number
of conv-pool blocks is set according to the size of our dataset.

Graph convolutional layer (GCL). The general propagation rule which guides the feature
transformation for the graph convolutional layer is shown here:
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Fig. 7. A general architecture of our graph neural network.

fO@ =o[f1@ W+ > F () Wy |, (4)
w€eN (v)

where f D) e R4 means the output feature of node v in [*" layer, d) represents the
dimension and N(v) means the adjacent nodes of node v. W) ¢ R4"7xd" eans the weight
matrices of [! layer. Note that the weight matrices guiding the feature transformation of a node
itself (W) and its neighbours (W3) can be different according to the principle proposed by some
graph neural networks (e.g. k-GNNs [25]). o(+) is the activation function.

Graph pooling layer (GPL). The objective of the graph pooling layer is to reduce the size of the
original graph by applying a pooling ratio, k € (0, 1], meaning that a graph with N nodes will have
[kN] nodes after such a pooling layer, thereby reducing the amount of subsequent computation in
the network. It simply drops N — [kN] nodes after each pooling operation based on a projection
score against a learnable vector, p. The projection scores are also used as gating values to enable
gradients to flow into ﬁ; therefore, for the remaining nodes, the extent of feature retention will be
proportional to their scores.

F = {f(o),f(l), f(N)} € RV*4 means the matrix of node features. We use A to denote the

adjacency matrix representing a graph. The transformation principle of the graph pooling layer
which computes a pooled graph, (F’, A’), from an input graph, (F, A), can be formally expressed as:
- Fﬁ e - ’ - ’
y= W i=top—k(y,k) F =(Fotanhy); A"=A;; (5)
||| stands for the L2 norm, top—k selects the top—k indices from a given input vector, © means
(broadcasted) elementwise multiplication, and -; is an indexing operation which takes nodes at
indices specified by i
Graph readout layer (GRL). In order to produce a fixed-length representation for the entire
graph so as to conduct the graph classification task, a graph readout layer is introduced to flatten
feature of all the nodes. Following traditional convolutional neural networks (CNNs), we perform
global average pooling and global max pooling to strengthen the performance of our representation.
Moreover, inspired by the JK-net architecture [35, 36], this summarization is performed after each
block of interleaved graph convolutional/pooling layers (conv-pool block) and finally all of the

summarizations are aggregated together. The output graph vector 5V € R4 of the Itk conv-pool
block, (F(l), A(l>) can be formally expressed as:
L N
o 2(0) ¢+ O 2,
0= 2 Olimaxt FOG) ©)
i=
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Fig. 8. An example to illustrate the full pipeline of our general graph neural network architecture.

Here, f 0 (i) stands for the feature vector of node i, N () means the number of nodes on the graph,
and || denotes the concatenation operation. Finally, the summary vector of the graph is computed
as the sum of all those summaries (i.e. § = Zlel §(D). Note that it is significant to aggregate across
conv-pool blocks to preserve information at different scales of processing.

The vector representing the entire graph is then fed into a multilayer perceptron (MLP) [37] for
the final prediction. The predicted distribution of the model g(Ib;) is computed using a softmax
function, i.e., the dot product between the graph vector s and the vector representation [b; of each
label Ib; € Ib.

exp(s - Iby)

Ib;) = = ;
al 2ip;ey €xp(s - 1by)

(7)

Example 3.4. Figure 8 exemplifies the full pipeline of our graph neural network, consisting of two
interleaved graph convolutional/pooling layers (GCL1/GPL1, GCL2/GPL2) for graph feature abstrac-
tion, a graph readout layer (GRL) for summarization and flattening, and a multilayer perceptron for
prediction.

Starting from the input graph in (a), which consists of nine nodes (Nodes 1-9) with their links
(1->5, 2->1, 2->5, 3->2, 3->5, 4->7, 5->4, 5->8, 5->9, 6->5, 6->7), the graph is then fed into the
convolutional layer, which transforms the feature of each node by considering its predecessors
and itself. For example, the vector representation of Node 5 (highlighted in red) after GCL1 in
(b) is calculated over its predecessors (Node 1, 2, 3, 6) and itself based on Equation 4. Afterward,
the graph passes through GPL1, reducing its size from 9 to 7, with Node 6 and Node 9 together
with their links with other nodes (Edges 5->9, 6->5, 6->7) removed according to Equation 5, to
produce the graph in (c). Note that the graph pooling ratio k here is set to 0.7. Similarly, the size of
the graph is further abstracted and reduced through GCL2 and GPL2, respectively. A JK-net-style
summary [35, 36] is subsequently applied to the graph after GPL1 in (c) and that after GPL2 in
(e) by summing the concatenation of the mean and max pooling of all the nodes of each graph,
respectively (Equation 6), to generate the vector representation of the entire graph, which is finally
used to predict the category of the input graph.

3.3.2 Graph neural networks training. Fig. 9 shows a general structure for training our neural
networks. A batch of XFG with its edges and code tokens (node) embedding is input into the graph
neural network, consisting of several blocks of interleaved graph convolutional/pooling layers
(conv-pool block), a graph readout layer and a MLP.
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Fig. 9. The structure of the graph neural network in DEEPWUKONG.

GNN input. The inputs of the neural network are a batch of XFG obtained from the previous
steps, which can be divided into two parts: (1) the edges (i.e., structured information) and (2) the
code tokens (node) embedding (i.e., unstructured information).

GNN learning. The inputs are fed into the above-introduced graph neural network. In the graph
convolutional layer, features are extracted from the node embedding and the edges of the input
XFG. After each graph convolutional layer, we use top—k pooling [34] to reduce the size of the XFG.
In our detection system, there can be multiple conv-pool block. A graph readout layer realised by
the concatenate of mean pooling and max pooling is applied after each conv-pool block to flatten
multiple nodes vectors of the graph into one graph vector. We then use a hidden fully connected
layer after that, which allows high-order relationships between the features to be detected. Finally,
a softmax layer is used to output the probabilities of class labels. It is worth noting that, most of the
parameters in the neural network are updated automatically by back propagation during training.
At last, we get a well-trained graph neural network model encoded with vulnerability patterns
after GNN learning. We then use the model for further vulnerability detection.

4 EXPERIMENTAL EVALUATION

We seek to evaluate the effectiveness of DEEPWUKONG on detecting the top 10 most common C/C++
vulnerabilities, comparing with four traditional static vulnerability detectors and three state-of-
the-art deep-learning-based approaches. To this end, we first introduce our dataset extracted from
real-world vulnerabilities, and then depict how they are labelled (Section 4.1). Next, we detail our
experimental setup and model training (Section 4.2). Finally, we present our experimental results
and observations (Section 5).

4.1 Dataset

4.1.1 Target vulnerabilities. We have established our dataset based on two sources (1) SARD [22],
a widely-used vulnerability database, and (2) two real-world open-source projects (lua and redis).
The statistics of the vulnerable programs in our dataset are shown in Table 2.

SARD. We have harvested a comprehensive vulnerability benchmark dataset from Software
Assurance Reference Dataset (SARD) [22], which hosts a large number of known real-world security
flaws. It is widely used to evaluate the performance of vulnerability detection approaches in our
community [18, 38, 39]. In the SARD dataset, each program (i.e., test case) corresponds to one or
more CWE IDs, as multiple types of vulnerabilities could be identified in a program. We seek to
study the top 10 most common C/C++ vulnerabilities as aforementioned in Section 1. Thus, we have
implemented a crawler to harvest all the available programs related to the following vulnerabilities:
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Table 2. The statistics of our datasets. #LOI denotes the number of lines of LLVM instructions. #Pointer,
#0Object, #Call represent the numbers of pointers, objects and method calls, |V| (ICFG), |E| (ICFG), |V| (VFG)
and |E| (VFG) are the numbers of ICFG nodes, ICFG edges, VFG nodes and VFG edges, respectively.

Vulnerability Category #LOI #Pointer | #Object | #Call | |V|(ICFG) | [E| ICFG) | |[V|(VFG) | [E|(VFG)
CWE119 7,811,996 | 2,992,105 597,759 84,857 2,657,488 | 2,962,382 2,333,565 | 2,526,699
CWE20 7,728,477 | 3,205,748 601,656 65,394 | 2,828,956 | 3,133,667 | 2,420,491 | 2,471,687
CWE125 1,528,454 595,807 118,084 16,704 532,091 595,730 466,155 479,682
CWE190 1,611,932 653,629 108,248 18,250 612,164 690,579 496,601 512,800
CWE22 7,728,477 | 3,205,748 601,656 65,394 | 2,828,956 | 3,133,667 | 2,420,491 2,471,687
CWE399 5,552,545 1,895,244 359,892 63,500 1,780,518 | 2,013,559 1,419,467 1,566,615
CWE787 5,525,537 | 2,129,251 425,057 60,567 1,884,266 | 2,098,410 1,663,824 1,813,045
CWE254 14,576,245 | 5,079,282 965,625 | 151,987 | 4,535,930 | 5,096,619 | 3,898,307 | 4,102,872
CWE400 1,210,852 458,445 71,088 19,654 428,373 495,526 331,910 337,427
CWE78 703,660 290,148 50,478 5,383 242,148 263,665 217,122 200,428

lua 68,222 52,585 1,869 4,764 59,055 72,829 100,701 106,830
redis 735,275 401,520 14,461 119,216 45,737 56,505 654,495 778,854
Total 50,067,406 | 18,337,496 | 3,424,166 | 625,006 | 16,118,260 | 18,066,536 | 14,443,657 | 15,342,334

(1) CWE119: Improper Restriction of Operations within the Bounds of a Memory Buffer.
The program reads from or writes to a memory location that is outside of the intended bound-
ary of the memory buffer.

(2) CWE20: Improper Input Validation. The program does not validate or incorrectly vali-
dates input that can affect the control-flow or data-flow of a program.

(3) CWE125: Out-of-bounds Read. The program reads data past the end, or before the begin-
ning, of the intended buffer.

(4) CWE190: Integer Overflow or Wraparound. The program performs a calculation that
can produce an integer overflow or wraparound, when the logic assumes that the resulting
value will always be larger than the original value.

(5) CWE22: Improper Limitation of a Pathname to a Restricted Directory. The program
uses external input to construct a pathname that is intended to identify a file or directory
that is located underneath a restricted parent directory, but the software does not properly
neutralize special elements within the pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

(6) CWE399: Resource Management Errors. It is related to improper management of system
resources.

(7) CWE787: Out-of-bounds Write. The program writes data past the end, or before the
beginning, of the intended buffer.

(8) CWE254: Security Features. It is related to security related operations, e.g., authentication,
access control, confidentiality, cryptography, and privilege management, etc.

(9) CWE400: Uncontrolled Resource Consumption. The program does not properly control
the allocation and maintenance of a limited resource thereby enabling an actor to influence the
amount of resources consumed, eventually leading to the exhaustion of available resources.

(10) CWE78: Improper Neutralization of Special Elements. The vulnerable program con-
structs all or part of an OS command using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly neutralizes special elements that could
modify the intended OS command when it is sent to a downstream component.
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1 int main(int argc, char **argv)
241 ° 9
3 char xitems[] = {"boat", "car", "truck", "train"}; e
4 int index = GetUntrustedOffset(); A‘e
5 printf("You selected %s\n", items[index - 11); > e 5
6 int upbound = sizeof(items) / sizeof(items[0]);
7 printf("Last item %s\n", items[upbound - 11); 7 “1”
8}
(‘O”
Source code with label XFG with label

Fig. 10. An example to show the labelling process of XFG. The source code shown on the left side is an
example of CWE119, which shows the location (i.e., statement 5) of the weaknesses included. The XFGs
generated from the source code are presented on the right side including one “0” (i.e., safe) XFG (without
statement 5) and one “1” (i.e., vulnerable) XFG (with statement 5).

Real-world open-source projects. To evaluate our approach on complex real-world open-source
projects, we have further collected recent security-related commits of two open-source projects:
redis-5.0.8° (a well-known database system server) and lua-5.3.4° (a widely-used script language).

4.1.2 Labelling the benchmark. As the vulnerabilities collected from SARD and real-world
projects have different formats, we first present the labelling methods of them, respectively, and
then show how we label XFG and method for further training and detecting,.

Labelling SARD. The programs we collect from SARD have already been labelled at the statement
level as “good” (i.e., containing no security defect), “bad” (i.e., containing one or more specific
security defects), or “mixed” (i.e., containing security defects and their fixed safe patches) using
corresponding CWE IDs.

Labelling real-world open-source projects. To label the benchmark in open-source projects,
we adopt the methodology proposed by Zhou et al. [40]. To ensure the quality of our labelling
process for the open-source projects, (1) we first extract bug-fixing commits by excluding the
commits whose messages do not contain any bug-related keywords such as “bug”, “crash” and
“memory error”. (2) Then we manually check the modifications of each bug-fixing commit. Based
on how the bug is fixed, we label safe statements as “0” from the fixed commit and vulnerable
statements as “1” from its corresponding vulnerable commit. It took 720 hours for three experienced
software engineers to carefully examine all the bug-related commits of our collected projects.

Labelling XFG and method. Our vulnerability detection is performed at the XFG level rather
than method or file level, i.e., reporting whether an XFG (a program slice) is vulnerable or not. As
described in Section 3.1, we first conduct program slicing for each program to generate a number of
slices (i.e., XFG) provided that one program may have multiple points of interest, which determine
the number of XFGs. Then, we further utilize the above-mentioned statement-level labelling to
label the vulnerable/safe XFG. Based on the labelling method of SARD, if a sample is extracted
from a “good” program we label it as “0” (i.e., safe), and if it is from a “bad” or “mixed” program we
label it as “1” (i.e., vulnerable) as long as it contains one vulnerable statement labelled by SARD,
and “0” (i.e., safe) otherwise. Similarly, the XFG extracted from real-world open-source projects is

Shttps://redis.io/
Chttps://www.lua.org/
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Table 3. Distribution of labelled samples from SARD.

Vulnerability Category | granularity | # vulnerable samples | # safe samples | # total
testcase 18,928 360 19,288
XFG 21,508 50,052 71,560
CWEL19 method 18,311 101,803 120,114
slice 8,853 11,700 20,553
testcase 19,617 404 20,021
XFG 35,746 106,624 142,370
CWE20 method 26,397 16,8245 194,642
slice 8,112 24,806 32,918
testcase 3,645 0 3,645
XFG 3,677 8,187 11,864
CWE125 method 3,536 20,818 24,354
slice 1,310 2,061 3,371
testcase 1,052 149 1,201
XFG 2,555 6,076 8,631
CWE190 method 3,759 24,994 28,753
slice 188 1,280 1,468
testcase 2,764 5 2,769
XFG 5,165 6,857 12,022
CWE22 method 4,692 22,141 26,833
slice 1,426 1,786 3,212
testcase 12,367 24 12,391
XFG 14,060 38,001 52,061
CWE399 method 12,669 86,043 98,712
slice 2,521 5,937 8,458
testcase 12,946 48 12,994
XFG 14,419 31,535 45,954
CWET87 method 12,477 62,670 75,147
slice 7,417 8,451 15,868
testcase 27,776 409 28,185
XFG 49,569 134,232 183,801
CWE254 method 38,603 229,942 268,545
slice 12,791 31,179 43,970
testcase 1,872 0 1,872
XFG 6,677 22,671 29,348
CWE400 method 3,875 31,629 35,504
slice 485 2,337 2,822
testcase 1,729 9 1,738
XFG 2,819 5,027 7,846
CWE78 method 4,719 26,429 31,148
slice 305 5,285 5,590
testcase 102,696 1,408 104,104
XFG 156,195 409,262 565,457
TOTAL method 129,038 774,714 903,752
slice 43,408 94,822 138,230

considered to be vulnerable as long as it covers at least one statement of vulnerable code. Note that,
some existing learning-based approaches [15, 16] perform vulnerability detection at the method
level, we further process the sample code and flag the vulnerabilities also at the method level (i.e.,
the method is marked as vulnerable if there is a vulnerable statement in the method) in order to
compare with these existing approaches (cf. Section 5.3).

Example 4.1. Take the code fragment’ in Figure 10 as an example, it is an example to demonstrate
the principle of CWE119. The figure depicts the content of source code and its label (i.e.,'bad” at
Statement 5) with the corresponding CWE ID (i.e., CWE119). Two XFGs extracted from the code
fragment are shown on the right side. The program points of interest of them are Statements 5 and
7, respectively. Accordingly, we label the XFG on the right as “1” (i.e., vulnerable) as it contains
a vulnerable statement at Statement 5 and the XFG on the left as “0” (i.e.,safe), because all the
statements (Statements 1, 3, 6, 7) are not vulnerable.

"https://cwe.mitre.org/data/definitions/119.html
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Table 4. Distribution of labelled samples from open-source project.

project | granularity | # vulnerable samples | # safe samples | # total

XFG 737 1,270 2,007

redis method 1,877 2,606 4,483
slice 512 340 852

XFG 586 1,578 2,164

lua method 898 1,072 1,970

slice 601 987 1,588

XFG 1,323 2,848 4,171

TOTAL method 2,775 3,678 6,453

slice 1,113 1,327 2,440

4.1.3 Handling Duplicate/Conflict Samples. 1t is possible that there exists duplicate XFGs because
different programs may have the same code logic leading to the same sliced statements and structure.
The duplicate samples could lead to the overfitting problem and artificially inflate performance
metrics because training data can leak into validation. We remove duplicate XFGs in our dataset by
comparing their nodes, which are sorted by line number, and edges in space and time proportional
to the size of an XFG. It is also possible that a few XFGs are labelled with both “1” and “0” because
of the mislabelling from SARD, as mentioned by previous work [18]. In this situation, we simply
remove all the conflict samples.

4.1.4 Distribution of the benchmark. From the SARD dataset, we collect 102,696 and 1,408
vulnerable and safe programs, respectively (cf. Table 3). After program slicing, we have labelled
156,195 vulnerable XFGs and 409,262 safe XFGs. Each XFG contains 11 nodes (i.e., statements)
on average, with respect to an average of 50 nodes and 217 statements for each ICFG and file of a
program, respectively, which further indicates that our XFG is fine-grained. For the two real-world
open-source projects redis and [ua, we have collected 885 and 311 bug-fixing commits, respectively,
from which we have produced and labelled 1,323 vulnerable XFGs and 2,848 safe XFGs (cf. Table 4).
Each XFG contains 210 nodes (i.e., statements) on average with an average of 423 nodes and 1004
statements for each ICFG and file of a program, respectively. Comparing with existing studies, the
benchmarks we collected are large and comprehensive to perform evaluation.

4.2 Experimental Setup

Experimental environment and neural network configuration. The experiments are performed
on a machine with NVIDIA GeForce GTX 1080 GPU and Intel Xeon E5-1620 CPU operating at
3.50GHz. The graph neural networks are implemented using PYTorcH GEOMETRIC [41]. We perform
experiments separately on each type of vulnerabilities, i.e., training a model for each of the 10 types
of the vulnerabilities. We randomly choose 80% of the programs for training and the remaining
20% for detecting. The neural networks are trained in a batch-wise fashion and the batch size is set
to 64. We adopt a 10-fold cross validation to train the neural network. The dimension of the vector
representation of each node is set to 64. The dropout is set to 0.5 and the number of epochs is set to
50. The minibatch stochastic gradient descent together with ADAM [42] is used for training with
the learning rate of 0.001. We use grid search to perform hyper parameter (e.g. batch size, dropout,
learning rate) tuning in order to determine the optimal values for a given model. To prevent under-
and over-fitting problem, we use different number of convolutional layers on the dataset according
to the size of vulnerability category (5 for CWE20 and CWE254, 4 for CWE119, 3 for CWE399,
CWE787 and CWE400 and 2 for CWE125, CWE190, CWE22, CWE78 and open-source projects). The
parameter k in k-GNNss is set to 3 and the graph pooling ratio is set to 0.8. The other parameters of
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our neural network are tuned in a standard method. All network weights and biases are randomly
initialized using the default Torch initialization.

Evaluation metrics. we apply six widely used metrics [43], including accuracy (ACC), false
positive rate (FPR), false negative rate (FNR), true positive rate (TPR), Precision (P), F1 Score (F1)
and AUC, to evaluate the performance of DEEPWUKONG and the other competitors. We also adopt
informedness (IFN) and markedness (MKN) [44], which are unbiased variants of recall and precision,
respectively, to conduct our evaluation.

4.3 Research Questions
Our evaluation aims to answer the following four research questions:

RQ1 Can DEEPWUKONG accurately detect vulnerabilities? In particular, we would like to
further investigate (RQ1.1) can DEEPWUKONG achieve consistently good performance across
various types of vulnerabilities? and, (RQ1.2) are there any performance differences when
using three types of deep graph neural networks, and to what extent?

RQ2 Can DEEPWUKONG outperform traditional bug detection tools?

RQ3 Can DEEPWUKONG outperform existing deep-learning-based vulnerability detec-
tion approaches?

RQ4 Can DEEPWUKONG be applied to real-world open-source applications effectively?
SARD is a security benchmark whose overall complexity may not be comparable to real-world
applications; therefore, we further compare DEEPWUKONG with the other state-of-the-art
approaches mentioned based on the dataset built on real-world open-source applications.

5 RESULTS AND ANALYSIS
5.1 RQ1: The performance of DEEPWUKONG

Overall result. Table 5 shows the overall results on the benchmark programs in terms of the
aforementioned evaluation metrics. In general, DEEPWUKONG achieves very promising results. On
average, the accuracy is 97.4% (ranging from 96.6% to 98.9%) and the F1 Score is 95.6% (ranging
from 94.0% to 98.8%), across all the top 10 vulnerabilities. Though it is generally time-consuming
for training, bug prediction and detection is quite fast. For example, the training time of the largest
dataset (CWE254) is 83,248.5s while it only takes 321.1s for detection.

5.1.1 RQ1.1: Detection Result across Vulnerabilities. As shown in Table 5, the performance
differences when detecting different types of vulnerabilities are marginal. Our tool performs the
best on CWE22 vulnerability, with the F1 Score of 98.8%. DEEPWUKONG achieves the worst result
on CWE254 and CWE190, with a good enough F1 Score of 94.0% and 94.1%, respectively. We further
manually examine a number of exceptional cases to explore the reasons leading to the difference
(false positives and false negatives).

We have identified the following two main reasons leading to the inaccurate prediction. First,
the selected program points of interest are not perfect. We take advantage of program slicing to
generate the XFG, seeking to cover as much vulnerable code as possible, and preserve the semantics
of the vulnerabilities. However, it is quite possible that we may lose some vulnerabilities that
are not associated with the program points of interest we select (cf. Section 3.1.2). Nevertheless,
we have extended the existing work on selecting program points of interest and have a broader
coverage than state-of-the-art work [18]. Second, some kinds of vulnerabilities may exhibit quite
different behaviors (i.e., manifesting as different patterns on control- and data-flow), which makes
it hard for us to learn their patterns, especially when considering the limited number of training
samples. Nevertheless, the performance of DEEPWUKONG is already good enough across all kinds
of vulnerabilities that we considered in our evaluation.
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Table 5. A comparison of GNNs (best results shown in bold).

Category GNN IFN | FPR | FNR | MKN | ACC | F1 | AUC | training time(s) | testing time(s)
GCN | 0.921 | 0.027 | 0.052 | 0.916 | 0.966 | 0.943 | 0.996 26,125.6 99.1
CWE119 GAT 0.920 | 0.031 | 0.049 | 0.909 | 0.964 | 0.941 | 0.995 26,129.4 100.5
k-GNNs | 0.932 | 0.023 | 0.045 | 0.926 | 0.970 | 0.950 | 0.996 26,140.7 103.9
GCN 0.921 | 0.026 | 0.053 | 0.905 | 0.967 | 0.935 | 0.996 64,522.9 246.2
CWE20 GAT 0.924 | 0.028 | 0.048 | 0.902 | 0.967 | 0.935 | 0.995 64,481.4 238.2
k-GNNs | 0.933 | 0.023 | 0.044 | 0.918 | 0.972 | 0.944 | 0.997 64,566.4 257.7
GCN | 0.926 | 0.029 | 0.046 | 0.917 | 0.966 | 0.946 | 0.995 2,443.9 10.1
CWE125 GAT 0.894 | 0.039 | 0.067 | 0.885 | 0.953 | 0.924 | 0.989 2,443.1 10.1
k-GNNs | 0.954 | 0.022 | 0.025 | 0.942 | 0.977 | 0.964 | 0.997 2,446.2 10.6
GCN 0.869 | 0.036 | 0.095 | 0.874 | 0.946 | 0.909 | 0.988 1,955.2 7.8
CWE190 GAT 0.900 | 0.033 | 0.066 | 0.895 | 0.957 | 0.928 | 0.991 1,953.6 7.6
k-GNNs | 0.913 | 0.021 | 0.067 | 0.923 | 0.966 | 0.941 | 0.995 1,954.1 7.6
GCN | 0.958 | 0.021 | 0.021 | 0.958 | 0.979 | 0.976 | 0.998 2,198.9 7.9
CWE22 GAT 0.969 | 0.016 | 0.015 | 0.967 | 0.984 | 0.982 | 0.999 2,186.3 6.5
k-GNNs | 0.979 | 0.011 | 0.011 | 0.978 | 0.989 | 0.988 | 0.999 2,203.5 8.6
GCN 0.907 | 0.026 | 0.067 | 0.905 | 0.963 | 0.931 | 0.994 15,614.1 59.3
CWE399 GAT 0.848 | 0.036 | 0.116 | 0.859 | 0.943 | 0.892 | 0.987 15,602.6 57.9
k-GNNs | 0.929 | 0.020 | 0.052 | 0.928 | 0.972 | 0.947 | 0.996 15,611.8 58.9
GCN | 0.913 | 0.025 | 0.063 | 0.917 | 0.963 | 0.941 | 0.995 13,245.1 52.9
CWE787 GAT 0.893 | 0.028 | 0.079 | 0.903 | 0.956 | 0.930 | 0.992 13,242.8 52.7
k-GNNs | 0.938 | 0.018 | 0.044 | 0.941 | 0.974 | 0.958 | 0.997 13,262.7 56.1
GCN 0.905 | 0.027 | 0.069 | 0.903 | 0.962 | 0.930 | 0.995 83,234.9 319.7
CWE254 GAT 0.903 | 0.025 | 0.056 | 0.922 | 0.964 | 0.947 | 0.994 83,150.6 317.9
k-GNNs | 0.925 | 0.027 | 0.047 | 0.910 | 0.967 | 0.940 | 0.997 83,248.5 321.1
GCN | 0.936 | 0.015 | 0.049 | 0.933 | 0.977 | 0.949 | 0.967 11,627.5 44.4
CWE400 GAT 0.933 | 0.016 | 0.052 | 0.934 | 0.976 | 0.949 | 0.996 11,620.1 41.7
k-GNNs | 0.963 | 0.011 | 0.025 | 0.951 | 0.985 | 0.967 | 0.998 11,631.7 47.5
GCN 0.918 | 0.043 | 0.039 | 0.905 | 0.959 | 0.943 | 0.995 1,458.9 59
CWE78 GAT 0.907 | 0.043 | 0.050 | 0.899 | 0.954 | 0.937 | 0.994 1,458.6 6.1
k-GNNs | 0.932 | 0.026 | 0.042 | 0.930 | 0.968 | 0.956 | 0.996 1,461.7 6.4
GCN 0.917 | 0.027 | 0.055 | 0.913 | 0.965 | 0.940 | 0.995 22242.7 85.3
AVERAGE GAT 0.909 | 0.029 | 0.061 | 0.905 | 0.962 | 0.935 | 0.993 22226.9 83.9
k-GNNs | 0.940 | 0.020 | 0.040 | 0.935 | 0.974 | 0.956 | 0.997 22252.7 87.8

ANSWER: DEEPWUKONG is effective in automatically learning high-level semantic features
from graph embedding, which shows very good performance in detecting all the top 10
vulnerabilities. A few exceptional cases are introduced by the program points of interest
selection process and the limited number of training samples.

5.1.2 RQ1.2: A Comparison of Graph Neural Networks. Table 5 compares the results of different
GNNss on the XFG classification. k-GNNs performs the best among the three networks, although
the other two networks have close results. There are mainly two reasons behind. First, we perform
vulnerability detection at the XFG level. An XFG (slice) contains several program statements,
which is more fine-grained than the approach working at the method level. Thus, XFG is able to
precisely preserve code features (control- and data-flows) only for bug-relevant code statements.
Theoretically, k-GNNs [25] works better with fine-grained structures of a given graph than the
other two networks, which was shown by previous studies [25, 45]. In addition, GCN and GAT
consider each node separately at the same level, while k-GNNs acts better by capturing the subgraph
structured information (e.g., “if-else” code block) that is not visible at the node level. As implied by
the similar time complexity of these models, the training and testing time costs are close among
these neural networks considering each type of vulnerabilities.
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Fig. 11. Comparing DEEPWUKONG with the state-of-the-art vulnerability detection approaches. The 10
subfigures represent the 10 types of vulnerabilities. For a given vulnerability, each cell represents the
performance of the approach (y-axis) under the corresponding metrics (x-axis). The darker the cell (the
higher the value), the better the performance. Note that, for the FPR and FNR, we present their additive
inverse here, which represents 1-FPR and 1-FNR separately. Note that, the minimum negative value we
observed is larger than -0.3 so the range is set to [-0.3,1].

Table 6. Runtime costs comparing DEEPWUKONG with state-of-the-art vulnerability detection approaches
on CWE254. N/A indicates the phase is not applicable to the approach.

Time RATS | FLAWFINDER | CLANG STATIC ANALYZER | INFER | TOKEN-BASED | VGDETECTOR | VULDEEPECKER | DEEPWUKONG
training time(s) | N/A N/A N/A N/A 135,973.1 96,388.1 40,072.2 83,248.5
testing time(s) | 488.7 451.4 25,584.8 28,537.7 540.6 383.1 172.1 321.1

ANSWER: The performance of DEEPWUKONG is not tied to a particular graph neural network,
as all the three networks have shown promising results. k-GNNs outperforms the other two
graph neural networks slightly, as it can better capture both the structured and unstructured
information of XFG.

5.2 RQ2: DEEPWUKONG VS. Traditional Vulnerability Detection Tools

To answer the second research question, we select four most popular open-source tools, i.e.,
FLAWFINDER [5], RATS [8], CLANG STATIC ANALYZER [2] and INFER [6], as the baselines for our
comparison. These tools are widely used in the software engineering community for static bug
detection [46, 47]. They claim that they can cover a wide range of bugs. By looking into the source
code of these tools, we find that these frameworks can detect vulnerabilities based on pre-defined
detecting rules. In general, they are reported to perform well on low-level well-defined bugs, e.g.,
buffer overflow, null pointer dereference and format string problems, etc.

Comparison Method. To conduct fair comparison, we have applied all these frameworks to
detect vulnerabilities in our labelled benchmark at the XFG level, i.e., predicting an XFG is vulnerable
if it contains at least one vulnerable statement flagged by these tools.

Result. As shown in Figure 11, DEEPWUKONG outperforms all these four tools with regard to
the evaluation metrics. It is interesting to see that, these static analysis tools have either high
false positives or high false negatives. Taking CWE22 vulnerability as an example, over 83% of
the samples reported by FLAWFINDER are false positives. For the CWE119 vulnerability, over 98%
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of the samples reported by RATS are false negatives. Among the four traditional tools, RATS
and FLAWFINDER perform worst. RATS has a high false negative rate of 90% on average, while
FLAWFINDER has a high false positive rate of 64% on average. CLANG STATIC ANALYZER also poses
a high false negative rate of 79% on average, as the detecting rules are not complete and cannot
detect high-level bugs. INFER, which relies on Separation logic [48] and Bi-abduction [49], performs
relatively better, with a false negative rate at 56% and a false positive rate at 40%. As for the runtime
performance (see Table 6), the runtime cost by RATS on CWE254 is 488.7s, similar to that of
FLAWFINDER with a relatively lower figure standing at 451.4s, while CLANG STATIC ANALYZER and
INFER spend significantly longer time, at 25,584.8s and 28,537.7s, respectively. DEEPWUKONG uses
83,248.51s on training and 321.1s on testing.

Analysis. This result suggests that these tools are hard to be adopted to detect various high-level
software vulnerabilities, despite the comparatively low runtime cost. The main reason leading to the
result is that they highly rely on well-defined bug patterns or specifications. By manually checking
their existing detecting rules, we find that most of the rules are quite simple and the number of
rules is also limited. The real-world vulnerabilities, especially for emerging vulnerabilities, are
far more complicated than the simple rules defined by these detection tools, which will greatly
limit the usage scenarios of the traditional rule-based detection tools, as they are purely relying on
experienced human experts and developers to craft the sophisticated analyzers.

ANSWER: Our experiment results suggest that the traditional rule-based detection approaches
are not applicable to detecting real-world complicate vulnerabilities, while DEEPWUKONG,
which embeds control- and data-flow information via deep-learning, is effective in pinpointing
vulnerabilities in a general manner without the knowledge of any pre-defined anti-patterns.

5.3 RQ3: DEEPWUKONG VS. Existing deep-learning-based approaches

5.3.1 Existing deep-learning-based approaches. We first summarize the following three repre-
sentative deep-learning-based vulnerability detection approaches.

TokEN-BASED embedding [16] was proposed to detect vulnerabilities by representing the
source code as sequential tokens. It first generates a token sequence for each method and then
embeds raw-text information via deep-learning. As this framework is not open-source, we have re-
implemented this detection framework strictly following the approach described in White et al. [16]
for comparison. It is worth mentioning that, there exists duplicate samples in the dataset primarily
due to shared dependencies of different testcases, so we perform a comparative experiment with or
without duplicate methods by applying a LSTM neural network, as shown in Table 7. Taking CWE20,
which contains the number of samples above average, as an example, we observed a significant
decline after removing all duplicates, with the F1 Score dropping from 77.3% to 58.4%. Regarding
accuracy, both figures are relatively high (above 90%), because of the imbalanced distribution of
the dataset: the number of safe methods, at 774,714, is more than six times as many as that of
vulnerable methods, at 129,038 (a random guess can achieve an accuracy of above 85%).

As this framework performs detection at the method level, after removing all duplicates, we
have applied it to 903K methods that we labelled (cf. Table 3) to train the classifier and perform bug
prediction.

VGDETECTOR [15] extracts control flow graph of source code and uses graph convolutional
network [23] to embed it in a compact and low-dimensional representation. It claims to be well
performed on detecting control-flow-related bugs. Note that this framework only works at the
method level, thus we have applied it to all the 903K CFGs, we extract and label (cf. Table 3) to
perform the model training and prediction.
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Table 7. A comparative experiment on dataset with and without the duplicate samples using TOKEN-BASED
embedding.

Category | Duplicate Samples | INF | FPR | FNR | MKN | ACC | F1
CWE119 Without 0.332 | 0.017 | 0.651 | 0.690 | 0.887 | 0.481
With 0.605 | 0.032 | 0.312 | 0.752 | 0.915 | 0.728
CWE20 Without 0.434 | 0.012 | 0.554 | 0.769 | 0.912 | 0.584
With 0.727 | 0.024 | 0.249 | 0.765 | 0.945 | 0.773
CWE125 Without 0.217 | 0.003 | 0.780 | 0.812 | 0.883 | 0.351
With 0.757 | 0.012 | 0.231 | 0.826 | 0.925 | 0.806
CWE190 Without 0.557 | 0.014 | 0.429 | 0.808 | 0.932 | 0.682
With 0.770 | 0.019 | 0.211 | 0.805 | 0.948 | 0.809
CWE22 Without 0.479 | 0.004 | 0.517 | 0.851 | 0.906 | 0.643
With 0.733 | 0.015 | 0.252 | 0.836 | 0.912 | 0.804
CWE399 Without 0.561 | 0.012 | 0.427 | 0.820 | 0.935 | 0.693
With 0.834 | 0.031 | 0.135 | 0.837 | 0.942 | 0.867
CWE787 Without 0.325 | 0.015 | 0.660 | 0.705 | 0.879 | 0.480
With 0.544 | 0.035 | 0.421 | 0.689 | 0.913 | 0.688
CWE254 Without 0.323 | 0.017 | 0.660 | 0.690 | 0.878 | 0.480
With 0.569 | 0.019 | 0.412 | 0.726 | 0.902 | 0.666
CWE400 Without 0.534 | 0.009 | 0.457 | 0.831 | 0.942 | 0.669
With 0.773 | 0.015 | 0.212 | 0.818 | 0.943 | 0.813
CWE78 Without 0.499 | 0.004 | 0.497 | 0.873 | 0.921 | 0.659
With 0.756 | 0.012 | 0.232 | 0.845 | 0.933 | 0.815

VULDEEPECKER [18] is a recent approach that detects vulnerabilities in source code, which
relies on data-dependence information to represent the source code. It first locates bug-related
APIs and then extracts the data-flow related program slices based on the parameters of these APIs,
thus generating code slices by assembling API-related program slices [18] to enforce accurate bug
detection. It uses code slice to pinpoint bugs and the number of generated code slices depends on
the number of APIs existed in the source code. Unfortunately, this framework is not open-source.
We have made our efforts to reproduce their results by re-implementing their approach by strictly
following their algorithm [18]. Note that we have also identified that the dataset ® released by the
author contains lots of duplicate samples (roughly 50% of the samples are duplicates), which inflate
performance metrics, i.e., overfitting problem. We evaluate VULDEEPECKER’s performance on the
dataset with and without removing the duplicate samples.

Table 8 shows the results of VULDEEPECKER with and without duplicate samples. When including
the duplicate samples, our implementation achieves similar results as that reported in their paper,
which suggests that our reproduced framework correctly follows their algorithm. However, it
is surprising to see that, after removing duplicate samples, the performance of VULDEEPECKER
decreases significantly, e.g., the F1 Score decreases from 92% to 72% for CWE119, and decreases
from 95% to 66% for CWE399. More surprisingly, the F1 Score decreases by over 34% to 58% for
CWE190. To conduct a fair comparison, we have removed all the duplicate samples, to use the same
experimental setup as DEEPWUKONG. We have extracted 138,230 slices (cf. Table 3) to evaluate the
performance of VULDEEPECKER.

5.3.2 Result. As shown in Figure 11, DEEPWUKONG outperforms all the three referred deep-
learning-based approaches when evaluating the 10 types of vulnerabilities against the evaluation
metrics.

Taking the CWE254 vulnerability as an example, the false negative rate of the TOKEN-BASED
approach is roughly 66%, while the false negative rate of our DEEPWUKONG is only 5%. Regarding
the result of the F1 Score, DEEPWUKONG is roughly 46% higher than the TOKEN-BASED approach. As

8https://github.com/CGCL-codes/VulDeePecker
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Table 8. A comparative experiments on datasets with and without the duplicate samples using VULDEEP-
ECKER.

Category | Duplicate Samples | TPR | FPR | FNR P ACC | F1
CWE119 Without 0.766 | 0.359 | 0.234 | 0.681 | 0.704 | 0.721
With 0.956 | 0.124 | 0.044 | 0.885 | 0.916 | 0.919
CWE20 Without 0.850 | 0.380 | 0.150 | 0.691 | 0.740 | 0.772
With 0.968 | 0.134 | 0.032 | 0.911 | 0.946 | 0.939
CWE125 Without 0.741 | 0.492 | 0.259 | 0.595 | 0.629 | 0.662
With 0.938 | 0.156 | 0.062 | 0.921 | 0.921 | 0.929
CWE190 Without 0.529 | 0.292 | 0.471 | 0.652 | 0.623 | 0.582
With 0.958 | 0.196 | 0.042 | 0.891 | 0.912 | 0.923
CWE22 Without 0.952 | 0.052 | 0.048 | 0.954 | 0.953 | 0.951
With 0.978 | 0.036 | 0.022 | 0.971 | 0.982 | 0.974
CWE399 Without 0.615 | 0.259 | 0.385 | 0.950 | 0.704 | 0.656
With 0.957 | 0.059 | 0.043 | 0.942 | 0.948 | 0.949
CWE787 Without 0.652 | 0.231 | 0.348 | 0.740 | 0.714 | 0.692
With 0.948 | 0.136 | 0.052 | 0.921 | 0.898 | 0.934
CWE254 Without 0.752 | 0.161 | 0.248 | 0.822 | 0.794 | 0.781
With 0.936 | 0.146 | 0.064 | 0.932 | 0.917 | 0.934
CWE400 Without 0.732 | 0.202 | 0.268 | 0.782 | 0.764 | 0.751
With 0.918 | 0.176 | 0.082 | 0.952 | 0.942 | 0.935
CWE78 Without 0.923 | 0.122 | 0.077 | 0.892 | 0.902 | 0.913
With 0.965 | 0.135 | 0.035 | 0.922 | 0.931 | 0.943

for VGDETECTOR, taking CWE399 as an example, the F1 Score of VGDETECTOR is only 70%, roughly
25% lower than DEEPWUKONG. The false negative rate of VGDETECTOR reaches 43%, which is 38%
higher than our approach, showing that DEEPWUKONG can precisely detect more bugs. Comparing
with VULDEEPECKER, taking CWE190 as an example, VULDEEPECKER nearly misses half of all the
vulnerabilities with the false negative rate of 47% and the F1 Score is only 58%. DEEPWUKONG is
roughly 36% higher than VULDEEPECKER for the F1 Score and 40% lower for the false negative rate.

For the running time shown in Table 6, all these approaches generally have a high runtime cost
for training but a low runtime cost for prediction. In particular, DEEPWUKONG and VULDEEPECKER
take less time than the other two tools.

5.3.3 Analysis. The experimental results suggest that representing the source code using a single
code feature, such as raw-text (e.g., TOKEN-BASED embedding), control-flow (e.g., VGDETECTOR) or
data-flow (e.g., VULDEEPECKER) is not enough to detect a wide variety of vulnerabilities.

DEEPWUKONG VS. TOKEN-BASED Approach. TOKEN-BASED embedding considers each method
of a program as a single big code block (i.e., sequential tokens), while DEEPWUKONG embeds both
the textual and structured information of code. The real-world programs are complex and only
considering the code as a plain text will miss its data- and control-flow information and can not
precisely capture code semantics.

DEEPWUKONG VS. VGDETECTOR. Using control-flow alone to represent source code is also not
enough to detect all vulnerabilities. Compared with TOKEN-BASED embedding, VGDETECTOR splits
source code into basic blocks and adds control-flow edges between basic blocks, but VGDETECTOR
does not conduct data-flow analysis, making the representation less comprehensive. It mainly
focuses on dealing with control-flow-related vulnerabilities but can not precisely capture data-
dependence which is essential for vulnerabilities such as buffer overflows.

DEEPWUKONG VS. VULDEEPECKER. VULDEEPECKER [18] only considers data-flows while
ignoring control-flow information. It claims to perform well on buffer errors and resource manage-
ment errors because those vulnerabilities are highly related to data-flow. However, the approach is
shown ineffective in detecting vulnerabilities related to control-flows such as Insufficient Control
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IFN  FPR FNR MKN ACC F1 IFN  FPR FNR MKN ACC F1 IFN  FPR FNR MKN ACC F1

RATS 0.01[0.01| 0.98 0.19 0.63 0.04 0.030.02 0.95 0.21 0.73 0.09 0.02 [0.02 0.97 0.19 0.68 0.06

Flawfinder 0.15 0.54 0.31 0.14 0.54 0.53 0.08 0.57 0.35 0.06 0.49 0.41 0.11 0.56 0.33 0.10 0.52 0.47

Clang Static Analyzer 0,05 0.26 0.69 0.06 0.58 0.35 0.07 0.25 0.68 0.07 0.63 0.32 0.06 0.25 0.69 0.06 0.61 0.34

Infer 0.12 0.30 0.58 0.12 0.60 0.43 0.13 0.28 0.59 0.12 0.64 0.38 0.13 0.29 0.59 0.12 0.62 0.41

Token-based 0.39 [0.02 0.59 0.63 0.74 0.57 0.45 0.13 0.42 0.50 0.74 0.67 0.29 0.19 0.52 0.33 0.67 0.55

VGDetector 0.78 0.04 0.18 0.82 0.90 0.87 0.76 0.05 0.19 0.79 0.89 0.87 0.61 0.11 0.28 0.64 0.82 0.77

Vuldeepecker 0.40 0.32 0.28 0.39 0.70 0.75 0.38 0.35 0.27 0.36 0.68 0.63 0.31 0.38 0.31 0.31 0.65 0.64

DeepWukong(k-GNNs) [0.89 0.03 0.08 0.90 0.95 0.93 0.86 0.05 0.09 0.84 0.94 0.89 0.85 0.05 0.10 0.85 0.93 0.90
(1) redis (2) lua (3) mixed

IFN MKN ACC F1 0O 01 02 03 04 05 06 07 08 09 1
FPR FNR 0017 02 03 04 05 06 07 08 09 1

Fig. 12. Comparing DEEPWUKONG with our baselines on real-world complex applications. Subfigure (1)
represents redis dataset, subfigure (2) represents lua dataset and subfigure (3) represents the mixed
dataset of redis and lua. For a given vulnerability, each cell represents the performance of the approach
(y-axis) under the corresponding metrics (x-axis). The darker the cell, the better the performance. Note
that, we did not observe negative values for IFN and FNR so the range is set to [0,1].

Flow Management vulnerability. VULDEEPECKER also failed to capture the structured information
which can lead to imprecise code embedding.

XFG designed in our approach could capture both interprocedural control- and data-flow infor-
mation of a program. These comprehensive semantic features are highly related to vulnerability
patterns, which can be used to detect both low-level vulnerabilities like memory errors and high-
level ones such as business logic errors.

ANSWER: DEEPWUKONG preserves the comprehensive code features (i.e., interprocedural
control- and data-flow) in the graph embedding, which is able to capture the common character-
istics of vulnerabilities, and greatly improve the performance of existing deep-learning-based
approaches.

5.4 RQ4: DEEPWUKONG on real-world open-source applications

Comparison Method. To evaluate whether DEEPWUKONG can be applied to real-world complex
projects, we evaluate DEEPWUKONG using two real-world open-source applications (Table 4). We
compare DEEPWUKONG with our baselines by randomly choosing 80% of the XFGs generated
from these two open-source projects for training and the remaining XFGs for detection. We used
the same comparison method described in Section 5.2 to compare DEEPWUKONG with traditional
bug detectors. Similarly, we also compared DEEPWUKONG with the existing deep-learning-based
approaches introduced in Section 5.3. To further understand whether DEEPWUKONG can success-
fully discover real-world emerging vulnerabilities that are not in the SARD dataset, we evaluate
DeEPWUKONG by choosing the latest 5 security-related commits of each open-source project, from
which we randomly select 50 vulnerable XFGs, and then input those samples into the model trained
from SARD.

Result and analysis. Figure 12 compares DEEPWUKONG with all the seven vulnerability de-
tection approaches by using our vulnerable programs extracted from the two real-world projects.
Obviously, DEEPWUKONG outperforms all the other approaches with an average improvement of
61%, 57% and 42% in terms of informedness, markedness and F1 Score, respectively.

Traditional vulnerability detection tools, not surprisingly, have high false positive and false
negative rates, showing that they cannot be used to tackle a wide variety of vulnerabilities in
the wild, particularly those without well-defined specifications/patterns. The performance of the
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existing deep-learning-based approaches is also poorer than DEEPWUKONG. The false negative
rate of the TOKEN-BASED approach on redis is 59%, which is about seven times higher than that of
DEEPWUKONG (8%). VGDETECTOR reports a markedness of 64% on the mixed dataset, while the
score for DEEPWUKONG is 21% higher at 85%. As for VULDEEPECKER, the F1 Score on the mixed
dataset is merely 64% compared to 90% by DEEPWUKONG. When detecting vulnerabilities in the
two open-source projects using the model trained from SARD, we achieve an accuracy of 86%,
demonstrating that DEEPWUKONG is able to precisely capture real-world emerging vulnerabilities.

ANSWER: DEEPWUKONG can effectively detect vulnerabilities in real-world open-source appli-
cations which require comprehensive code features, and significantly boost the performance
of both traditional and deep-learning-based vulnerability detecting approaches.

6 THREATS TO VALIDITY

First, the vulnerability labelling in this work might not be perfect. It is possible that some samples
are mislabelled. Here, we trust the labelling results of SARD since they are labelled by domain
experts. We also try our best to conduct the dataset labelling for the vulnerable patches from two
real-world projects, which takes 720 hours by three experienced engineers. Second, our framework
performs program slicing based on function calls and operator statements as the program points of
interest. As aforementioned, it might not be perfect, as we may miss some corner cases. One way to
improve our approach is to identify other types of program points of interest, and filter irrelevant
program points of interest to further eliminate possible noises in the training phase. Third, our
experiments are limited to the top 10 vulnerabilities in C/C++ programs. However, it is easy to
extend our methodology to support more vulnerabilities and other programming languages. Last,
our approach only considers three state-of-the-art graph neural networks for code embedding, it is
interesting to further explore more types of neural networks.

7 RELATED WORK

Static vulnerability detection. There are quite a few traditional static program analysis frame-
works developed to process source code and report potential vulnerabilities in all kinds of software
engineering systems (e.g. CLANG STATIC ANALYZER [2], INFER [6], SVF [10], CovErITY [3], FOR-
TIFY [4], FLAWFINDER [5], ITS4 [7], RATS [8], CHECKMARX [9]). Besides, a number of academic
researches [50-52] seek to detect specific vulnerabilities (mainly of memory errors and information
leaks). These traditional approaches heavily rely on conventional static analysis theories (e.g.,
data-flow, abstract interpretation and taint analysis) and need human expert to define effective
detecting rules. The number of rules is limited and cannot cover all of the vulnerability patterns.
As a result, they often suffer from high false positives and false negatives when detecting complex
programs, as indicated in our evaluation (cf. Section 5.2).

Similarity-based vulnerability detection. There is a line of research for detecting vulnerabilities
by applying similarity analysis (e.g., code clone bugs ) [53-55]. They normally represent the code
fragment into an abstract representation and compute the similarity between pairs of abstractions.
Then they set a similarity threshold and consider the target code as vulnerable if the similarity
between the target code fragment and vulnerable ones is above the threshold. This method still
requires human to select appropriate code and extract features from it for comparison.

Machine learning based vulnerability detection. There is another line of research recently for
automatically detecting vulnerabilities using machine learning. DeepBugs [56] represents code via
text vector for detecting name-based bugs. Grieco et al. [11] uses lightweight static and dynamic
features to detect memory corruption. Neuhaus et al. [12] use support vector machines (SVM)
to analyze code from Red hat packages. Yan et al. [57] perform machine-learning-guided type
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state analysis for detecting use-after-frees. VGDETECTOR [15] uses control flow graph and graph
convolutional network to detect control-flow-related vulnerabilities. VULDEEPECKER [18] applies
code embedding using data-flow information of a program for detecting resource management
errors and buffer overflows. All these solutions can only detect specific well-defined vulnerabilities.
Compared with these approaches that mainly focus on detecting limited types of bugs, our approach
focuses on detecting multiple vulnerabilities (both low-level and high-level) with low false positive
and negative rates.

Machine-learning for program analysis. A number of studies have been proposed to combine
machine learning with program analysis to perform better code analysis. The existing approaches
have defined sets of features that prove to be useful representing code. They can be mainly divided
into four categories. There are approaches that extract features based on texts [58—61], tokens [62-
65], ASTs [21, 66—-68] and graphs [69-74]. For example, Wang et al. [67] proposed learning from
token vectors extracted from Abstract Syntax Trees (ASTs) and use it to realize software defect
prediction. White et al. [75] used a stream of identifiers and literal types to automatically encode
code for code clone detection. Sui et.al [74] utilized a bag of paths from interprocedural context-
sensitive alias-aware value-flow-graph for code classification and summarization. These studies
may have a correlation with part of our work, but with different goals. Most of them are focused on
code clone detection and defect prediction, which is different from vulnerability detection and in
general. Comparing with those code representations, XFG is more fine-grained (code statements VS.
program level) and preserves as much high level semantic information as possible. Nevertheless,
the different code representation approaches might be a complement to our work. Devign [17] is a
very recent work on deep-learning-based vulnerability detection. There are two major differences
between Devign and DEEPWUKONG. Their approach aims at pinpointing bugs at the method level,
while DEEPWUKONG has a finer granularity (i.e., at program slice level). Their analysis is intra-
procedural which does not support inter-procedural analysis, while DEEPWUKONG has conducted a
more precise inter-procedural analysis, which is essential for real-world programs since function
calls are quite common in modern software projects.

8 CONCLUSION

In this paper, we present DEEPWUKONG, a new deep learning based approach that embeds both
textual and code structured features into an effective representation to support detection of a
wide range of vulnerabilities. DEEPWUKONG first performs program slicing to extract fine-grained
but complicated semantic features, and then combines with graph neural networks to produce
compact and low-dimensional representation. We have applied DEEPWUKONG to over 100K vulner-
able programs for 10 most popular C/C++ vulnerabilities and 2 real-world open-source projects,
and demonstrate that DEEPWUKONG outperforms several state-of-the-arts, including traditional
vulnerability detectors and deep-learning-based approaches.
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GRAPH CONVOLUTIONAL LAYER.

This section introduces the three Graph Convolutional Networks we used in our Graph Convolu-
tional layer.
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A.1 Graph Convolutional Network (GCN).

GCN [23] scales linearly with respect to the number of graph edges. It learns hidden layer repre-
sentations that encode both local graph structure and features of nodes. It introduces a simple and
well-behaved layer-wise propagation rule for neural network models which operate directly on
graphs. During our implementation, we consider a multi-layer GCN with the following layer-wise
propagation rule (illustrated by Figure 13):

Fig. 13. The illustration of the layer-wise propagation rule of GCN.

FO = ¢ (ﬁ’%Kﬁ’%F(l’”w(”) (8)
FO = {f(l) (0),f(l) (1), ...,f(l) (N)} € RN*4" means the matrix of activations in the " layer of

the neural network. For the first layer, F(® = {]?(0) (0), fO (1), ..., f© (N)} is the nodes feature

matrix of the graph. A = A + Iy represents the adjacency matrix of the graph with added self-
connections where Iy is the identity matrix. ﬁii =y jKi ; and WO is the trainable weight matrix
for the I*" layer. We choose Rectified Linear activation function o (-) = ReLU (-) = max (0, -) as
our activation function.

A.2 Graph Attention Network (GAT).

GAT [24] is a graph neural network that adopts self-attentional layers, and thus could encode the
graph structured by specifying different weights to different neighbors without additional costs.
GAT has better performance on inductive and transductive problems. Our approach is branch-aware
and the neighboring relationship when meeting a branch condition different from the linearly
executing circumstances, requiring (implicitly) different processing. GAT is good at recognizing
the different structures of XFG by attending over the features of nodes neighborhoods.

For the [*" layer, we first do a shared linear transformation parametrized by a weight matrix,
WO for every node. Then the attention coefficients is computed by a shared attentional mechanism
a®  RA"xAY R We only compute attention coefficients el.(;) for nodes j € N (i), where N (i)
is the neighbor nodes set of node i, indicating the importance of node j’s features to node i.

! 201-1) /- F I
e = (fu () - W, FUD () -W‘”) )
9
= LeakyReLU (|77 (i) - WD || F4=0j) - W] )

Here || is the concatenation operation. The attention mechanism a'”) is a single-layer feedfor-

ward network, parametrized by a weight vector a') € R24"  and then applying the LeakyReLU
nonlinearity function.
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Fig. 14. The illustration of the attention mechanism (left) and propagation rule (right) of GAT.

In order to make coefficients easily comparable across different nodes, we normalize them across
all choices of node j by applying softmax function (illustrated by Figure 14 (left)):

o exple)) exp(LeakyReLU(|f4D (hW || FU=0 (Hw]ah))
a.. = =
1

- - 2

Skenn eP)  Tieniy exp(LeakyReLU([ FEVHWD | f <’*1>(k)w<l>]5<l>))

(10)

Then, we consider a multi-layer GAT with the following layer-wise propagation rule where o (-)
denotes an activation function (illustrated by Figure 14 (right)):

fPo=c| > al f0G) W (11)
JEN(i)
A.3 k-dimensional GNNs (k-GNNs).

k-GNNs [25] is a recent neural network improving handling of higher-order graph structure by
taking it at multiple scales into account.

1-GNN 2-GNN 3-GNN

Fig. 15. The illustration of the neighbouring of 1-GNNs, 2-GNNs and 3-GNNs.

The node of XFG is a single statement of the program, making XFG a molecule graph because
the size of each node is tiny. In addition, a program can be divided into multiple code blocks (e.g.
if-else block, loop block) and each block can be separately considered as a logic unit. The program
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performs message passing between those code blocks through control- or data-dependence, making
the graph representation of the program (i.e., XFG) has higher-order graphic structure. k-GNNs [25]
works well with the fine- and coarse-grained structures of a given graph and can capture the code
block structured information that is not visible at the single statement-level.

k-GNNs have the same expressiveness as k-dimensional Weisfeiler-Leman graph isomorphism
heuristic. We denote the set of nodes and the set of edges of G by V(G) and E(G), respectively.
The number of nodes is N = |V(G)|. For a given k, [V(G)]k ={U Cc V(G)||U| =k} over V(G)
represents all k-element subset. Let s = {sy, ..., sg } be a k-set in [V(G)]¥. The neighborhood of s is
defined as (illustrated by Figure 15):

N(s) = {t e VO Isnt| =k - 1} (12)

Further, the local neighborhood Ny (s) consists of all t € N(s) such that (v, w) € E(G) for the
unique v € s\ t and the unique w € t \ s. The global neighborhood Ng(s) then is defined as

N(s) \ Ni(9). )
In each k-GNN layer [ > 0, we compute a feature vector fk(l) (s) for each k-set s in [V (G)]*. For

I =0, we set ];];(o) (s) by pooling the feature vectors of each node in the k-set. In each layer [ > 0,
we compute new features by

2 2(1- 1 2(1- I
D =olf oW+ > @ w (13)
u€NL (s)UNG (s)
Moreover, to scale k-GNNs to larger datasets and to prevent overfitting, we omit the global
neighborhood of s, i.e., the final propagation rule is,

(1 ~(1- I ~(1- 1
D =olfT e WP+ > fw-wy (14)
u€eNL(s)
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