
56

Loop-Oriented Pointer Analysis for Automatic SIMD

Vectorization

YULEI SUI, University of Technology Sydney (UTS), Australia

XIAOKANG FAN, HAO ZHOU, and JINGLING XUE, University of New South

Wales (UNSW), Australia

Compiler-based vectorization represents a promising solution to automatically generate code that makes

efficient use of modern CPUs with SIMD extensions. Two main auto-vectorization techniques, superword-

level parallelism vectorization (SLP) and loop-level vectorization (LLV), require precise dependence analysis

on arrays and structs to vectorize isomorphic scalar instructions (in the case of SLP) and reduce dynamic

dependence checks at runtime (in the case of LLV).

The alias analyses used in modern vectorizing compilers are either intra-procedural (without tracking

inter-procedural data-flows) or inter-procedural (by using field-sensitive models, which are too imprecise in

handling arrays and structs). This article proposes an inter-procedural Loop-oriented Pointer Analysis for

C, called Lpa, for analyzing arrays and structs to support aggressive SLP and LLV optimizations effectively.

Unlike field-insensitive solutions that pre-allocate objects for each memory allocation site, our approach uses

a lazy memory model to generate access-based location sets based on how structs and arrays are accessed.

Lpa can precisely analyze arrays and nested aggregate structures to enable SIMD optimizations for large

programs. By separating the location set generation as an independent concern from the rest of the pointer

analysis, Lpa is designed so that existing points-to resolution algorithms (e.g., flow-insensitive and flow-

sensitive pointer analysis) can be reused easily.

We have implemented Lpa fully in the LLVM compiler infrastructure (version 3.8.0). We evaluate Lpa by

considering SLP and LLV, the two classic vectorization techniques, on a set of 20 C and Fortran CPU2000/2006

benchmarks. For SLP, Lpa outperforms LLVM’s BasicAA and ScevAA by discovering 139 and 273 more

vectorizable basic blocks, respectively, resulting in the best speedup of 2.95% for 173.applu. For LLV, LLVM

introduces totally 551 and 652 static bound checks under BasicAA and ScevAA, respectively. In contrast,

Lpa has reduced these static checks to 220, with an average of 15.7 checks per benchmark, resulting in the

best speedup of 7.23% for 177.mesa.

CCS Concepts: • Theory of computation → Program analysis; • Computer systems organization →

Embedded and cyber-physical systems; • Software and its engineering → Compilers;

Additional Key Words and Phrases: Pointer analysis, SIMD, loop-oriented, compiler optimisation

ACM Reference format:

Yulei Sui, Xiaokang Fan, Hao Zhou, and Jingling Xue. 2018. Loop-Oriented Pointer Analysis for Automatic

SIMD Vectorization. ACM Trans. Embed. Comput. Syst. 17, 2, Article 56 (January 2018), 31 pages.

https://doi.org/10.1145/3168364

This work is supported by ARC grants, DE170101081, DP150102109, DP170103956.

Authors’ addresses: Y. Sui is with Centre for Artificial Intelligence (CAI) at Faculty of Engineering and Informa-

tion Technology, University of Technology Sydney (UTS), Australia; email: yulei.sui@uts.edu.au; J. Xue, X. Fan, and

H. Zhou are with School of Computer Science and Engineering, University of New South Wales, Australia; emails:

{jingling,fanx,haozhou}@cse.unsw.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1539-9087/2018/01-ART56 $15.00

https://doi.org/10.1145/3168364

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

https://doi.org/10.1145/3168364
mailto:permissions@acm.org
https://doi.org/10.1145/3168364

56:2 Y. Sui et al.

1 INTRODUCTION

SIMD (Single-Instruction Multiple-Data) technology is ubiquitous in both desktop computers and
embedded systems (e.g., Intel’s AVX, ARM’s NEON, and MIPS’s MDMX/MXU) and DSPs (e.g.,
Analog Devices’s SHARC and CEVA’s CEVA-X) to improve performance and energy-efficiency.
Existing vectorizing compilers (e.g., LLVM) enable two main vectorization techniques to extract
data-level parallelism from a loop: (1) basic block or superword-level parallelism (SLP) vectoriza-
tion (Barik et al. 2010; Larsen and Amarasinghe 2000; Shin et al. 2005; Porpodas et al. 2015; Zhou
and Xue 2016a), which packs isomorphic scalar instructions in the same basic block into vector
instructions, and (2) loop-level vectorization (LLV) (Nuzman and Zaks 2008; Nuzman et al. 2006;
Trifunovic et al. 2009; Shin 2007), which combines multiple consecutive iterations of a loop into a
single iteration of vector instructions.

To generate efficient vector code, these two optimizations reliy on precise dependence analysis.
For example, to successfully vectorize isomorphic instructions (on four-element vectors) in Fig-
ure 1(a), SLP checks conflicting memory accesses by using the alias information before packing
the four isomorphic instructions into a vector instruction (line 2 in Figure 1(b)). Given a write to
an element of an array (e.g., A[0] = · · ·), any subsequent store or load (e.g., · · · = B[1]) should not
access the same memory address as &A[0]. Figure 1(c) shows another example that can be vector-
ized by LLV (where N is assumed to be divisible by 4 for illustration purposes). To disambiguate
memory addresses inside a loop where aliases cannot be determined statically, LLV performs loop
versioning by inserting code that performs runtime alias checks to decide whether the vectorized
version or scalar version of a loop is executed. As illustrated in Figure 1(d), LLV creates two ver-
sions of the loop and places code that checks, at run time, whether the pointers A and B point to
disjoint memory regions. In the case of any overlap being detected, the scalar version (line 3) is
executed. Otherwise, the vectorized version (line 5) is used, instead.

1.1 Motivation

A conservative alias analysis may cause either some vectorization opportunities to be missed or
some redundant but costly runtime checks to be introduced. Figure 2 shows the impact of LLVM’s
BasicAA alias analysis on the effectiveness of SLP and LLV on all relevant SPEC CPU2000/2006
benchmarks compiled by LLVM.

Figure 2(a) gives the number of vectorizable and non-vectorizable basic blocks according to SLP
in all 12 relevant SPEC CPU2000/2006 benchmarks. A SPEC benchmark is included if and only if
SLP-related must-not-alias queries are issued to some basic blocks but not answered positively.
These are the SPEC benchmarks for which SLP may benefit from more precise alias analysis. A
basic block that receives some SLP-related alias queries is said to be vectorizable if SLP can generate
at least one vectorized instruction for the basic block. We note that 433.milc has the largest
number of basic blocks (57) that cannot be vectorized based on the alias results obtained from
LLVM BasicAA, representing 73.07% of the total number of basic blocks (78) with alias queries.
Across the 11 benchmarks, 153 out of total 504 basic blocks (30.04%) that issue alias queries in SLP
are non-vectorizable using LLVM’s BasicAA, but potentially vectorizable if a more precise alias
analysis is used.

Figure 2(b) gives the number of runtime alias checks for determining whether two memory
regions (e.g., arrays) pointed by two pointers are disjoint or overlapping for all the 11 SPEC
CPU2000/CPU2006 benchmarks that contain dynamic alias checks inserted by LLV. LLV relies
on these checks to disambiguate aliases that cannot be resolved at compile time. Compared to
SLP, the impact of alias analysis on the effectiveness of LLV can be more pronounced for some
benchmarks. Across the 12 benchmarks evaluated, an average of 96.35% of dynamic alias checks

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:3

Fig. 1. Examples for SLP and LLV vectorizations (assuming a four-element vector).

Fig. 2. Impact of LLVM’s BasicAA analysis on the effectiveness of SLP and LLV.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:4 Y. Sui et al.

Fig. 3. Potential performance benefits for SLP and LLV achieved with a “perfectly-precise” (i.e., oracle) alias
analysis relative to LLVM’s BasicAA.

is disjoint. In fact, the vectorized rather than scalar version of a loop is always executed in all the
benchmarks except 454.calculix and 459.GemsFDTD. Thus, most runtime checks are redundant
and can therefore be eliminated if a more precise alias analysis is applied, resulting in a reduction
in both instrumentation and code-size overheads.

Figure 3 shows the potential performance benefits for the two vectorization techniques with a
“perfectly-precise” (i.e., oracle) static alias analysis with respect to LLVM’s BasicAA for whole-
program vectorization. However, such static analysis does not exist due to the undecidability
of the aliasing problem in the presence of potentially an unbounded number of program paths
(Ramalingam 1994). To obtain the ideal performance for SLP and LLV in Figures 3(a) and 3(b), we
have manually added the __restrict__ attribute to disambiguate the aliases for the potentially
vectorizable basic blocks in Figure 2(a). We have also removed the redundant static instrumenta-
tion code identified in Figure 2(b) based on the reference inputs in the SPEC benchmarks.

We can see that many benchmarks show room for improvement, with the speedups ranging
from 1.01× to 1.07×, which are significant when compared with existing techniques for whole-
program vectorization (Porpodas et al. 2015; Nuzman et al. 2006; Karrenberg 2015). More impor-
tantly, developing a more precise alias analysis for discovering more vectorization opportunities
is complementary, resulting in extra performance benefits on top of the previous work. Note that
there may not be a direct translation from static improvement (measured in terms of vectorizable
basic blocks and redundant instrumentation code removed) to the actual runtime performance
speedups, since some vectorized code may not be executed frequently under some particular
inputs.

The aim of this article is to develop a more precise pointer analysis than the existing LLVM’s
alias analyses to achieve more effective SIMD vectorization.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:5

1.2 Challenges and Insights

The main source of imprecision in alias analysis for SIMD vectorization is lack of a precise
inter-procedural analysis for aggregate data structures including arrays and structs. The alias
analysis used in LLVM is intra-procedural, which is overly conservative without tracking the
inter-procedural data flows. The existing field-sensitive pointer analyses for C (Pearce et al. 2007;
Hardekopf and Lin 2011) use a field-index-based approach to distinguish the fields by their unique
indices (with nested structs expanded). However, this approach ignores the size information
for each field, by treating all the fields as having the same size. As C is not strongly typed, the
types of a pointer and the objects that it points to may be incompatible due to type casting.
A field-index-based analysis may generate unsound results for partial aliases (as illustrated in
Section 2.3), which may cause the compiler to generate incorrect vectorized code. Therefore, such
approach is not appropriate for supporting SIMD optimizations.

To the best of our knowledge, location sets (Wilson and Lam 1995) represent still the most
sophisticated byte-precise field-sensitive memory modeling in pointer analysis for C programs.
A location set 〈off, s〉a ∈ Z × N represents a set of memory locations {off + i × s | i ∈ Z} accessed
from the beginning of a memory object a, where off is an offset within a and s is a stride, both
measured in bytes. The stride s is 0 if the location set contains a single element. Otherwise, it
represents an unbounded set of locations.

Although location sets are byte-precise when used in analyzing the fields in a struct, there
are several limitations preventing them from being used in developing precise alias analyses
for auto-vectorization. First, arrays are modeled monolithically, with all the elements in the same
array collapsed. Second, their sizes are not recorded. Thus, an array inside a memory block is as-
sumed to extend until the end of the block, making it difficult to handle nested arrays and structs
accurately. Finally, the loop information, which is critical for loop-oriented optimizations, such
as SIMD vectorization, is ignored. Therefore, how to perform loop-oriented memory modeling
for arrays and structs to enable precise alias analysis required for SIMD vectorization remains
open.

1.3 Our Solution

To address the above challenges for analyzing arrays and nested data structures including arrays of
structs and structs of arrays, we introduce a fine-grained access-based memory modeling method
that enables a Loop-oriented array- and field-sensitive Pointer Analysis (Lpa) to be developed, with
one significant application to automatic SIMD vectorization. The novelty lies in disambiguating
aliases by generating access-based location sets lazily so that location sets are dynamically created
during the on-the-fly points-to resolution based on how arrays and structs are accessed.

Access-based location sets are a generalization of location sets (Wilson and Lam 1995) so that
both arrays and structs are handled in a uniform manner. Unlike the location-set model (Wilson
and Lam 1995), which ignores the loop information and does not distinguish the elements of an
array, Lpa leverages the loop trip count and stride information to precisely model accesses to arrays
including nested aggregate structures. The ranges of an array access expression are fully evaluated
if they are statically determined (e.g., constant values) or partially evaluated using our value range
analysis, developed based on LLVM’s SCEV (SCalar EVolution) pass.

To make Lpa scalable in whole-program SIMD optimizations for large programs, Lpa provides
tunable parameters to find a right balance between efficiency and precision by merging location
sets. In addition, Lpa separates memory modeling as an independent concern from the rest of
the pointer analysis, thereby facilitating the development of different pointer analyses (e.g., flow-
insensitive and flow-sensitive versions) with desired efficiency and precision tradeoffs by reusing

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:6 Y. Sui et al.

Table 1. Statements and Memory Expressions

Statement s ::= p=alloca (sz) | p=malloca (sz) | p = q | p = &ep | q = ep | ep = q
MemExpr ep ::= ∗p | p→ f | p[i]

existing pointer resolution frameworks. A pointer analysis is flow-sensitive if the flow of control
in the program is distinguished and flow-insensitive otherwise.

In summary, this article makes the following contributions:

—We introduce Lpa, a new loop-oriented array- and field-sensitive inter-procedural pointer
analysis for C programs based on access-based location sets built in terms of a lazy memory
model.

—We apply flow-insensitive and flow-sensitive versions of Lpa to improve the effectiveness
of SLP and LLV, by enabling more basic blocks to be vectorized by SLP and some redundant
dynamic checks that are inserted by LLV to be eliminated.

—We have implemented Lpa in LLVM (3.8.0). We evaluate Lpa with a total of 20 C and For-
tran CPU2000/2006 benchmarks, for which SLP or LLV can benefit from a more precise
alias analysis. These include all 18 benchmarks shown in Figure 2 as explained before, and
two more benchmarks, 197.parser and 436.cactusADM, for which some alias checks are
eliminated by Lpa but not executed under the reference inputs. For SLP, Lpa outperforms
LLVM’s BasicAA and ScevAA by discovering 139 and 273 more vectorizable basic blocks,
respectively, resulting in the best speedup of 2.95% for 173.applu. For LLV, LLVM intro-
duces totally 551 and 652 static bound checks under BasicAA and ScevAA, respectively. In
contrast, Lpa has reduced these static bound checks to 220, with an average of 15.7 checks
per benchmark, resulting in the best speedup of 7.23% for 177.mesa. We also provide a de-
tailed discussion about the scenarios where our approach is applicable and its limitations.

The rest of this article is organized as follows. Section 2 provides the background information.
Section 3 presents our loop-oriented array and field-sensitive but flow-insensitive pointer analysis
(Lpa). Section 4 introduces our flow-sensitive version of Lpa. Section 5 discusses and analyzes our
experimental results. Section 6 describes the related work. Finally, Section 9 concludes the article.

2 BACKGROUND

We introduce the partial SSA form used in LLVM for representing a program and the standard
inclusion-based pointer analysis based on a field-insensitive memory model.

2.1 Program Representation

A program is represented in LLVM’s partial SSA form Hardekopf and Lin (2011), Ye et al. (2014b),
and Lhoták and Chung (2011). The set of all program variables,V , is separated into two subsets:
A containing all possible targets, i.e., address-taken variables of a pointer and T containing all
top-level variables, where V = T ∪ A. Top-level variables are put directly in SSA form, while
address-taken variables are only accessed indirectly via memory expressions.

Table 1 gives the statements and expressions relevant to our analysis, where p,q ∈ T , a ∈ A,
and ep denote a memory access expression involving a pointer p, including a pointer dereference,
a field access, or an array access. The memory expressions are considered to be ANSI-compliant.
For example, given a pointer to an array, using pointer arithmetic to access anything other than
the array itself has undefined behavior (ISO90 1990). There are six types of statements:

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:7

Fig. 4. A C code fragment and its partial SSA form.

Fig. 5. Field-insensitive inclusion-based pointer analysis.

—StcAlloc: p=alloca (sz) represents static allocation, where a is either a stack or global ob-
ject. The size sz of object a is determined statically (bytewise).

—DynAlloc: p=malloca (sz) represents heap allocation, where the size sz of object a is either
known statically or determined at runtime, e.g., user inputs.

—Copy: p=q is either (1) a LLVM bitcast instruction, where p and q are different pointer
types or (2) decomposed from a LLVM phi instruction, i.e., p = phi(q, r) is translated into
p = q and p = r .

—AddrOf: p= &ep , represents the fact that the address of a memory expression (e.g., struct
field &p→f) can be taken in weakly-typed languages (e.g., C), whereas it is not permitted
in strongly-typed languages (e.g., Java).

—Load: q=ep reads a value from memory.
—Store: ep =q writes a value to memory.

Figure 4 gives a code fragment and its partial SSA form, where p,q, r , t ∈ T and a,b ∈ A. Here,
a is accessed indirectly at a store ∗p = t by introducing a top-level pointer t in partial SSA form.
Any field access a. f via an address-taken variable is transformed into a field dereference via a
top-level pointer, e.g., p→f . Similarly, an array access, e.g., a[i] is transformed to p[i]. The address
of a struct field, e.g., x = &a. f is transformed to AddrOf x = &p→ f .

For our interprocedural analysis, passing arguments into and returning results from functions
are modeled by Copy statements. The complex statements like ∗p=∗q are decomposed into the
basic ones t =∗q and ∗p=t by introducing a top-level pointer t . Accessing a multi-dimensional
array as in q=p[i][j] is transformed into q=p[k], where k=i ∗ n + j and n represents the size of
the second dimension of the array.

2.2 Field-Insensitive Pointer Analysis

Figure 5 gives the rules used in a field- and flow-insensitive inclusion-based analysis (Andersen
1994) with program statements transformed into constraints for points-to resolution until a fix
point is reached.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:8 Y. Sui et al.

Fig. 6. Comparing two field-sensitive solutions.

A field-insensitive solution (Hardekopf and Lin 2007; Lhoták and Chung 2011) treats every
address-taken variable at its allocation site as a single abstract object. Field and array memory
access expressions, p→ f and p[i], in terms of a pointer p are handled in the same way as a pointer
dereference ∗p. The objects are pre-allocated so that the total number of objects remains unchanged
during field-insensitive points-to resolution. The pointers dereferences ∗p and ∗q are must-not
aliases if the intersection of their points-to sets pt(p) and pt(q) is empty and may aliases otherwise.

2.3 Field-Sensitive Modeling: Index-based vs. Location-set-based Solution

In a field-insensitive analysis, an object at an allocation site is considered monolithically. In con-
trast, a field-sensitive analysis distinguishes different sub-components of an aggregate object. We
compares two previously used solutions to field-sensitivity.

—Field-index-based solution, which distinguishes the fields of an aggregate object by their
unique indices with all fields treated as having the same size. For each object a, af is used
to represent the sub-object that corresponds to the field f of a.

—Location-set-based solution (Wilson and Lam 1995), which models the fields of an object byte-
precisely based on their declared types. In Figure 6(a), p at line 1, which is declared with
type A∗, is made to point to object a, where A is a struct consisting of two 4-byte-integer
fields. At line 3, x =&p→ f 1 obtains the address of a’s first field represented by location set
〈off, s〉a , where off = 0, denoting the offset from the beginning of object a, and stride s = 0,
because the location set has a single element. Based on the type int∗ of x , we know that ∗x
accesses the memory between the 0st and the 4th byte of a, as illustrated in Figure 6(a).

Location-set-based modeling can give three kinds of alias results for a pair of memory expres-
sions, e.g., ∗p and ∗q: (1) may aliases if ∗p and ∗q may refer to the same location set derived from

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:9

an object; (2) must-not aliases if ∗p and ∗q refer to completely different abstract objects; and (3)
partial aliases (LLVM-Alias-Analysis 2017) if ∗p and ∗q may refer to different location sets derived
from the same object with overlapping memory locations. In this article, two memory expressions
are said to be aliases if they are either may aliases or partial aliases.

A location-set-based analysis is more sound and precise than a field-index-based analysis in
identifying partial aliases for C. There are two reasons. First, the address of an subobject (e.g., a
struct field or an array element) can be taken. Second, an object or its subobjects can be accessed
via pointers of different types due to pointer casting.

We use the example in Figure 6(a) (adopted from the example in Pearce et al. (2007)) to demon-
strate that field-index-based approach is unsound in terms of answering the partial alias query ∗x
and ∗y. We then use the example in Figure 6(b) with the code at line 3 slightly changed to demon-
strate that field-index-based solution is also less precise than the location-set-based approach in
the presence of casting in C.

—As shown in Figure 6(a), both field-sensitive solutions can distinguish the two fields com-
pared to field-insensitive analysis, however, the field-index-based approach ignores the sizes
of fields, reporting unsoundly that x and y point to different targets af 1 and af 2. In fact, ∗x
and ∗y are partial aliases as they access overlapping memory, i.e., locations between the 2nd
to 4th byte of object a as illustrated.

—As illustrated in Figure 6(b),x andy point to the same objectaf 2 according to the field-index-
based approach. However, the bytewise location-set-based approach is able to disambiguate
∗x (between the 4th and 8th byte of a) and ∗y (between the 2nd and 4th byte of a), based on
the two disjointed location sets 〈4, 0〉a and 〈2, 0〉a .

3 THE LPA ANALYSIS

Both field-index and location-set-based approaches are loop-unaware and array-insensitive. Our
memory modeling approach is built on top of a location-set-based solution to enable sound han-
dling of partial aliases. By incorporating loop information, LPA produces precise points-to results
for an important compiler client, i.e., SIMD vectorization, which requires byte-precise modeling
to be effective.

This section first describes our memory model (Amm) on access-based location sets (Section 3.1).
We then discuss how to perform our loop-oriented array- and field-sensitive pointer analysis based
on Amm (Section 3.2), including value-range analysis and location set disambiguation. Finally, we
focus on field unification, together with how to handle positive weight cycles and flow-sensitivity
(Section 3.3).

3.1 Amm: Access-based Memory Modeling

Our access-based memory modeling achieves field-sensitivity by representing an abstract object in
terms of one or more location sets based on how the object is accessed. A location set σ represents
memory locations in terms of numeric offsets from the beginning of an object block. Unlike (Wilson
and Lam 1995), which ignores the loop and array access information, Amm models field-sensitivity
in accessing an array, e.g., a[i] by maintaining a range interval [lb,ub], where lb,ub ∈N and an
access step X ∈ N+ (with X =1 if a is accessed consecutively inside a loop) by leveraging the loop
information using our value-range analysis.

To precisely model the locations based on the array access information, we introduce a new
concept called access trip, which is a pair (t , s) consisting of a trip count t = (ub − lb)/X + 1 and a
stride s = es ∗ X , where es is the size of an array element.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:10 Y. Sui et al.

Fig. 7. Examples for access-based location sets.

An access-based location set σ derived from an object a is

σ = 〈off, �(t1, s1), . . . , (tm , sm)�〉a , (1)

where off ∈ N is an offset from the beginning of object a, and T = �(t1, s1), . . . , (tm , sm)� is an
access-trip stack containing a sequence of (trip count, stride) pairs for handling a nested struct of
arrays. Here, m is the depth of an array in a nested aggregate structure. In Figure 7(c), a[4] is an
array of structs containing two array fields f 1[2] and f 2[2] whose depths arem = 2.

Finally, LS (σ) denotes a set of positions of σ from the beginning of an object a:

LS (σ) =
⎧⎪⎨
⎪
⎩

off +

m∑

k=1

(nk × sk) | 0 ≤ nk < tk
⎫⎪⎬
⎪
⎭
. (2)

Let us go through three examples with consecutive and non-consecutive accesses to single and
nested arrays as given in Figure 7.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:11

Example 3.1 (Consecutive Array Access). Figure 7(a) shows symmetric assignments from the last
eight to the first eight elements of an array, a[16]. Two expressions p[i] and p[15−i], where i ∈
[0, 7] and (15 − i) ∈ [8, 15], always access disjoint memory locations, as highlighted in green and
yellow, respectively. Therefore, loop-level vectorization can be performed without adding dynamic
alias checks due to the absence of dependencies between p[i] and p[15−i].

Our location set for representing the consecutive accesses of p[i] is σ = 〈0, �((7 − 0)/1 + 1, 4 ∗
1)�〉a = 〈0, �(8, 4)�〉a , where the size of an array element es = 4 and step X = 1. According to
Equation (2), LS (σ) = {0 + n ∗ 4 | 0 ≤ n < 8} = {0, 4, 8, 12, 16, 20, 24, 28}. Similarly, the location set
for p[15 − i] is σ ′= 〈32, �((15 − 8)/1 + 1, 4 ∗ 1)�〉a = 〈32, �(8, 4)�〉a , representing a set of locations
with offsets: LS (σ ′)= {32, 36, 40, 44, 48, 52, 56, 60}. Therefore, when accessing an array element, σ
and σ ′ always refer to disjoint locations.

Example 3.2 (Non-Consecutive Array Access). Figure 7(b) gives a program obtained after loop
unrolling with a stepX =4. Four expressions p[i],p[i + 1],p[i + 2], and p[i + 3] also access disjoint
memory locations, which can be disambiguated statically without inserting runtime checks by
LLV. The location set for representing the non-consecutive accesses of p[i] is 〈0, �((12 − 0)/4 +
1, 4 ∗ 4)�〉a = 〈0, �(4, 16)�〉a , where i ∈ [0, 12], es = 4 and X = 4, representing a set of positions
from the beginning of object a: {0, 16, 32, 48}, which is disjoint with all other location sets shown.

Example 3.3 (Nested Array Access). Figure 7(c) gives a more complex program that requires sev-
eral (trip count, stride) pairs to model its array access information precisely. Here, a[4] is an array
of structs containing two array fields f 1[2] and f 2[2]. The outer loop iterates over the array a[4]
via p[i] while the inner loop iterates over the array elements of field f 1[2] via r [j]. The location set
for representing the consecutive accesses of p[i] is 〈0, �((3 − 0)/1 + 1, 16 ∗ 1)�〉a = 〈0, �(4, 16)�〉a ,
where i ∈ [0, 3], es = 16 (the size of the structure including four floats) andX =1. The location set of
r [j] in accessing the inner field f 1[2] is 〈0, �(4, 16), ((1 − 0)/1 + 1, 4 ∗ 1)�〉a = 〈0, �(4, 16), (2, 4)�〉a ,
representing a set of locations with offsets: {0, 4, 16, 20, 32, 36, 48, 52}, where j ∈ [0, 1], es = 4 and
X = 1.

3.2 Pointer Analysis Based on Amm

Amm is designed by separating the location set generation as an independent concern from the rest
of the pointer analysis. It facilitates the development of a more precise field- and array-sensitive
analysis by reusing existing points-to resolution algorithms.

Figure 8 gives the rules for an inclusion-based pointer analysis based on Amm. Unlike the field-
insensitive counterpart given in Figure 5, the points-to set of a field-sensitive solution contains lo-
cation sets instead of objects. For each allocation site, e.g.,p = &a ([S-ALLOC]), the location setσ =
〈0, ��〉a is created, representing the locations starting from the beginning of object a. [S-LOAD]
and [S-STORE] handle not only pointer dereferencing but also field and array accesses by gener-
ating new location sets via GetLS . Rule [S-COPY] is the same as in the flow-insensitive version.

For a field access p→ f , GetLS (〈off, T 〉a ,p→ f) generates a new location set by adding off with
the offset (measured in bytes after alignment has been performed) of field f in object a while
keeping the access trip information T unchanged.

For an array access, there are two cases. In one case, the array index i is a constant value C so
that p[C] accesses a particular array element. Amm generates a new location set with a new offset
off +C ∗ es . In the other case, i is a variable i ∈ [lb,ub] with an access step X , where lb, ub and X
are obtained by our value-range analysis. As a range interval obtained statically by our analysis
is alway over-approximated, the resulting range is the intersection between [lb,ub] and array
bounds, i.e., [lb ′,ub ′] = [0,m − 1]
 [lb,ub] = [max(0, lb),min(m − 1,ub)], where m is length of
the array.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:12 Y. Sui et al.

Fig. 8. Rules for field- and array-sensitive inclusion-based pointer analysis equipped with an access-based
memory model.

Finally, the new offset is off + lb ′ ∗ es and the new trip stack is generated by pushing the trip

count and stride pair into the stack T, i.e., T.push(ub′−lb′

X
+ 1,X ∗ es), so that the hierarchical trip

information is recorded when accessing arrays nested inside structs.

3.2.1 Value Range Analysis. Our value range analysis estimates conservatively the range of
values touched at a memory access based on LLVM’s SCEV pass, which returns closed-form ex-
pressions for all top-level scalar integer variables (including top-level pointers) in the way de-
scribed in van Engelen (2001). This pass, inspired by the concept of chains of recurrences (Bachmann
et al. 1994), is capable of handling any value taken by an induction variable at any iteration of its
enclosing loops.

As we are interested in analyzing the range of an array index inside a loop to perform SIMD
optimizations, we extract only the value range from an integer variable if it can be represented
by an add recurrence SCEV expression. For other SCEV expressions that are non-computable in
the SCEV pass or outside a loop, our analysis approximates their ranges as [−∞,+∞] with their
steps being X = 1. This happens, for example, when an array index is a non-affine expression or
indirectly obtained from a function call.

An add recurrence SCEV has the form of < se1,+, se2 >lp , where se1 and se2 represent, respec-
tively, the initial value (i.e., the value for the first iteration) and the step per iteration for the
containing loop lp. For example, in Figure 7(b), the SCEV for the array index i inside the for loop
at line 2 is < 0,+, 4 >2, where its lower bound is lb = 0 and its step is X = 4.

The SCEV pass computes the trip count of its containing loop, which is also represented as a
SCEV. A trip count can be non-computable. For a loop with multiple exits, the worst-case trip
count is picked. Similarly, a loop upper bound is also represented by a SCEV, deduced from the
trip count and step information.

3.2.2 Disambiguation of Location Sets. In a field-insensitive analysis, two pointer dereferences
are aliased if they may refer to the same object. In Amm, every object may generate multiple

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:13

Fig. 9. Disambiguation of location sets (where obj (σ) denotes the object on which σ is generated).

Fig. 10. Examples for disjoint and overlapping location sets.

location sets. Two location sets can refer to disjoint memory locations even if they are generated
originally from the same object.

Our analysis checks whether two memory expressions ep and eq are aliased or not by using both
their points-to information and their memory access sizes szp and szq obtained from the types of
the points-to targets of the two pointers p and q, as shown in Figure 9. We say that ep and eq are
aliased if Equation (3) holds, where (σp , szp)�� (σq , szq) denotes that two locations may overlap,
i.e., a particular memory location may be accessed by both ep and eq .

According to Equation (4), (σ , szp)�� (σ ′, szq) holds if and only if σ and σ ′ are generated from
the same memory object (i.e., obj (σ) = obj (σ ′)) and there exists an overlapping zone accessed by
the two expressions based on the size information szp and szq (measured in bytes). In all other
cases, two location sets, e.g., two generated from two different memory objects, are disjoint.

Example 3.4 (Disjoint and Overlapping Location Sets). Figure 10(a) illustrates disjoint memory
accesses. Two expressions ep and eq are not aliased, since their location sets are disjoint. According
to Equation (1), the location sets of p[i] and p[i + 1] are 〈0, �(8, 8)�〉 and 〈4, �(8, 8)�〉, respectively.
The sizes of both accesses to the elements of an array with the float type are 4. According to
Equation (4), (σp , szp) ��� (σq , szq), p[i] and p[i + 1] always access disjoint regions. In contrast,
Figure 10(b) shows a pair of overlapping location sets, with their overlapping areas shown in gray.

3.3 Field Unification, PWC and Flow-Sensitivity

3.3.1 Field Unification Optimization. For some programs, a field-sensitive analysis may gener-
ate a large number of location sets due to deeply nested aggregate structures, which may affect the
efficiency of points-to propagation during the analysis. To make a tradeoff between efficiency and

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:14 Y. Sui et al.

Fig. 11. Field unification for location sets.

precision, we introduce a simple yet effective unification technique call field-unification, which
aims to reduce analysis overhead by merging existing locations. It provides an offset limit param-
eter F for the starting offset of a location set. The parameter allows users to find a right balance
between efficiency and precision by tuning the number of location sets generated.

With field unification, a location set is represented as σ = 〈off % F, T 〉. Note that the trip stack of
array access information remains unchanged in order to exploit vectorization opportunities.

Example 3.5 (Field Unification). Figure 11(a) gives a field unification example with a struct con-
taining two array fields f 1[8] and f 2[8]. Field f 1[8] is accessed via q[i] and q[i + 1] inside the for
loop (lines 4–7). Field f 2[8] is accessed via r [j] and r [i + 1] inside the other loop (lines 8–11). The
default location sets generated for the four memory accesses are shown in Figure 11(b). If we limit
the maximum starting field offset to be 32, then the location set of r [i] is with into p[i] and r [i + 1]
is merged with p[i + 1], so that only two location sets are generated. However, for each loop, our
memory modeling can still distinguish the two array accesses (e.g., q[i] and q[i + 1]) even after
unification, as illustrated in Figure 11(c).

3.3.2 Handling Positive Weight Cycles. With field-sensitivity, one difficulty lies in handling
positive weight cycles (PWCs) (Pearce et al. 2007) during points-to resolution. Without field-
sensitivity (Hardekopf and Lin 2007; Pereira and Berlin 2009), a cycle on a constraint graph formed
by copy edges is detected and collapsed to accelerate convergence during its iterative constraint
resolution.

In a field-sensitive constraint graph, a cycle may contain a copy edge with a specific field offset,
resulting in a PWC. Figure 12(a) shows a PWC with an edge fromp toq, indicating a field offset that
causes infinite derivations unless field limits are bounded. Eventually,p andq always have the same
solution. Thus, all derived fields are redundant and unnecessary for precision improvement. Simply
collapsing p and q may be unsound, as they can point to other fields of the struct a during the on-
the-fly derivation. To handle PWC efficiently while maintaining precision, we follow (Pearce et al.
2007; Rick Hank 2010) by marking the objects in the points-to set of the pointers inside a PWC to
be field-insensitive, causing all its fields to be merged.

Amm models both field and array accesses of an object. This poses another challenge for PWC
handling as a cycle may involve pointer arithmetic when array elements are accessed. Figure 12(b)
shows a PWC example simplified from 181.mcf. The pointer p iterates over all the elements in
an array of structs, a[10], inside the for loop. Simply marking object a as being field-insensitive
may lead to a loss of precision. Although p and q can access any element in a, the two fields of
an array element are still distinguishable, i.e., p→ f 1 and p→ f 2 refer to two different memory
locations. Our analysis performs a partial collapse for array-related PWCs so that only the location

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:15

Fig. 12. Handling of positive weight cycles.

sets generated by array accesses are merged, while the location sets generated by field accesses
remain unchanged.

4 FLOW-SENSITIVE LPA

In previous flow-sensitive analyses, such as Hardekopf and Lin (2011) and Ye et al. (2014b),
field-sensitivity is realized based on a field-index-based model, which has the same limitations as
flow-insensitive analysis for analyzing loop-oriented clients like SIMD vectorization, as discussed
in Section 2.3. Our access-based memory model is designed to be independent from any pointer
analysis algorithm. For example, the Sparse Flow-Sensitive (SFS) points-to analysis algorithm
(Hardekopf and Lin 2011) can be easily ported by adopting our byte-precise memory model, which
incorporates loop information to obtain precise aliases by disambiguating disjoint location sets.

Figure 13 gives the rules of a field-insensitive SFS for resolving points-to information flow-
sensitively. For a variablev , pt(�,v) denotes its points-to set computed immediately after statement

�. Here, �′
v
↪−→ � represents the pre-computed def-use (value-flow) relation of variablev ∈ V from

statement �′ to statement � (Sui and Xue 2016b; Hardekopf and Lin 2011; Sui and Xue 2016a).
The first four rules deal with the four types of statements introduced in Section 2.1 with every

memory access expression ep treated as a pointer dereference ∗p in a field-insensitive manner.
[F-COPY], [F-LOAD], [F-STORE] resolve and propagate the points-to information sparsely by
following the pre-computed def-use chains ↪−→. The last rule [F-SU/WU] enables a strong or weak
update at a store, whichever is appropriate, where singletons (Lhoták and Chung 2011) form the
set of objects in A representing unique locations by excluding heap, array, and local variables in
recursion.

Figure 14 gives the rules of our field- and array-sensitive sparse flow-sensitive analysis based
on Amm. In this case, a points-to set contains location sets instead of objects, with the location sets
generated based on memory expressions p→ f and p[i] via GetLS given in Figure 8.

We use the same notation as in Figure 13 to represent the points-to set pt(�,p) of a top-level
pointer p. For an address-taken variable a, we compute the points-to set pt(�,σ) for every location
set σ derived from the base object a, denoted as a = obj (σ).

Two location setsσ andσ ′may have overlapping memory locations when derived from the same
base object as discussed in Section 3.2. Our analysis performs strong updates for every location
set individually; i.e., strong updates on σ do not affect the values of σ ′. As in Figure 13, only
the location sets generated from singleton objects (Lhoták and Chung 2011) are allowed to be

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:16 Y. Sui et al.

Fig. 13. Field-insensitive sparse flow-sensitive pointer analysis. (�,v) represents a definition of a variable

v ∈ V at a program statement �, and �′
v
↪−→ � represents the pre-computed def-use of variablev from �′ to �.

Fig. 14. Field- and array-sensitive sparse flow-sensitive pointer analysis based on Amm.

strongly updated. To answer alias queries from a client, like SIMD vectorization, the same alias
disambiguation rules in Figure 9 are reused.

5 EVALUATION

Our objective is to demonstrate that Lpa (our loop-oriented array- and field-sensitive pointer anal-
ysis) can improve the effectiveness of SLP and LLV, two classic auto-vectorization techniques, on

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:17

performing whole-program SIMD vectorization. For comparison purposes, the default alias anal-
yses in LLVM including BasicAA and SCEVAA are used as the baselines.

We have included all the SPEC CPU2000/CPU2006 benchmarks for which SLP or LLV can ben-
efit from more precise alias analysis (as discussed in Figure 2). There are a total of 20 benchmarks
(totaling 1208.2 KLOC) qualified, including the 18 benchmarks in Figure 2 and two more bench-
marks, 197.parser and 436.cactusADM, for which some dynamic alias checks are eliminated by
Lpa but not executed under the reference inputs.

For SLP, Lpa outperforms BasicAA and ScevAA by discovering 139 and 273 more vectorizable
basic blocks, respectively, resulting in the best speedup of 2.95% for 173.applu. For LLV, LLVM
introduces totally 551 and 652 static bound checks under BasicAA and ScevAA, respectively. In
contrast, Lpa has reduced these checks to 220, with an average of 15.7 checks per benchmark,
resulting in the best speedup of 7.23% for 177.mesa.

Below, we describe our implementation of Lpa (Section 5.1), our experimental setup (Section 5.2),
our experimental results and case studies (Section 5.3), and, finally, some limitations of Lpa and
possible future improvements (Section 5.4).

5.1 Implementation

We have implemented Lpa on top of our open-source software tool, SVF (Sui and Xue 2016b),
based on LLVM (version 3.8.0). The LLVM compiler (Lattner and Adve 2004), which is designed as
a set of reusable libraries with a well-defined intermediate representation, has been recognized as
a common infrastructure to support program analysis and transformation.

In LPA, every allocation site is modeled as a distinct abstract object. The size of each object is
recorded. For a global or stack object, its size is statically known according to the type information
at its allocation site, while the size of a heap object created by an allocator function, e.g.,malloc (sz)
is obtained according to its parameter sz. The size of a heap object is assumed to be infinite if
sz can only be determined at runtime (e.g., under a program input), following the location-set-
based approach (Wilson and Lam 1995). The location sets are generated according to the rules
in Section 3.1. The default field limit (Section 3.3) is set to 1,024. LLVM’s ScalarEvolution pass is
executed before Lpa. Then the SCEVAddRecExpr class is used to extract loop information including
trip count, step, and bounds for array accesses.

For LPA’s points-to resolution, we use the wave propagation technique (Pereira and Berlin 2009;
Rick Hank 2010) for constraint solving. The positive weight cycles (PWCs) (Pearce et al. 2007)
are detected using Nuutila’s SCC detection algorithm (Nuutila and Soisalon-Soininen 1994). A
program’s call graph is built on the fly and points-to sets are represented using sparse bit vectors.

We have chosen LLVM for an implementation of LPA for three reasons. First, LLVM, as one of
the mainstream compilers, has relatively informative documents and an easy-to-understand inter-
face compared to GCC for implementing and integrating new alias algorithms in its framework.
Second, the SIMD vectorizers in LLVM exhibit comparable performance as those in GCC according
to https://llvm.org/docs/Vectorizers.html#performance. Finally, LPA is complementary to the ex-
isting vectorization techniques, as it exposes more vectorization opportunities due to more precise
aliases discovered.

5.2 Experiment Setup

Our experiments are conducted on an Intel Core i7-4770 CPU (3.40GHz) with an AVX2 SIMD
extension, supporting 256-bit floating point and integer SIMD operations. The machine runs a
64-bit Ubuntu (14.0.4) with 32GB memory.

Figure 15 describes the compilation workflow used in our experiments. The source code is com-
piled into bit-code files using clang (for C code) and gfortran and dragonegg (for Fortran code),

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

https://llvm.org/docs/Vectorizers.html#performance

56:18 Y. Sui et al.

Fig. 15. The compilation work flow.

and then linked together using llvm-link. Next, the generated bit-code file is fed into LLVM’s
opt module to perform vectorization. The effects of an alias analysis on LLV and SLP are eval-
uated separately. When testing SLP, the compiler flags used are “-O3 -march=core-avx2 -disable-

loop-vectorization” (with LLV disabled). When testing LLV, the compiler flags used are “-O3 -

march=core-avx2 -disable-slp-vectorization” (with SLP disabled). llc is used as the back-end to emit
assembly code. Finally, executables are generated using clang and gfortran code generators.

We have applied LLV and SLP by using four different alias analyses: (1) LLVM’s BasicAA,
(2) LLVM’s SCEVAA, (3) the flow-insensitive version of Lpa (Lpa-FI), and (4) the flow-sensitive ver-
sion of Lpa (Lpa-FS). To compare fairly the effects of these four alias analyses on the performance
benefits achieved by SLP and LLV, we have modified LLVM’s alias interface to allow these different
alias results to be used only in the SLP and LLV passes. All the other optimizations use BasicAA.

We will focus on a set of 20 SPEC CPU2000/CPU2006 benchmarks, for which Lpa is more precise
than either BasicAA or SCEVAA: (1) Lpa enables more basic blocks to be vectorized by SLP or (2)
Lpa eliminates some static bounds checks that would otherwise be inserted by LLV. The remaining
benchmarks are excluded as Lpa has the same capability in answering alias queries as the other
two. Table 2 lists some statistics for the 20 benchmarks selected. In our experiments, the execution
time of each program is the average of five runs under its reference input.

5.3 Results and Analysis

We first describe the compilation overhead incurred by Lpa for the 20 benchmarks examined.
To demonstrate how Lpa helps harness vectorization opportunities and improve program perfor-
mance, we provide (1) the number of basic blocks vectorized by SLP under Lpa (but not under
LLVM’s alias analyses), (2) the number of dynamic alias checks eliminated under Lpa (but intro-
duced under LLVM’s alias analyses), and more importantly, (3) the performance speedups obtained
given (1) and (2).

5.3.1 Compile-Time Statistics. Some compile-time statistics are analyzed below.
Analysis Times. Table 3 and Figure 16 give the analysis times of Lpa-FI and Lpa-FS, and their

percentage contributions to total compilation times. Both are fast in analyzing programs under
100KLOC, by spending under one minute per benchmark. For larger programs (with �100KLOC),
such as 176.gcc, 435.gromacs, and 465.tonto, Lpa-FI and Lpa-FS take longer to finish, with the
analysis times of Lpa-FI ranging from 94.4 to 1740.5s and of Lpa-FS ranging from 134.8 to 7112.2s.
For 400.perlbench, which has a large number of pointers, statements, and indirect callsites, Lpa-
FS finishes its analysis in around 2h.

Static Results of SLP. Table 4 lists the number of basic blocks vectorized by SLP with its alias
queries answered by the four analyses compared across the 11 benchmarks. For the 20 benchmarks

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:19

Table 2. Program Characteristics

Program KLOC #Stmt #Ptrs #Objs #CallSite

173.applu 3.9 3,361 20,951 159 346
176.gcc 226.5 215,312 545,962 16,860 22,595
177.mesa 61.3 99,154 242,317 9,831 3,641
183.equake 1.5 2,082 6,688 236 235
188.ammp 13.4 14,665 56,992 2,216 1,225
191.fma3d 60.1 119,914 276,301 6,497 18,713
197.parser 11.3 13,668 36,864 1,177 1,776
256.bzip2 4.6 1,556 10,650 436 380
300.twolf 20.4 23,354 75,507 1,845 2,059
400.perlbench 168.1 130,640 296,288 3,398 15,399
401.bzip2 8.2 7,493 28,965 669 439
433.milc 15 11,219 30,373 1,871 1,661
435.gromacs 108.5 84,966 224,967 12,302 8,690
436.cactusADM 103.8 62,106 188,284 2,980 8,006
437.leslie3d 3.8 12,228 38,850 513 2,003
454.calculix 166.7 135,182 532,836 18,814 23,520
459.GemsFDTD 11.5 25,681 107,656 3,136 6,566
464.h264ref 51.5 55,548 184,660 3,747 3,553
465.tonto 143.1 418,494 932,795 28,704 58,756
482.sphinx3 25 20,918 60,347 1,917 2,775
Total 1,208.2 1,457,541 3,898,253 117,308 182,338

Table 3. Total Analysis Time Including Lpa-FI and Lpa-FS

Benchmark
Analysis Times (s)
Lpa-FI Lpa-FS

173.applu 0.3 0.4
176.gcc 390.1 1,215.2
177.mesa 28.7 45.6
183.equake 0.2 0.3
188.ammp 2.1 3.2
191.fma3d 15.7 30.4
197.parser 3.0 5.8
256.bzip2 0.2 0.3
300.twolf 5.1 7.9
400.perlbench 1,740.5 7,112.2

Benchmark
Analysis Times (s)
Lpa-FI Lpa-FS

401.bzip2 2.3 6.2
433.milc 1.5 3.6
435.gromacs 94.4 134.8
436.cactusADM 53.2 1,901.2
437.leslie3d 0.7 1.3
454.calculix 30.9 46.8
459.GemsFDTD 4.3 6.5
464.h264ref 20.7 57.7
465.tonto 159.1 752.9
482.sphinx3 3.9 8.2

listed in Table 2, these 11 benchmarks are the only ones for which Lpa is more effective than either
BasicAA or SCEVAA or both.

There are totally 351 and 217 basic blocks vectorized by SLP under BasicAA and SCEVAA,
respectively. Lpa has improved these results to 482 (under Lpa-FI) and 490 (under Lpa-FS). The
final results of Lpa-FS outperformsBasicAA and SCEVAA by 1.39× and 2.26×, respectively. The
most significant improvements happen at 177.mesa and 433.milc. In each case, Lpa enables SLP
to discover 40 more vectorizable basic blocks, yielding an improvement of about 3x over BasicAA
and SCEVAA. Lpa provides more precise aliases, since it is more precise in analyzing arrays and
nested data structures and in disambiguating must-not-aliases for the arguments of a function.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:20 Y. Sui et al.

Fig. 16. Percentage of analysis time over total compilation time.

Table 4. Number of Basic Blocks Vectorized by SLP Under the
Four Alias Analyses

Benchmark
Number of Basic Blocks Vectorized by SLP
BasicAA SCEVAA Lpa-FI Lpa-FS

173.applu 20 4 26 26
176.gcc 4 3 6 6
177.mesa 24 23 64 66
183.equake 2 1 4 4
188.ammp 1 2 4 4
191.fma3d 46 23 53 56
433.milc 21 13 69 69
435.gromacs 53 35 57 58
454.calculix 161 92 166 168
465.tonto 19 21 32 32
482.sphinx 0 0 1 1
Total 351 217 482 490

Static Results of LLV. Table 5 gives the number of static alias checks inserted by LLV under the
four analyses compared across the 14 benchmarks. Again, for the 20 benchmarks listed in Table 2,
these 14 benchmarks are the only ones for which Lpa can avoid some checks introduced either by
BasicAA or SCEVAA or both.

LLV introduces totally 551 and 652 checks under BasicAA and SCEVAA, respectively, but only
238 under Lpa-FI, representing a reduction by 2.32× and 2.74×, respectively. The Lpa-FS further
reduces the redundant checks to 220. Although the number of static checks is not large, the number
of dynamic checks can be huge. For example, a static check inserted for a loop in Utilities_DV.c
of 454.calculix is executed up to 28 million times at runtime under its reference input (Table 7).
Even if a check is inserted at the preheader of a loop, it may still be executed frequently if the loop
is nested inside another loop or in recursion.

When Lpa-FS is applied, over 50% of static checks introduced by LLVM’s alias analyses have
been eliminated in: 176.gcc, 436.cactusADM, 437.leslie3d, 459.GemsFDTD, 464.h264ref,
465.tonto, 482.sphinx3. For 197.parser and 256.bzip2, all of their checks have been
eliminated.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:21

Table 5. Number of Static Alias Checks Inserted by LLV Under
the Four Alias Analyses

Benchmark
Number of Static Alias Checks Inserted by LLV
BasicAA SCEVAA Lpa-FI Lpa-FS

176.gcc 4 8 2 2
177.mesa 121 137 88 80
197.parser 1 1 0 0
256.bzip2 1 6 0 0
300.twolf 11 13 10 9
400.perlbench 23 21 13 7
401.bzip2 6 9 5 5
436.cactusADM 71 112 2 1
437.leslie3d 21 21 4 4
454.calculix 83 90 57 56
459.GemsFDTD 65 79 16 16
464.h264ref 30 32 2 2
465.tonto 110 118 38 37
482.sphinx3 4 5 1 1
Total 551 652 238 220

Fig. 17. Imprecise flow-insensitive pointer analysis example in 400.perlbench. Weak updates at line 1115
result in aliases (cl->bitmap[i] and or_with->bitmap[i]).

Figure 17 shows a code snippet from 400.perlbench, in which cl and or_with at line 638
point to the same object &this_class according to Lpa-FI, which leads to a weak update at line
1115 so that the old value of data→start_class is preserved. Thus, cl and or_with at line 606
are may-aliases, resulting in redundant checks inserted by LLV. However, a flow-sensitive analysis
can strongly update data→start_class by killing its old contents, resulting in a must-not-alias
for cl and or_with at line 606. Thus, the redundant checks are eliminated, resulting in more
efficient vectorized code.

Partial Aliases. A total of 34 aliases queries issued by SLP and LLV are answered as partial
aliases that are missed by the field-index-based approach in 176.gcc, 177.mesa, 435.gromacs
and 482.sphinx3. All these partial aliases are generated, since the fields of a union object are
accessed via pointers of different types. For example, a union type, union { float32 f ; int32 l ;},
in 482.sphinx3 is used to convert between floats and integers. In 435.gromacs, a query is issued
for an access to an object of struct {int type; union {int* i; real* r , char**c ;} old_contents; },
where the struct contains a union used for implementing polymorphism in C with type as its tag

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:22 Y. Sui et al.

Fig. 18. SLP: whole-program speedups (with the baseline being the better of BasicAA and SCEVAA).

to indicate the type of the union object. Finally, the partial aliases in 176.gcc are due to low-level
bit operations over a whole union object, which can be accessed via multiple struct types in the
form of union { struct char common[]; struct { unsigned int code : 8; unsigned side_f laд :
1; unsigned constant_f laд : 1; } }

5.3.2 Runtime Performance. Let us examine the performance gains obtained under Lpa given
the above compile-time improvements achieved by SLP and LLV. In what follows, the results of
Lpa represents the performance achieved by Lpa-FS. For a program, the baseline is the smaller of
the two execution times achieved by SLP under BasicAA and SCEVAA.

Performance Improvements of SLP. Figure 18 gives the whole-program speedups achieved by SLP
under Lpa normalized with respect to LLVM’s alias analyses. Table 6 lists the code locations and
execution frequencies for the new basic blocks that are vectorized by SLP under Lpa and executed
under the reference inputs.

For all the benchmarks evaluated, 173.applu and 433.milc achieve the best speedups of 1.03×
and 1.02×, respectively, because many new basic blocks vectorized under Lpa are frequently exe-
cuted according to Table 6. For 176.gcc, 191.fma3d and 482.sphinx3, many new basic blocks
are also vectorized under Lpa, but their performance improvements are small, ranging from 0.1%
to 0.5%, because some of these blocks are executed either infrequently or zero times (under their
reference inputs).

Interestingly, for 183.equake, performance becomes worse when a certain basic block enclosed
by a loop in the function main is vectorized (only) by SLP with LPA. As illustrated in Figure 19,
compared to the basic block’s scalar code, LLVM’s code motion optimizer acts differently and does
not hoist the computation on some loop-invariant variables (several getelementptr instructions)
inside the loop to the loop preheader for the vectorized code. Due to the repeated execution of these
getelementptr instructions (151,173×) and the relatively less frequent execution of the vectorized
basic block (6× only due to the conditional branch), the extra overhead introduced outweighs the
benefit of vectorization achieved.

Performance Improvements of LLV. Figure 20 is an analogue of Figure 18 to demonstrate the per-
formance speedups achieved by LLV under Lpa with the same baseline. Correspondingly, Table 7
is an analogue of Table 6, except that we are here concerned with the loops whose runtime alias
checks are completely removed by Lpa but would be introduced by BasicAA or SCEVAA.

For these benchmarks, the performance improvements achieved vary, depending on how costly
their removed runtime checks are. We have omitted 197.parser and 436.cactusADM as their
eliminated runtime checks are not executed under the reference inputs.

For 177.mesa, we observe a speedup 1.07×, as its removed runtime checks involve complex
range checks for 10 different pointer pairs, with each pair executed 96,512×. For many other

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:23

Table 6. Code Locations and Execution Frequencies for the Basic Blocks
that Are Vectorized by SLP Under Lpa-FS but not LLVM’s Alias Analyses,

Under the Reference Inputs

Benchmark
Basic Blocks Vectorized and Executed Execution

Source Files Line Numbers Frequency

173.applu applu.f

2688–2715,2838–2865
68,484,312

2988–3015
2738–2747,2888–2897

63,761,256
3038–3047

176.gcc regclass.c
904–906 1,781,066
1597–1600 537,972

177.mesa not executed
183.equake quake.c 913–914 6

188.ammp rectmm.c
323–351 843,216
1028–1043 559,731,147

191.fma3d platq.f90 1986–1990,1998–2002 163,182,300

433.milc

addvec.c 11–13 33,600,000
s_m_mat.c 29–48 6,400,000
s_m_vec.c 15–18 800,000
s_m_a_vec.c 18–21 446,480,000
make_ahmat.c 40–45 657,920,000
s_m_a_mat.c 17–20 302,080,000
su3mat_copy.c 13–16 270,080,000
rephase.c 44–47 14,720,000

435.gromacs
coupling.c 77–79 7,001
vec.h 487–495 21,006

454.calculix
results.f 803–808 3,417,876
incplas.f 669–672 278,437

465.tonto rys.fppized.f90
1179–1195 6,769,676
1198–1218 4,768,547
1221–1241 3,759,643

482.sphinx3 utt.c 384–387 2,808

benchmarks, such as 256.bzip2, 300.twolf, 400.perlbench, 464.h264ref and 482.sphinx3,
the performance improvements are under 1.01×, as their removed runtime checks are not costly
relative to their total execution times.

For 176.gcc, a performance slowdown is observed despite removal of some of its runtime
checks. We examined its vectorized code and found that the slowdown is caused by function in-
lining. There is a loop in function gen_rtvec_v of emit-rtl.c. By removing the runtime checks
for the loop, its containing function becomes smaller. As a result, LLVM has decided to inline this
function in its callers, causing the performance slowdown. If we add “__attribute__ ((noinline))”
for this function, then the slowdown will disappear.

5.3.3 Case Studies. To further understand the performance improvements of SLP and LLV ob-
served in Figures 18 and 20, we have selected four representative kernels from the 20 benchmarks
evaluated to show how Lpa facilitates SIMD vectorization in some real code scenarios, where both
BasicAA and SCEVAA are ineffective. We consider two kernels for improving SLP and two kernels

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:24 Y. Sui et al.

Table 7. Code Locations and Execution Frequencies for the Loops Without (With) Runtime
Alias Checks Under Lpa-FS (LLVM’s Alias Analyses), Under the Reference Inputs

Benchmark
Loops With Their Runtime Checks Removed Execution
Source Files Line Numbers Frequency

176.gcc
tree.c 1155–1156 62,263
emit-rtl.c 469–470 53

177.mesa osmesa.c 746–748 96,512
256.bzip2 bzip2.c 1081–1082 2,674

300.twolf qsortg.c
60–64 1,091
141–145 312

400.perlbench

pp_sort.c 116 526,879

regcomp.c

580–581 10
583–584 191,784
623–624 3
637–638 315,240

401.bzip2 huffman.c 239 22,554

437.leslie3d tml.f
3572,3573,3576,3577,

8,863,6803578,3581,3582,3583,
3586,3587,3588,3648

454.calculix

A2_util.c 1320–1324 15,990,856
Chv_swap.c 505–515 1,261,407
IV_util.c 486–488 222
InpMtx_init.c 182–192 111

Utilities_DV.c

59–61 28,864,631
118–120 2,490,749
1147–1152 6
1184–1188 34

Utilities_IV.c 121–123 4,922,420

Utilities_newsort.c
1130–1134,1136–1140 36,075
1424–1428,1430–1434 1,354,311

459.GemsFDTD

huygens.fppized.f90

706–707,714–715,725–726,
192,000

735–736,820–821,826–827,
839–840,847–848
709–710,717–718,730–731,

191,000
738–739,818–819,824–825,
833–834,844–845
465–468,478–481,493–496,

192
506–509,521–524,534–537,
555–558,568–571,583–586,
596–599,611–614,624–627
470–473,483–486,498–501,

191
511–514,526–529,539–542,
550–553,563–566,578–581,
591–594,606–609,619–622

NFT.fppized.f90

805,818,831,844,859,872,
724

890,903,916,929,942,955
811,824,837,850,865,878,

728
896,909,922,935,948,961

464.h264ref
macroblock.c 2059–2060 250,704
mv-search.c 236 16,708,450
rdopt.c 1858–1860 8,110,368

465.tonto realmat.fppized.f90 3087,3095 348,490
482.sphinx3 new_fe_sp.c 207–209 64,584

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:25

Fig. 19. LLVM-IR before and after SLP transformation of code snippet in 183.equake.

Fig. 20. LLV: whole-program speedups (with the baseline being the better of BasicAA and SCEVAA).

for improving LLV, as listed in Figures 21(a) and 21(b), and their code snippets in Figures 21(c)–
21(f). Figures 21(g) and 21(h) give the speedups achieved by SLP and LLV, respectively, under Lpa
over BasicAA and SCEVAA.

SLP Kernels. In SLP_K1, the loop given at lines 2–3 in Figure 21(c) is fully unrolled by LLVM’s
code optimizer, due to its small loop trip count (N_REG_CLASSES=7), before it is passed to LLVM’s
vectorizer. To vectorize the eight isomorphic statements after loop unrolling, SLP needs to check if
any dependence exists when accessing the array field cost[j] via the two pointers p and q that are
the parameters of the containing function. BasicAA and SCEVAA are ineffective as disambiguating
p and q requires inter-procedural analysis. Guided by Lpa, SLP has successfully vectorized this
kernel, resulting in a speedup of 2.03×.
SLP_K2 represents an example demonstrating the power of Lpa on analyzing deeply nested

arrays of structs. The inner loop at lines 2–5 in Figure 21(d) is fully unrolled by LLVM’s code
optimizer. Thus, a basic block with 18 isomorphic statements is formed. All the data in the basic
block are accessed via one pointer, s. However, enabling SLP requires the struct fields link and
phase to be modeled separately in the nested aggregate, which is supported by Lpa but not by
BasicAA or SCEVAA. With Lpa, SLP has vectorized this kernel, resulting in a speedup of 1.42×.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:26 Y. Sui et al.

Fig. 21. Case studies for four selected kernels with their improved performance under Lpa (over BasicAA
and SCEVAA).

LLV Kernels. LLV_K1 is a loop containing array accesses via pointers base and limit, which are
parameters of its containing function. To vectorize this loop and avoid runtime checks, LLV needs
to recognize that the two memory accesses base[i] and limit[i-1] are actually disjoint, which
cannot be done by the intra-procedural alias analyses, BasicAA and SCEVAA. By disambiguating
the two array accesses, Lpa enables their redundant runtime checks to be avoided. Thus, a speedup
of 1.29× is achieved.
LLV_K2 is a Fortran loop containing accesses to a multi-dimensional array Q. To vectorize the

loop without introducing runtime checks, the dependence for the two array accesses Q(1:I2,
J, K, 1, M) and Q(1:I2, J, K, 1, N) needs to be analyzed. Lpa generates two location sets
that access disjoint locations of Q under different indices for its highest dimension (i.e., M and N)
based on our value-range analysis. Therefore, runtime checks are eliminated and the performance
is improved (by 1.05×).

5.4 Discussions

We describe two principal directions along which our approach can be further improved. One
future direction is to develop a more sophisticated value range analysis. In our current implemen-
tation, the SCEV-based range analysis can be overly conservative, since the estimated ranges of
values are sometimes crude over-approximations of their actual runtime ranges. This can happen
in the case of indirect array accesses (e.g., a[*p] and a[b[i]]) or irregular loops (e.g., iterating arrays
inside a loop with variant bounds).

Figure 22 shows an indirect array access in a loop from a frequently executed function inl1130
in benchmark 435.gromacs from CPU2006. Lpa fails to enable LLV to remove redundant checks,
since it cannot disambiguate the indirect array accesses made by different iterations of the loop at

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:27

Fig. 22. An imprecise value range analysis example, where indirect array accesses made by different itera-
tions of the loop at line 3972 cannot be disambiguated.

Fig. 23. An imprecise value range analysis, where fmap[yyp1] and fmap[yyp2] cannot be disambiguated
due to variable loop bounds.

line 3972. Thus, validity runtime checks must be inserted outside the loop to perform the runtime
pointer disambiguation.

Figure 23 shows an irregular loop code segment as a part of qsort in 401.bzip2 from CPU2006.
The fswap at line 119 can be vectorized by LLV without requiring validity checks, because
fmap[yyp1] and fmap[yyp2], where yyp1 ∈ [lo, lo + n − 1] and yyp2 ∈ [unLo − n,unLo − 1], al-
ways access two different elements of the array fmap. However, Lpa fails to remove those redun-
dant checks due to variable loop bounds.

To improve the precision of value range analysis, one option is to use some advanced loop anal-
ysis and transformation frameworks, such as Polly (Grosser, Zheng, Aloor, Simbürger, Größlinger,
and Pouchet Grosser et al.). Another is to handle pointer arithmetic more precisely by using
symbolic range analysis (Paisante et al. 2016) possibly with a integer linear programming (ILP)
solver (Rugina and Rinard 2000).

An inter-procedural flow-sensitive analysis based on our fine-grained memory model Amm can
be time-consuming in analyzing large programs, such as 400.perlbench. Lpa-FS takes around two
hours to finish the analysis (Table 5).

Another future direction is to improve the scalability of our loop-oriented pointer analyses using
demand-driven approach, like CFL-Reachability (Zheng and Rugina 2008; Sridharan and Bodík
2006; Sui and Xue 2016a), so that we can accelerate precise analysis, such as flow-sensitive analysis,
at compile-time to generate vectorized code more efficiently.

6 RELATED WORK

Pointer Analysis. As a fundamental enabling technique, pointer or alias analysis (Andersen 1994;
Jung and Huss 2004; Hardekopf and Lin 2011; Sui et al. 2016) paves the way for software bug de-
tection (Sui et al. 2012; Ye et al. 2014a; Sui and Xue 2016a), enforcing control-flow integrity (Fan
et al. 2017) and compiler optimizations (Nguyen and Xue 2015; Sui et al. 2013). In automatic
SIMD vectorization, statements grouped together for vectorization must be dependence-free. A

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:28 Y. Sui et al.

recent evaluation on vectorizing compilers (Maleki et al. 2011) reveals some limitations of existing
dependence analyses, calling for more precise alias analyses to uncover more vectorization
opportunities.

The alias analyses used in modern compilers (e.g., LLVM) are intra-procedural, yielding con-
servative answers to many alias queries. In the literature on inter-procedural alias analysis for C
programs, many field-sensitive pointer analysis algorithms (Hardekopf and Lin 2011; Pearce et al.
2007) rely on a field-index-based model to distinguish fields in a struct by treating all fields to have
the same size, which are not sound to support SIMD optimizations. Wilson and Lam (1995) intro-
duced a byte-precise model based on location sets, without handling loops and arrays precisely
enough to support SIMD optimizations.

Recently, cclyzer (Balatsouras and Smaragdakis 2016) presented a fine-grained field-sensitive
Andersen’s analysis that infers lazily the types of heap objects by leveraging the type casting
information to filter out redundant field derivations. By assuming that every (concrete) object
has a single type throughout its lifetime, cclyzer improves the precision of field-sensitivity in the
presence of factory methods and heap allocation wrappers, achieving the heap cloning results
without explicit context-sensitivity. Unlike cclyzer, Lpa does not infer the type of an abstract object.
Instead, Lpa calculates the size of an object by looking at the types of the pointers that point to the
object, with a conservative assumption that one object can have multiple types. In cclyzer, type
casting information can be leveraged to enable heap cloning analysis. However, the alias queries
from the current vectorization algorithms are all issued from the same function. Therefore, the
two heap wrappers must reside in the same function to make cclyzer effective in disambiguating
heap-related aliases. Loop-oriented clients, such as SIMD vectorization, limit the capability of loop-
unware points-to analyses, such as cclyzer. In addition, cclyzer, which assumes that one object
has a single type throughout its lifetime, is unable to handle partial aliases queries issued in some
programs (Section 5.3.1) when two pointers of different types access the same union object (as also
discussed in Balatsouras et al. [2016]) or the same struct object being cast multiple times along a
single program path (illustrated in Figure 6).

This article introduces an inter-procedural loop-oriented pointer analysis that precisely ana-
lyzes aggregate data structures, including deeply nested arrays, arrays of structs, and structs of
arrays to enable effective SIMD vectorization.

Auto-Vectorization. Loops are the main target of the two important vectorization techniques,
superword-level parallelism vectorization (SLP) (Barik et al. 2010; Larsen and Amarasinghe 2000;
Shin et al. 2005; Porpodas et al. 2015; Zhou and Xue 2016a) and loop-level vectorization (LLV)
(Nuzman et al. 2006; Trifunovic et al. 2009; Shin 2007). The first SLP approach is proposed in Larsen
and Amarasinghe (2000), which obtains isomorphic statement groups by tracing data flows starting
from consecutive memory accesses. Dynamic programming (Barik et al. 2010) is later adopted to
consider different possibilities of combining isomorphic statements and search for an effective
vectorization solution. How to generalize SLP on predicated basic blocks in the presence of control
flows is discussed in Shin et al. (2005). More recently, some researchers (Porpodas et al. 2015)
focused on transforming non-isomorphic statement sequences into isomorphic ones to broaden
the scope of SLP (Larsen and Amarasinghe 2000). Loop-level vectorization is developed based on
the technology originally designed for vector machines. Many improvements have been made,
by handling interleaved data accesses (Nuzman et al. 2006), control flow divergence (Shin 2007),
and loop transformations (Trifunovic et al. 2009). Recently, Zhou and Xue (2016b) introduced an
approach to exploiting both SLP and loop-level SIMD parallelism simultaneously by reducing the
data reorganization overhead incurred.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:29

7 CONCLUSION

This article proposes a new loop-oriented pointer analysis for precisely analyzing arrays and
structs to uncover vectorization opportunities that would otherwise be missed by existing alias
analyses. Our approach employs lazy memory modeling to generate access-based location sets
based on how structs and arrays are accessed. Our results show that Lpa is more effective than
LLVM’s BasicAA and SCEVAA in improving the performance speedups achieved by SLP and LLV
across a number of SPEC benchmarks.

8 ACRONYMS, ABBREVIATIONS AND NOTATIONS

8.1 Acronyms and Abbreviations

LLVM Low Level Virtual Machine
GCC GNU Compiler Collection
SPEC Standard Performance Evaluation Corporation
SLP Superword-Level Parallelism Vectorization
LLV Loop-Level Vectorization
LPA Loop-Oriented Pointer Analysis
SIMD Single Instruction, Multiple Data
BASICAA Basic Alias Analysis
SCEVAA Analysis Analysis Based on SCalar Evolution expression
LPA-FI Flow-Insensitive LPA
LPA-FI Flow-Sensitive LPA
SSA Static Single Assignment Form
KLOC Thousands (kilo) of Lines of Code
AVX Advanced Vector Extensions

8.2 Abbreviations and Notations

V Program variables (Section 2.1)
T Top-level variables (Section 2.1)
A Address-taken variables (Section 2.1)
alloca Static allocation where a is either a stack and global object (Section 2.1)
malloca Dynamic allocation where a is a heap object (Section 2.1)
p[i] Array memory expression (Section 2.1)
∗p Pointer dereference memory expression (Section 2.1)
p→ f Field dereference memory expression (Section 2.1)
pt(v) Flow-insensitive points-to set of v (Section 2.2)
σ Access-based location set (Section 3.1)
o f f Offset from the beignning of an object (Section 3.1)
X Access step (Section 3.1)
lb Lower bound of an interval range (Section 3.1)
ub Upper bound of an interval range (Section 3.1)
[lb,ub] Interval range (Section 3.1)

 Range intersection (Section 3.1)
T Access-trip stack (Section 3.1)
t Trip count (Section 3.1)
s Stride (Section 3.1)

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

56:30 Y. Sui et al.

es Size of an array element (Section 3.1)
LS (σ) Locations of an access-based location set (Section 3.1)
�� Two location sets have overlapping memory locations (Section 3.2.2)

pt(�,v) Flow-sensitive points-to set of v at a program statement � (Section 4)
(�,v) Definition of a variable v ∈ V at a program statement � (Section 4)

�′
v
↪−→ � The pre-computed def-use of variable v from �′ to � (Section 4)

REFERENCES

Lo Andersen. 1994. Program Analysis and Specialization for the C Programming Language. Ph.D. Dissertation.

Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. 1994. Chains of recurrences—A method to expedite the evaluation of

closed-form functions. In Proceedings of the ISAAC’94. 242–249.

George Balatsouras and Yannis Smaragdakis. 2016. Structure-Sensitive points-to analysis for C and C++. In Proceedings of

the SAS’16.

Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. 2010. Efficient selection of vector instructions using dynamic program-

ming. In Proceedings of the Micro’10. 201–212.

Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. 2017. Boosting the precision of virtual call integrity protection

with partial pointer analysis for C++. In Proceedings of the 26th ACM SIGSOFT’17. 329–340. DOI:http://dx.doi.org/10.

1145/3092703.3092729

Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger, and Louis-Noël Pouchet. Polly-

polyhedral optimization in {LLVM}. In Proceedings of the IMPACT’11.

Ben Hardekopf and Calvin Lin. 2007. The ant and the grasshopper: Fast and accurate pointer analysis for millions of lines

of code. In Proceedings of the PLDI’07. ACM, 290–299.

B. Hardekopf and C. Lin. 2011. Flow-sensitive pointer analysis for millions of lines of code. In Proceedings of the CGO’11.

289–298.

ISO90. 1990. ISO/IEC. international standard ISO/IEC 9899, programming languages C.

Michael Jung and Sorin Alexander Huss. 2004. Fast points-to analysis for languages with structured types. In Software and

Compilers for Embedded Systems. Springer, 107–121.

Ralf Karrenberg. 2015. Whole-function vectorization. In Proceedings of the CGO’11. Springer, 85–125.

Samuel Larsen and Saman Amarasinghe. 2000. Exploiting superword level parallelism with multimedia instruction sets. In

Proceedings of the PLDI’00. 145–156.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.

In Proceedings of the CGO’04. IEEE Computer Society, 75.

Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to analysis with efficient strong updates. In Proceedings of

the POPL’11. 3–16.

LLVM-Alias-Analysis. 2017. Retrieved from http://llvm.org/docs/AliasAnalysis.html.

Saeed Maleki, Yaoqing Gao, Mara J. Garzaran, Tommy Wong, David Padua, et al. 2011. An evaluation of vectorizing com-

pilers. In Proceedings of the PACT’11. IEEE, 372–382.

Phung Hua Nguyen and Jingling Xue. 2015. Interprocedural side-effect analysis and optimisation in the presence of dynamic

class loading. In Proceedings of the ACSC’05. 9–18.

Esko Nuutila and Eljas Soisalon-Soininen. 1994. On finding the strongly connected components in a directed graph. Inform.

Process. Lett. 49, 1 (1994), 9–14.

Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization of interleaved data for SIMD. In Proceedings of the

PLDI’06. 132–143.

Dorit Nuzman and Ayal Zaks. 2008. Outer-loop vectorization: Revisited for short SIMD architectures. In Proceedings of the

PACT’08. ACM, 2–11.

Vitor Paisante, Maroua Maalej, Leonardo Barbosa, Laure Gonnord, and Fernando Magno Quintão Pereira. 2016. Symbolic

range analysis of pointers. In Proceedings of the CGO’16. ACM, 171–181.

David J. Pearce, Paul H. J. Kelly, and Chris Hankin. 2007. Efficient field-sensitive pointer analysis of C. Proceedings of the

TOPLAS’07 30, 1 (2007), 4.

Fernando Magno Quintao Pereira and Daniel Berlin. 2009. Wave propagation and deep propagation for pointer analysis.

In Proceedings of the CGO’09. 126–135.

Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. 2015. PSLP: Padded SLP automatic vectorization. In Proceedings

of the CGO’15. IEEE, 190–201.

Ganesan Ramalingam. 1994. The undecidability of aliasing. ACM TOPLAS 16, 5 (1994), 1467–1471.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

http://dx.doi.org/10.1145/3092703.3092729
http://llvm.org/docs/AliasAnalysis.html

Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization 56:31

Rajiv Ravindran Rick Hank, Loreena Lee. 2010. Implementing next generation points-to in open64. In Open64 Developers

Forum. Retrieved from http://www.affinic.com/documents/open64workshop/2010/.

Radu Rugina and Martin Rinard. 2000. Symbolic bounds analysis of pointers, array indices, and accessed memory regions.

In Proceedings of the PLDI’00, Vol. 35. ACM, 182–195.

Jaewook Shin. 2007. Introducing control flow into vectorized code. In Proceedings of the PACT’07. 280–291.

Jaewook Shin, Mary Hall, and Jacqueline Chame. 2005. Superword-level parallelism in the presence of control flow. In

Proceedings of the CGO’05. 165–175.

Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive points-to analysis for Java. Proceedings of

the PLDI’06, 387–400.

Yulei Sui, Peng Di, and Jingling Xue. 2016. Sparse flow-sensitive pointer analysis for multithreaded programs. In Proceedings

of the CGO’16. 160–170.

Yulei Sui, Yue Li, and Jingling Xue. 2013. Query-directed adaptive heap cloning for optimizing compilers. In Proceedings of

the CGO’13. 1–11.

Yulei Sui and Jingling Xue. 2016a. On-demand strong update analysis via value-flow refinement. In Proceedings of the FSE’16.

Yulei Sui and Jingling Xue. 2016b. SVF: Interprocedural static value-flow analysis in LLVM. https://github.com/unsw-corg/

SVF. In Proceedings of the CC’16. 265–266.

Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using full-sparse value-flow analysis. In Proceedings

of the ISSTA’12. ACM, 254–264.

Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen. 2009. Polyhedral-model guided loop-nest auto-

vectorization. In Proceedings of the PACT’09. 327–337.

Robert van Engelen. 2001. Efficient symbolic analysis for optimizing compilers. In Proceedings of the CC’01. 118–132.

Robert P. Wilson and Monica S. Lam. 1995. Efficient context-sensitive pointer analysis for C programs. In Proceedings of

the PLDI’95. ACM, 1–12.

Ding Ye, Yulei Sui, and Jingling Xue. 2014a. Accelerating dynamic detection of uses of undefined values with static value-

flow analysis. In Proceedings of the CGO’14. ACM, 154.

Sen Ye, Yulei Sui, and Jingling Xue. 2014b. Region-based selective flow-sensitive pointer analysis. In Proceedings of the

SAS’14. Springer, 319–336.

Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In Proceedings of the POPL’08. 197–208.

Hao Zhou and Jingling Xue. 2016a. A compiler approach for exploiting partial SIMD parallelism. ACM Trans. Arch. Code

Optim. 13, 1 (2016), 11:1–11:26.

Hao Zhou and Jingling Xue. 2016b. Exploiting mixed SIMD parallelism by reducing data reorganization overhead. In Pro-

ceedings of the CGO’16. 59–69.

Received December 2016; revised August 2017; accepted November 2017

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 56. Publication date: January 2018.

http://www.affinic.com/documents/open64workshop/2010/
https://github.com/unsw-corg/SVF

