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Abstract—Machine learning and its promising branch deep learning have proven to be effective in a wide range of application
domains. Recently, several efforts have shown success in applying deep learning techniques for automatic vulnerability discovery, as
alternatives to traditional static bug detection. In principle, these learning-based approaches are built on top of classification models
using supervised learning. Depending on the different granularities to detect vulnerabilities, these approaches rely on learning models
which are typically trained with well-labeled source code to predict whether a program method, a program slice, or a particular code
line contains a vulnerability or not. The effectiveness of these models is normally evaluated against conventional metrics including
precision, recall and F1 score.
In this paper, we show that despite yielding promising numbers, the above evaluation strategy can be insufficient and even misleading
when evaluating the effectiveness of current learning-based approaches. This is because the underlying learning models only produce
the classification results or report individual/isolated program statements, but are unable to pinpoint bug-triggering paths, which is an
effective way for bug fixing and the main aim of static bug detection. Our key insight is that a program method or statement can only be
stated as vulnerable in the context of a bug-triggering path. In this work, we systematically study the gap between recent
learning-based approaches and conventional static bug detectors in terms of fine-grained metrics called BTP metrics using
bug-triggering paths. We then characterize and compare the quality of the prediction results of existing learning-based detectors under
different granularities. Finally, our comprehensive empirical study reveals several key issues and challenges in developing classification
models to pinpoint bug-triggering paths and calls for more advanced learning-based bug detection techniques.

Index Terms—Software Vulnerabilities, Machine Learning, Bug-Triggering Paths, Empirical Study
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1 INTRODUCTION

Nowadays software vulnerabilities play a major role in
many cyberspace security issues and are increasing at an
unprecedented pace. It is challenging yet important to locate
and fix these emerging problems in a timely manner during
the early stage of the software development cycle, in order
to save costs for later software maintenance. Traditional
static bug detectors rely heavily on user-defined specifica-
tions to discover different types of vulnerabilities, which
makes them labor-intensive [1]. The recent success of ma-
chine learning techniques has opened up new opportunities
to develop effective vulnerability detection techniques with-
out the need of manually defining detection patterns. The
existing approaches typically extract unstructured and/or
structural code features to train a classification model that
captures the correlation between vulnerable code fragments
and their (extracted) features [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. Once the model is trained, it can be used to classify
an unseen code fragment as safe or vulnerable.

The underlying classification model of these approaches
is typically trained by using pre-labeled source code under
different granularities, in order to predict whether a method
or a particular line of an input program contains vulnerabil-

ities or not. The effectiveness of a model is measured using
standard metrics, e.g., precision, recall and F1 score [11].
However, these standard metrics can be biased when eval-
uating existing learning-based approaches, because their
underlying learning models aim to produce coarse-grained
classification results rather than comprehending the seman-
tics of vulnerabilities, whereas a typical static analyzer (e.g.,
CLANG STATIC ANALYZER [12] and INFER [13]) often ex-
plains how a bug is generated and triggered by reporting its
bug-triggering path which contains a chain of program points
leading to a bug-triggering point.

Later, several efforts have been made to conduct
fine-grained vulnerability detection by learning models
over individual statements [14] or using advanced (post-
)training techniques (e.g., edge-masking [15], attention
mechanism [16] and mutual information maximization [17])
to harvest important statements of the program contributing
to the classification results [17], [18], [19]. Unfortunately,
the gap still exists between precise static analyzers and
these recent fine-grained learning approaches, which report
individual statements as vulnerable without pointing out
their bug-triggering path/context. This type of report is not
only imprecise but also introduce false information for later
bug fixing, because these statements can be non-vulnerable



libswscale/swscale.c:3191:24: invalidation part of the trace 
                        starts when calling `av_malloc` here

3186.   SwsFilter *sws_getDefaultFilter(...
...
3190.   { 
3191.>      SwsFilter *filter = av_malloc(sizeof(SwsFilter));

libavutil/mem.c:56:9: assigned is the null pointer

54.          /* let's disallow possible ambiguous cases */
55.          if(size > (INT_MAX-16) )
56.  >          return NULL;

libswscale/swscale.c:3197:9: invalid access occurs here

3196.       } else {
3197.>          
3198.           filter->lumV = sws_getIdentityVec();
3199.       }  

filter->lumH = sws_getIdentityVec();

Fig. 1: An example of the detection result by INFER

under safe program paths. The prior statement-level works
are trained and evaluated based on vulnerability patches
without leveraging pre-labeled program path information.
Despite the training datasets, the code representation learn-
ing of these works does not distinguish program paths,
which are opaque to backend neural networks. Therefore,
the resulting interpretations (e.g., reported vulnerable code
lines) may contain disconnected statements which are in-
sufficient or incomplete with regard to the context and
semantics of the vulnerability.

In contrast, traditional static analysis techniques (e.g.,
CLANG STATIC ANALYZER [12], FLAWFINDER [20], IN-
FER [13], ITS4 [21], CHECKMARX [22] and SVF [23], [24]),
which approximate the runtime behavior of a program,
can provide more informative detection results, e.g., how
the bug is generated and triggered. One of their major
aims is to pinpoint bug-triggering paths so that developers
can quickly locate and fix the reported vulnerabilities. For
example, INFER [13], an abduction based industrial-strength
static bug detector, can reason about the interprocedural
bug trace of the vulnerability by symbolically executing
the code and tracing the sequence of statements from the
bug-originating location leading to the bug-triggering point
using bi-abductive inference [25].

Fig. 1 shows the bug report of a real-world security vul-
nerability found by INFER. The vulnerable code is extracted
from the open-source project, FFmpeg1. This bug report
reveals a null pointer dereference vulnerability triggered
on Line 3197 of File “libswscale/swscale.c”. INFER not only
provides the bug type information but also highlights the
bug-triggering path of this vulnerability: on Line 3191 of
File “libswscale/swscale.c”, a pointer “filter” is pointed to a
memory during the call to “av malloc()” and dereference on
Line 3197, but this pointer could be null according to Line 56
of File “libavutil/mem.c”. This can trigger a null dereference
and crash the program. Note that the bug-triggering path
is produced based on the bi-abductive inference process
of INFER. Simply conducting backward slicing from the
null dereference point (e.g., Line 3197) to obtain its bug-
triggering path is insufficient because the slicing can im-
precisely bring in multiple program paths (containing more
than 20 lines of code) which include both bug-triggering and

1. https://github.com/FFmpeg/FFmpeg

safe ones.
Developers can understand how a bug is generated

and triggered more easily by following the bug-triggering
paths provided by a precise static analyzer like INFER.
However, existing learning-based bug detectors only con-
servatively predict whether particular program methods or
code lines contain a vulnerability or not. For example, the
learning-based approach REVEAL [26] only reports method
“sws getDefaultFilter” (57 lines of code) as vulnerable. SY-
SEVR [3], a recent approach that predicts vulnerabilities at
the code line level, reports a buggy program lines set of
more than 20 lines, while INFER highlights the key state-
ments related to the vulnerability with only 3 lines. Regard-
ing VELVET [14], ICVH [17], IVDETECT [18] and VULDEE-
LOCATOR [19], the size of the interpretation (statements) can
be configured and set manually to a maximum of the entire
program method/slice. VELVET and ICVH need to report
the entire method “sws getDefaultFilter” in order to cover
the bug-triggering path. IVDETECT’s interpretation of sub-
graphs in a program dependence graph fails to pinpoint
the bug-triggering point Line 3197 until setting the size of
the graph to more than 20 nodes (lines). VULDEELOCATOR
also takes up to 15 lines to identify the bug-triggering path.
We also find that their interpretation contains disconnected
code lines without listing their execution order.

Misleadingly, the conventional metrics used to evalu-
ate the learning models can achieve a promising result,
because a bug is assumed to be soundly and precisely
captured if their classification results cover a pre-labeled
program method or line. This evaluation strategy is insuffi-
cient and has biases since the reports by the learning-based
approaches are challenging to interpret and fail to locate the
bug-triggering paths for developers. It is clear that there is
a gap between learning-based and traditional bug detectors
regarding the quality of their detection results.

This paper aims to conduct a comprehensive empirical
study of the gap between the state-of-the-art learning-based
approaches and traditional static bug detection techniques
in terms of pinpointing bug-triggering paths. To address
the evaluation biases, we first summarize and character-
ize the detection results of eleven recent learning-based
bug detection approaches, and then propose fine-grained
metrics called BTP metrics using bug-triggering paths to
evaluate each vulnerability reported by the learning-based
approaches. We also provide a unified toolkit consisting of
these eleven approaches (non-publicly available ones are re-
implemented by strictly following their methodologies). We
conduct a comprehensive and fair comparison using BTP
metrics on a large-scale dataset comprising well-labeled pro-
grams extracted from real-world mainstream projects [27].
Finally, based on our empirical study and findings, we
propose several suggestions and insights to guide future re-
search and help develop better learning-based bug detection
approaches.

Our major contributions are as follows:
• We propose quantitative and fine-grained evalua-

tion metrics (BTP metrics) using bug-triggering paths,
to complement traditional evaluation metrics (preci-
sion/recall/F1 score).

• We conduct a comprehensive empirical study and com-
parison on eleven state-of-the-art learning-based bug
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Fig. 2: General Training Phase of the Learning-Based Vulnerability Detection Process

detectors in terms of the proposed BTP metrics, and
analyze the gaps between learning-based solutions and
precise static analyzers.

• We perform a comparison between our BTP metrics
and traditional evaluation metrics. The experimental
results demonstrate the effectiveness of our evaluation
methodology.

• Our study reveals several key issues and challenges
in developing classification models to pinpoint bug-
triggering paths and call for more advanced learning-
based bug detection techniques.

• We provide a unified toolkit consisting of eleven re-
cent learning-based approaches (the non-publicly avail-
able ones are re-implemented by strictly following
their methodologies) available at: https://github.com/
tdsc2022-artifact/artifact.

2 GENERAL DETECTION PROCESS FORMULATION

In this section, we formalize the general detection process
of current learning-based static vulnerability detection tech-
niques. There are typically two phases (i.e., training and
detecting) for these approaches built on top of classification
models. Note that, based on the classification model, some
approaches (e.g., [14], [17], [18], [19]) further infer important
program feature sets contributing to the results and report
fine-grained interpretation (e.g., at the statement-level).

2.1 Training Phase

As shown in Figure 2, this phase consists of the following
four steps:
(a) Pre-embedding (PE). The initial step involves using
program analysis techniques to generate program repre-
sentations (i.e., lexical tokens, abstract syntax tree (AST),
control flow graph (CFG), data flow graph (DDG) and
program dependence graph (PDG)), which is elaborated in
Section 3.1. Formally, given a program p, we define the
operation as PE : p → pr , where pr represents the resulting
program representation after pre-embedding.
(b) Feature Extraction (FE). Based on a program representa-
tion pr , the features of the program using different heuristic
methodologies are extracted to preserve program semantics,
formulated as FE : pr → pf , where pf represents a set of
program features after feature extraction.
(c) Code Embedding (CE). In this step, a learning strategy
(e.g., via RNN and GNN) is used to automatically embed
program features in the latent embedding space. The pro-
gram feature set (pf ) is first associated with vulnerability
information and then transformed into a compact vector.
This process is formally expressed as CE : pf → v. Here v
means the vector representation of pf .

(d) Classification. The detection is based on a classification
model to predict whether a method/line is vulnerable or
not. Generally, one or more linear layers (e.g., MLP [41])
are used for the final prediction model. For the last layer,
the predicted distribution of the model q(lbi) is normally
computed using a softmax function, i.e., the dot product
between v and the vector representation lbi of each label
lbi ∈ lb.

q(lbi) =
exp(v · lbi)∑

lbj∈lbexp(v · lbj)
(1)

2.2 Detecting Phase
A well-trained model obtained from the training phase
is used to classify the embedding vectors generated from
target input programs through PE , FE and CE . Finally, an
unseen sample can be predicted as vulnerable or safe by the
model.

3 CHARACTERIZING EXISTING LEARNING-BASED
BUG DETECTORS

To have an in-depth understanding of existing learning-
based bug detectors, in this section, we characterize and
discuss the internal mechanisms of eleven learning-based
approaches by instantiating each of their training phase as
generalized in Section 2. We then compare and contrast
these approaches using an example.

Table 1 introduces and compares these learning-based
approaches. The main notations used to formulate the
learning-based approaches are listed in Table 2. Note that,
to make a broader comparison, we also include the tech-
niques for code classification (CODE2SEQ [6]) because code
classification tasks can be easily adopted for vulnerability
detection. These approaches can be divided into three cate-
gories:

• method-level: TOKEN EMBEDDING [42], CODE2SEQ [6],
VGDETECTOR [9] and REVEAL [26]

• slice-level: VULDEEPECKER [1], SYSEVR [3], DEEP-
WUKONG [37]

• statement-level: VELVET [14], ICVH [17], IVDE-
TECT [18] and VULDEELOCATOR [19]

Method-level and slice-level approaches train and perform
coarse-grained prediction. They report a program method-
/slice as vulnerable if it overlaps with the bug-triggering
paths, i.e., containing at least one statement on the paths.
Existing statement-level approaches report a set of state-
ments as vulnerable or safe, which may be incomplete
and disconnected, because their code embedding does not
include path information. Hence these approaches are still
insufficient when pinpointing bug-triggering paths.
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TABLE 1: Learning-based Detectors. CNN: Convolutional Neural Network [28], BLSTM: Bidirectional Long Short-Term
Memory [29], BGRU: Bidirectional Gated Recurrent Unit [30], GCN: Graph Convolutional Network [31], GGNN: Gated

Graph Sequence Neural Network [32], MIM: Mutual Information Maximization [17]

Approaches (year) Pre-embedding
Tool

Feature Extraction Training and Detecting
Feature Method Granularity Model

TOKEN EMBEDDING [2] (2015) ASTMINER [33] Lexical tokens Tokenization Program method CNN

CODE2SEQ [6] (2019) ASTMINER [33] AST Path Sampling Program method BLSTM&Attention

VGDETECTOR [9] (2019) JOERN [34] CFG Graph Embedding Program method DOC2VEC [35]&GCN

REVEAL [26] (2020) JOERN [34] CPG Graph Embedding Program method WORD2VEC [36]&GGNN

VULDEEPECKER [1] (2018) JOERN [34] DDG Slicing Code lines WORD2VEC [36]&BLSTM

SYSEVR [3] (2021) JOERN [34] PDG Slicing Code lines WORD2VEC [36]&BGRU

DEEPWUKONG [37] (2021) JOERN [34] PDG Slicing&
Graph Embedding Code lines DOC2VEC [35]&GCN

VULDEELOCATOR [19] (2020) dg [38] PDG Slicing Code lines Attention&WORD2VEC [36]&
BGRU&BLSTM

IVDETECT [18] (2021) JOERN [34] PDG Graph Embedding Code lines GloVe [39]&BGRU&Attention&
GCN&GNNExplainer [15]

VELVET [14] (2022) JOERN [34] CPG Ensemble Learning [40] Code lines WORD2VEC [36]&Attention [16]
GGNN&Ensemble Learning [40]

ICVH [17] (2021) ASTMINER [33] Lexical Tokens Tokenization&
MIM Code lines BLSTM

TABLE 2: Main Notations Used in the Paper
Notation Description

m Program method

tk Program token

Ntk (·) The number of program tokens

Pa (·, ·) The path on the AST between two nodes

st Statement tree of AST

Nst (·) The number of statement trees

SBB Basic block set

Vp ,Ep Node and Edge set of PDG

Va Node set of an AST

Ea ,Ec ,Ed ,En Edges of AST, CFG, DDG and NCS

vcf Library/API Function Call

vc
Vulnerability syntax characteristic (vcf , Array/Pointer
Usage, or Arithmetic Expression)

SLd (vc) Data-dependence slicing starting from vc

SLp(vc) Program-dependence slicing starting from vc

SLIR
p (vc)

Intermediate Representation program-dependence
slicing starting from vc

CA(·) Extracting Code attentions

Next, we detail and instantiate each of the four training
steps generalized in Figure 2 using the eleven approaches.

3.1 Pre-embedding (PE)

The program representation pr extracted from a code frag-
ment can be one of the following:

• Lexical tokens are code tokens with identified meanings
of a program including identifiers (names specified
by developers), keywords, separators (punctuation and
delimiters), and operators (pre-defined symbols carry-
ing various operations).

• AST (Abstract Syntax Tree) is an abstract syntactic
representation of source code using a tree structure,
where each leaf node denotes a lexical token occurring
in the source code and non-terminal node denotes
an abstract construct. It contains more structural and
content-related details compared to lexical tokens.

• CFG (Control Flow Graph) is a graph representation of
all execution paths that might be traversed during a
program’s execution.

• DDG (Data Dependence Graph) captures the def-use
data dependence through its edges for each program
variable.

• PDG (Program Dependence Graph) uses its edges to
represent data dependencies or control dependencies,
which are computed through the DDG and the CFG of
a program.

• CPG (Code Property Graph) is a graph combing the
information of AST, CFG and PDG.

Note that, for the approaches we study, Lexical tokens, AST,
CFG and CPG are used in method-level representations. DDG,
PDG and CPG are used for slice-level representations. Lexical
tokens, PDG and CPG are used for statement-level approaches.

3.2 Feature Extraction (FE)

3.2.1 Method-Level Approaches

TOKEN EMBEDDING treats each method m as an indi-
vidual sample and generates a lexical token sequence
tk1 . . . tkNtk(m) for each method m to represent its program
feature set: pf = {tki}1≤i≤Ntk (m).
CODE2SEQ uses path-context ( ⟨tki ,Pa(tki , tkj ), tkj ⟩) as
extracted features for each program method and splits code
tokens into subtokens (e.g., decomposing “ArrayList” into
“Array” and “List”) to obtain the feature set pf :

pf = {⟨⌊tki⌋ , ⌊Pa(tki , tkj )⌋ , ⌊tkj ⌋⟩}1≤i,j≤Ntk (m),i̸=j (2)

Here ⌊·⌋ means the decomposing operation.
VGDETECTOR uses CFGs to embed the execution order of
a program. Each node on a CFG is a sequential basic block
and each edge represents the execution order between basic
blocks. Therefore, we have pf = (SBB ,Ec).
REVEAL uses the code property graph consisting of AST,
CFG and PDG information: pf = (Va ,Ea ,Ep ,Ec).
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3.2.2 Slice-Level Approaches

VULDEEPECKER first locates bug-related APIs and then
extracts the data-flow-related program slices based on the
signatures of these APIs to generate code slices named
code gadget by assembling API-related program slices:
pf = SLd(vcf ).
SYSEVR first generates the PDG of a program. Each node
represents a program statement and each edge represents
a data- or control-dependence relation between two state-
ments. It then generates code slices, also called SeVC, to
produce the feature set pf = SLp(vc).
DEEPWUKONG generates a subgraph of PDG, also called
XFG, by slicing on PDG starting from vc, to produce the
feature set pf = (V −

p , E−
p ), where V −

p ⊆ Vp comes from
SLp(vc) and E−

p ⊆ Ep contains the edges connecting the
nodes in V −

p on PDG.

3.2.3 Statement-Level Approaches

VULDEELOCATOR conducts control and data-dependency
slicing on the Intermediate Representation (IR) of the source
code starting from vc, and generates IR code slices (iSeVCs)
as the feature set pf = SLIR

p (vc).
IVDETECT extracts the program feature set based on
the program dependence graph: pf = (Vp ,Ep). VELVET
uses the code property graph as its program feature set:
pf = (Va ,Ea ,Ep ,Ec).
ICVH tokenizes the program to tk1 . . . tkNtk(m) as its pro-
gram feature set: pf = {tki}1≤i≤Ntk (m).

3.3 Code Embedding (CE)

After obtaining the program features pf , the code embed-
ding phase is to produce a vector representation of the col-
lected features, so that the distributed vector representation
is used for model training to capture the correlation between
features and labeled vulnerabilities.

3.3.1 Method-Level Approaches

TOKEN EMBEDDING first uses a word embedding layer to
embed a set of program tokens tk1 , tk2 , ..., tk|pf | to vec-
tors vtk1 ,vtk2 , ...,vtk|pf | , which are then fed into a CNN

model [28]. Formally, given the i th fixed-length window
of k + 1 tokens tki , tki + 1 , ..., tki+k , a convolution filter
conv(·) is applied to the concatenation of these token vec-
tors, to generate ri = conv([vi,vi+1, ...,vi+k]). After this,
all ri are concatenated to produce the vector representation
of the method v = [ri]i.
CODE2SEQ first uses a BLSTM model [29] to encode the
AST path Pa(tki , tkj ) in each path-context in pf . The state
transition rules of BLSTM are:

rt = σ(Wr · vt +Ur · ht−1 + br)

zt = σ(Wz · vt
+Uz · ht−1 + bz)

h′
t = tanh(Wh · vt + rt ⊙ (Uh · ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h′
t

(3)

where rt and zt represent the reset gate, which can control
the influence of the previous state, and the update gate,
which combines the previous and current state, respectively.
The current state ht is determined by h′

t, which is the

candidate state, and previous state ht−1 through linear in-
terpolation. Wr ;Wz ;Wh ;Ur ;Uz ;Uh are the weight ma-
trices and br;bz;bh are bias terms. The last hidden state is
used to represent the AST path. The vector representation
of the terminal tokens in the path-context is the sum of
all its subtokens’ word embedding vectors. After this, a
fully-connected layer is applied to combine the three parts
in the path-context. The attention mechanism is then used
to produce the code vector v = attn({c′i}1≤i≤|pf |). The
attention mechanism attn is formally expressed as:

αi =
exp(c′i · a)∑N
j=1 exp(c

′
j · a)

v =

|pf |∑
i=1

αi · c′i (4)

where a is a learnable global attention vector.
VGDETECTOR applies GCN [31] to update the feature
vector vb of each node (basic block). It then uses a global
pooling layer pool to aggregate the vector of each basic block
to produce v = pool(GCN (pf (SBB ,Ec))). GCN is formally
expressed as:

F(l) = σ
(
D̃− 1

2 ÃD̃− 1
2F(l−1)W(l)

)
(5)

where F(l) =
{
f (l)(0), f (l)(1), ..., f (l)(|SBB |)

}
means the

matrix of activations in the l th layer of the neural network.
For the first layer, F(0) =

{
f (0)(0), f (0)(1), ..., f (0)(|SBB |)

}
is the initial SBB feature matrix, which is generated by
DOC2VEC. Ã = A+ IN represents the adjacency matrix
of the graph (SBB ,Ec) with added self-connections where
IN is the identity matrix. D̃ii =

∑
jÃij and W(l) is the

trainable weight matrix for the l th layer. The pooling layer
pool is formulated as follows:

v = [
1

|SBB |

|SBB |∑
i=1

f(i),max
|SBB |
j=1 f(j)] (6)

REVEAL leverages WORD2VEC embedding to encode the
code fragment of each vertex and one-hot encoding to
encode vertex type information. These vectors are con-
catenated and fed into Gated Graph Recurrent Layers, to
produce a vector for each vertex vi. The propagation BGRU
are expressed as:

−→vt =
−−−→
GRU (vnt

)
←−vt =

←−−−
GRU (vnt

)

vt = [−→vt,
←−vt]

(7)

where GRU is the gated recurrent unit. Finally, a simple
element-wise summation is used to aggregate all the vec-
tors: v =

∑|Va|
i=1 vi.

3.3.2 Slice-Level Approaches

VULDEEPECKER first uses WORD2VEC to encode the to-
kens of each code gadget to vectors, which are then
passed to a BLSTM (Equation 3). The last hidden
state is used to represent the code gadget as v =
BLSTM ({vtki}1≤i≤Ntk (pf )).
SYSEVR first uses WORD2VEC to encode the tokens in pro-
gram slices (called SeVC) to vectors, which are then passed
to a BGRU (Equation 7). The last hidden state is used to
represent the SeVC as v = BGRU ({vtki}1≤i≤Ntk (pf )).
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pr: PDG

pr: AST

pr: Lexical Tokens

pr: CFG

(c) VGDetector

1 static int vul_func(INPUT *h){
2     init_array(h->array);
3     char* group;
4     ... 
5     if (condition(h->array[0],
                      group[0])) {

6         process();
7         ...
8     }

9     ...
10}

1 static int vul_func(INPUT *h){
2 init_array(h->array);
3 char* group;
5 if (condition(h->array[0], group[0])) {
6 process();
7 ... 
8 }

(f) SySeVR

1 static int vul_func(INPUT *h){
2 init_array(h->array);
3 char* group;
5 if (condition(h->array[0], group[0])) {

(e) VulDeePecker

(a) Token Embedding & ICVH
static int vul_func ( INPUT * h ……

(b) Code2Seq

<int, method_declare, vul func> ……

<int, method_declare parameter, h> 

pr
Program Representation

Program Feature Set
pf

1 static int vul_func(INPUT *h){
2     init_array(h->array);
3     char* group;
4     ... 
5     if (condition(h->array[0],
                      group[0])) {
6         process();
7         ...
8     }
9     ...
10}

bug-triggering paths: {3,5}

UNINITIALIZED_VALUE: 
The value read from group was 
never initialized.

Infer Report

Lexical Tokens
Abstract Syntax Tree (AST)
Control Flow Graph (CFG)

Data Dependence Graph (DDG)
Program Dependence Graph (PDG)

Programp pr: DDG

pr: PDG

  
(g) DeepWukong

pr: PDG

(h) IVDetect

pr: PDG

(d) Reveal & VELVET

ENTRY

init_array

h->array

…

AST Edge

pr: CPG

PDG Edge

char* group

CALL DECL

ARG

PRED

CALL

condition ARG

h->array[0] group[0]

CALL

process

… …

falseDx
Dx

EXIT

Data-dependence Edge
Control-dependence Edge

1

2 3

5

6 7 8

9

10

4

1

2

3

5

6

7

8

Data-dependence Edge

Control-dependence Edge

(i) VulDeeLocator
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entry:
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Fig. 3: A real-world security flaw from FFmpeg (a multimedia player), which illustrates and compares the feature
extraction process of the bug detectors.

DEEPWUKONG first uses DOC2VEC to transform the tokens
in each node (statement) into their vector representations,
which are then fed into a GCN (Equation 5) and pooling
layer (Equation 6), to produce the XFG vector v.

3.3.3 Statement-Level Approaches
VULDEELOCATOR first uses WORD2VEC to transform
iSeVCs into vectors and feed them into a BGRU (Equa-
tion 7). It then applies a k-max (selecting the top-k val-
ues) and average pooling layer to aggregate the hidden
states and to produce a vector representation of the iSeVC:
v = ave(maxk (BGRU ({vtki}1≤i≤Ntk (pf )))).
IVDETECT first builds the vector for each statement using
a hybrid representation: subtokens, AST subtree, variable
names/types and program dependency context. The feature
of subtokens, variable names/types and program depen-
dency context are modeled with GloVe [39] and GRU. AST
subtree is modeled with a tree LSTM [43]. These vectors
are merged using BGRU (Equation 7) and the attention
mechanism (Equation 4) to produce a statement vector vp.
After this, a GCN layer (Equation 5) is used to update the
statement vector by propagating a message between Vs and
a CNN is used to aggregate all the statement vectors into v.
VELVET first uses WORD2VEC to produce the initial vector
representations of the code tokens in each node of the CPG
and use GGNN (same as REVEAL) and transformer [16]
separately to learn the vector representations v of each node.
ICVH uses the BLSTM model (Equation 3) to en-
code the lexical tokens of a program to produce v =
BLSTM (tk1 , ..., tk|pf |).

Once the vector representation v of the code is available,
then classification training can be done via Equation 1
(Section 2). Based on the probability distribution q(lb) of the
code, VELVET produces ensemble scores by averaging the

vulnerability scores learned from GGNN and transformer
respectively, and select the statements with high ensemble
scores as the vulnerability locations. ICVH uses another
BLSTM neural network to compute the probability distri-
bution of each statement and train the statement selection
parameters θ by maximizing the mutual information of
q(lb) and pθ(S|m), where S denotes the selected important
statements. IVDETECT performs vulnerability interpretation
by producing a subgraph of the original PDG using the edge
masking technique in GNNExplainer [15]. VULDEELOCA-
TOR selects important statements based on the value learned
from its k-max layer.

4 A RUNNING EXAMPLE

Let us take a look at an example to compare and contrast
each of the aforementioned approaches, and then discuss
the gaps between learning-based techniques and traditional
static analyzers in terms of bug finding and reporting.

Fig. 3 illustrates the inputs and outputs of the FE step
of each learning-based detector. The buggy code fragment
p (shown on the left) is simplified and extracted from a
real-world multimedia player2. Different program repre-
sentations pr of program p are first generated in the PE
stage (Section 3.1). Based on these representations, the FE
stage (Section 3.2) produces program feature sets pf for
different learning-based bug detectors, as shown on the
right side. After this, each pf is transformed to a compact
vector v through CE (Section 3.3) for classification training
(Section 2).

2. https://www.ffmpeg.org/
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4.1 Bug-triggering paths

The code content and bug report from INFER are shown on
the left. On Line 5 (marked in red), this program attempts to
read the first element from the array object “group”. How-
ever, “group” was never initialized before this statement.
As reported by INFER, this will trigger an uninitialized
value vulnerability. INFER also precisely provides the bug-
triggering paths containing 2 lines, where Line 3 declares
“group” and Line 5 triggers the bug.

4.2 Program feature set

TOKEN EMBEDDING and ICVH (Fig. 3 (a)) tokenize method
vul_func into its lexical tokens (e.g., “static”, “int”,
“vul func”) and treats all these sequential tokens as pf .
CODE2SEQ (Fig. 3 (b)) extracts the paths on the AST and
uses a set of triplets (e.g., “⟨int, [method declare, parame-
ter], h⟩”) to represent pf . Note that “[method declare, pa-
rameter]” stands for ⌊Pa(“int”,“h”)⌋. VGDETECTOR (Fig. 3
(c)) constructs the CFG of the program method. REVEAL and
VELVET (Fig. 3 (d)) build a code property graph compris-
ing of AST CFG and PDG edges as its pf . VULDEEPECKER
(Fig. 3 (e)) conducts the data-flow slicing by starting from
a Library/API Function Call (i.e., Line 5 in our example).
The approach then traverses backward to get the definition
or declaration of “h”, “h→array” and “group” on Lines 1,
2 and 3. SYSEVR (Fig. 3 (f)) extends the statements with
control-dependence-related statements (Lines 6, 7 and 8).
DEEPWUKONG (Fig. 3 (g)) constructs a subgraph of PDG,
where each node represents the control or data-related
statement (Lines 1, 2, 3, 5, 6, 7, 8) and each edge represents
a control or data-dependence relation between statements.
IVDETECT (Fig. 3 (h)) utilizes the PDG as pf and conducts
the edge-masking technique to find its representative nodes
contributing to the prediction. VULDEELOCATOR (Fig. 3 (i))
extracts the IR slice starting from Line 5 and uses k-max
pooling to find important statements.

4.3 Gaps in terms of bug-triggering paths

To understand the gap, we assume every learning-based ap-
proach can always achieve perfect prediction results under
the traditional metrics. Let us compare their best possible
predicted classification results with the ground truth.

Method-level detectors (TOKEN EMBEDDING, CODE2SEQ,
VGDETECTOR, REVEAL) report the whole 10-line program
method as vulnerable (Lines 1-10), compared to only 2 lines
for bug-triggering paths (Lines 3, 5). This means that pro-
grammers have to examine the entire method to figure out
which statements are relevant to the bug. It becomes even
worse if a bug happens across multiple program methods.

Slice-level detectors VULDEEPECKER, SYSEVR and
DEEPWUKONG unfortunately report all the control- and/or
data-related statements in relation to the API call (Line 5):
VULDEEPECKER reports 4 lines (Lines 1, 2, 3, 5) and SYSEVR
and DEEPWUKONG report 7 lines (Lines 1, 2, 3, 5, 6, 7,
8). However, they all fail to analyze the fine-grained bug-
triggering paths (Lines 3, 5). The program slices used for
training are either too generic (i.e., dependence information
of all variables/statements) or unaware of bug-triggering
paths (i.e., slicing from arbitrary API calls [1]). This not

only makes training unnecessarily costly, but also makes
the prediction hard to precisely capture even a simple bug-
triggering path (e.g., caused by the uninitialized variable
“group”).

For statement-level detectors ICVH, VELVET, IVDE-
TECT and VULDEELOCATOR, the size of the interpretation
(statements) can be specified by users. Theoretically, they
can predict and report any program statement as vulnera-
ble. However, the underlying models are unaware of bug-
triggering paths. After training the models, when setting
the size of the interpretation to 4 statements, ICVH and
VELVET both fail to report Line 3 and Line 5. IVDETECT
can distinguish the bug-triggering point (Line 5) but fails to
report Line 3. VULDEELOCATOR can cover the intact bug-
triggering path but fails to identify Line 3 when changing
the interpretation size to 2 statements. The above observa-
tions confirm that there is still a substantial gap between the
most sophisticated learning-based approaches and a precise
static bug detector.

5 BTP METRICS AND EVALUATION DESIGN

In this section, we discuss the design of a new methodology
to quantitatively evaluate the gap in the bug finding capa-
bility between traditional bug detectors and learning-based
ones in terms of bug-triggering paths. We first introduce
the BTP metrics, a simple yet effective concept using bug-
triggering paths. Next, we describe our toolkit implementa-
tion and the dataset.

5.1 Bug-Triggering Paths
The bug-triggering paths consist of a number of program
statements describing the offending execution trace of a bug.
Starting from the program point where the bug is originated,
a bug-triggering path includes the statements that (1) reside
in the execution paths towards the location where the error
is triggered and (2) contain variables that are aliased with
the variables in the bug-originating and triggering points.
Note that a bug-triggering path can go through multiple
files and methods because of the inter-procedural nature
of many types of bugs. Bug-triggering paths are essential
for pinpointing and understanding the triggering logic of
vulnerabilities so that developers can follow to fix the bugs
more quickly.

5.2 BTP Metrics
Table 3 gives an overview of six existing common eval-
uation metrics used in the previous studies related with
learning-based vulnerability detection. We do not discuss
the ranking-based metrics (e.g., mean first ranking [18]) be-
cause they are not generalizable and can only be applied to
the approaches which yield a probability for each statement.
However, all the statements in a bug-triggering path should
be treated as equally important.
Existing Metrics and Limitations. Some existing evaluation
metrics (precision, recall, F1 score) used by current learning-
based approaches only assess the bug finding capability at
coarse-grained method/slice levels without understanding
the semantic of a vulnerability. A data sample is assumed to
be correctly predicted as long as the prediction is consistent
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TABLE 3: Existing Evaluation Metrics for Evaluating Learning-Based Vulnerability Detection. TP denotes the number of
vulnerable programs predicted as vulnerable. FP denotes the number of safe program samples predicted as vulnerable.
FN is the number of vulnerable samples predicted as safe. TI denotes the number of correct interpretations (at least one
important statement on the path is reported). TVCS , FVCS and LVCS denote the number of correctly detected, falsely

detected and labeled vulnerable statements, respectively.

Metric Evaluation Granularity Formula Description

Precision [11] Data Sample P = TP
TP+FP

Correctness of detected vulnerable samples

Recall [11] Data Sample R = TP
TP+FN

Proportion of detected
vulnerable samples in all vulnerable samples

F1 Score [11] Data Sample F1 = 2∗P∗R
P+R

Overall measurement
considering both precision and recall

Statement Accuracy [18] Statement SA = TI
TP+FP

Correctness of reported interpretations

Vulnerability Coverage Proportion [17] Statement VCP = TVCS
LVCS

Proportion of correctly detected vulnerable
statements in labeled vulnerable statements

Jaccard Index [19] Statement JI = TVCS
LVCS+FVCS

Proportion of correctly detected vulnerable
statements in all vulnerable statements

with the pre-labeled method/slice. Recent approaches [17],
[18], [19] propose fine-grained evaluation metrics based
on the correctness of statement-level prediction. Statement
accuracy (SA) [18] counts a correct and precise detection
as long as one labeled vulnerable statement is reported
without considering the proportion of correctly predicted
statements. Vulnerability coverage proportion (VCP) [17]
considers the ratio of overlapped statements (correctly pre-
dicted statements) over true vulnerable statements, while
Jaccard index (JI) [19] computes the ratio over the union of
true vulnerable statements and reported vulnerable state-
ments. However, these two metrics ignore the prediction
correctness of data samples and directly compute over pro-
gram statements. The influence of small samples’ statement-
level prediction performance on the macro evaluation of
the datasets can be greatly affected by the large samples
containing a substantial number of vulnerable statements.
BTP Metrics. An ideal quantitative metric should be able
to reflect the fine-grained bug-triggering paths when the
detector finds a buggy sample, in order to address evalu-
ation biases. The program statements of a bug-triggering
path are the key to understanding and characterizing the
bug-triggering logic because they can reveal the behavior
and context of the vulnerability. It would be perfect if
the reported statements only cover the statements in that
bug-triggering path without additional program statements.
Therefore, we design our BTP metrics based on the degree of
overlap between the detected statements and the statements
on the bug-triggering paths, which is formally defined as
follows:

BTP P = |Sd ∩ Sp |/|Sd | s.t. Sd ̸= ∅
BTP R = |Sd ∩ Sp |/|Sp | s.t. Sp ̸= ∅

BTP IoU = |Sd ∩ Sp |/|Sd ∪ Sp | s.t. Sp ∪ Sd ̸= ∅
(8)

where BTP P , BTP R and BTP IoU represent BTP’s
improved precision, recall and IoU (intersection over
union) [44] respectively by considering bug-triggering
paths. Sd denotes the set of statements reported by detec-
tors. Sp denotes the set of statements in the bug-triggering
paths labeled in the dataset. | · | denotes the size of a set.
Note that, BTP P is computed over the reported vulnera-
ble samples, i.e., |Sd| ̸= 0. BTP R is computed over the

TABLE 4: A comparison of evaluation results of our
re-implementations and the original paper.

Vul Category Approaches Precision Recall F1 score

CWE119
VULDEEPECKER 0.93 0.86 0.89

Original Paper 0.92 0.82 0.87

CWE399
VULDEEPECKER 0.91 0.94 0.92

Original Paper 0.95 0.95 0.95

CWE691
VGDETECTOR 0.74 0.86 0.80

Original Paper 0.70 0.85 0.77

CWE840
VGDETECTOR 0.75 0.91 0.82

Original Paper 0.71 0.89 0.79

CWE438
VGDETECTOR 0.75 0.90 0.82

Original Paper 0.70 0.90 0.79

labeled vulnerable samples, i.e., |Sp| ̸= 0. BTP IoU is
computed over the reported or labeled vulnerable samples,
i.e., |Sp ∪ Sd| ≠ 0. Let us revisit the example in Figure 3,
where the bug-triggering path comprises Lines 3 and 5. The
detected statements of Lines 3 and 5 will be a perfect match
(100% BTP precision/recall/IoU), while only reporting Line
5 has 100% BTP precision, but 50% BTP recall. In contrast,
SYSEVR (Lines 1, 2, 3, 4, 5, 6, 7) yields 100% BTP recall, but
only 29% BTP precision.

The bug-originating and triggering points are essential to
locate the bug-triggering paths. We also define a relaxed and
coarse-grained BTP metric called BTP’s accuracy, BTP A,
which is the ratio between the detected bug-originating and
triggering points and all the labeled bug-originating and
triggering points:

BTP A =

{
|Sd ∩ SOT |/|SOT | if Sp ̸= ∅
0 else if Sd ̸= ∅ (9)

where SOT stands for the labeled bug-originating and
triggering points (statements). Note that BTP A is also
computed over the reported or labeled vulnerable samples,
i.e., |Sp ∪ Sd| ≠ 0.

The BTP metrics for all bug samples are the arithmetic
average of BTP metrics for each bug. The BTP precision/re-
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TABLE 5: Popular Datasets for Evaluating Learning-Based Vulnerability Detection. Beneficial characters of datasets are
highlighted. D2A has high-quality labels from real-world projects with sufficient bug information.

Dataset Sample Type Labelling Granularity Vulnerability Type Link to Source code Labelling Method

Juliet [45] Synthetic Statement ✓ - Predefined bug pattern

S-Babi [46] Synthetic Statement ✓ - Predefined bug pattern

Choi et al. [47] Synthetic Statement ✓ - Predefined bug pattern

Draper [48] Synthetic+Real-world Method ✓ ✗ Static analysis

Devign [8] Real-world Method ✗ ✗ Commit message+Code diff

CDG [1] Real-world Method ✗ ✗ NVD + Code diff

Fan et al. [49] Real-world Method/Statement ✓ ✓ CVE + Code diff

D2A [27] Real-world Statement ✓ ✓ Differential analysis

TABLE 6: Label distribution of vulnerable and safe samples

Category # Program method # Program slices (code gadget) # Program slices (SeVC, XFG, iSeVC)
Total Vulnerable Safe Total Vulnerable Safe Total Vulnerable Safe

BUFFER OVERRUN 358,073 5,560 352,513 805,557 13,066 792,491 350,404 6,247 344,157

INTEGER OVERFLOW 815,898 11,125 804,773 3,540,640 67,001 3,473,639 10,636,731 5,206,271 5,430,460

NULL DEREFERENCE 28,959 641 28,318 103,281 691 102,590 185,906 1,329 184,577

DEAD STORE 4,171 96 4,075 3,665 193 3,472 7,052 306 6,746

DIVIDE BY ZERO 1,139 12 1,127 2,701 35 2,666 3,656 34 3,622

MEMORY LEAK 9,324 38 9,286 4,507 18 4,489 15,943 57 15,886

RESOURCE LEAK 198 3 195 98 5 93 348 6 342

UNINITIALIZED VALUE 10,185 240 9,945 14,431 752 13,679 20,685 1,246 19,439

USE AFTER FREE 735 19 716 364 13 351 653 19 634

Total 1,270,139 17,734 1,252,405 4,475,244 81,774 4,393,470 6,017,263 114,261 5,903,002

TABLE 7: Vulnerability types in our dataset [27]

Type Description

BUFFER OVERRUN Out-of-boundary read/write of a buffer

INTEGER OVERFLOW Exceeding increment of an integer value

NULL DEREFERENCE Dereferencing a null pointer

DEAD STORE Never use an assigned value

DIVIDE BY ZERO Divide a value by zero

MEMORY LEAK Never release an allocated memory

RESOURCE LEAK Never close a resource after usage

UNINITIALIZED VALUE Read a value before initialized

USE AFTER FREE Use a freed memory

call/IoU for all bug samples in a dataset are calculated as
follows:

BTP Pavg = AVG(BTP P i)

BTP Ravg = AVG(BTP Ri)

BTP IoUavg = AVG(BTP IoU i)

BTP Aavg = AVG(BTP Ai)

(10)

where AV G(·) denotes the arithmetic average of all data
samples. As such, the BTP metrics have equal influence
on the evaluation results in terms of each data sample,
including large and small samples on the entire dataset.

5.3 Toolkit

Since the implementations of VGDETECTOR and VULDEEP-
ECKER are not publicly available, we have re-implemented
them by strictly following their methods elaborated in the
original papers. We have tested our re-implementation on

the dataset in the original paper and Table 4 shows that
our framework can achieve similar results in their original
paper. We have also adapted the other nine open-source
tools TOKEN EMBEDDING, CODE2SEQ, REVEAL, IVDETECT,
VULDEELOCATOR, SYSEVR, ICVH, VELVET and DEEP-
WUKONG into our unified toolkit. Given a target program,
our toolkit extracts code representations (e.g., AST, CFG,
DDG and PDG) and feeds them to the downstream de-
tectors for a fair comparison. We use ASTMINER [33] as
the lexer and parser for TOKEN EMBEDDING, ICVH and
CODE2SEQ. We use JOERN [34], which is also used by
SYSEVR, IVDETECT and REVEAL, to dump AST, CFG and
PDG to support program dependence analysis for VGDE-
TECTOR, VULDEEPECKER, SYSEVR, DEEPWUKONG, RE-
VEAL and IVDETECT. We use dg [38] to generate the IR slice
for VULDEELOCATOR. We use PYTORCH LIGHTNING [50],
a lightweight PyTorch wrapper for high-performance AI re-
search, to build neural network models. We use SMOTE [51]
to deal with the data imbalance problem during the training
process.

5.4 Dataset

The scope of our study is to evaluate learning-based ap-
proaches for static and source-code-based bug detection.
Therefore, this study does not cover binary code analy-
sis [19], [52] or dynamic analysis [53]. Table 5 presents
an overview of eight datasets which have been used in
the previous literature to evaluate software vulnerability
detection. The valid dataset should satisfy the following
requirements:

(1) It should be built upon real-world projects rather than
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synthetic or conceived samples, which are not as di-
verse and complex as real-world vulnerabilities.

(2) It should be labeled with reliable methods and have
a sufficient number of high-quality samples for model
training.

(3) It should be well-labeled at the program statement level
because some of the learning-based approaches report
vulnerabilities based on program lines.

(4) It should provide links to the original source code
repositories, in order to be able to soundly produce
program feature sets for each approach.

(5) It should provide detailed bug type information so
that a developer can investigate the results of different
vulnerabilities.

In this study, we use D2A [27], the most recent and
comprehensive dataset for our evaluation because it satisfies
all of the aforementioned requirements. Unlike the synthetic
datasets (Juliet [45], Choi et al. [47] and S-babi [46] in
Table 5) which contain tiny code fragments generated by
predefined patterns, D2A is built upon real-world large-
scale projects (including OpenSSL, FFmpeg, libav, httpd,
NGINX and libtiff) and contains 1,270,139 high-quality
vulnerabilities (Column 2 of Table 6).

Unlike the datasets with coarse-grained labels at the
program method level (Draper [48], Devign [8], CDG [1]
and Fan et al. [49]), the samples in D2A are well-labeled at
statement-level with differential analysis, which runs before
and after each bug-introducing commit from 349,373,753
issues using industrial-strength static analyzers [27]. Some
approaches label the modified/removed lines of bug-fixing
commits as vulnerable [1], [8], [49]. However, the labeled
lines may not be vulnerable when putting them in other
(safe) program context. Also, these lines may not be bug-
originating or triggering points, making it hard for manually
bug tracing. In comparison, each vulnerability in D2A is
labeled at the statement (line) level with clearly annotated
bug-triggering paths related to the vulnerability, which is
produced by the industrial-strength static analyzer INFER.
Each vulnerability is also labeled with its corresponding
type, with all types summarized in Table 7. The labeled
vulnerabilities and bug-triggering paths might not be per-
fect and may contain mislabeled samples. In this study, we
trust the labeling results in D2A since its labeled samples
and their bug-triggering paths are generated by differential
analysis to greatly reduce false positives and have also been
reviewed by domain experts [27]. In addition, previous
studies have shown that the neural network models of
learning-based approaches are robust against some misla-
beled samples [1], [54]. Given these vulnerabilities asso-
ciated with fine-grained and comprehensive labels, it will
be more effective for a fair comparison between various
learning-based detectors at different granularity levels.

We divide D2A’s samples into vulnerable programs and
safe ones. A program is treated as vulnerable if it contains
at least one statement in the bug-triggering paths labeled by
D2A, and safe otherwise. We remove the duplicate samples,
which could affect the performance metrics. In the end, from
the D2A dataset, we collect 17,734 vulnerable and 1,252,405
safe programs. Our evaluation is conducted on a server
running Ubuntu Linux with NVIDIA GeForce GTX GM200
GPU and Intel(R) Xeon(R) CPU E5-2603 v4 with 1.70GHz

and 64GB memory.

6 EVALUATION

Our evaluation aims to answer the following questions:
RQ1 What is the gap between different learning-based bug

detectors and conventional static bug detectors under
the BTP metrics?

RQ2 What are the differences between the existing metrics
and BTP metrics?

RQ3 What are the results for different vulnerability types
using the BTP metrics?

6.1 RQ1: Gap between Learning-Based Bug Detectors
and the Static Analyzer under the BTP Metrics

As described in Section 3, the underlying prediction models
of method-level and slice-level approaches aim to classify
whether a program method or program slices (a set of
statements) is vulnerable or safe. Given the well-labeled
D2A dataset, we first want to estimate the ideal prediction
results for both method-level and slice-level learning-based
approaches, to understand the gap between the best pos-
sible results of learning-based detectors and the ground
truths confirmed and produced by static analyzers under
the BTP metrics. In addition, we also evaluate the actual
performance of method-level, slice-level and statement-level ap-
proaches with regard to bug-triggering paths when training
and applying the detection models. Finally, for statement-
level approaches, we compare their performance on locating
bug-triggering paths using the datasets labeled with bug-
triggering paths (i.e., D2A) and the corresponding program
patches, respectively.

Column 2 of Table 6 gives a total number of 1,270,139
program methods to be predicted by TOKEN EMBEDDING,
CODE2SEQ, VGDETECTOR and REVEAL. Columns 5 gives
4,475,244 program slices generated by VULDEEPECKER
from all the samples in the D2A dataset. Column 8 shows
6,017,263 program slices extracted by SYSEVR and DEEP-
WUKONG. Columns 3 and 4 give the number of vulnerable
and safe methods using ideal classification, where a method
is classified vulnerable if it contains a buggy statement,
otherwise it is treated as safe given the ground-truth labels
in D2A. Columns 6 and 7 list the number of vulnerable and
safe code gadgets using ideal classification for VULDEEP-
ECKER, where a code gadget is classified as vulnerable if it
contains a buggy statement and safe otherwise [1], similarly
for Columns 9 and 10 by SYSEVR and DEEPWUKONG.
The above ideal classification (with 100% precision and
100% recall measured by the traditional metrics in Table 3)
provides the upper limit or the best possible prediction re-
sults can be produced by the current method-level (TOKEN
EMBEDDING, CODE2SEQ, VGDETECTOR and REVEAL) and
slice-level (VULDEEPECKER, SYSEVR and DEEPWUKONG)
learning-based approaches.

statement-level approaches ICVH, VELVET, IVDETECT
and VULDEELOCATOR can theoretically predict and report
any program statement as vulnerable. However, the un-
derlying learning model is still unaware of bug-triggering
paths. They cannot precisely pinpoint the bug-triggering
paths because both of their classification and interpretation

10



0.03 

0.04 

0.04 

0.05 

0.05 

0.06 

0.09 

0.18 

0.18 

0.18 

0.04 

0.00 0.05 0.10 0.15 0.20

Token Embedding

Code2Seq

VGDetector

Reveal

VulDeePecker

SySeVR

DeepWukong

VulDeeLocator

IVDetector

VELVET

ICVH

BTP_P

0.24 

0.32 

0.38 

0.46 

0.30 

0.57 

0.61 

0.65 

0.47 

0.48 

0.27 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

BTP_R

0.02

0.03

0.03

0.04

0.03

0.06

0.08

0.15

0.11

0.14

0.02

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Token Embedding

Code2Seq

VGDetector

Reveal

VulDeePecker

SySeVR

DeepWukong

VulDeeLocator

IVDetector

VELVET

ICVH

BTP_IOU

0.30 

0.32 

0.35 

0.33 

0.47 

0.50 

0.56 

0.47 

0.41 

0.44 

0.32 

0.00 0.10 0.20 0.30 0.40 0.50 0.60

BTP_A

Ideal:
0.13

Ideal:
0.19

Ideal:
1.00

Ideal:
0.49

Ideal:
0.71

Ideal:
0.49

Ideal:
0.09

Ideal:
0.16

Ideal:
0.71

Ideal:
0.49

Ideal:
0.46

Ideal:
0.63

Ideal:
0.46

avg avg

avg avg

Ideal:
0.29

Ideal:
0.56

Ideal:
0.19

Ideal:
0.58

Method 
Level

Slice 
Level

Statement
Level

Method 
Level

Slice 
Level

Statement
Level

Fig. 4: A comparison of the BTP metrics of the state-of-the-art learning-based bug detectors.

models do not distinguish program paths. In addition to the
ideal prediction results, we compare the performance of dif-
ferent learning-based bug detectors in terms of BTP metrics
by training a detection model to understand their ability
to pinpoint bug-triggering paths in real-world scenarios.
In order to train a detection model, we randomly split the
dataset shown in Table 6 into 80%, 10% and 10% for training,
validation and testing respectively. For each learning-based
bug detector, a detection model is first trained and tuned
using the training and validation dataset and applied to
the testing dataset for BTP metrics evaluation. To compare
the performance on the datasets using different statement-
level labeling, we build another dataset based on the code
changes of the Github commits in relation with the ground
truth of bug-triggering paths from the D2A dataset.

Result. As shown in Figure 4, method-level approaches
achieve a lower ideal BTP recall/precision/IoU/accuracy
than slice-level approaches. The ideal BTP recall is below
50% at 49%, 31% lower than SYSEVR and 13% lower
than VULDEEPECKER. Method-level approaches also record
a significantly lower ideal BTP precision at merely 13%,
compared to SYSEVR at 19% and VULDEEPECKER at 29%.
Among the slice- and method-level approaches, the highest
ideal BTP IoU is achieved by VULDEEPECKER (19%), which
is more than the method-level approaches (9%) and SYSEVR
(16%). SYSEVR observes the best ideal BTP accuracy at
63%, 9% higher than VULDEEPECKER and 37% higher than
method-level approaches. For statement-level approaches,
all the four approaches can ideally achieve a 100% BTP pre-
cision. However, the ideal BTP recall and IoU for IVDETECT,
ICVH and VELVET is 49%, compared to 71% for VULDEE-
LOCATOR. Figure 4 also presents the actual performance of
these approaches under BTP metrics and the gap with the
ideal results. Overall, they are not comparable to their upper

limits with a decline of 72%, 26%, 72% and 32% BTP preci-
sion, recall, IoU and accuracy on average. Method-level ap-
proaches have a lower BTP precision/recall/IoU than their
slice-level counterparts, which is consistent with the ideal
result in Figure 4. Of the method-level approaches, REVEAL
achieves the best performance with a BTP IoU of 4%, double
the lowest BTP IoU from TOKEN EMBEDDING at only 2%.
REVEAL is also slightly better than the AST-based approach
CODE2SEQ. With regard to the slice-level approaches, it
is interesting to find that VULDEEPECKER, which has the
highest ideal BTP IoU, records the lowest BTP IoU at merely
3%. As for SYSEVR and DEEPWUKONG, DEEPWUKONG is
more superior to the other two approaches with a 9% BTP
precision and 8% BTP IoU, compared to an average of 7%
BTP precision and 6% BTP IoU for the other two approaches.
Regarding statement-level approaches, the highest BTP IoU
comes from VULDEELOCATOR reaching 15%, while VEL-
VET also records a relatively high BTP IoU capped at 14%.
The BTP precision of these two approaches is markedly
higher than the rest at about 18%, nearly double the rate
of DEEPWUKONG and more than five times the rate of
TOKEN EMBEDDING. VULDEELOCATOR also observes the
highest BTP recall capped at 65%, approaching the upper
limit around 71%. VELVET reports a BTP recall at 48%
which is close to its upper limit. The BTP IoU for ICVH is
the lowest among its statement-level counterparts at merely
2%, which is even lower than some of the method-level
approaches. IVDETECT and VULDEELOCATOR record iden-
tical BTP metrics when training with the datasets labeled
with bug-triggering paths and the corresponding program
patches. However, ICVH and VELVET observe a poorer
performance in terms of BTP metrics when training with
program patches with the BTP IoU dropping by nearly 50%.

Analysis. Method-level approaches have the lowest BTP
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precision because they report the whole buggy program
method, which contains a large proportion of statements
not related to the bug-triggering paths. Taking the code
fragment in Figure 3 as an example, the number of ir-
relevant statements (Lines 1, 2, 4, 6, 7, 8, 9 and 10) is
four times as high as the size of the bug-triggering paths
(Lines 3, 5). The ideal BTP precision here is merely 20%.
Note that the BTP precision can be even worse for large
and complex buggy program method in real-world soft-
ware, making it difficult to understand the bug triggering
paths and adversely affecting productivity for bug fixing
and software maintenance. Of the method-level approaches,
REVEAL achieves the best performance because it uses a
more precise program representation (CPG) hence a more
robust prediction model with less false positives/negatives
is produced. CODE2SEQ though is proven to be effective
on code classification or summarization tasks, they are still
insufficient for vulnerability detection.

VULDEEPECKER has a higher ideal BTP precision than
SYSEVR because it can ideally preserve the bug-triggering
paths more precisely without including control-related
statements. For instance, the buggy slices (SeVC) from
Figure 3 includes the whole program statements (Lines
6, 7, 8) controlled by Line 5 (library/API call) through
forward control-dependence slicing. These statements are
not relevant to the bug so they do not appear in the bug-
triggering paths, making the SeVC less precise. In fact,
due to the control-dependence slicing, the average number
of statements of buggy SeVC is 12, compared to only 7
for code gadgets in VULDEEPECKER, which only conducts
data-dependence slicing. As such, SYSEVR introduced more
noisy statements in this case, making its ideal BTP precision
of SYSEVR lower than VULDEEPECKER. The average num-
ber of statements of the method-level approaches is 62, sig-
nificantly larger than that of SYSEVR and VULDEEPECKER.
This partly implies that slice-level approaches have better
BTP precision than the method-level approaches, because
the slicing operation of SYSEVR and VULDEEPECKER can
exclude some statements not relevant to the bug-triggering
paths. Although VULDEEPECKER has the highest ideal BTP
precision, it still includes lots of false positive statements
(i.e., Sd \ (Sd ∩ Sp)). By looking into the buggy code gadget
generated by VULDEEPECKER, we find the main reason
that leads to the imprecision is the distracted value flows
of objects other than the vulnerable objects. For instance,
in Figure 3, the vulnerable object is the array “group”,
which was not initialized in Statement 3 but is indexed in
Statement 5. The array object “h→array”, which is properly
initialized in Statement 2, is not vulnerable, so its value
flows are not in the bug-triggering paths. However, these
statements are included by the reported code gadget of
VULDEEPECKER through backward data-dependence slic-
ing from the API call at Line 5. This is caused by the im-
perfection of VULDEEPECKER’s slicing method which starts
from all the arguments of arbitrary API calls. However,
some of the arguments of an API can be irrelevant to a bug.
Moreover, a bug (e.g., buffer overflows) may not be relevant
to any API call.

VULDEEPECKER is inferior to SYSEVR based on the
model prediction results under the BTP metrics. This is
because multiple real-world vulnerabilities (e.g., memory

leak) are affected by the control-dependency information.
Excluding control-related statements though can produce
a thin and precise slice, it also fails to preserve important
statements in the program representation, e.g., the branch
conditions that determine the execution order of programs;
hence adversely affecting model training and introducing
more false positives/negatives. The lower ideal BTP recall
of VULDEEPECKER also indicates that it misses a proportion
of buggy statements in the bug-triggering paths. DEEP-
WUKONG and SYSEVR extract samples under the same
granularity (control- and data-related statements) thus hav-
ing the same ideal BTP metrics; however, after training
a prediction model, DEEPWUKONG outperforms SYSEVR
because it incorporates more comprehensive structural de-
pendencies of the program so can train a more effective
prediction model.

Statement-level approaches VULDEELOCATOR, VEL-
VET and IVDETECT achieve a significantly higher BTP
precision because they use a comprehensive program rep-
resentation with interpretable AI techniques to comprehend
the prediction result. As such, the well-trained prediction
model is more effective under the traditional metrics [11],
and the interpretable AI ensures that the reported vul-
nerable statements contain less bug-unrelated statements.
VULDEELOCATOR outperforms the other approaches be-
cause it considers the interprocedural data-flow, while the
others utilize intraprocedural feature and cannot recall the
vulnerable statements in the interprocedural bug-triggering
paths. VELVET and IVDETECT perform better than ICVH
because of their more effective classification models. This
demonstrates that the BTP metrics can reflect the effective-
ness of both the classification and interpretation models.

VELVET and ICVH perform better in terms of pin-
pointing bug-triggering paths when training on the ground
truth of bug-triggering paths because they can learn the
individual statements information on the paths by train-
ing a node (statement) classification model supervised by
the pre-labeled statements on the bug-triggering paths.
In comparison, VULDEELOCATOR and IVDETECT are not
affected by statement-level labeling because they do not
leverage/learn the pre-labeled statements information dur-
ing model training; rather, they report statements based
on the interpretation model (attention mechanism [16] and
GNNExplainer [15]) by identifying important statements
contributing to the coarse-grained classification result on a
program method/slice.

ANSWER to RQ1
There exists a significant gap between learning-based bug
detectors and traditional static analyzers (85% in BTP
IoU on average). VULDEELOCATOR, VELVET and IVDE-
TECT greatly outperform the other approaches under BTP
metrics. VULDEEPECKER detects the bug-triggering paths
more precisely (3% more than average) than SYSEVR
and DEEPWUKONG. ICVH and method-level approaches
report the worst performance.

6.2 RQ2: Differences between Existing Metrics and
BTP Metrics
In this research question, we aim to compare our BTP
metrics with the existing evaluation metrics described in
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TABLE 8: A comparison of existing metrics of the state-of-the-art learning-based bug detectors. SA stands for statement
accuracy, VCP denotes vulnerability coverage proportion and JI denotes Jaccard index.

Approaches Precision Recall F1 score SA VCP JI
TOKEN EMBEDDING 0.63 0.49 0.55 0.59 0.006 0.002
CODE2SEQ 0.63 0.53 0.57 0.60 0.006 0.003
VGDETECTOR 0.64 0.56 0.60 0.61 0.007 0.003
REVEAL 0.66 0.57 0.61 0.65 0.007 0.004

VULDEEPECKER 0.76 0.63 0.69 0.72 0.010 0.005
SYSEVR 0.77 0.68 0.73 0.73 0.013 0.005
DEEPWUKONG 0.84 0.74 0.79 0.81 0.014 0.006

VULDEELOCATOR 0.83 0.74 0.78 0.79 0.015 0.007
IVDETECT 0.67 0.71 0.69 0.64 0.016 0.005
VELVET 0.74 0.58 0.65 0.71 0.012 0.004
ICVH 0.62 0.55 0.58 0.58 0.007 0.003

Table 3 by evaluating the learning-based vulnerability de-
tection approaches using these metrics. For fair comparison,
we use the same experimental settings in RQ1 to train a
prediction model: we randomly split the dataset into 80%,
10% and 10% for training, evaluation and testing, and apply
each trained and tuned model to the testing dataset for
evaluation using the metrics in Table 3.
Result. Table 8 presents the results of the learning-based
detectors under the existing metrics. REVEAL outperforms
the other method-level approaches with an F1 score reach-
ing 61%. Its SA is also the highest among method-level
approaches at 65%. This comparison result is similar to
BTP metrics. However, the VCP and JI of method-level
approaches are rather close to each other with relatively
low numbers. The best performance among slice-level ap-
proaches comes from DEEPWUKONG which achieves an
F1 score at 79% (8% and 14% higher than SYSEVR and
VULDEEPECKER respectively). Similarly, the differences be-
tween slice-level approaches under VCP and JI are also
negligible (with less than 3% difference). Statement-level
VULDEELOCATOR records a better performance than its
statement-level counterparts with F1 score and SA capped
at 78% and 79% respectively. Note that ICVH reports the
lowest numbers. For example, its F1 score is only 58%,
which is 5% less than REVEAL, the method-level approach.
The other three statement-level approaches also observe
similar VCP and JI. It is worth noting that statement-level
VELVET and method-level REVEAL only see a difference
of 7% under F1 score while their gap in terms of BTP
IoU is 250%. Slice-level DEEPWUKONG even outperforms
statement-level VULDEELOCATOR in terms of F1 score.
Analysis. The traditional metrics (e.g., precision, recall and
F1 score) are mainly designed for the evaluation of the
classification model. The correct prediction of data samples
with different granularities is treated as equivalent perfor-
mance under these metrics, even though a more fine-grained
prediction (e.g., statement) can better help practitioners to
locate the vulnerability than coarse-grained prediction (e.g.,
method). For example, method-level REVEAL shows a close
F1 score to statement-level VELVET but VELVET is clearly
more useful than REVEAL when locating buggy statements.
In comparison, the BTP metrics can obviously show the
gap between the approaches with different granularities.
For example, BTP metrics exhibit explicit different numbers
between VELVET and REVEAL although they have similar
results under precision, recall and F1 score. Moreover, the
BTP metrics can be used to evaluate the approaches with

the same granularity. Taking method-level approaches as an
example, the evaluation results (Fig. 4) under our metrics
can clearly reveal their performance differences caused by
their different classification models. Their numbers are also
consistent with traditional metrics.

Statement accuracy (SA) is designed for statement-level
evaluation but is still coarse-grained because a perfect pre-
diction is counted as long as one statement on the bug-
triggering paths is correctly captured. As a result, the SA
of all the approaches is relatively high and there is no
big gap between statement-level approaches and its coarse-
grained counterparts, e.g., VELVET and REVEAL. Therefore,
it is important to consider all the statements on the bug-
triggering paths when analyzing the performance of the
target detection models, which is the principle of the BTP
metrics. For example, the BTP recall considers the propor-
tion of statements correctly identified on the bug-triggering
paths, while the BTP precision considers the proportion of
the reported statements on bug-triggering paths over all the
reported statements.

Vulnerability coverage proportion (VCP) only evaluates
the ratio of all the discovered statements. It mainly focuses
on evaluating the ability of recalling vulnerable statements
on the bug-triggering paths but fails to reflect the precision
of locating statements, while BTP metrics reflect both as-
pects. Similarly, Jaccard index (JI) only evaluates the overall
result of statement-level recall and precision but fails to
reflect each aspect independently. In addition, both VCP and
JI are computed based on all the statements of the datasets
so the results are biased towards the numbers of large
samples and can only reflect their performance. The gap
between different approaches is not clear probably because
their performance on large samples is identically not good.
For instance, we assume that Code (a) has 3 lines of bug-
triggering paths and the detector can predict exactly the
same bug-triggering paths, while Code (b) has 30 lines of
bug-triggering paths but the detector fails to predict one
line on the paths. For the two code fragments, we get an
average VCP of 9% and an average BTP recall of 50%. The
VCP result is greatly affected by the large sample Code (b),
while our metric offers a relatively unbiased result for each
of the sample.
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Fig. 5: A comparison of the BTP metrics of the state-of-the-art approaches across vulnerabilities. M, S, V stand for
Method-level approaches, SYSEVR/DEEPWUKONG and VULDEEPECKER, respectively. The 9 subfigures represent the 9

types of vulnerabilities. For a given vulnerability, each cell represents the performance of the approach (x-axis) under the
corresponding metric (y-axis). The best results are marked with dark color.

ANSWER to RQ2
The BTP metrics provide a more unbiased, fine-grained
and explicit methodology to evaluate and compare gen-
eral learning models with different granularities, while
precision, recall and F1 score are biased with different
granularities, statement accuracy is coarse-grained and
vulnerability coverage proportion and Jaccard index are
not clear.

6.3 RQ3: Evaluation for Different Vulnerability Types

To understand the results of different vulnerability types
under our BTP metrics, we apply our BTP metrics for
each type of vulnerability separately. Only the vulnerable
samples as shown in Table 6 are evaluated to understand
and compare the best possible prediction results of different
types in terms of bug-triggering paths. Figure 5 shows a
heat-map depicting the results of each type of vulnerability.
Result. The highest rate for BTP recall goes to UNINITIAL-
IZED VALUE and DEAD STORE (both around 95% for
method- and slice-level approaches). The trend of BTP ac-
curacy is similar with BTP recall: UNINITIALIZED VALUE
and DEAD STORE observe the highest BTP accuracy for
all the approaches. However, the BTP precision of UNINI-
TIALIZED VALUE and DEAD STORE are the lowest of
all the vulnerability categories. For instance, the BTP pre-
cision of the method-level approaches for UNINITIAL-
IZED VALUE and DEAD STORE are both around 2%,
while for VULDEEPECKER, the BTP precision is also the
lowest at only 2% and 4%, respectively. By comparison, DI-
VIDE BY ZERO observes the highest BTP precision at 37%
for the method-level approaches, 58% for SYSEVR and 67%
for VULDEEPECKER. The BTP IoU on DIVIDE BY ZERO
reaches 34% for method-level approaches, 40% for SY-
SEVR and 41% for VULDEEPECKER, which is higher than
any other vulnerability type. BUFFER OVERRUN, INTE-
GER OVERFLOW have a close BTP IoU at about 10%
for method-level detectors, 16% for SYSEVR and 22%
for VULDEEPECKER on average. The BTP IoU for MEM-
ORY LEAK, RESOURCE LEAK and USE AFTER FREE is
lower. The BTP IoU by VULDEEPECKER are merely 17%,
13% and 11%, respectively.
Analysis. The reason for high BTP recall and accuracy
under DEAD STORE and UNINITIALIZED VALUE is that
these two types of bugs typically occur across multiple

program methods. As for the low BTP precision, there are
two reasons behind this. (1) First, these two vulnerability
types normally have a small number of bug-triggering
paths (9 on average compared to 50 for the other types),
making |Sp| and |Sp ∩ Sd| small. This is caused by their
vulnerability behaviors. The DEAD STORE vulnerability
occurs when an object is assigned a value but is never used
after, while UNINITIALIZED VALUE is triggered when an
object is used but is never initialized before; therefore the
bug-triggering paths do not contain the initialization or
the usage statements. (2) Second, these vulnerabilities are
usually related to the value flow of a standalone object,
but VULDEEPECKER and SYSEVR include all the value-
flow statements related to the arguments of any library/API
calls, many of which are irrelevant to the vulnerability, thus
introducing redundant statements Sd with a reduced BTP
precision.

Regarding DIVIDE BY ZERO, the BTP precision is the
highest because the bug-triggering logic of this bug is
less complex, i.e., a value of zero is divided. VULDEEP-
ECKER and SYSEVR can precisely capture the value flow
of the denominator as in the bug-triggering paths, making
Sd ∩ Sp close to Sd and Sp. BUFFER OVERRUN and IN-
TEGER OVERFLOW are normally caused by the collective
effect of a number of objects (e.g., copying a memory to
a buffer of a smaller size). Their bug-triggering paths are
often large in size because they include all the vulnerable
data flows of these objects. On the other hand, the pro-
portion of bug-related arguments in the library/API calls is
likely to be larger than standalone-object vulnerabilities like
MEMORY LEAK and USE AFTER FREE, so the Sd under
BUFFER OVERRUN and INTEGER OVERFLOW is closer
to the bug-triggering paths with a chance of having fewer
bug-unrelated arguments, resulting in a relatively higher
BTP precision.

ANSWER to RQ3
UNINITIALIZED VALUE and DEAD STORE report the
lowest BTP Metrics (3% for BTP IoU) while DI-
VIDE BY ZERO observes the best performance (38% for
BTP IoU). This is caused by the length of bug-triggering
paths and the number of relevant values. Other vulner-
abilities like BUFFER OVERRUN report an intermediate
BTP IoU for 16%.
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7 DISCUSSION

Compared to the method-level approaches which predict
whether a program method is vulnerable or not, the
statement-level approaches using program slices as train-
ing features, though closer to an understanding of bug-
triggering paths, are yet imprecise. Unfortunately, the gap
still exists between the most sophisticated learning-based
approach and a precise static analyzer as shown in our
evaluation. In this section, we share the following insights
in the hope of improving future research on learning-based
vulnerability detection.

(1) Customized Feature Learning. Existing efforts uti-
lize a unified method to pinpoint all types of vulner-
abilities. However, different types of vulnerabilities may
have different bug semantics and bug triggering pat-
terns, thus requiring different learning strategies. For the
vulnerabilities which are highly related to value flows
like USE AFTER FREE and RESOURCE LEAK, it is in-
teresting to investigate whether introducing precise inter-
procedural data-flow analysis into code embedding can
avoid bug-irrelevant control/data-dependence. The DI-
VIDE BY ZERO vulnerability is caused by dividing by
zero, so the backward value flow of the denominator on the
arithmetic expression should be taken into consideration.
In addition, the value flow of the denominator will be
highlighted if detected. For high-level vulnerabilities like
Business Logic Errors (CWE840) [55], it is better to include
more in-depth semantic features which are possibly assisted
by user annotations. Overall, it would be helpful to design
customized feature engineering methods to tackle different
vulnerability categories in order to boost the efficiency and
precision of the detectors.

(2) Fine-Grained and On-Demand Feature Extraction.
We believe that the current feature extraction methods are
still shallow. The approaches either simply leverage the
graph structure (e.g., ASTs and CFGs of a program [5],
[7], [8]) or extract program slices relevant only to li-
brary/API calls [1]. However, existing precise static anal-
yses are yet to be used for more fine-grained feature
extraction, e.g., context-sensitive interprocedural analysis,
handling recursive data structures, abstract interpretation
and path-sensitive analysis. For example, a more precise
code embedding is introduced in [56] to boost code clas-
sification and summarization tasks by leveraging the pre-
cise context-sensitive interprocedural value-flow analysis.
Moreover, balancing efficiency and precision when using
advanced static analysis for learning-based approaches is
also an interesting and impactful research direction.

(3) Informative Bug Reports. Static bug detectors out-
perform their learning-based counterparts in terms of the
interpretability of the bug report, because they can provide
more detailed bug information including bug location, bug-
triggering paths and a readable explanation of how the bug
is triggered, while it is difficult to explain the detection or
interpretation result of a learning-based bug detector due to
the black-box nature of deep learning classification models.
As such, it is an interesting research direction to combine
the advantages of static and learning-based detectors, and
to develop techniques to produce more informative bug
reports based on the prediction/interpretation result of the

deep-learning model by leveraging the knowledge bases
from traditional static analysis techniques. For example, it
is beneficial to use static analysis to generate precise path
information and incorporate the information into code em-
bedding to boost the performance of locating bug-triggering
paths for statement-level vulnerability detection. In turn,
learning-based vulnerability detection can save the efforts
of crafting specifications for traditional static analysis to
identify vulnerable paths among all the program paths.

8 RELATED WORK

Static Vulnerability Detection. There are a number of
traditional static analysis frameworks (e.g. CLANG STATIC
ANALYZER [12], FLAWFINDER [20], INFER [13], ITS4 [21],
CHECKMARX [22] and SVF [23], [24]) which aim to statically
analyze the runtime behavior of source code and detect
vulnerabilities in a wide variety of software systems. There
are also many approaches [24], [57], [58], [59], [60], [61], [62],
[63], [64], [65], [66], [67], [68], [69], [70], [71], which seek to
detect specific vulnerabilities like memory errors or divide-
by-zero bugs through conventional static analysis method-
ologies (e.g., sparse data-flow analysis [72], [73], abstract
interpretation, symbolic execution and incorrectness logic).
Machine-Learning-Based Vulnerability Detection. Recently,
there are several studies in successfuly applying machine
learning techniques in automated software vulnerability
detection. Neuhaus et al. [74] use support vector machines
(SVM) to detect vulnerabilities from Red Hat packages.
Grieco et al. [75] utilise the static and dynamic features of
source code to detect memory corruption. DeepBugs [76]
proposes to represent a program as a text vector to detect
name-based bugs. VULDEEPECKER [1] uses data-flow and
BLSTM to detect resource management errors and buffer
overflows. VGDETECTOR [9] uses CFGs and the graph
convolutional network to detect control-flow-related vul-
nerabilities. SYSEVR [3] and µVULDEEPECKER [4] combine
both control and data flow using different recurrent neural
networks (RNNs) to detect various types of vulnerabili-
ties. DEEPWUKONG [37] uses structural control and data-
dependence to pinpoint vulnerabilities. DEVIGN [8] uses
Gated Graph Sequence Neural Networks (GGNNs) [32] and
a composition of AST, CFG, DDG and natural code sequence
(NCS) edges to detect vulnerabilities in program method,
while REVEAL [26] proposes to leverage code property
graph and GGNNs. ICVH [17] proposes to highlight code
statements based on the mutual information maximization
of source code and code statement probability distribution.
VELVET [14] uses ensemble learning to select important
statements based on the scores learned from GGNN and
transformer. IVDETECT [18] first uses PDG and GCN to
detect vulnerabilities at coarse-grained level and interpret
a subgraph of PDG using edge-masking [15]. VULDEELO-
CATOR [19] utilizes IR-based control and data flow to detect
vulnerabilities, and k-max pooling to pinpoint fine-grained
vulnerable elements in the program.
Code Embedding. Code embedding aims to produce low-
dimensional vector representations of source code to enable
the application of advanced learning techniques to various
code analysis tasks. White et al. [42] stream software tokens
to embed source code for code suggestion. Wang et al. [77]
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use token vectors extracted from Abstract Syntax Trees
(ASTs) for software defect prediction. ASTNN [7] embeds an
input program by extracting a sequence of subtrees of each
AST of the program for code classification and code clone
detection. CODE2VEC [5] and CODE2SEQ [6] conduct code
embedding by encoding a bag of AST paths in the latent
space for method name prediction and code summariza-
tion. Flow2Vec [56] embeds the interprocedural alias-aware
value-flow-graph of a program for code classification and
summarization. Kharkar et al. [78] proposes a transformer-
based learning approach to reduce false alarms in static
analyzers.

9 CONCLUSION

In this paper, we propose quantitative and fine-grained
evaluation metrics called BTP metrics by leveraging bug-
triggering paths, to understand and characterize learning-
based vulnerability detection approaches, thus complement-
ing traditional evaluation metrics. We conduct a comprehen-
sive comparison on existing learning-based bug detectors,
which perform classification on program method or slice,
or statements without pinpointing the vulnerable paths. We
have evaluated state-of-the-art learning-based approaches
in terms of BTP metrics under different vulnerability cat-
egories. Our empirical study carefully analyzes the gap
between learning-based bug detectors and traditional static
analyzers. Finally, our evaluation reveals several key is-
sues and challenges in developing classification models to
pinpoint bug-triggering paths and calls for more advanced
learning-based bug detection techniques.
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