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An Empirical Study of Fault Triggers in Deep
Learning Frameworks
Xiaoting Du, Yulei Sui, Zhihao Liu, and Jun Ai

Abstract—Deep learning frameworks play a key rule to bridge the gap between deep learning theory and practice. With the growing of
safety- and security-critical applications built upon deep learning frameworks, their reliability is becoming increasingly important. To
ensure the reliability of these frameworks, several efforts have been taken to study the causes and symptoms of bugs in deep learning
frameworks, however, relatively little progress has been made in investigating the fault triggering conditions of those bugs. This paper
presents the first comprehensive empirical study on fault triggering conditions in three widely-used deep learning frameworks (i.e.,
TensorFlow, MXNET and PaddlePaddle). We have collected 3,555 bug reports from GitHub repositories of these frameworks. A bug
classification is performed based on fault triggering conditions, followed by the analysis of frequency distribution of different bug types
and the evolution features. The correlations between bug types and fixing time are investigated. Moreover, we have also studied the
root causes of Bohrbugs and Mandelbugs and investigated the important consequences of each bug type. Finally, the analysis of
regression bugs in deep learning frameworks is conducted. We have revealed 12 important findings based on our empirical results and
have provided 10 implications for developers and users.

Index Terms—fault triggers, Mandelbug, deep learning framework, TensorFlow, empirical study
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1 INTRODUCTION

IN recent years, deep learning has rapidly developed and
achieved tremendous success in many domains, such as

face recognition [1], image analysis [2], natural language
processing [3] and many other fields [4], [5], [6]. Due to
the rapid proliferation of deep learning systems, even a
single bug with few lines of error code may cause disastrous
consequences [7]. In fact, there are reports of real-world
accidents caused by deep learning systems. For example,
a bug in the Uber autonomous driving system cause the
death of a pedestrian [8]. Deep learning frameworks, as the
basis of constructing deep learning systems, bugs in them
can adversely affect a larger number of users and cause
more serious results than a specific deep learning model.
Especially when they are applied to safety- and security-
critical applications, such as autonomous driving [9] and
healthcare [10]. It is critical to ensure the reliability of deep
learning frameworks.

Same as traditional software systems, there are bugs
in deep learning frameworks. To understand the features
and characteristics of bugs in deep learning frameworks
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and help to fix these bugs, several studies have been con-
ducted. For example, Zhang et al. [11] present an empirical
study on detecting and locating programming mistakes
in applications built on top of TensorFlow. The authors
collected 175 TensorFlow coding bugs from GitHub issues
and StackOverflow questions and reported their symptoms
and causes, as well as the challenges on bug detection
and localization. In [12], Li et al. analyzed bugs inside
deep learning framework TensorFlow. They also studied the
causes and symptoms of bugs, and the distribution of bugs
among different components. In [13], Islam et al. performed
a study of five deep learning libraries, including Caffe [14],
Keras [15], TensorFlow [16], Theano [17] and Torch [18].
2716 posts from Stack Overflow and 500 bug fix commits
from GitHub were analyzed to explore the causes and
effects of bugs. Although the above efforts have studied the
causes and symptoms of bugs inside existing deep learning
frameworks, none of them analyzed the factors that trigger a
fault and/or propagate a fault into a failure in deep learning
frameworks. These fault triggering conditions are important
for both development and maintenance of deep learning
frameworks.

Fault triggering conditions are usually complex, involv-
ing not only the timing of inputs and operations but also the
interaction with other systems. According to the complexity
of fault activation and/or error propagation conditions,
Grottke and Trivedi [19] divided bugs into Bohrbugs (BOHs)
and Mandelbugs (MANs). Among them, BOH is a kind
of bug whose activation and error propagation conditions
are simple. In addition, BOHs are easy to reproduce and
isolate. In contrast, the activation and error propagation of
MANs are complex. They make the system exhibit chaotic
and even non-deterministic behavior during operation. In
addition, a MAN can be further classified as a non-aging
related Mandelbug (NAM) or an aging-related bug (ARB).
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Among them, ARB is a kind of bug that can cause software
aging, that is, the cause of an increase in failure rate and/or
performance degradation [20]. According to the above clas-
sification, Cotroneo et al. [21] proposed a more detailed
classification of ARBs and NAMs.

In this study, we make the first attempt to explore the
bug characteristics in deep learning frameworks based on
fault triggering conditions. We have conducted an exten-
sive study on three widely-used deep learning frameworks,
i.e., TensorFlow [22], MXNET [23] and PaddlePaddle [24],
where 3,555 bug reports are analyzed. We have investigated
bug characteristics from several aspects, including (1) the
frequency distribution of different types of bugs, and the
evolution of different bug types over time; (2) the fixing
time of bugs and the correlation between bug types and
fixing time; (3) the root causes of Bohrbugs and Mandel-
bugs; (4) the impacts of Bohrbugs and Mandelbugs; and
(5) different features of regression bugs in deep learning
frameworks. For each report, we have manually examined
the bug descriptions, comments, linked pull requests and
the corresponding commits. The contributions of our work
provide answers to the following five research questions.

RQ1: What is the distribution of different bug types in
deep learning frameworks?

To answer this question, bugs in TensorFlow, MXNET
and PaddlePaddle are classified based on their fault triggers.
Bug type distribution in these deep learning frameworks are
analyzed. In addition, we have studied the proportions of
the bug types in these frameworks and how these bug types
evolve over time. This RQ is answered in Section 3.

RQ2: How much time is spent to fix different types of
bugs?

We calculate the fixing time of different types of bugs,
including the average fixing time and the median fixing
time. We have also analyzed the correlations between bug
types and their fixing time. This RQ is answered in Section 4.

RQ3: What are the root causes of Bohrbugs and Man-
delbugs?

We have classified bugs into Bohrbugs and Mandel-
bugs in RQ1. The root causes of Bohrbugs and Mandel-
bugs are further investigated in this RQ to understand the
nature of bugs. Five root causes are identified, including
environment/configuration, memory, compatibility, concur-
rency and semantic. This RQ is answered in Section 5.

RQ4: What are the impacts of Bohrbugs and Mandel-
bugs?

We have studied the distribution of impacts and the
correlation between impacts and bug types. Identifying
the impacts of bugs helps us to understand how severe
a Bohrbug or a Mandelbug is. Through manual examina-
tion, failures caused by Bohrbugs and Mandelbugs include
crash/exception, hang/no response, wrong output, opera-
tion failure and warning style error. This RQ is answered in
Section 6.

RQ5: What is the feature of regression bugs in deep
learning frameworks?

Regression bug is a type of bug that causes a feature,
which worked normally in previous versions but stopped
working after a certain code commit. Investigating the dis-
tribution of regression bugs and the features of these bugs
in deep learning frameworks could help developers with

their debugging and program repair, thus preventing future
regression bugs. This RQ is answered in Section 7.

The contributions of this paper are summarized into 12
findings, as shown in TABLE 1. The detailed implications of
these findings are illustrated in relevant sections of this pa-
per. These results provide valuable insight for deep learning
developers and users.

This paper expands and improves our previous
work [25]. Several new analyses are conducted. For exam-
ple, (1) two other deep learning frameworks (i.e., MXNET
and PaddlePaddle) are analyzed in this paper; (2) we study
the impact of each bug to understand the severity of
Bohrbugs and Mandelbugs in deep learning frameworks;
(3) we perform the analysis of MXNET and PaddlePaddle
from five dimensions, including distribution and evolution
of different bug types, bug fixing time, root causes, impacts
and regression bugs, and compare the results between dif-
ferent frameworks.

The rest of the paper is structured as follows. Section 2
presents the study methodology utilized in this paper. We
give the answers for the five research questions in Sec-
tions 3-7. Section 8 reports the threats to validity of our
study. Section 9 discusses some implications based on the
results obtained. Section 10 describes related work. Finally,
conclusions and future work are given in Section 11.

2 STUDY METHODOLOGY

This section describes our methodology of studying bugs
in deep learning frameworks, including data source, bug
classification based on fault triggering conditions, bug re-
port classification procedure, definitions of root causes and
impacts of Bohrbugs and Mandelbugs, and the metric we
used to analyze the correlation between different bug types.

2.1 Data Source

To determine the target deep learning frameworks for our
study, we have investigated 14 popular deep learning frame-
works, which have been widely used in recent years [13],
[26], [27], [28], [29], including TensorFlow, MXNET, Pad-
dlePaddle, Keras, Pytorch, Caffe, CNTK, Torch, Deeplearn-
ing4j, Caffe2, Sonnet and Chainer. First, we ranked all
14 frameworks based on the number of stars marked in
their GitHub repositories, and 7 of them were starred by
more than 15k GitHub users. They are TensorFlow, MXNET,
PaddlePaddle, Keras, PyTorch, Caffe and CNTK. Second,
we searched for bug reports under the “closed” status and
with the label “type:bug”. Bug reports in GitHub have two
statuses, namely, “closed” and “open”. Considering that the
reports under the “open” state are still under discussion
and their types cannot be determined, only “closed” bug
reports will be studied in this work. Furthermore, to narrow
down the scope of bug reports to actual bugs, we used the
“type:bug” label to filter out the closed bug reports, which
are added by developers during the process of fixing these
bugs. However, in the GitHub repositories of Keras and
PyTorch, there is no “type:bug” label. Finally, we considered
whether the number of bug reports obtained in each frame-
work was sufficient. In Caffe and CNTK’s repositories, only
a few dozen closed bug reports were labeled as “type:bug”,
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TABLE 1
Summary of Findings Related to Bug Characteristics in Deep Learning Frameworks

Findings on bug types

#1 The proportions of actual bugs in TensorFlow, MXNET and PaddlePaddle are 41.7%, 45.5% and 50.6%, respectively.

#2 More than two-thirds of actual bugs are BOHs in all the three deep learning frameworks (i.e., TensorFlow, MXNET and
PaddlePaddle).

#3 MEM is the major subtype of ARB. The proportions of MEMs in TensorFlow, MXNET and PaddlePaddle are 84.1%, 50%
and 52.6%, respectively.

#4 In MXNET and PaddlePaddle, the major subtype of NAM is ENV, the proportions are 65% and 60.7%, respectively. In
TensorFlow, TIM is the major subtype of NAM, accounting for 46.4%.

#5 The proportions of BOHs in MXNET and PaddlePaddle tend to grow over time, while the proportion of MANs tends to
decrease. In TensorFlow, the proportion of BOHs tends to shrink in the first year around, and then increases slowly
afterwards. On the contrary, the ratio of MANs in TensorFlow starts to increase in a period of time and then goes down
slowly.

Findings on fixing time

#6 It takes more time to close an invalid bug report than fixing an actual bug.

#7 It takes more time to fix a Mandelbug (MAN) than fix a Bohrbug (BOH).

Findings on root causes

#8 The major root cause of BOHs is semantic bugs and the primary root cause of ARBs is memory bugs.

#9 A BOH is prone to be caused by a semantic bug or a compatibility bug; an ARB is likely caused by a memory bug; and a
NAM is more likely caused by an environment/configuration bug or a concurrency bug.

Findings on impacts

#10 More than half of BOHs and MANs would result in crashes/exceptions.

Findings on Regression Bugs

#11 The proportions of regression bugs in TensorFlow, MXNET and PaddlePaddle are 9.02%, 13.55% and 4.81%, respectively.

#12 Among all regression bugs in TensorFlow, MXNET and PaddlePaddle, BOHs account for 78%, 77% and 80%,
respectively, and MANs account for 15%, 23% and 10%, respectively.

TABLE 2
Details of Data Set

Project Time frame # of reports

TensorFlow Nov. 26, 2015-Nov. 26, 2019 2,285

MXNET Sep. 12, 2015-Sep. 12, 2020 859

PaddlePaddle Aug. 31, 2016-Aug. 31, 2020 411

Total 3,555

and the conclusions reached based on these data may not
be statistically significant. Finally, TensorFlow, MXNET and
PaddlePaddle were obtained.

Among them, TensorFlow is the most popular deep
learning framework. It is developed by Google and can
be used to support a variety of algorithms and has been
adopted to build more than 36,000 applications hosted
on Github [22]. MXNET is a well-known deep learning
framework and the choice of Amazon Web Services. It
blends declarative symbolic expression with imperative ten-
sor computation. MXNET is computation and memory effi-
cient and runs on various heterogeneous systems [23]. Pad-
dlePaddle is developed by Baidu and has unique features

in supporting distributed training with ultra-large data and
fast inference on the server, mobile as well as edges [24].

We collected bug reports from the GitHub repositories of
Tensorflow1, MXNET2 and PaddlePaddle3. After careful ex-
amination, 3,555 bug reports are obtained, and the detailed
information is shown in TABLE 2. We obtain relevant bug
information through the designed Web-Crawler, including
the reporters’ description, opened time, closed time and
comments. Note that a bug can be fixed by one or more pull
requests with multiple code commits. For further analysis,
we also consider all these related pull requests and commits.

2.2 Bug Classification based on Fault Triggering Con-
ditions

Based on the fault activation and error propagation condi-
tions, bugs are classified into Bohrbugs (BOHs) and Mandel-
bugs (MANs) in [21]. In order to study the fault triggering
conditions in deep learning frameworks, we adopted the
bug classification method in [21]. The definitions of BOH
and MAN are as follows:

1. https://github.com/tensorflow/tensorflow/issues
2. https://github.com/apache/incubator-mxnet/issues
3. https://github.com/PaddlePaddle/Paddle/issues
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TABLE 3
Examples of Bohrbugs (BOHs) and Mandelbugs (MANs)

Project Bug ID Bug Type Description

TensorFlow 9012 BOH “While running the above script, despite the device has been specified to be GPU,
tensorflow still try to do the BiasGradOp on CPU and will cause an error because of the
data format...”

MXNET 10438 LAG/NAM “Loading an older model with a custom operator from Java/Scala more than twice causes
MXNet to crash”

PaddlePaddle 3073 ENV/NAM “Incorrect Inference.infer results when running with multiple GPUs.”

TensorFlow 9125 TIM/NAM “...The ordering of ops that are copied is not deterministic so this error pops up somewhat
randomly...Example code snippet (note: you may need to run this multiple times to get a
failure)...”

PaddlePaddle 2141 SEQ/NAM “Swapping the order of the inputs of layer.fc will cause error.”

MXNET 10436 MEM/ARB “FeedForward.scala and NDArrayIter.scala leak memory by not disposing of NDArrays”

TensorFlow 28798 STO/ARB “tf.data.Dataset::cache doesn’t cleanup unused lock and tmp files: ...tf.data.Dataset::cache
doesn’t cleanup unused lock and tmp files...”

MXNET 11403 NUM/ARB “When .norm() method is called on a float16 array it tries to compute the norm in fp16,
which causes the squared sum to go out of range and causes nan as output.”

PaddlePaddle 12343 LOG/ARB “Fix generator not closed when iteration end bug”

TensorFlow 4820 TOT/ARB “Thread created by SummaryWriter not killed: ...the EventLoggerThread created by
summary writer does not get killed by the close method, which will make the number of
threads keep increasing until it exceeds the system capacity...”

• Bohrbug: a kind of bug which can always be repro-
duced given a well-defined set of conditions because
its activation and/or error propagation are simple.

• Mandelbug: a kind of bug whose activation and/or
error propagation are complex and can not always
be reproduced even under the same condition. The
complexity may caused by the following reasons:
direct factors related to a time lag between the bug
activation and the manifestation of the failure; in-
direct factors, for example, the interactions between
a software application and its internal environment;
the timing of inputs and operations; or the relative
order of inputs and operations.

There is a special subtype of MAN, i.e., aging-related
bug (ARB). It is a kind of bug that can cause an increasing
failure rate and/or degraded performance. As a result, a
MAN is either an aging-related bug (ARB) or a non-aging
related Mandelbug (NAM). Based on the different kinds
of complexity in fault triggering conditions, NAMs can
be categorized into 4 subtypes. The definitions of NAM’s
subtypes are listed as follows.

• LAG: a time lag exists between the bug activation
and the occurrence of failure;

• ENV: The interaction of the software application with
its system-internal environment may influence the
activation of the bug and/or error propagation;

• TIM: The timing of inputs and operations is the
factor that impact the fault activation and/or error
propagation;

• SEQ: The sequence of inputs and operations has im-
pacts on the fault activation and/or the propagation
of error.

According to the underlying reasons for the software
aging phenomenon, aging-related bugs are futher classified
into 5 subtypes. The definitions of ARB’s subtypes are listed
below:

• MEM: a kind of ARB caused by the accumulation
of errors because of improper memory management,
such as memory leaks, buffers not being flushed;

• STO: a kind of ARB caused by the accumulation of
errors caused by improper storage space manage-
ment, for example, disk space consumed by bugs;

• LOG: a kind of ARB caused by the leak of other
logical resources, such as inodes or sockets that are
not released after use;

• NUM: a kind of ARB caused by the accumulation
of numerical errors, such as integer overflows and
round-off errors;

• TOT: a kind of ARB. When the total running time of
the system increases, its fault activation and/or error
propagation rate will increase, but this type of bugs
is not caused by the accumulation of internal error
states.

2.3 Bug Report Classification Procedure
In this section, we perform classification of bug reports
collected from TensorFlow, MXNET and PaddlePaddle. First
of all, we extract the actual bugs from all the 3,555 bug
reports collected. Then, we classify actual bugs based on
the classification method introduced in Section 2.2, the
detailed procedure are shown in Fig. 1. The classification
is implemented manually by two authors who are familiar
with developing deep learning projects. When encounter
suspicious classified cases, a cross-check will be taken. We
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TABLE 4
Examples of Root Causes

Project Bug ID Root Cause Description

TensorFlow 12037 Environment/configuration “Missing tf python protos cc library dependency in tf tutorials.cmake:
...can’t build tf tutorials example trainer due missing library dependency
to tf python protos cc.lib...”

MXNET 10341 Concurrency “Deadlock during ThreadedEnginePerDevice destructor after
CuDNNConvolutionOp<float>::SelectAlgo called.”

PaddlePaddle 3537 Memory “tensor didn’t free memory at the end of the program”

TensorFlow 6171 Compatibility “tfprof: Python3 incompatibility: ...This line in tfprof logger.py uses
dict.iteritems(), which breaks my Python 3 code...”

MXNET 9363 Semantic “Incorrect weight decay implementation in AdaGrad”

Fig. 1. Process of bug report filtering.

carefully check the information provided by reporters as
well as the discussions between users and developers. In
addition, we also consider the pull requests and commits
provided in these reports for bug fixing. We have released
our dataset online4. To clarify the classification, TABLE 3
shows some examples of BOHs and MANs, and their partial
descriptions.

Step 1: Actual bug filtering. Even if we select bug
reports with label “type:bug” in Section 2.1, there are still
many invalid bug reports and reports that do not contain
actual bugs (i.e., non-bugs). For invalid reports, we mean
bug reports that contain too little information to determine if
they are bugs or not. Furthermore, we also consider reports
as non-bugs if they are related to requests for new features
or enhancements, documentation issues (e.g., missing in-
formation, outdated documentation, or harmless warning
outputs), compile-time issues (e.g., cmake errors or linking
errors), operator errors or duplicate reports.

Step 2: Classification based on fault triggering condi-
tions.

We carefully check each bug report to find the activation
conditions of each bug, including the operations or inputs

4. https://github.com/xiaotingdu/DLFrameworkFaultTriggers

before the bug is triggered; how the bug is propagated, for
example, whether any parameter or state of the program is
changed due to the bug, and how the changed parameters
or states are propagated; what scene does the user observe
when the failure occurres.

Based on the definition and characteristic of each bug
type, we check whether a bug belongs to ARB, NAM, or
BOH. For the classification of ARB subtypes, if a bug is
classified as an ARB, but there is not enough information
to determine which subtype it belongs to, it will be labeled
as ARU. Similarly, a NAM will be labeled as NAU if there
is not enough information to determine its subtype. Finally,
if there is an actual bug, but there is insufficient information
to classify it as one of ARB, NAM, or BOH, it will be labeled
as UNK.

2.4 Root Causes of Bohrbugs and Mandelbugs

After dividing bugs into BOHs, ARBs and NAMs, we aim
to find the root cause of each bug. Through manually
examining each bug report in TensorFlow, MXNET and Pad-
dlePaddle, we summarize five root causes of Bohrbugs and
Mandelbugs, including environment/configuration, mem-
ory, compatibility, concurrency and semantic. The examples
of different root causes are listed in TABLE 4. Referring to
the definitions in [26] and [30], we define the following five
root causes we identified.

• Environment/configuration: There are errors in de-
pendent libraries, underlying operating systems or
non-codes that can adversely affect a system’s func-
tionality;

• Concurrency: In concurrent programs, there are syn-
chronization problems with concurrent threads or
processes;

• Memory: These errors are caused by incorrect han-
dling of memory objects;

• Compatibility: The program cannot run normally on
a specified CPU architecture, operating system, or
web browser, etc.;

• Semantic: Inconsistent with the requirements or the
programmers’ intention, and do not belong to the
above categories.
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TABLE 5
Examples of Impacts

Project Bug ID Impact Description

TensorFlow 5688 Crash/exception “TensorFlow crashes when using large image with 3d convolutional network”

MXNET 9171 Hang/no response “Using FusedRNNCell with its ”bidirectional” flag turned True, can lead to
hanging (i.e. infinite pause without progress/error/crash) of training run.”

PaddlePaddle 8315 Operation failure “After received enough batch barrier, listen and serv will execute
listen and serv once again.”

TensorFlow 2619 Wrong output “tf.image.decode png returns wrong values for uint16 images”

MXNET 10436 Warning style error “FeedForward.scala and NDArrayIter.scala leak memory by not disposing of
NDArrays. We see the below leak warnings occur running on MXNet 1.1.0.”

2.5 Impacts of Bohrbugs and Mandelbugs
Impacts reflect the severe consequences caused by bugs [31],
[32]. In this section, we investigate the impact of each bug
to understand the severity of Bohrbugs and Mandelbugs.
Through examination, five impacts are summarized, includ-
ing crash/exception, hang/no response, operation failure,
wrong output and warning style error. TABLE 5 presents
some examples of different impacts. Note that, sometimes
one bug may have multiple impact categories. For example,
a bug may cause a crash and a operation failure at the same
time. To avoid multiple counting, we give these impacts an
order as shown in list below:

• Crash/exception: When the program stops and exits
unexpectedly, a crash/exception occurs. When this
situation happens, the program typically throws an
error message.

• Hang/no response: When the program keeps run-
ning but has no response, a hang/no response oc-
curs.

• Operation failure: Unexpected behaviors, such as
build failure, incomplete processing or rejection of
tasks, multiple processing of tasks and others.

• Wrong output: When the program generates a wrong
result and presents it to users, a wrong output occurs.

• Warning style error: A warning style error indi-
cating that the running of a program will not be
disturbed, but the error still needs to be eliminated to
improve code quality. Warning messages are usually
displayed in this category. In addition, performance
degradation and non-release of resources are consid-
ered as warning style errors.

2.6 Correlation Metric
A statistical metric lift [31], [33] is used in this paper
to indicate the correlation between two types of bugs.
For instance, lift(Ai, Bj) represents the lift value of type
Ai and type Bj . The formula to calculate lift(Ai, Bj) is
P (AiBj)/(P (Ai) ∗ P (Bj)), in which P (Ai) and P (Bj) are
the probability of Ai and Bj , respectively. And P (AiBj) is
the probability that a bug belongs to both category Ai and
Bj . Take the correlation between BOHs and semantic bugs
as an example. Suppose there are 100 actual bugs, 80 of them
are classified as BOHs, 70 of them are semantic bugs, and
the number of BOHs caused by semantic bugs is 60. The

lift correlation between BOHs and semantic bugs can be
calculated as lift(Ai, Bj) = P (AiBj)/(P (Ai) ∗ P (Bj)) =
(60/100)/((70/100) ∗ (80/100)) = 1.07. In the formula, Ai

presents semantic bugs and Bj presents BOHs.
After obtaining the value of the lift correlation, we

can analyze the relationship between two bug types. If
lift(Ai, Bj) is equal to 1, it means that there is no correlation
between types Ai and Bj . If lift(Ai, Bj) is larger than 1, it
means that categories Ai and Bj are positively correlated,
i.e., a bug in type Ai is prone to belong to type Bj . In
contrast, if lift(Ai, Bj) is less than 1, it means that types
Ai and Bj are negatively correlated, i.e., a bug in type Ai is
unlikely to be of type Bj . In the above example, lift(Ai, Bj)
is 1.07, which means that BOHs are more likely caused by
semantic bugs.

3 BUG CLASSIFICATION

This section aims to answer RQ1. After examining and
extracting the bug reports from GitHub repositories, as
described in Section 2.1, we obtain 3,555 bug reports from
TensorFlow, MXNET and PaddlePaddle. In this section,
bugs are classified based on fault triggering conditions, and
the distribution of bugs and the proportion evolution of
BOHS and MANs are investigated.

3.1 Distribution of Actual Bugs, Non-bugs and Invalid
Bug Reports among All the Bug Reports
First of all, we classify all bug reports we collected into ac-
tual bugs, non-bugs and invalid bug reports, the distribution
results are shown in Fig. 2.

Finding #1: The proportions of actual bugs in TensorFlow,
MXNET and PaddlePaddle are 41.7%, 45.5% and 50.6%, respec-
tively.

Before classifying bug reports based on fault triggering
conditions, we first filter out invalid reports and non-bugs
from all the reports. It should be noted that a report is
labeled as invalid if it contains too little information to
determine whether it is an actual bug or not. Non-bugs
are those reports related to (1) the requests of features or
enhancements, (2) the descriptions of compile-times issues
or documentation issues, or (3) duplicated reports.

After manual examination, we get the results in Fig. 2.
The results indicate that almost half of reports do not con-
tain actual bugs even though they are labeled as ”type:bug”
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 a c t u a l  b u g
 n o n - b u g
 i n v a l i d
a c t u a l  b u g
9 5 3  ( 4 1 . 7 % )

n o n - b u g
1 0 2 5  ( 4 4 . 9 % )

i n v a l i d
3 0 7  ( 1 3 . 4 % )

( a )  T e n s o r F l o w

( b )  M X N E T ( c )  P a d d l e P a d d l e

 a c t u a l  b u g
 n o n - b u g
 i n v a l i d

a c t u a l  b u g
3 9 1  ( 4 5 . 5 % )

n o n - b u g
3 8 6  ( 4 4 . 9 % )

i n v a l i d
8 2  ( 9 . 5 % )  a c t u a l  b u g

 n o n - b u g
 i n v a l i d

a c t u a l  b u g
2 0 8  ( 5 0 . 6 % )

n o n - b u g
1 4 7  ( 3 5 . 8 % )

i n v a l i d
5 6  ( 1 3 . 6 % )

Fig. 2. Numbers and percentages of actual bugs, non-bugs and invalid
bug reports.

by developers. According to our examination, there are
several typical situations of invalid reports: (1) a report is
submitted but no response is given for months even years,
usually this kind of bug reports would be closed for the
reason of inactivity; (2) a bug cannot be reproduced based on
the information provided by reporter. Sometimes, reporters
do not provide the complete reproduce information needed
to reproduce a bug, such as code, dataset and specific
running environment. As a result, developers have to close
the bug report hence it cannot be reproduced; (3) a bug
corresponding to deprecated features or out of the scope
of deep learning frameworks we analyzed is labeled as
invalid. The most common situations of non-bugs are build
and link errors. For example, Bug ID-13918 in TensorFlow, a
user tried to build TensorFlow for GPU but failed. Then,
there are many feature requests and enhancements. For
example, in Bug ID-30642 in TensorFlow, the reporter says
“I hope tf.scatter nd update support string ref, and I really
need this feature in my project”, a feature is request in
this report. In addition, there are other situations, such as
document-relevant issues, performance issues and duplicate
bug reports.

Implications: This finding indicates that amounts of
non-bugs and invalid reports are submitted, which is a
heavy burden for developers. To help developers deal with
invalid reports and non-bugs, on the one hand, methods
could be introduced to detect invalid bug reports to save
developers’ time [34]. On the other hand, tools could be
integrated to detect duplicate bug reports. For example,
a just-in-time duplicate detection method was proposed
in [35], which can prevent duplicate bug reports before they
are submitted by continuously querying. It not only helps
users find solutions to their questions effectively, but also
reduces workloads of developers.

3.2 Distribution of BOHs, ARBs and NAMs among All
the Actual bugs

In this section, we classify actual bugs into Bohrbugs
(BOHs), aging-related bugs (ARBs) and non-aging related
Mandelbugs (NAMs). If there is not enough information to
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Fig. 3. Numbers and proportions of Bohbugs (BOHs), aging-related
bugs (ARBs) and non-aging related Mandelbugs (NAMs).

determine whether a bug is of type BOH, ARB, or NAM,
then we label it as UNK.

Finding #2: More than two-thirds of actual bugs are BOHs in
all the three deep learning frameworks (i.e., TensorFlow, MXNET
and PaddlePaddle).

Fig. 3 illustrates the distribution of BOHs, ARBs, NAMs
and UNKs. It can be observed that the percentage of
BOHs is the highest in all three deep learning frameworks.
Compared with traditional software projects, for example,
Linux kernel (i.e., 55.82% [36]), Android (i.e., 65.2% [37])
and MySQL (i.e., 56.6% [21]), the proportions of BOHs in
deep learning frameworks are higher. The proportions of
ARBs in TensorFlow, MXNET and PaddlePaddle are sim-
ilar, which are 9.2%, 8.7% and 9.1%, respectively. As for
NAMs, the percentage of NAMs in MXNET is the highest
among all the three frameworks, which is 20.5%, followed
by PaddlePaddle (i.e., 13.5%) and TensorFlow (i.e., 7.2%).
Compared to traditional software systems, the proportions
of MANs, including ARBs and NAMs, in deep learning
frameworks (i.e., 16.4% in TensorFlow, 29.2% in MXNET and
22.6% in PaddlePaddle) are lower than that of Linux kernel
(i.e., 36.34% [36]), Android OS (i.e., 31.4% [37]), MySQL
(i.e., 38% [21]) and space mission on-board software (i.e.,
36.5% [38]).

One of the reasons why the proportions of BOHs in
deep learning frameworks are higher than that of traditional
software projects is that the testing of deep learning frame-
works is more challenging [39] considering that it is difficult
for developers to know the expected output of a given
instance. Another reason is that the rapid development of
deep learning has led to the continuous addition of a large
number of new features, which introduces more BOHs at
the same time. In addition, the fault activation and/or error
propagation conditions of MANs are complicated, making
MANs hard to discover. This is also one of the reasons for
the low percentage of MANs.

Implication: Since BOHs account for more than two-
thirds of the bugs we studied, mitigating BOHs should
be the focus of work. Considering that debugging/testing
software is the classic way to deal with BOHs, we suggest
developers conducting sufficient testing before releasing



8

M E M
7 4  ( 8 4 . 1 % )

N U M
8  ( 9 . 1 % )

L O G
3  ( 3 . 4 % )

S T O
1  ( 1 . 1 % )T O T

1  ( 1 . 1 % )
A R U
1  ( 1 . 1 % )  M E M

 N U M
 L O G
 S T O
 T O T
 A R U

( a )  T e n s o r F l o w

( b )  M X N E T ( c )  P a d d l e P a d d l e

M E M
1 0  ( 5 2 . 6 % )

N U M
7  ( 3 6 . 8 % )

L O G
1  ( 5 . 3 % )

S T O
1  ( 5 . 3 % )  M E M

 N U M
 L O G
 S T O

M E M
1 7  ( 5 0 % )N U M

1 4  ( 4 1 . 2 % )

L O G
2  ( 5 . 9 % )

T O T
1  ( 2 . 9 % )  M E M

 N U M
 L O G
 T O T

Fig. 4. Subtype distribution of aging-related bug (ARB).

a version. For example, static program analysis [40], [41]
could be used to detect bugs in code. As for MANs, a
non-negligible fraction exists, software rejuvenation [42] is
a proactive technique that can clean the internal state of the
system and reset the system runtime, therefore reducing the
failure rate and improving performance.

3.3 Subtype Distribution of Aging-related Bugs (ARBs)
Finding #3: MEM is the major subtype of ARB. The proportions
of MEMs in TensorFlow, MXNET and PaddlePaddle are 84.1%,
50% and 52.6%, respectively.

Fig. 4 shows the numbers and percentages of ARB’s sub-
types, including MEM, NUM, LOG, STO and TOT. If there
is not enough information to determine which subtype an
ARB belongs to, it will be labeled as ARU. From the results,
we can see that in all the three deep learning frameworks
we analyzed, the proportions of MEMs have an absolute
advantage in ARBs. In TensorFlow, the proportion of MEMs
is 84.1%. Compared with traditional software projects, it
is higher than that of Linux kernel (i.e., 68.78% [36]) and
Android (i.e., 76.2% [37]). In MXNET and PaddlePaddle,
the proportions of MEMs are 50% and 52.6%, respectively,
which are lower than those of Linux kernel and Android.
MEM is a critical bug type in deep learning frameworks. It
is because memory is one of the biggest challenges when
developing deep learning models. Deep learning frame-
works are often used to process millions of images or neural
networks with very deep layers, all of these tasks consume
large amounts of storage and rely heavily on memory de-
vices [43]. For example, a typical MEM was reported in
Bug ID-14181 in TensorFlow “...with the increasing time
the whole process starts consuming more and more RAM
although it should clean it up...”. As time increases, the
process consumes more and more RAM instead of cleaning
it up.

Implication: To deal with MEMs and mitigate the use
of memory, we suggest that developers (1) work on im-
provement of memory management, such as garbage col-
lection [44]; (2) optimize memory efficiency, for example,
ZeRO [45], a solution proposed towards training trillion
parameter models, which can optimize memory and vastly

E N V
2 2  ( 3 1 . 9 % )

T I M
3 2  ( 4 6 . 4 % )

S E Q
2  ( 2 . 9 % ) L A G

1 3  ( 1 8 . 8 % )  L A G
 E N V
 T I M
 S E Q

( a )  T e n s o r F l o w

( b )  M X N E T ( c )  P a d d l e P a d d l e

E N V
5 2  ( 6 5 % )

T I M
1 4  ( 1 7 . 5 % )

S E Q
9  ( 1 1 . 3 % )

L A G
4  ( 5 % )

N A U
1  ( 1 . 3 % )  L A G

 E N V
 T I M
 S E Q
 N A U

E N V
1 7  ( 6 0 . 7 % )

T I M
2  ( 7 . 1 % )

S E Q
3  ( 1 0 . 7 % )

L A G
6  ( 2 1 . 4 % )  L A G

 E N V
 T I M
 S E Q

Fig. 5. Subtype distribution of non-aging related Mandelbug (NAM).

improve training speed; (3) to deal with memory leak bugs,
memory monitoring tools and memory detectors could be
used [46], [47]. For example, a static bug detector [48], which
could be used to detect memory leaks in C programs.

3.4 Subtype Distribution of Non-aging Related Mandel-
bugs (NAMs)
Finding #4: In MXNET and PaddlePaddle, the major subtype of
NAM is ENV, the proportions are 65% and 60.7%, respectively.
In TensorFlow, TIM is the major subtype of NAM, accounting for
46.4%.

Fig. 5 illustrates the distribution of NAM’s subtypes.
It can be observed that ENVs account for more than half
of NAMs in both MXNET and PaddlePaddle. Compared
with traditional software projects, the proportions of ENV
in MXNET and PaddlePaddle are higher than those of Linux
kernel (i.e., 36.51% [36]) and Andrioid (i.e., 55.0% [37]). TIM
is the major subtype of NAM in TensorFlow, accounting
for 46.4%, higher than that of Linux kernel (i.e., 37.23%)
and Android (i.e., 1.6%). The reason why ENV and TIM
are two major subtypes of NAM can be explained by fea-
tures of deep learning frameworks. First, the complexity
and diversity of the operating environment lead to a high
proportion of ENVs. Deep learning frameworks support a
variety of platforms, from mobile devices such as phones
to large scale training systems running on hundreds of
machines and thousands of computational devices (such
as GPU cards). In addition, deep learning frameworks al-
low clients to express various kinds of parallelism through
replication and parallel execution, which are highly prone
to containing concurrency bugs [49], such as deadlocks. A
deadlock occurs when two or more threads attempt to access
shared resources owned by another thread and neither is
willing to give it up [50]. The occurrence of deadlock is high-
related to the timing of operation. For example, a deadlock
occurs in Bug ID-932 in TensorFlow: “ThreadPool dtor does
not pop waiters from waiters list... thread pool deadlocks
because some notifications are consumed by the leftover
dead waiters instead of alive threads...”.

Implication: To deal with NAMs in deep learning frame-
works, we recommend that developers pay more atten-
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Fig. 6. The evolution of proportions of Bohrbugs (BOHs) and Mandel-
bugs (MANs) among all the valid bug reports.

tion to TIMs and ENVs. On the one hand, concurrency
bug detectors could be used to improve the reliability of
frameworks. For example, programmer RaceFuzzer and
DeadlockFuzzer [51] could be used to detect data races and
deadlocks in concurrent programs. On the other hand, since
the environment is unpredictable and uncontrollable, fault-
tolerance strategies, such as recovery [52], could be used to
deal with ENVs.

3.5 Evolution of Proportions of Bohrbugs (BOHs) and
Mandelbugs (MANs) over Time

In the following, we analyze the evolution trend of propor-
tions of BOHs and MANs over time, as shown in Fig. 6.

Finding #5: The proportions of BOHs in MXNET and
PaddlePaddle tend to grow over time, while the proportion of
MANs tends to decrease. In TensorFlow, the proportion of BOHs
tends to shrink in the first year around, and then increases slowly
afterwards. On the contrary, the ratio of MANs in TensorFlow
starts to increase in a period of time and then goes down slowly.

Fig. 6 shows the evolution of the ratios of BOHs and
MANs. In the beginning, as time goes on, the proportions
of BOHs in MXNET and PaddlePaddle increase rapidly.
However, in TensorFlow, the proportion of BOHs has a
significant trend for decreasing. As the development of deep
learning frameworks becomes more mature, the proportions
of BOHs appear to increase slowly in all three frameworks.
Compared with BOHs, the proportions of MANs in MXNET
and PaddlePaddle drop significantly at the beginning of
time while it tends to increase in TensorFlow. After a
period of time, the proportions of MANs in these three
frameworks eventually decline slowly. It should be noted
that the evolution trends of all the proportions mentioned
above are tested through the Mann-Kendall test [53] and
results are presented in TABLE 6. It can be seen that for a
significance level of alpha = 0.05, the above conclusions
are statistically significant. The evolution trends of BOHs
and MANs can be explained as follows. With the dramatic
development of deep learning frameworks, their functions

TABLE 6
Results of Mann-Kendall Trend Detection for Fig. 6

Project Time frame Type p value Trend

TensorFlow

Nov.26 2015 - Nov.26 2017
BOH <0.001 decreasing

MAN <0.001 increasing

Nov.27 2017 - Nov.26 2019
BOH <0.001 increasing

MAN <0.001 decreasing

MXNET Sep.11 2015 - Sep.11 2020
BOH <0.001 increasing

MAN <0.001 decreasing

PaddlePaddle Aug.31 2016 - Aug.31 2020
BOH <0.001 increasing

MAN <0.001 decreasing

keep increasing and expanding, which may introduce more
BOHs into newly released frameworks. As a result, the per-
centage of BOHs gradually increases, which in turn causes
the percentage of MANs to decrease accordingly. After our
further investigation, we find that the increase of MANs
in TensorFlow at the very beginning may be related to the
development history of TensorFlow. In April 2016 and June
2016, TensorFlow starts to support distributed operations
and multi-platforms, respectively. This leads to an increase
in the MANs’ ratio and causes a decrease in the BOHs’
proportion.

Implication: Even if BOHs are easy to reproduce and
debug, there are still a large number of BOHs in deep
learning frameworks. The proportion of BOHs continues
to increase as the framework evolves. This is due to that
deep learning frameworks are hard to test or ineffective in
testing activities compared to traditional software systems.
We recommend that developers adopt specific strategies de-
veloped for deep learning framework testing. For example,
CRADLE, a method developed to detect and localize bugs
in deep learning libraries [54].

4 FIXING TIME OF BUGS

To answer the RQ2, we analyze the relationship between
bug types and bug fixing time in this section. In a bug report,
the time of submitting and closing the report are recorded.
Therefore, we calculate the difference between submission
time and the last closing time of the report to obtain the
fixing time of each bug.

Finding #6: It takes more time to close an invalid bug report
than fixing an actual bug.

Based on the results in TABLE 7, we can conclude that
both the average and median time to close invalid reports
are longer than the time to fix actual bugs. In PaddlePaddle,
it takes an average of 237.5 days to close an invalid report,
which is almost as four times long as the time used to fix
an actual bug (i.e., 64.7 days). The median time to close an
invalid report is 214.6 days, which is more than 23 times
longer than the time to fix an actual bug (i.e., 8.9 days). For
MXNET, it takes an average of 187.1 days to close an invalid
report, while the average time to fix an actual bug is 101.2
days. And the median fixing time is 104.7 days, which is
around three times more than that of the time for fixing the
actual bug (i.e., 30.8 days). In TensorFlow, the average time
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TABLE 7
Fixing Time of Actual Bugs, Non-bugs and Invalid Reports

Project Fixing time (day) Actual bug Non-bug Invalid

TensorFlow
Average 96.4 76.4 120.2

Median 37.3 27.3 63.2

MXNET
Average 101.2 83.8 187.1

Median 30.8 18.1 104.7

PaddlePaddle
Average 64.7 53.5 237.5

Median 8.9 4.9 214.6

to close an invalid report is 120.2 days and the median time
is 63.2 days, both of which are one month longer than the
time required to fix an actual bug.

There are two typical reasons why it takes more time
to close an invalid report. One of them is that developers
or users do not respond to bug reports in a timely manner.
Thus, the time interval between two comments is very long.
As a result, these reports have expired and been closed. An-
other reason is that some reporters do not provide detailed
information to reproduce the bug, and developers fail to
reproduce the bug after a long period of debugging, and
eventually have to close it.

Compared with the results in the existing study, for
example, the authors in [55] calculated the fixing time of
bugs in three machine learning software systems, including
Apache Mahout, Lucene and OpenNLP. According to the
results, over two-thirds of bug reports were closed within a
month. In [26], the authors analyzed 329 bugs from Scikit-
learn, PaddlePaddle and Caffe. In their study, 68.39% of
bugs were fixed within one month. Compared with the
results in [26], it takes more time to close bug reports
in TensorFlow and MXNET. On the basis of our analysis,
47.22% and 51.80% of bugs in TensorFlow and PaddlePaddle
were fixed within a month, respectively. The median time to
close bug reports in TensorFlow and MXNET is 34 and 27
days respectively, which is three times and twice as long as
the time to fix bug reports in PaddlePaddle.

Implication: It will save a lot of time if reporters can
provide high-quality reports, containing as detailed infor-
mation as possible, including running environments, error
messages and reproducible examples. For example, in Ten-
sorFlow, a reporter submitted two reports (Bug ID-4651 and
Bug ID-5394). However, neither of them provided instruc-
tions to reproduce the bug. After a long time of discussion,
they were eventually closed due to unreproducible. In ad-
dition, developers should always respond to bug reports
assigned to them. For reports that are mistakenly assigned
to them, they should be reassigned to other relevant devel-
opers as soon as possible.

Finding #7: It takes more time to fix a Mandelbug (MAN)
than fix a Bohrbug (BOH).

From TABLE 8, we can see that in all three deep learning
frameworks we analyzed, it takes more time to fix a MAN
than fix a BOH. In TensorFlow, it takes an average of 129.1
days to fix a MAN, which is nearly a month longer than
the time required to fix a BOH (i.e., 91.0 days). Similarly,

TABLE 8
Fixing Time of Bohrbugs (BOHs) and Mandelbugs (MANs)

Project Fixing time (day) Bohrbug Mandelbug

TensorFlow
Average 91.0 129.1

Median 33.6 69.2

MXNET
Average 97.2 105.8

Median 27.4 42.2

PaddlePaddle
Average 56.5 96

Median 7.2 37.8

the median fixing time of MANs in TensorFlow is 69.2 days,
which is more than twice the median fixing time of BOHs
(i.e., 33.6 days). In MXNET, the average fixing time of MANs
is 105.8 days, which is 8.6 days longer than the average
fixing time of BOHs (i.e., 97.2 days). And the median fixing
time of MANs is 42.2 days, which is 14.8 days longer
than the median fixing time of BOHs (i.e., 27.4 days). In
PaddlePaddle, the average fixing time of MANs is 96 days,
which is almost 40 days longer than the average fixing time
of BOHs (i.e., 56.5 days). As for the median fixing time, the
time to fix a MAN is 37.8 days, which is over four times
longer than the time to fix a BOH (i.e., 7.2 days).

The results are consistent with traditional software sys-
tems [21], [33], [37]. In [21], the authors performed their
study on four traditional software systems, including Linux,
HTTPD, MySQL and AXIS. They found that in Linux,
HTTPD and AXIS, the fixing time of MANs tends to be
longer than that of BOHs. Xiao et al. [33] confirmed the
results obtained in [21] by researching on 5,741 bug reports
for the Linux kernel. According to their analysis, the average
time taken to fix a MAN is 254.22 days, while it takes an
average of 218.63 days to fix a BOH. In addition, Qin et
al. [37] performed an empirical study of bugs in Android.
From their results, the average time to fix a BOH is 63.0
days and the average time to fix a MAN is 71.4 days.
The conclusion they obtained is consistent with ours, which
states that it takes more time to fix MANs than to fix BOHs.

The reason for the long fixing time of MANs can be
explained by the characteristics of MANs. Before fixing a
MAN, developers need to reproduce them, which requires
users to provide sufficient information, including not only
the operating environments and source code, but also each
step of operations they performed. Furthermore, MANs
require a strict reproduce environment, and the construction
of the environment also takes a lot of time. Finally, some
MANs appear to occur in a non-deterministic manner, and
it may need to run the code multiple times or run for a really
long time to trigger them.

Implication: The nondeterministic behavior of MANs
makes it impossible to deal with them in the same way as it
is used to deal with BOHs. Specific strategies could be used
to deal with MANs. For example, mitigation methods such
as fault tolerance [52] and software rejuvenation [56] could
be used to mitigate the adverse effects of MANs.
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TABLE 9
Distribution of Root Causes Among Different Bug Types

TensorFlow MXNET PaddlePaddle
Root Cause

BOH ARB NAM BOH ARB NAM BOH ARB NAM

Environment/configuration 0 0 19 0 0 50 7 0 17

Memory 3 74 5 2 17 2 6 10 0

Compatibility 5 0 0 2 0 0 10 1 1

Concurrency 0 0 27 0 0 12 0 0 2

Semantic 737 13 15 263 17 15 119 7 7

UNK 0 1 3 3 0 1 10 1 1

Total 745 88 69 270 34 80 152 19 28

TABLE 10
Correlation Between Bug Types and Root Causes

TensorFlow MXNET PaddlePaddle
Root Cause

BOH ARB NAM BOH ARB NAM BOH ARB NAM

Environment/configuration 0 0 13.07 0 0 4.80 0.38 0 5.03

Memory 0.04 9.25 0.80 0.14 9.14 0.46 0.49 6.55 0

Compatibility 1.21 0 0 1.42 0 0 1.09 0.87 0.59

Concurrency 0 0 13.07 0 0 4.80 0 0 7.11

Semantic 1.17 0.17 0.26 1.27 0.65 0.34 14.84 0.55 0.37

5 ROOT CAUSES OF BOHRBUGS (BOHS) AND
MANDELBUGS (MANS)

To answer RQ3, we analyze each BOH and MAN to identify
its root causes, which is important for understanding and
fixing bugs. Through manually checking, we identified five
root causes of BOHs and MANs in TensorFlow, MXNET
and PaddlePaddle, including environment/configuration,
memory, compatibility, concurrency and semantic. We have
described the definitions of these root causes in Section 2.4.
The results are shown in TABLE 9 and TABLE 10, and
findings are listed as follows.

Finding #8: The major root cause of BOHs is semantic bugs
and the primary root cause of ARBs is memory bugs.

TABLE 9 presents the root cause distribution of BOHs,
ARBs and NAMs in TensorFlow, MXNET and PaddlePad-
dle. According to the results, semantic is the main root
cause of BOHs. In TensorFlow, 98.93% (737 out of 745)
of BOHs are caused by semantic bugs, while in MXNET
and PaddlePaddle, 97.41% (263 out of 270) and 78.29%
(119 out of 152) of BOHs are caused by semantic bugs,
respectively. The reason why semantic bugs are more
likely to cause BOHs is that semantic bug is a kind of
bug corresponding to the inconsistencies with require-
ments or the programmer’s attention. Most of semantic
bugs are improper functionality implementation or sim-
ple typo errors, which are prone to induce BOHs. For

example, Bug ID-12179 in MXNET, “Spelling mistake in
“mxnet/symbol/image.py” in which “gen image” is writ-
ten to be “gen iamge””. As described by the reporter, a typo
appeared in “mxnet/symbol/image.py”, it is obviously a
BOH caused by semanitc bug.

The main root cause of ARBs is memory bugs. As shown
in TABLE 9, 74 out of 88 ARBs in TensorFlow are caused
by memory bugs, accounting for 84.09%. In MXNET, half
of ARBs are caused by memory bugs. In PaddlePaddle, 10
out of 19 ARBs are caused by memory bugs, accounting
for 52.63%. It is reasonable that most ARBs are memory
bugs. Because the most common situations of ARBs are
memory leaks and out of memory errors, they are usually
caused by improper handling of memory objects that can
lead to the accumulation of memory costs. For example,
Bug ID-6111 in TensorFlow, “Flawed memory management:
allow growth=True consumes more memory, causing out-
of-memory”. This is an ARB caused by a memory bug. Due
to the improper memory management, an out of memory
error occurs as the memory consumption grows. It should
be noted that not all memory bugs will lead to ARBs,
only memory bugs that cause accumulation of memory
consumption are ARBs.

NAMs are mainly caused by concurrency bugs and en-
vironment/configuration bugs. In TensorFlow, concurrency
bug is the major cause of NAMs, while in MXNET and
PaddlePaddle, environment/configuration bug is the ma-
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Fig. 7. The Flow Chart of Impact Classification.

jor cause of NAMs. However, concurrency and environ-
ment/configuration bugs hardly cause BOHs and ARBs. In
order to further understand the correlation between root
causes and bug types, we show the lift correlation (defined
in Section 2.6) between bug types and root causes in TA-
BLE 10. In TABLE 10, numbers equal to 1 indicate that two
categories are not related, numbers greater than 1 indicate
positive correlation and are shown in bold, and numbers
less than 1 indicate negative correlation.

Finding #9: A BOH is prone to be caused by a semantic
bug or a compatibility bug; an ARB is likely caused by a
memory bug; and a NAM is more likely caused by an environ-
ment/configuration bug or a concurrency bug.

As shown in TABLE 10, the results of the three deep
learning frameworks we analyzed are similar. BOHs are
more likely to be caused by compatibility bugs or semantic
bugs. In TensorFlow, MXNET and PaddlePaddle, the lift
correlation between BOHs and the compatibility bugs are
1.21, 1.42 and 1.09, respectively. And the lift correlation be-
tween BOHs and the semantic bugs are 1.17, 1.27 and 14.84
in TensorFlow, MXNET and PaddlePaddle, respectively. It is
because that usually semantic bugs and compatibility bugs
can always be reproduced under certain conditions. Among
them, semantic bugs refer to incorrect implementations of
functions or conflicts between features and corresponding
requirements. For example, Bug ID-9363 in MXNET, “In-
correct weight decay implementation in AdaGrad”. This
kind of bug can be continuously triggered every time the
program is run. Compatibility bug is a kind of bug that
causes software to fail on a particular CPU architecture, an
operating system, or a web browser, etc. For example, Bug
ID-33767 in TensorFlow is reported that “The dependencies
in TF 2.0 pull the latest version of gast, which breaks
compatibility at 0.3”. This report shows a compatibility bug,
which can be repeatedly reproduced using the gast version
0.3. Once downgrade the gast’s version from 0.3 to 0.2.2, the
bug will disappear.

ARBs tend to be memory bugs. The lift correlation
between ARBs and memory bugs in TensorFlow, MXNET
and PaddlePaddle are 9.25, 9.14 and 6.55, respectively. The
reason why ARBs are positively related to memory bugs is
that one of ARB’s subtypes is MEM, which is a kind of bug
caused by the accumulation of errors due to improper mem-
ory management. If there is a memory bug that consumes
more and more memory as the program runs, it is an ARB.
A NAM is more likely to be an environment/configuration
bug or a concurrency bug. According to the results, the lift
correlation between NAMs and environment/configuration
bugs, as well as the correlation between NAMs and con-
currency bugs are all greater than 1 in TensorFlow, MXNET

and PaddlePaddle. It is because ENV and TIM are the two
major subtypes of NAMs. Among them, ENVs are mainly
caused by environment bugs, such as errors in dependent
libraries, underlying operating systems, or non-code that
affects functionality. TIM is a kind of bug whose activation
is affected by the timing of inputs and operations. For exam-
ple, deadlock and data race, which are typical concurrency
bugs, are highly dependent on the timing of operations. As
a result, NAMs have a strong correlation with concurrency
bugs and environment/configuration bugs.

Compatibility and memory bugs are also typical root
causes in other frameworks. According to the results in [26],
for Scikit-learn, PaddlePaddle and Caffe, 22.49% of bugs are
compatibility bugs. Incompatible bugs are mainly caused
by incompatible operating systems, incompatible versions
of Python, incompatible backward versions of the algorithm
model and conflicts with hardware. In addition to compat-
ibility bugs, the authors also found that 2.74% of bugs are
memory overflow bugs.

Implication: To deal with BOHs, more efforts should be
put into semantic bugs and compatibility bugs since seman-
tic bugs and compatibility bugs are positively correlated
with BOHs. Since memory bugs are the major root cause
of ARBs, developers could refer to the solutions used to
solve memory bugs to avoid ARBs. For NAMs, attention
should be paid to environment/configuration bugs and
concurrency bugs.

6 IMPACTS OF BOHRBUGS (BOHS) AND MANDEL-
BUGS (MANS)
In this section, we present the results of RQ4. We analyze the
impacts of bugs to understand how severe a BOH or a MAN
is. According to our analysis, the failures caused by BOHs
and MANs in TensorFlow, MXNET and PaddlePaddle in-
clude crash/exception, hang/no response, wrong output,
operation failure and warning style error. The definitions
of these impacts have been described in Section 2.5. If the
impact of a bug does not belong to any of the five impacts
mentioned above, we will label the impact as others. If the
impact of a bug is not given or discussed in a bug report,
we will label the impact as UNK (i.e., unknown).

In some bug reports, according to the reporters’ de-
scription, a bug may have more than one type of impact.
For example, for Bug-ID 7353 in TensorFlow, it is said that
“...one of my machines was something wrong and caused
almost all session run timeout, eventually memory reached
80G and been killed. This also caused worker0 process
failed to save model, saver.save() stuck forever.” In this
sentence, the “session run timeout” is a crash/exception
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Fig. 8. Impacts of Bohrbugs (BOHs) and Mandelbugs (MANs).

impact and “saver.save() stuck forever” is a hang/no re-
sponse type of impact. Another example is Bug-ID 1135
in TensorFlow. It is said that “In 0.7, there are different
errors about Saver, first Warnings in serialization...and then,
it throws an OS Error”. In this example, an error and a
warning were reported in the same report. To avoid multiple
counting, we sort these impacts according to the severity
of the consequences: crash/exception; hang/no response;
operation failure; wrong output; and warning style error.
The classification procedure is shown in Fig. 7. Given a
bug report, we consider in turn whether its impact belongs
to crash/exception, hang/no response, operation failure,
wrong output, or warning style error. If the impact of a bug
does not belong to any of the above five impacts, we will
label it as others. If the bug’s impact is not discussed in the
bug report, we will label the impact as UNK.

Finding #10: More than half of BOHs and MANs would
result in crashes/exceptions.

According to the results in Fig. 8, more than half of
the studied BOHs and MANs would cause crashes or
exceptions. For example, Bug ID-1961 in PaddlePaddle is
a floating point exception. Furthermore, a large number
of bugs can generate and present wrong results to users,
especially BOHs. For example, Bug ID-7725 in MXNET,
“accuracy of cpp example is a constant value when training,
no matter how many epochs trained”, incorrect accuracy
is output during the training process. For MANs, the major
impacts are wrong outputs and warning style errors. For ex-
ample, Bug ID-16152 in TensorFlow, “DeprecationWarning
from inspect.getargspec()”. According to the description, a
warning message keeps filling up the test output.

The results are consistent with those obtained from other
frameworks. In [11], the authors studied deep learning
applications built on TensorFlow. According to the results,
the most common symptom is “Error”, which is analogous
to crash or exception under the given definition. They
discovered that 46.9% of bugs always lead to program
crashes. In [13], the authors studied client software built on 5
deep learning libraries, including Caffe, Keras, TensorFlow,
Theano and Torch. According to the results, crash is the top
impact of bugs in all the libraries, ranging from 40% to 77%.

TABLE 11
Numbers and Proportions of Regression Bugs and Non-regression

Bugs.

Project Regression Non-regression Total

TensorFlow 86 (9.02%) 867 (90.98%) 953 (100%)

MXNET 53 (13.55%) 338 (86.45%) 391 (100%)

PaddlePaddle 10 (4.81%) 198 (95.19%) 208 (100%)

Implication: Amounts of studied bugs in deep learn-
ing frameworks can lead to crashes or exceptions. Failing
to catch and handle these bugs properly causes negative
end-user experiences. To improve the robustness of deep
learning frameworks, exception handling strategies could
be introduced to separate the source code that deals with
unusual situations from the code that supports normal
processing [57], [58]. In addition, crash reports could be used
to help with the bug localization. For example, Wu et al. [59]
propose a method called CrashLocator to locate faulty func-
tions using information contained in crash reports.

7 REGRESSION BUGS IN DEEP LEARNING
FRAMEWORKS

In this section, we present the answer to RQ5. A regression
bug is a type of bug that causes software features which
worked normally to stop behaving as intended after a
certain event [60]. For example, a submitted commit to fix
a bug or implement a new feature may disrupt the original
normally running system functions. In this section, we aim
to study the proportions of regression bugs in deep learning
frameworks, and the distribution of different bug types
among regression bugs [61]. We carefully read the informa-
tion contained in each bug report, including the description
of the reporter and comments submitted to discuss the bug,
to determine if it is a regression bug or not.

Finding #11: The proportions of regression bugs in Tensor-
Flow, MXNET and PaddlePaddle are 9.02%, 13.55% and 4.81%,
respectively.

TABLE 11 presents the numbers and proportions of
regression bugs and non-regression bugs in TensorFlow,
MXNET and PaddlePaddle. From the results, we can ob-
serve that among 391 actual bugs in MXNET, there are
53 (i.e., 13.55%) regression bugs and 338 (i.e., 86.45%)
non-regression bugs. The percentage of regression bugs in
MXNET is the highest among all three deep learning frame-
works. In TensorFlow, there are 86 regression bugs and 867
non-regression bugs, accounting for 9.02% and 90.98% of
953 actual bugs, respectively. And among all the 208 actual
bugs in PaddlePaddle, there are 10 regression bugs and
198 non-regression bugs, accounting for 4.81% and 95.19%,
respectively. One of the most common scenarios that regres-
sion bugs appear is that some functions work normally in
the previous versions but stop working after upgrading to
a newly released version. For example, in TensorFlow’s Bug
ID-9708, the reporter says that “tf.random crop exception
after upgrading to tf1.1 from tf1.0”. The reporter discovered
that after upgrading TensorFlow from version 1.0 to version
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1.1, an exception is triggered in tf.random function. Another
situation is that a commit to fix an existing bug will fail
the original normally running function. For example, Ten-
sorFlow’s Bug ID-3035, is described as “The following fails
with UnboundLocalError after b80a4a8”, that is, the commit
b80a4a8 used to deal with the exception handling problem
introducing a regression bug at the same time.

Compared to traditional software projects, the propor-
tions of regression bugs in deep learning frameworks are
lower than those of Linux kernel (i.e., 50.1% [61]) and
Google Chromium (i.e., 51.09% [60]). The reason is that ver-
sion upgrade is one of the most common ways to discover
regression bugs. However, deep learning frameworks have
only been developed in recent years, and the number of re-
leased versions is small. For example, over the past 25 years,
Linux has put out more than 1300 releases ranging from
version 1.0 to version 4.14. Compared with Linux, there are
only dozens of versions in deep learning frameworks. As a
result, in the process of continuously upgrading the system,
users in Linux discovered more regression bugs.

Finding #12: Among all regression bugs in TensorFlow,
MXNET and PaddlePaddle, BOHs account for 78%, 77% and
80%, respectively, and MANs account for 15%, 23% and 10%,
respectively.

Fig. 9 gives the distribution of bug types in regression
bugs. Among all 86 regression bugs in TensorFlow, BOHs
account for 78%, ARBs and NAMs account for 9% and 6%,
respectively. In MXNET, the proportions of BOHs, ARBs
and NAMs among regression bugs are 77%, 8% and 15%.
In PaddlePaddle, BOHs account for 80% of regression bugs,
NAMs account for 10% and no ARB belongs to regression
bug. In addition, we calculate the lift correlation between
bug types and regression bugs to further determine the
type of bug that is more likely to be regression bug. The
results are shown in TABLE 12. According to the results, the
lift correlation between non-regression bugs and MANs in
TensorFlow, MXNET and PaddlePaddle are greater than 1,
which means non-regression bugs are prone to be MANs. In
addition, except for TensorFlow, the lift correlation between
regression bugs and BOHs are greater than 1 in MXNET
and PaddlePaddle, which means regression bugs tend to be
BOHs.

Implication: It is annoying to encounter regression bugs
for both users and developers. It would make users con-
fused and waste lots of time to debug. As a result, users
might lose confidence in the new released version and refuse
to upgrade. For developers, regression bugs are also painful

TABLE 12
Correlation Between Bug Types and Regression Bugs.

Project Correlation BOH MAN

TensorFlow
Regression 1 0.92

Non-regression 1 1.01

MXNET
Regression 1.12 0.78

Non-regression 0.98 1.04

PaddlePaddle
Regression 1.09 0.44

Non-regression 1.00 1.03

and costly to deal with. By the time a regression bug is
identified and reported, lots of changes have been made
to the source code, which makes it difficult for developers
to find the change that inducing the bug. We recommend
developers conduct sufficient regression testing before re-
leasing a new version. Regression testing is performed to
ensure that changes made to software, such as adding new
features or modifying existing features, have not adversely
affected features of the software that should not change [62],
[63]. In addition, for regression bugs that have occurred,
tools could be used to localize and predict them. For ex-
ample, CodePsychologist [64] is a tool developed to assist
the programmers in locating the lines of code that caused
a given regression bug, and BCT [65] is a tool helping with
the prediction of regressions.

8 THREATS TO VALIDITY

Similar to other empirical studies, our study is naturally
subject to validity problems. We identify potential threats to
the validity of our study as follows:

Threats to Construct Validity. This study focuses on ac-
tual bug information provided by users and developers, that
is, only bug reports tagged as “type:bug” are considered.
There may be other bugs but are not labeled as “type:bug”.
In addition, we only analyze closed bug reports because
unclosed bug reports may still be under discussion and may
not have enough information to determine their type. If an
unclosed bug report are considered, the distribution of bug
types may differ. Different time frames are also one of the
threats to construct validity. Although we have considered a
great number of bug reports, there are still some bug reports
that are beyond the scope of our analysis. If all bug reports
are taken into account, it may lead to different results.

Threats to Internal Validity. The possibility of classi-
fication mistakes is a threat to internal validity. To miti-
gate this threat, four authors are all involved in manual
classification, and all of them are experienced developers.
First, two authors separately manually classified all the bug
reports. Initially, we sampled a small set of bug reports
and checked these reports together to determine their bug
types according to the definitions in order to calibrate our
classification work. In the process of manual classification,
we carefully checked all the information contained in bug
reports, including report descriptions, forum comments, at-
tached files (e.g., patches applied for correcting the bug) and
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the external links that were attached for providing further
information (e.g., Git commit IDs). Then, a cross-check was
performed, and conflicting cases were eliminated through
discussions among all four authors to reach a consensus.
However, no matter how meticulous the authors were, we
admit that there is still the possibility of misclassification,
which cannot be completely avoided.

Threats to External Validity. The bug reports studied
in this paper are collected from three representative deep
learning frameworks (i.e., TensorFlow, MXNET and Pad-
dlePaddle). Some findings and implications may not appli-
cable to deep learning applications or other deep learning
frameworks. In order to reduce this threat, we try not
to extend the conclusions that only apply to TensorFlow,
MXNET and PaddlePaddle to applications or other deep
learning frameworks.

9 DISCUSSION

According to the classification results, MANs occupy a non-
negligible proportion of the total bugs in the DL frame-
works. However, the classic approaches for handling soft-
ware bugs, such as debugging and testing, are not ap-
plicable to MANs [66]. MANs are triggered by complex
conditions [67], [68], such as interactions with hardware
and other software systems and the timing or sequence of
events. It is difficult to detect these bugs using traditional
testing techniques because it can be challenging to control
their complex triggering conditions in a testing environment
[69]. Therefore, it is necessary to adopt specific verification
and/or fault-tolerance strategies to deal with them in a cost-
effective way [70]. This section focuses on discussing the
mitigation strategies for MANs from both the developer and
user perspectives.

The four most common methods for resuming system
operations after failures caused by MANs are restart, recon-
figuration, reboot and hot fix [52], [71]. Users could adopt
software recovery strategies to deal with MANs. For exam-
ple, Trivedi et al. [52] constructed a flowchart to describe
the recovery process implemented in software systems, and
they proposed a closed-form expression of the average re-
covery time from MANs. In addition, researchers have also
investigated models for recovery from MANs [71]. For de-
velopers, MAN prediction methods could be used to locate
MANs in software systems [72]. As a result, developers can
concentrate verification and validation activities and fault
tolerance mechanisms in those modules where MANs are
most likely to exist. If there is a serious failure that cannot
be solved by any of these four methods, then developers can
perform thorough testing and code debugging, like regular
bug fixes.

In addition to MAN, we find 8.7%-9.2% of bugs in
TensorFlow, MXNET and PaddlePaddle are ARBs. ARB is a
special type of MAN, as the software system runs for a long
time, it will cause performance degradation or increased
failure rate [19]. For example, performance degradation can
cause an increase in response time or a reduction in the
number of served requests per second [73]. For safety-
and security-critical software systems, this can be fatal [38].
Taking autonomous driving software as an example, slower
response may cause the car to fail to recognize objects

ahead or brake in time, resulting in disastrous consequences.
ARBs can be mitigated by proactive methods applied before
failures occur, namely software rejuvenation [74], [75]. Soft-
ware rejuvenation is a concept of gracefully terminating an
application and immediately restarting it in a clean internal
state. In [76], models were developed for analyzing software
rejuvenation in continuously running applications. In [77], a
set of software complexity metrics for ARBs were collected
as predictor variables, and bug prediction models were built
to predict the location of ARBs.

10 RELATED WORK

Over the past decades, deep learning has achieved an
enormous breakthrough in artificial intelligence and gained
great popularity in various applications [78]. Deep learning
frameworks play an important role to bridge the deep learn-
ing theory to the realization of deep learning software by
providing high-level APIs to support deep learning models
and runtime training configurations [79]. In recent years,
the rapid development of deep learning frameworks also
gain attentions on the reliability of these frameworks. Some
of them focus on investigating the characteristics of bugs
inside frameworks. The others perform studies on applica-
tions built upon these frameworks.

Zhang et al. [11], Islam et al. [13] and Humbatova et
al. [80] studied the characteristics of bugs in deep learning
applications, i.e., clients built on top of deep learning frame-
works. Zhang et al. [11] performed an empirical study on
deep learning applications programmed on the TensorFlow
framework. They collected program bugs related to Tensor-
Flow from Stack Overflow Q&A pages and GitHub projects,
and 175 bugs were obtained. They analyzed the symptoms
and root causes of bugs and investigated the challenges
in bug detection and localization. While only TensorFlow
clients were analyzed in [11], client software built on more
frameworks were studied in [13], including Caffe, Keras,
Theano and Torch. In [13], the authors studied 2716 posts
from Stack Overflow and 500 bug fix commits from GitHub
to identify the bug types, root causes of bugs and effects
of bugs in the usage of deep learning. They categorized
bugs into 11 bug types, 10 root causes and 7 impacts.
Humbatova et al. [80] analyzed 1059 artefacts, including
477 Stack Overflow discussion, 271 issues and pull requests,
and 311 commits, which were collected from projects using
TensorFlow, Keras and PyTorch. They identified the root
cause behind each problem by manual analysis. While these
works studied deep learning clients, this paper focuses on
deep learning frameworks.

The study in [81] analyzed 715 questions in Stack Over-
flow related to three deep learning frameworks, including
TensorFlow, PyTorch and Deeplearning4j. Through manu-
ally inspecting these questions, they identified seven types
of frequently asked questions. According to their findings,
program crashes and model migration are the two most
frequently asked topics. In addition, they built a classifica-
tion model to quantify the distribution of different types of
deep learning questions. Compared to [81], which extracts
questions in Stack Overflow as research data, our research
data are actual bugs collected from GitHub repositories.
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Li et al. [12] conducted the empirical study to analyze the
bugs inside TensorFlow. They analyzed 202 TensorFlow bug
fixes repaired between December 2017 and March 2019, and
84 of them have corresponding bug reports. Root causes and
symptoms of bugs were analyzed in this work, as well as
the proportions of bugs inside different library components.
Instead of TensorFlow, Sun et al. [26] conducted an empirical
study on three other frameworks, including Scikit-learn,
PaddlePaddle and Caffe. Based on the occurring reasons
of bugs, they classified 329 bugs into 7 categories and 12
fixing patterns. Compare to [26], instead of analyzing the
reasons and fixing patterns, we perform our research from
the perspective of fault triggering conditions.

11 CONCLUSIONS AND FUTURE WORK

This paper conducts a large-scale research on actual bugs
in three widely-used deep learning frameworks, including
TensorFlow, MXNET and PaddlePaddle in terms of fault
triggers. We manually analyzed 3,555 bug reports collected
from Github, which were actual bug information submitted
by users and developers. Our analyses are conducted from
five dimensions: bug types of deep learning frameworks
and the proportion evolution of bugs over time; fixing time
of bugs; root causes of Bohrbugs and Mandelbugs; impacts
of Bohrbugs and Mandelbugs; and features of regression
bugs in deep learning frameworks. Our study found that
more than two-thirds of bugs are Bohrbugs, and MEM
is the major subtype of aging-related bugs. It takes more
time to close a Mandelbug than a Bohrbug. There are
five root causes of Bohrbugs and Mandelbugs, including
environment/configuration, memory, compatibility, concur-
rency and semantic. A BOH is more likely caused by a
semantic bug or a compatibility bug, an ARB is prone
to be a memory bug, and a NAM is most likely to be
an environment/configuration bug or a concurrency bug.
There are five impacts by Bohrbugs and Mandelbugs, and
more than half of Bohrbugs and Mandelbugs would cause
crashes/exceptions. The proportions of regression bugs in
deep learning frameworks are lower than that of Linux
kernel. Finally, some practical implications are given for
both users and developers.

In addition to classifying bugs based on fault triggers
and root causes, we can also identify bugs according to
the different phases in which they appear, such as training
and inference. Focusing on bugs related to model training
and reference, we performed a preliminary analysis. First,
we used the keywords “train” and “inference” to filter
all the bug reports and obtained 261 and 44 bug reports,
respectively. Then, we manually examined these 301 bug
reports and removed the irrelevant bug reports. Finally, 84
training-related bugs and 11 reference-related bugs were
obtained. Training-related bugs involve three different as-
pects, including the quality of the training data, the running
of the training process and the training results obtained.
Among all the 84 training-related bugs, most (88.09%) oc-
curred during the training process, including the crash of
the distributed training process, exceptions during multi-
GPU training, memory leaks when training complex models
and incorrectly transferred parameters or variables. 9.52%
of them led to incorrect training results. For example, the

training results always appeared to be NaN (Not-a-Number)
or constant values, and quite different results were obtained
with the same parameter set. A total of 4.76% of them were
related to training data, including broken training data,
insufficient training data and improper data processing.

For inference-related bugs, there are two aspects, in-
cluding the running of the inference process and the ref-
erence results. Among 11 inference-related bugs, 7 (66.63%)
occurred during the inference process, including failed in-
ference when the inference code was incorrect, freezing
inference when dealing with a larger size of data, parallel
inference failures due to API bugs and memory leaks when
performing inference. Four (33.36%) of them resulted in
incorrect inference results. For example, different inference
results were obtained while performing inference multiple
times or running with multiple GPUs. In the future, we
will check all 3,555 bug reports studied in this paper to
determine the phase at which each bug occurred. In addition
to the training and reference phases, we will also study bugs
in other phases, such as the data preparation phase before
training the model and the model deployment process after
reference.
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