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SUMMARY

Because of its high precision as a flow-insensitive pointer analysis, Andersen’s analysis has been deployed in
some modern optimising compilers. To obtain improved precision, we describe how to add context sensitiv-
ity on top of Andersen’s analysis. The resulting analysis, called ICON, is efficient to analyse large programs
while being sufficiently precise to drive compiler optimisations. Its novelty lies in summarising the side
effects of a procedure by using one transfer function on virtual variables that represent fully parameterised
locations accessed via its formal parameters. As a result, a good balance between efficiency and precision is
made, resulting in ICON that is more powerful than a 1-callsite-sensitive analysis and less so than a call-path-
sensitive analysis (when the recursion cycles in a program are collapsed in all cases). We have compared
ICON with FULCRA, a state of the art Andersen’s analysis that is context sensitive by acyclic call paths,
in Open64 (with recursion cycles collapsed in both cases) using the 16 C/C++ benchmarks in SPEC2000
(totalling 600 KLOC) and 5 C applications (totalling 2.1 MLOC). Our results demonstrate scalability of
ICON and lack of scalability of FULCRA. FULCRA spends over 2 h in analysing SPEC2000 and fails to
run to completion within 5 h for two of the five applications tested. In contrast, ICON spends just under
7 min on the 16 benchmarks in SPEC2000 and just under 26 min on the same two applications. For the 19
benchmarks analysable by FULCRA, ICON is nearly as accurate as FULCRA in terms of the quality of the
built Static Single Assignment (SSA) form and the precision of the discovered alias information. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Pointer analysis is critical to enable advanced and aggressive compiler optimisations. Andersen’s
inclusion-based analysis [1] is a highly precise pointer analysis, which is flow insensitive (by ignor-
ing control flow) and context insensitive (by ignoring calling contexts). With its recent advances,
Andersen’s analysis, which is more precise than Steensgaard’s unification-based analysis [2], is now
scalable for large programs [3]. In the latest release of the Open64 compiler, its pointer analysis is
no longer unification based but rather inclusion based, performed with offset-based field sensitiv-
ity and 1-callsite-sensitive heap cloning (with malloc wrappers being recognised as heap allocation
sites). Just like GNU GCC, the overall pointer analysis framework in Open64 remains context insen-
sitive. However, many compiler optimisations benefit, in both precision and effectiveness, from
more precise points-to information if context sensitivity is also considered. Unfortunately, existing
context-sensitive versions of Andersen’s analysis are not scalable to millions of lines of code. To the
best of our knowledge, there is presently no suitable context-sensitive Andersen’s analysis that can
be deployed in modern compilers such as Open64 and GCC.

*Correspondence to: Jingling Xue, Programming Languages and Compilers Group, School of Computer Science and
Engineering, University of New South Wales, NSW 2052, Australia.
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In this paper, we introduce a whole-program context-sensitive Andersen’s analysis for C/C++
programs, called ICON, that scales to millions of lines of code. ICON is significantly faster than the
state of the art while achieving nearly the same precision. While implemented fully in Open64, our
analysis applies to any inclusion-based framework.

The development of ICON has been guided by three design principles:

Precision For an optimising compiler, its pointer analysis must soundly estimate the points-to
information in a program. As far as performance improvements are concerned, it will
be unnecessarily costly to obtain context sensitivity if the context of a call is identified
by its full call path. Instead, we prefer to find a faster solution that may not be theo-
retically powerful but is practically precise enough in driving compiler optimisations.
Our measurement of precision is the quality of the built SSA form (in terms of � and
� operations introduced [4]) and the percentage of aliases disambiguated. We believe
that these two metrics are critical in determining the effectiveness of compiler optimisa-
tions, such as register allocation [5], instruction scheduling [6], redundancy elimination
[7–9], scratchpad management [10–13] and speculative parallelisation [14–17].

Efficiency Context sensitivity should be achieved on top of Andersen’s analysis with as little
overhead as possible for large programs.

Simplicity The solution should be simple conceptually and implementation-wise. To this end,
some recent advances in inclusion-based analysis should be leveraged so that the exist-
ing code base is maximally reused. Specifically, we prefer to achieve context sensitivity
by staying in the same inclusion-based analysis framework.

1.1. The state of the art

A context-insensitive pointer analysis does not distinguish between different invocations of a pro-
cedure. When analysing a program, passing parameters and return values between procedures is
modelled as assignments without distinguishing their calling contexts. Some precision loss is illus-
trated in Figure 1. In Figure 1(a), the information from one caller is allowed to flow into another. So
both x and y may point to a and b. In Figure 1(b), the information from the two callsites is merged
at the entry of foo so that *p and *q are considered to alias in both calling contexts. As a result,
r is regarded as pointing to g always even though this is possible only when foo is called inside
goo2.

A context-sensitive pointer analysis improves precision by representing calling contexts of a
procedure more accurately. An analysis is k-callsite context sensitive if different invocations of a

Figure 1. Imprecision in context-insensitive analysis.
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procedure are distinguished by k enclosing callsites in its calling contexts. In practice, the contexts
of a method call are often represented by their acyclic call paths, with recursion cycles collapsed or
unrolled k times. If k represents the maximal length of acyclic call paths, then the context sensitivity
is achieved with full call paths. In Figure 1, precise points-to sets can be obtained with k D 1.

For Java (which relies on heap-only object allocation), much progress has been made in context-
sensitive points-to analysis [18–31]. However, we have not seen a corresponding success for C and
C++ due to their support for pointer operations such as address-of operator & for both heap and stack
objects and pointer arithmetic. Many flow-sensitive and/or context-sensitive analyses [32–40] have
been proposed. According to [41], however, current industrial-strength flow-sensitive and context-
sensitive versions of Andersen’s analysis are scalable only for small C/C++ programs. They are
not deployable yet in an optimising compiler. Even if flow sensitivity is ignored, how to achieve
context sensitivity efficiently and precisely on top of Andersen’s analysis for whole C/C++ pro-
grams remains to be an open problem. Among some earlier attempts at making Andersen’s (flow
insensitive) analysis context sensitive [42–45], FULCRA [43] represents a state-of-the art solution.
By cloning (conceptually) the statements in a procedure that may have interprocedural points-to
side effects and then inlining them directly in its callers, FULCRA obtains the most precise points-
to information as an inclusion-based analysis by being context sensitive with acyclic call paths (i.e.
with recursion cycles collapsed). In obtaining such cloning-based precision, however, FULCRA does
not scale to some large programs [43].

1.2. Our insights

Our key observation is that real-world C/C++ programs are likely to be dominated by procedures
with a small number of pointer formal parameters, which are each dereferenced with a few levels
of indirection. Figure 2 plots some pointer-related information among the formal parameters of the
procedures in the 21 programs used in our experiments, including the 15 C and one C++ benchmarks
from SPEC2000 (totalling 600 KLOC) and five applications (totalling 2.1 MLOC). Most procedures
(92.5% on average) have fewer than four PFPs. Among the procedures with two (three) PFPs, most
of their PFPs, with an average of 89.8% (91.9%), have fewer than four levels of indirection. This
suggests that in the code written by programmers, the formal parameters of a procedure at its entry
tend to have few and simple aliasing relations.

This observation has led to the design of our ICON analysis. Its novelty lies in exploiting parame-
terised pointer information to achieve context sensitivity on top of Andersen’s analysis. For a proce-
dure being analysed, ICON represents the abstract locations passed from its callers and accessed by
its dereferenced formal parameters using virtual variables and keeps track of their aliasing relations
during the analysis. This enables the interprocedural points-to side effects of a procedure to be sum-
marised with a transfer function that maps each virtual variable to its points-to set. Each points-to
relation is guarded by an aliasing condition on virtual variables so that context sensitivity can be
achieved when it is ‘transferred’ to its callsites. By using virtual variables rather than individual
locations, the propagation of points-to information is significantly accelerated.

In theory, ICON is more powerful than a 1-callsite-sensitive analysis but less so than a cloning-
based context-sensitive analysis such as FULCRA (when the recursion cycles in a program are
collapsed in all cases). In practice, ICON is significantly faster than FULCRA while achieving nearly
the same precision. In addition, ICON is simple as it can be implemented easily on top of Andersen’s
analysis, which is widely used with industrial-strength implementations available.

1.3. Contributions

While symbolic names [35,39,40,46,47] and transfer functions [39,40] were previously used, ICON

exploits both in a novel way to obtain a scalable context-sensitive Andersen’s analysis.

� We introduce a context-sensitive Andersen’s inclusion-based pointer analysis, ICON, that can
be directly and easily deployed in modern optimising compilers. While existing solutions
are not scalable, ICON, which is fully implemented in Open64, allows large programs (with
millions of lines of code) to be analysed in minutes.
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(a) Distribution of procedures according to the
       number of pointer formal parameters (PFPs)
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Figure 2. Pointer-related information for formal parameters using Andersen’s analysis.

� ICON is the first to achieve context sensitivity on top of Andersen’s analysis by computing the
transfer function for a procedure based on parameterised pointer information in terms of virtual
variables, motivated by the pointer-related information at the procedure entries in real-world
C/C++ programs (Figure 2). In addition, we also propose to accelerate ICON by pre-analysis
(to discover non-aliased parameters) and by propagating points-to information first top-down
and then bottom-up on the call graph of a program (to discover aliased parameters eagerly).
� We have evaluated ICON by comparing with FULCRA, a state-of-the-art Andersen’s analysis

that is context sensitive by acyclic call paths [43], in Open64 (with recursion cycles collapsed
in both cases) using 21 C/C++ programs, including 15 C and 1 C++ benchmarks in SPEC2000
(600 KLOC) and 5 C applications (2.1 MLOC). Our results demonstrate scalability of ICON

and lack of scalability of FULCRA for some large programs. FULCRA spends over 2 h in
analysing SPEC2000 and fails to run to completion within 5 h for two of the five applica-
tions tested, wine and gdb. In contrast, ICON spends only just under 7 min on SPEC2000
and just under 26 min on both wine and gdb. For the 19 benchmarks analysable by FULCRA,
ICON is nearly as accurate as FULCRA in terms of the quality of the built SSA form and the
precision of the discovered alias information.

The rest of this paper is organised as follows. Section 2 provides some more background infor-
mation. Section 3 motivates ICON with an example used throughout the paper. Section 4 introduces
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the ICON analysis. Section 5 evaluates ICON and compares it with the state of the art. Section 6
discusses related work, and Section 7 concludes the paper.

2. BACKGROUND

We first describe the canonical representation used for a program and then introduce Andersen’s
analysis by constraint resolution.

2.1. Program representation

Four types of statements are considered: x D &y (address), x D �y (load), �x D y (store) and
x D y (copy). Note that x D ��y can be transformed into x D �t and t D �y by introducing a new
temporary t . Different fields of a struct are distinguished, but arrays are considered monolithic.

Every call contained in a procedure goo has the form r D foo.a1, : : : , an/, where r , a1, : : : , an
are local variables in goo and foo is a callee (resolved on the fly during pointer analysis). As ICON is
context sensitive, we must keep track of the (modification) side effects made by foo on the variables
accessed in goo. For efficiency considerations, the modification side effects on the global variables
made in all procedures are tracked globally in the standard manner as in [43, 47]. In contrast, the
non-global variables accessed in goo may be modified in foo in two ways: (1) via the formal param-
eters of foo and (2) by passing a return value to goo. Such modification side effects are referred to as
the side effects of foo in this paper and tracked by using a transfer function for foo. In order to deal
with these two types of side effects on non-globals uniformly, we perform a standard transformation
as shown in Figure 3 so that (2) can be dealt with equivalently as (1).

2.2. Constraint-based Andersen’s analysis

As illustrated in Figure 4, Andersen’s analysis discovers points-to information by treating assign-
ments as subset constraints using a single constraint graph for the entire program until a fixed point
is reached. When context sensitivity is not considered, passing parameters and return values between
procedures is simply modelled as copy statements.

For the code in Figure 4(a), Andersen’s analysis starts with the constraint graph given in
Figure 4(b). For the address statements, y=&x and n=&g, the points-to information is directly
recorded for their left-hand side variables. For each of the other three types of statements, a con-
straint of an appropriate type is introduced. Then, the analysis resolves loads and stores by adding
new copy statements discovered. As y points to x, the two new copy statements related to x are
added as shown in Figure 4(c). The new points-to information discovered is propagated along the
edges in the graph until a fixed point is found. Finally, t is found to point to g.

Figure 3. Passing return values modelled as passing parameters.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
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Figure 4. Pointer resolution in a constraint graph.

Figure 5. Parameterised summarisation for foo with virtual variables. The points-to set for a node is not
completely shown, but it can be read off as the set of all objects reaching the node by copy edges.

3. A MOTIVATING EXAMPLE

We use an example as shown in Figure 5 to illustrate how we achieve context sensitivity on top of
Andersen’s analysis. The key novelty is to summarise the side effects of a procedure in terms of
virtual variables that represent fully parameterised pointer information at its entry. Guided by the

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
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three design principles discussed earlier in Section 1, ICON is developed to discover precise points-
to information efficiently in a simple way by leveraging the same constraint resolution engine used
by Andersen’s analysis.

In the program given in Figure 5(a), *p and *q are made aliases but *a and *b are not aliased
after the call to bar. Thus, after the two calls to foo, g will be pointed to by r1 but not by c1. We
examine how this fact is discovered by ICON. In a context-insensitive analysis, however, g will be
conservatively estimated as being pointed to by both r1 and c1.

ICON analyses a program by traversing its call graph (with recursion cycles collapsed) iteratively,
first top-down and then bottom-up. In a top-down phase, the points-to information is propagated
downwards from a caller to its callees, with the side effects of all callsites being ignored. In a
bottom-up phase, the propagation of the points-to information is reversed from a callee to its callers,
with the points-to side effects of the callee being summarised and transferred to its callsites. In both
phases, new points-to information is discovered in the same constraint resolution framework.

We focus on how foo is summarised and how its summarised side effects are transferred to its
two callsites. The call graph comprises a root node, main, and its two child nodes, bar and foo.

3.1. First iteration

Top-down The analysis starts with main and then moves to bar and foo. The points-to rela-
tions in lines 5–7 in main are discovered trivially and propagated downwards into
bar and foo. In our analysis, the points-to relations from different callsites in a
procedure are merged and represented using an alias graph at its entry but handled
(at least 1-callsite) context sensitively. At this stage, the one for foo is given in Fig-
ure 5(b). V f1 and V f2 , where f 2 ¹x,y,zº, stand for �f and � �f , respectively.
These are virtual variables, each of which represents the set of non-local locations
passed from the two callsites of foo and accessed by the dereferenced parameters in
foo.

Each procedure has its own constraint graph except that copy edges are guarded,
stating the conditions under which the corresponding relations hold. In the special
case when a copy edge is guarded by true, the corresponding relation always holds.
Andersen’s analysis is applied to the constraint graphs of all procedures combined,
except that (1) the side effects of all callsites are ignored and (2) virtual variables are
used to parameterise pointer information at procedure entries. In the case of foo, the
initial constraint graph (not shown) comprises (1) the constraints corresponding to
the statements in lines 17–20 and (2) the points-to relations in its alias graph. After
the fixed-point is reached, we obtain the constraint graph given in Figure 5(b).

Bottom-up Andersen’s analysis is applied separately to the constraint graphs of different proce-
dures. The interprocedural points-to side effects of a procedure are summarised and
transferred to its callsites. In the case of foo, there is no need to re-run Andersen’s
analysis as no new points-to information is discovered. The transfer function of foo
that maps V y

1 and V z
1 to their points-to sets as shown is obtained. Note that x is not

modified inside. Similarly, the transfer function of bar (not shown) is computed:
Transbar.V u

1 / D ¹.t rue,V v
2 /º. When main is analysed, the side effects of foo on

V
y
1 and V z

1 are transferred to its two callsites. For the first callsite, V y
1 and V z

1 stand
for q1 and r1, respectively. So q1 has a new target g and r1 a new target i. For the
second callsite, V y

1 and V z
1 stand for b1 and c1, respectively. So b1 has a new target

g and c1 a new target k. Similarly, applying bar’s transfer function to its callsite,
we find that p has a new target q1.

3.2. Second iteration

Top-down Some new points-to relations that have been discovered in the first iteration are prop-
agated downwards. At this stage, foo’s alias graph is the same as that in Figure 5(b)

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
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except that the contents of its virtual variables have been updated with the new points-
to information, as shown in Figure 5(c). In addition, the constraint graph for foo
remains the same as the one in Figure 5(b).

Bottom-up When foo is analysed, its alias graph is inspected. At this stage, the alias graph is
the same as the one shown in Figure 5(c) except that the four points-to relations,

x
Cx,y
1,1
�! A

x,y
1,1 , y

Cx,y
1,1
�! A

x,y
1,1 , V x

1

Cx,y
2,2
�! A

x,y
2,2 and V y

1

Cx,y
2,2
�! A

x,y
2,2 , do not exist yet. Once

some new points-to information is available in an alias graph, ICON will proceed
to identify and establish all the new aliasing relations between virtual variables and
update the alias graph accordingly. In the case of foo, V x

1 and V y
1 are found to alias.

In addition, V x
2 and V y

2 are also found to alias. To represent these new aliasing rela-
tions, the four aforementioned points-to relations are introduced. Here, Cx,y

1,1 is an
aliasing condition that encodes V x

1 \V
y
1 ¤ ;. Similarly, Cx,y

2,2 encodes V x
2 \V

y
2 ¤ ;.

A
x,y
1,1 (Ax,y

2,2 ) symbolises the set of aliased locations between V x
1 and V y

1 (V x
2 and

V
y
2 ). Such sets are placeholders as their contents are not directly used during pointer

resolution. Hence, the contents of Ax,y
1,1 and Ax,y

2,2 are not shown in Figure 5(c). It
is the presence of aliasing relations such as Cx,y

1,1 and Cx,y
2,2 that serves to enable

points-to information to be propagated conditionally across the aliased locations.
Re-propagating the new points-to information just introduced across the constraint

graph for foo in Figure 5(b) yields the fixed point given in Figure 5(c). As a result,
the transfer function for foo is updated from the one given in Figure 5(b) to the
one given in Figure 5(c). During this second round of guarded constraint resolution,
the two new copy edges added for Ax,y

1,1 are guarded by Cxy
1,1. This indicates that V z

1

points to g only when Cx,y
1,1 holds.

By applying foo’s transfer function to its first callsite at line 9, we find that
Mfoo

9 .Cx,y
1,1 / D .Mfoo

9 .V x
1 / \Mfoo

9 .V
y
1 / ¤ ;/ D .¹q1º ¤ ;/ D t rue, where

Mfoo
9 .V x

1 / D ¹p1,q1º and Mfoo
9 .V

y
1 / D ¹q1º include only the locations in V x

1

and V y
1 propagated from the first callsite. Thus, j and g are new targets of r1. For

the second callsite at line 10, Mfoo
10 .C

x,y
1,1 / D .Mfoo

10 .V
x
1 / \Mfoo

10 .V
y
1 / ¤ ;/ D

.; ¤ ;/ D false, where Mfoo
10 .V

x
1 / D ¹a1º and Mfoo

10 .V
y
1 / D ¹b1º contain only

the locations propagated from the second callsite. Therefore, no new points-to rela-
tions are found at the second callsite, implying that g cannot be pointed to by c1.
This mapping process is explained in more detail in Example 5.

4. THE ICON ALGORITHM

As motivated by our example, the earlier ICON discovers the aliasing information at procedure
entries, the earlier it can find the points-to sets for more pointers, and consequently, the faster the
analysis converges. Therefore, its three components are structured as shown in Algorithm 1.

ALGORITHM 1: The ICON algorithm

1 Pre-Analysis
2 repeat
3 Top-Down Analysis
4 Bottom-Up Analysis

until5 a fixed point is reached;

Pre-analysis discovers non-aliased formal parameters and initialises the alias graphs for all pro-
cedures. During a top-down phase, the points-to information in a program is propagated top-down
across its acyclic call graph, with all recursion cycles collapsed on the fly. During a bottom-up phase,
the direction of points-to information propagation is reversed. During each iteration, the top-down

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
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phase precedes the bottom-up phase so that procedure pointers can be resolved as soon as possible
as suggested in [43]. In ICON, doing so has an additional benefit: the aliasing relations among the
formal parameters of a procedure can be discovered as soon as possible.

Each procedure has its own constraint graph. A top-down phase processes the constraint graphs
of all procedures together while a bottom-up phase deals with each individually. In both phases,
guarded constraint propagation is used. ICON achieves context sensitivity by maintaining alias
graphs during the analysis, causing the side effects of a procedure to be summarised iteratively.

Section 4.1 discusses the guarded constraint resolution used in both top-down and bottom-
up phases. Section 4.2 introduces pre-analysis. Section 4.3 focuses on top-down analysis and
Section 4.4 on bottom-up analysis. Section 4.5 discusses some salient properties of ICON.

4.1. Guarded constraint propagation

Much progress has been made on efficiently solving the inclusion-based constraints for pointer
analysis [3, 45, 48–50]. We extend a recent pointer resolution algorithm, which is adapted from
wave propagation [50] and implemented by the Open64 team in the Open64 compiler, to perform
the guarded constraint resolution in ICON (in the presence of virtual variables).

The rules used by SOLVECONSTRAINTS are given in Table I. The notation ptr.p/ stands for the
points-to set of a variable p. The notation ptr.a/ �c ptr.b/ means that for each .c0, o/ 2 ptr.b/,
its propagation into a is conditional so that .c ^ c0, o/ 2 ptr.a/. In ICON, each pointed-to object is
guarded. When resolving a load or a store, all copy edges derived are guarded accordingly.

Example 1
When moving from Figure 5(b) to (c), two copy edges are added. When resolving *y = m in line

18, y points to .Cx,y
1,1 ,Ax,y

1,1 /. So Ax,y
1,1

Cx,y
1,1
(H m is added. When resolving t = *x in line 19, x points

to .Cx,y
1,1 ,Ax,y

1,1 /. As a result, t
Cx,y
1,1
(H A

x,y
1,1 is added.

4.2. Pre-analysis

Steensgaard’s unification-based analysis [2] is used to bootstrap ICON. By interpreting assignments
as equality rather than subset constraints, Steensgaard’s analysis is less precise but significantly
faster than Andersen’s analysis. Pre-analysis serves two purposes. First, many formal parameters
that do not alias, as observed in Figure 2, are discovered, avoiding unnecessary aliasing tests later.
Second, an alias graph for each procedure that is expressed in terms of virtual variables, as illustrated
in our example, is initialised. The domain of a virtual variable, which denotes the set of locations
that it represents in the subsequent analysis, is also determined.

Let us describe how to initialise an alias graph, AGP D .VP ,EP /, for a procedure P . We focus
on an arbitrary parameter f of P because all parameters are handled identically and independently.
After Steensgaard’s analysis, the points-to graph Gf for f , which comprises the points-to relations
originating from f , is always a ‘linked list’ with at most one cycle at its end. As Steensgaard’s
analysis is used, all locations pointed by a variable are unified into the same equivalence class. For
example, if the points-to relations originating from f are f ! a, a ! b and a ! c, then Gf
is f ! ¹aº ! ¹b, cº with two equivalence classes. If the points-to relations are f ! a, a ! b,
b! c, c! b and c! d instead, then Gf becomes f ! ¹aº ! ¹b, c, dº

Ô

with a cycle at its end.

Table I. Rules used by guarded constraint resolution.

Statement Constraint Resolution

Address x D&y ¹.t rue,y/º 2 ptr.x/
Copy x D y ptr.x/�true ptr.y/
Load x D �y 8.c0,y0/ 2 ptr.y/ W x �c0 y0
Store �x D y 8.c0, x0/ 2 ptr.x/ W x0 �c0 y
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Let depth.f / be the number of equivalence classes in the points-to graphGf . AGP D .VP ,EP /
is initialised as follows. For every parameter f of P , we add the depth.f / C 1 nodes that

represent f (which is V f0 ), V f1 , : : : ,V fdepth.f / and the depth.f / edges f
true
�! V

f
1 , V f1

true
�!

V
f
2 , : : : ,V fdepth.f /�1

true
�! V

f

depth.f /. If Gf has a cycle (at its end), we also add V fdepth.f /
true
�!

V
f

depth.f /.

V
f
1 , : : : ,V fdepth.f / are called virtual variables, each of which is used to represent the set of

non-local locations passed from P ’s callers and accessed by P ’s dereferenced formal parameters

during the analysis. Intuitively, V fi stands for
‚…„ƒ

� � � � � f with exactly i �’s if i < depth.f / and all
‚…„ƒ

� � � � �f ’s with depth.f / or more �’s if i D depth.f /. Thus, each guarded edge thus introduced
represents a points-to relation that always holds because the guard is true.

When Gf has a cycle, our parameterisation-based approach looks seemingly conservative

because V fdepth.f / represents
‚…„ƒ

� � � � � f ’s with depth.f / or more �’s. However, as suggested by the
statistics given in Figure 2 and evaluated further in our experiments in Section 4.5, little precision is
lost for real code.

Each virtual variable V fi is created with empty points-to information in pre-analysis but will

be iteratively updated (or filled up) during the subsequent pointer analysis. The domain of V fi ,

denoted dom.V fi /, is simply the i-th equivalence class in the points-to graph Gf , with i starting
from 1.

Example 2
AGfoo is initialised as shown in Figure 5(b), except that all the virtual variables are empty ini-
tially. After Steensgaard’s analysis, the points-to graphs for Gx, Gy and Gz are x ! e1 ! e2,
y ! e1 ! e2 and z ! e3 ! e2, where e1 D ¹p1,q1,a1,b1º, e2 D ¹i,j,k,gº and
e3 D ¹r1,c1º. Thus, each formal parameter is associated with two virtual variables. In addition,
dom.V x

1 /D dom.V y
1 /D e1, dom.V x

2 /D dom.V y
2 /D e2, dom.V z

1 /D e3 and dom.V z
2 /D e2.

Lemma 1
Given a formal parameter f , V fi and V fj never alias with each other if i and j are different.

Proof
As each virtual variable represents an equivalence class created by Steensgaard’s analysis, therefore,
dom.V fi /\ dom.V fj /D ;. Hence, V fi and V fj do not alias. �

4.3. Top-down analysis

During a top-down phase, ICON resolves all the constraints in a program except that the side effects
of all callsites are ignored. As a result, the points-to information propagated interprocedurally only
flows from a caller to its callees. By summarising the side effects of a procedure using a transfer
function in terms of virtual variables, this phase is surprisingly simple and efficient. Andersen’s
analysis is simply performed on the constraint graphs of all procedures in a program simulta-
neously except the guarded constraint resolution described in Section 4.1 is used. To disregard
the side effects of a callee invoked at a callsite, we simply do not apply its transfer function at
the callsite.

The new points-to information is propagated downwards from a caller into its callees. Let P be
a procedure invoked at a callsite. Let f be a formal parameter of P and a the corresponding actual
parameter at the callsite. Whenever some new points-to information for a is discovered, it is prop-
agated into the virtual variables V f1 , : : : ,V fdepth.f / of f . For each target x pointed by a directly or

indirectly such that x 2 dom.V fi /, two cases are distinguished. If x is a virtual variable, then x is

flattened so that all the actual points-to targets represented by x are inserted into V fi . Otherwise, x

itself is inserted into V fi .
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Example 3
Consider the top-down phase performed during the first iteration in Figure 5(b). The constraint
graph for foo initially consists of the four constraints in lines 17–20 and those in its alias graph.
In main, there are two callsites to foo. The points-to relations for their actual parameters are dis-
covered in lines 5–7 in main. There are six virtual variables for foo with their domains given in
Example 2. By propagating the new points-to relations discovered in main into these virtual vari-
ables, which are empty initially, we obtain foo’s alias graph in Figure 5(b). Note that p! p1! i
and a ! a1 ! k are propagated into V x

1 and V x
2 , q ! q1 ! j and b ! b1 into V y

1 and V y
2 ,

and r ! r1 and c ! c1 into V z
1 and V z

2 . Once Andersen’s analysis (using guarded constraint
resolution) is completed, the fixed-point found for foo is given in Figure 5(b).

Suppose we add a call goo(x) inside foo, where goo(int **s) { ... } is unspecified
here. As x ! V x

1 , where V x
1 D ¹p1,a1º, then p1 and a1 will be propagated into the virtual

variable V s
1 of goo after the points-to target V x

1 is flattened because V x
1 is virtual.

During top-down analysis, the call graph of a program is updated as follows. First, the call graph
is expanded on the fly whenever a new callee pointed by a procedure pointer is detected. Second,
each recursion cycle, that is, strongly connected component (SCC), detected is collapsed so that all
procedures contained inside are analysed context insensitively.

4.4. Bottom-up analysis

During a bottom-up phase, ICON resolves all the constraints in a program by accounting for the
side effects of all callsites. As a result, the points-to information propagated interprocedurally flows
upwards from a callee into its callers. Each SCC has its own constraint graph. Andersen’s analysis
is applied to these constraint graphs separately using our guarded constraint resolution.

We traverse the SCCs in a program’s call graph in their reverse topological order. On visiting an
SCC, we discover its new points-to relations parametrically in terms of the virtual variables at its
entry. At the same time, its interprocedural points-to side effects on virtual variables are obtained
iteratively. The entry of an SCC is formed by combining the entries of all procedures contained in
the SCC admitting calls from outside the SCC. Thus, their alias graphs are naturally merged. For
this reason, we shall speak of SCCs and procedures interchangeably below.

ALGORITHM 2: Bottom-up analysis

1 for each SCC P in the program’s call graph in reverse topological order do
2 Stage 1: UPDATEALIASGRAPH(P )
3 Stage 2: APPLYTRANSFUN(P )
4 Stage 3: SOLVECONSTRAINTS(P )

end

As shown in Algorithm 2, an SCC P is analysed in three stages. First, P ’s alias graph is updated
to establish any new aliasing relations for its virtual variables (Section 4.4.1). Second, the interpro-
cedural points-to side effects at P ’s callsites are accounted for (Section 4.4.2). Finally, a new round
of guarded constraint propagation is started to discover more points-to relations for P , if needed
(Section 4.4.3). Because of a cyclic dependence between stages 2 and 3, Section 4.4.3 can be read
before Section 4.4.2 to ease understanding.

4.4.1. Stage 1: Updating alias graphs. After the preceding top-down phase in the current iteration
is over, some virtual variables of a procedure P may contain new points-to targets. As a result, there
may be new aliases formed among the virtual variables of P . Note that the virtual variables of the
same parameter do not alias with each other by Lemma 1.

UPDATEALIASGRAPH given in Algorithm 3 is simple. We examine every pair of parameters f
and g to look for new aliasing relations (line 1). If f and g are discovered not to alias in pre-analysis,
we are finished (lines 3 and 4). Otherwise, we proceed to discover new aliasing relations between
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ALGORITHM 3: UPDATEALIASGRAPH(P ) //AGPD.VP ,EP /

1 repeat
2 for every pair of formal parameters f and g of P do
3 if NON-ALIAS.f ,g/ then
4 continue

end

5 for every pair of virtual variables V fi and V gj in VP (for some i and j ) such that

V
f
i \V

g
j ¤; do

6 if there exists C.V fi ,V gj /D V
f
i \ V

g
j ¤ ; encoded earlier in line 8 then

7 continue
end

8 Encode C.V fi ,V gj / as V fi \ V
g
j ¤ ;

9 Add a new aliasing variable Af ,g
i ,j , which is a placeholder standing for V fi \ V

g
j

10 Add V fi�1
C.V

f

i
,V g
j
/

�! A
f ,g
i ,j and V gj�1

C.V
f

i
,V g
j
/

�! A
f ,g
i ,j

where V f0 denotes f and V g0 denotes g by the construction of an alias graph (when
i D 1)

end
end

until11 no new aliases are found;

V
f
i , a virtual variable of f , and V gj , a virtual variable of g (line 5). We introduce a new aliasing

relation between V fi and V gj in P ’s alias graph (lines 8–10) if it is not encompassed by an existing

one (lines 6–7). In line 9, Af ,g
i ,j symbolises V fi \ V

g
j but is not actually computed. Such aliasing

variables serve as a conduit to allow points-to information to be propagated along aliased locations.

Example 4
Let us apply UpdateAliasGraph to foo during the second iteration illustrated in Figure 5(c).
Initially, foo’s alias graph is the same as that in Figure 5(b) except that the contents of all virtual
variables are shown as in Figure 5(c). Because V x

1 \ V
y
1 D ¹q1º, C

x,y
1,1 is introduced to encode

V x
1 \V

y
1 ¤ ;. By using Ax,y

1,1 to symbolise V x
1 \V

y
1 , two new points-to relations, V x

0

C.V x
1

,V y
1
/

�! A
x,y
1,1

and V y
0

C.V x
1

,V y
1
/

�! A
x,y
1,1 , are introduced, where V x

0 and V y
0 stand for x and y, respectively. Similarly,

because V x
2 \V

y
2 D ¹j,gº, C

x,y
2,2 is introduced to encode V x

2 \V
y
2 ¤ ;. By usingAx,y

2,2 to symbolise

V x
2 \ V

y
2 , two new points-to relations, V x

1

C.V x
2

,V y
2
/

�! A
x,y
2,2 and V y

1

C.V x
2

,V y
2
/

�! A
x,y
2,2 , are introduced. As

a result, foo’s alias graph has been updated from Figure 5(b) to (c).

It is easy to see that UPDATEALIASGRAPH terminates as the number of aliasing relations is finite.
The following lemma states that all aliasing relations at the entry of a procedure are captured.

Lemma 2 (Aliasing)
Let f and g be two formal parameters of a procedure P . If V fi and V gj alias for some i and j ,

then there must exist an aliasing relation C and an aliasing variable A such that V fi�1
C
�! A and

V
g
j�1

C
�!A in P ’s alias graph, where C D C.V fi ,V gj / and AD Af ,g

i ,j .

Proof
Following from the construction of an alias graph given in Algorithm 3. �
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4.4.2. Stage 2: Applying transfer functions. Let us describe how to transfer context sensitively the
side effects of every callee Q invoked at each callsite I that is contained in a procedure P . For a
virtual variable v of Q, we write MQ

I .v/ to represent the subset of v that is propagated only from
the callsite I . For an aliasing condition c D vi\vj ¤ ; that appears inQ’s alias graph, we overload
MQ

I by writing MQ
I .c/ to mean MQ

I .vi /\MQ
I .vj /¤ ;, which represents the aliasing condition

created at the callsite I alone (as if the other callsites were non-existent).

ALGORITHM 4: APPLYTRANSFUN(P )

1 for each callsite I in P do
2 for each callee Q invoked at callsite I do
3 for each virtual variable V fi of Q do
4 S  �MQ

I .V
f
i /

5 for each .c, v/ 2 TransQ.V
f
i / do

6 if MQ
I .c/ holds then

7 if v is a virtual variable V gj of Q then

8 T  �MQ
I .V

g
j /

else
9 T  � ¹vº

end
10 for .s, t / 2 S � T do
11 Insert .true, t / into s’s points-to set in P ’s constraint graph

end
end

end
end

end
end

APPLYTRANSFUN given in Algorithm 4 is straightforward. The transfer function TransQ referred
to in line 5 is defined precisely in Section 4.4.3. It is worth emphasising that a guarded points-to
relation .c, v/ created in a callee Q is ignored at a callsite I when its guard MQ

I .c/ evaluates to
false at the callsite (line 6). As a result, the imprecision illustrated in Figure 1(b) is avoided.

Example 5
Consider Figure 5(c) again. Let us illustrate Algorithm 4 for main by applying Transfoo.V z

1 / D
¹.true,V x

2 /, .C
x,y
1,1 ,g/º to its two callsites at lines 9–10 where foo is invoked. We have P D main,

Q D foo and I 2 ¹9, 10º. In the first callsite at line I D 9, we know from Figure 5(c) that
Mfoo

9 .V z
1 / D ¹r1º and Mfoo

9 .V x
2 / D ¹i,jº. From the target .true,V x

2 /, the points-to relations

r1
true
�! i and r1

true
�! j are established at this callsite. For the other target .Cx,y

1,1 ,g/, we know that
Mfoo

9 .Cx,y
1,1 /D .Mfoo

9 .V x
1 /\Mfoo

9 .V
y
1 /¤ ;/D .¹p1,q1º \ ¹q1º ¤ ;/D .¹q1º ¤ ;/D true.

So the points-to relation r1
true
�! g is also found. For the second callsite at line I D 10,

Mfoo
10 .V

z
1 / D ¹c1º and Mfoo

10 .V
x
2 / D ¹kº. As Mfoo

10 .C
x,y
1,1 / D .Mfoo

10 .V
x
1 / \Mfoo

10 .V
y
1 / ¤

;/D .¹a1º \ ¹b1º ¤ ;/D .; ¤ ;/D false, only c1
true
�! k is found at this second callsite.

4.4.3. Stage 3: Solving constraints. The guarded constraint propagation is performed on the con-
straint graph of a procedure P using the rules given in Table I as follows [50] (by considering the
new points-to relations added to P ’s alias graph and the new ones introduced at P ’s callsites). First,
points-to cycles are detected and collapsed to make the constraint graph acyclic. Second, the points-
to information is propagated across the existing copy edges. Third, all load and store edges are
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processed, resulting in new copy edges to be added to the constraint graph. The process terminates
once a fixed point is reached.

Finally, the interprocedural points-to side effects of P are simply expressed on its virtual vari-
ables with one single transfer function, denoted TransP . In particular, TransP .V

f
i / is directly read

off as the points-to set of V fi in P ’s constraint graph. However, V fiC1 is not included because

�V
f
i D V

f
iC1, that is,

‚…„ƒ

� � � � � f D
‚…„ƒ

� � � � � f with i C 1 �’s in both sides represents a no-op
(assignment).

Example 6
Consider Figure 5(c). The points-to set at a node is not shown completely to avoid cluttering.
After a fixed point has been reached, the points-to sets ¹.true,g/º and ¹.true,V x

2 /, .C
x,y
1,1 ,gº will

be directly available at V y
1 and V z

1 , respectively. So, the transfer function Transfoo as shown is
trivially available.

4.5. Soundness and context sensitivity

As ICON represents a generalisation of Andersen’s analysis with context sensitivity being realised.
It suffices to argue briefly why the soundness of our analysis is still maintained. An analysis is
sound for a program if it over-approximates its points-to relations. In addition, we also examine the
precision achieved by ICON in terms of the accuracy of its points-to information.

Theorem 1 (Soundness)
ICON is sound.

Proof
Andersen’s analysis is sound. It suffices to show that its soundness is still maintained by ICON in
achieving context sensitivity in its three phases in Algorithm 1. Pre-analysis is sound as Steens-
gaard’s analysis is. Our top-down analysis performs essentially Andersen’s analysis with the side
effects of all callsites ignored. Such side effects are considered when performing Andersen’s anal-
ysis during our bottom-up analysis. Finally, all aliasing relations at procedure entries are tracked
by Lemmas 1 and 2, and our guarded constraint resolution rules are the same as the standard ones
except that copy edges are guarded by aliasing relations correctly established by Lemma 2. �

Recall that when the points-to graph Gf for a formal parameter f of a procedure P contains a

cycle at its end, V fdepth.f / stands for all
‚…„ƒ

� � � � � f ’s with depth.f / or more �’s in P . In this case,
some points-to relations may be over-approximated when P is analysed. Therefore, the following
theorem is stated under a caveat related to such imprecision inherited from Steensgaard’s analysis.

Theorem 2 (Context sensitivity)
Suppose the points-to graph Gf obtained in pre-analysis is acyclic for every formal parameter f
of every procedure P in a program. Then, ICON is context sensitive for the program (1) by at least
1-callsite and (2) by (acyclic) call paths if the formal parameters of every procedure are alias free.

Proof
If Gf is acyclic, then every virtual variable V fi for every procedure P represents precisely the set

of non-local locations that may be passed from its callers, that is,
‚…„ƒ

� � � � � a with exactly i �’s for each
corresponding actual parameter a. Therefore, statement (1) is true because ICON’s aliasing informa-
tion is at least 1-callsite accurate (line 6 in Algorithm 4). In the absence of aliasing at all procedure
entries, the side effects of every procedure are accounted for as if the procedure were cloned at each
of its callsites. Thus, statement (2) is true. �

It is possible to capture better the aliasing information at a procedure entry by using a more pre-
cise but more expensive pre-analysis or building its virtual variables on the fly together with ICON.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe



CONTEXT-SENSITIVE POINTER ANALYSIS USING PARAMETERISED SUMMARISATION

Figure 6. Context sensitivity of ICON.

This does not appear to be necessary in practice as Steensgaard’s analysis is a good choice for our
pre-analysis. Precision loss is small when some points-to graphs Gf ’s have cycles at their tails
(Section 4.2). For the 16 SPEC benchmarks used, gcc is the worst but with only 3.5% of all Gf ’s
containing cycles. The average across these benchmarks is only 1.3%.

Example 7
Let us illustrate Theorem 2 with two small programs. ICON is context sensitive by call paths in
Figure 6(a) due to the absence of aliases. Propagating the modification side effects of foo with
Transfoo.V u

1 / D ¹.true,V v
1 /º into bar, we obtain Transbar.V x

1 / D ¹.true,V y
1 /º. By propagating

the modification side effects of bar into its two callsites, we obtain p
true
�! i and a

true
�! j context

sensitively. In Figure 6(b), which is slightly modified from Figure 1(b), ICON is only 1-callsite con-

text sensitive. Given that V x
1 D ¹a,cº and V y

1 D ¹b,cº, V
z
1

true
�! g is created when the callsite

to foo in bar is analysed. As a result, x
true
�! g is generated when the callsite to bar in goo1 is

analysed. Similarly, y
true
�! g is generated when the callsite to bar in goo2 is analysed. However,

the spurious x
true
�! g will be avoided if a 2-callsite-context-sensitive analysis is used.

By using virtual variables, ICON is more precise than a 1-callsite-sensitive analysis (in the same
inclusion-based framework with recursion cycles collapsed in both cases) and makes a good tradeoff
between efficiency and precision as evaluated extensively in the following text.

5. EVALUATION

In our experimental validation, we show that ICON has met the three design principles mentioned
earlier in Section 1: precision, efficiency and simplicity. We present our results and analysis for 21
C/C++ programs with a total of 2.7 MLOC, including the 15 C programs and 1 C++ from SPEC2000
(600 KLOC) as well as five open-source C applications (2.1 MLOC). The five applications are
wine-0.9.24 (a tool that allows windows applications to run on Linux), icecast-2.3.1
(a steaming media server), gdb-6.8 (a debugger), httpd-2.0.64 (an HTTP server) and
sendmail-8.14.2 (a general-purpose Internet email server).

Some statistics on these 21 C/C++ programs, which are obtained on their intermediate represen-
tations (including library code) before procedure pointers are resolved, are given in Table II. We will
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Table II. Benchmark characteristics (the last two columns are produced with no procedure pointers
resolved).

#Callsites Largest
Program KLOC #Procs #Pointers #Loads+Stores Total Indirect #SCCs SCC

164.gzip 8.6 113 3004 586 418 2 0 0
175.vpr 17.8 275 7930 2160 1995 2 0 0
176.gcc 230.4 2256 134380 51543 22353 140 179 398
177.mesa 61.3 1109 44582 17320 3611 671 1 1
179.art 1.2 29 600 103 163 0 0 0
181.mcf 2.5 29 1317 526 82 0 1 1
183.equake 1.5 30 1203 408 215 0 0 0
186.crafty 21.2 112 11883 3307 4046 0 5 2
188.ammp 13.4 182 9829 1636 1201 24 6 2
197.parser 11.4 327 8228 2597 1782 0 42 3
252.eon 41.2 1296 41950 4001 12733 80 17 1
253.perlbmk 87.1 1079 54816 20900 8470 58 12 322
254.gap 71.5 857 61435 22840 5980 1275 33 20
255.vortex 67.3 926 40260 11256 8522 15 12 38
256.bzip2 4.7 77 1672 434 402 0 0 0
300.twolf 20.5 194 20773 8657 2074 0 5 1
gdb-6.8 474.5 7810 337706 105917 52 462 2967 170 128
httpd-2.064 128.1 3000 60027 18450 3959 200 12 4
icecast-2.3.1 22.3 603 15098 9779 877 40 14 1
sendmail-8.14.2 115.2 2656 107242 29220 16973 381 31 76
wine-0.9.24 1338.1 77829 1330840 137409 362787 23523 251 313

also briefly discuss and analyse our results on the 12 C/C++ benchmarks from SPEC2006, which
reveal the same trend as the 21 programs focused on in this paper.

Our computer platform is a 3.0 GHz quad-core Intel Xeon running Red Hat Enterprise Linux 5
(Linux kernel version 2.6.18) with 16 GB memory.

5.1. Methodology

There are only a few earlier attempts [42–45] to achieve context sensitivity on top of Andersen’s
analysis for C/C++. As discussed in Section 6, FULCRA [43] represents a state-of-the-art solution.
It is also the most precise inclusion-based analysis because it clones (conceptually) the statements
in a procedure with interprocedural points-to side effects and inlines them at its callers.

Therefore, we compare ICON and FULCRA in terms of their efficiency and precision on analysing
large C/C++ programs. Just like ICON, FULCRA also collapses the recursion cycles (or SCCs) in a
program so that the procedures in an SCC are analysed context insensitively. Otherwise, FULCRA

is even more unscalable, especially for large programs [43].
We show that ICON spends just under 35 min on analysing all the 21 programs in the benchmark

suite (an average of less than 1.7 min per program) while achieving nearly the same precision as
that of FULCRA. In contrast, FULCRA spends over 2 h in analysing 19 programs and fails to run to
completion in 5 h for the remaining two. To highlight further the importance of our parameterisation-
based approach, we also demonstrate the performance advantages of ICON over NONPA. Recall that
NONPA is a non-parameterised version of ICON. So, these two analyses have exactly the same
precision.

We measure the precision of an analysis in terms of its capability in alias disambiguation and the
quality of the SSA form constructed for a program. These two metrics are believed to be critically
important in determining the effectiveness of compiler optimisations.

5.2. Implementation

We have implemented ICON, NONPA and FULCRA in Open64 (version 5.0), an open-source
industrial-strength compiler, on its High WHIRL IR at IPA (interprocedural analysis) phase. All
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the analyses are offset-based field-sensitive, by using an existing field-sensitive analysis module in
Open64 modified to work with our guarded constraint resolution. In this module, the positive weight
cycles that arise from processing fields of struct objects [49] are detected and collapsed. The maxi-
mum number of offsets considered for a struct is 256, with the last one representing the 256th and all
subsequent offsets available in the struct. However, arrays are considered monolithic. Heap objects
are modelled with context-sensitive heap cloning [51, 52] for allocation wrappers. All wrappers are
identified and treated as allocation sites in the manner as described in [53,54]. All the three analyses
are compiled under the optimisation flag ‘-O2’ in Open64.

We have implemented FULCRA by following its algorithms [43]. For its top-down phase, we
use the code implemented by the Open64 team and already made available in Open64, which
is implemented by following the rules in [43, Figure 4.3]. For its bottom-up phase, we coded its
summarisation using [43, Figure 4.11] and constraint compaction using [43, Figure 4.15].

We have extended an existing implementation of wave propagation [50] in Open64 to support con-
straint resolution for all the three analyses evaluated. As discussed in Section 2.1, global variables
are tracked separately for efficiency considerations, without participating in procedure summarisa-
tion. It is worth mentioning again that in each analysis, the recursion cycles (or SCCs) in a program
are merged so that the procedures in each SCC are analysed context insensitively.

5.3. Results and analysis

We first show that ICON is nearly as precise as FULCRA (which is context sensitive by acyclic call
paths) for the 21 programs given in Table II. Note that NONPA is a non-parameterised version of
ICON and thus has the same precision as that of ICON. We then analyse why ICON achieves such
precision even though running significantly faster than FULCRA and NONPA.

5.3.1. Precision. The aliasing information is used extensively to guide compiler optimisations in
various passes of Open64’s backend, for example, Whirl Optimiser, Loop-Nest Optimiser and Code
Generator. As shown in Table III, ICON detects the same or nearly the same percentage of non-alias
pairs in all the 21 benchmarks. This percentage metric is used because different aliasing relations

Table III. Alias disambiguation and SSA quality of ICON and FULCRA (‘=’ means ‘same as left’).

Alias disambiguation SSA quality
#Queries #Not Aliased (%) #�’s #�’s

Program FULCRA ICON FULCRA ICON FULCRA ICON FULCRA ICON

164.gzip 1483 = 38.57 = 10582 = 12252 =
175.vpr 23557 = 75.24 = 26386 = 34172 =
176.gcc 101187 101134 31.58 31.11 482184 482296 580224 580263
177.mesa 144328 144398 32.13 32.08 30536 30541 71923 71935
179.art 3772 = 84.51 = 2697 = 3396 =
181.mcf 8588 = 30.34 = 1363 = 2625 =
183.equake 9422 = 80.11 80.09 7768 = 8508 =
186.crafty 15545 = 50.12 = 303532 = 243282 =
188.ammp 38893 = 43.87 = 20539 = 28320 =
197.parser 9529 9636 8.36 8.32 23855 = 33161 33165
252.eon 84838 = 18.56 = 196940 = 309167 =
253.perlbmk 98090 = 12.81 = 135050 135059 175081 175097
254.gap 19360 = 2.11 = 68632 = 105058 =
255.vortex 81542 = 32.31 = 210699 = 302539 =
256.bzip2 2404 = 54.91 = 4174 = 5515 =
300.twolf 92917 = 70.56 = 60575 = 66026 66158
gdb-6.8 >5 h 540650 >5 h 17.07 >5 h 722775 >5 h 959068
httpd-2.064 56689 = 11.41 = 167146 = 184687 =
icecast-2.3.1 7774 = 25.94 = 18810 = 32910 =
sendmail-8.14.2 144336 144398 30.71 30.67 517244 517286 581516 581599
wine-0.9.24 >5 h 434805 >5 h 29.88 >5 h 1743726 >5 h 1865159
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detected earlier can affect queries issued later. For both algorithms, the same alias analysis inter-
face, AliasAnalyzer, provided in Open64 is used to issue alias queries generated by various compiler
optimisations. Only the ones that require the results of a pointer analysis to disambiguate are issued.

Many program analysis and compiler optimisations are nowadays performed on SSA. In Open64,
SSA construction is intraprocedural based on the approach introduced in [4]. For each store �x D y,
a v D �.v/ operation is introduced for each location v pointed by x. Similarly, for each load x D �y,
a �.v/ operation is introduced for each location v pointed by y. When converted to SSA form, each
v D �.v/ is treated as both a def and use of v and each �.v/ as a use of v. In the absence of strong
updates, the def v must incorporate the pointer information from both y and the use v. As shown
in Table III, ICON and FULCRA give rise to nearly the same SSA representations in all benchmarks
(measured in terms of � and � operations). For a benchmark, ICON results in the same SSA as
FULCRA if ICON scores two =’s, one for column ‘#�’s’ and one for column ‘#�’s’.

These results show that ICON is nearly as precise as FULCRA in terms of the quality of the built
SSA form and the precision of the discovered alias information.

5.3.2. Efficiency. From the analysis times given in Table IV for the three analyses compared, we
see that ICON is the only one that scales to millions of lines of code.

Comparing ICON and FULCRA. FULCRA spends over 2 h analysing the 16 programs from
SPEC2000 (totalling 600 KLOC) and fails to terminate within 5 h when analysing gdb and wine
(totalling 1.8 MLOC). In contrast, ICON spends just under 7 min on SPEC2000 and just under
26 min on both gdb and wine together. For the other three applications, httpd, icecast and
sendmail, ICON is also faster.

FULCRA is not scalable when analysing programs with large recursion cycles, as also reported
by its author in [43, Table 4.3]. FULCRA conservatively identifies the side-effect-causing constraints
(called critical edges) of a callee, then ‘inlines’ them at its callers, and finally, resolves them at those
callers to achieve cloning-based context-sensitivity. There are three reasons affecting its scalability.
First, such critical edges are recomputed (conservatively) whenever a callee is re-summarised. Sec-
ond, more edges than necessary may be pasted from the callee into a caller, causing a rippling effect
upwards its call chains. Third, the pasted edges are solved repeatedly at different callsites. As a

Table IV. Analysis times of ICON, NONPA and FULCRA.

Analysis time (s)
Program ICON NONPA ICON Speedup FULCRA ICON Speedup

164.gzip 0.03 0.03 1.00 0.03 1.00
175.vpr 0.07 0.16 2.29 0.15 2.14
176.gcc 161.60 689.42 4.27 3805.01 23.55
177.mesa 39.56 87.60 2.21 94.32 2.38
179.art 0.00 0.00 1.00 0.00 1.00
181.mcf 0.02 0.01 0.50 0.01 0.50
183.equake 0.01 0.02 2.00 0.01 1.00
186.crafty 0.08 0.14 1.75 0.13 1.63
188.ammp 0.12 0.20 1.67 0.14 1.17
197.parser 0.44 0.67 1.52 1.33 3.02
252.eon 16.70 93.70 5.61 88.60 5.31
253.perlbmk 81.75 615.32 7.53 3107.28 38.01
254.gap 63.35 290.61 4.59 390.87 6.17
255.vortex 19.59 37.66 1.92 44.10 2.25
256.bzip2 0.01 0.02 2.00 0.02 2.00
300.twolf 0.11 0.41 3.73 0.36 3.27
gdb-6.8 586.51 2958.02 5.04 >5 h > 30
httpd-2.064 67.84 153.22 2.26 148.46 2.19
icecast-2.3.1 7.23 26.56 3.67 27.17 3.76
sendmail-8.14.2 49.75 220.08 4.42 380.08 7.64
wine-0.9.24 948.75 >5 h > 17 >5 h > 17
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Table V. Alias graph Statistics.

Average #nodes in alias graphs over #Aliasing variables per procedure
Program Total #nodes in all constraint graphs Avg Max

164.gzip 4.94 0.15 2
175.vpr 13.81 0.71 8
176.gcc 4.95 0.69 12
177.mesa 14.39 0.68 9
179.art 3.33 0.00 0
181.mcf 10.10 1.00 5
183.equake 5.07 0.10 1
186.crafty 1.46 0.05 1
188.ammp 4.41 0.30 3
197.parser 5.72 0.41 6
252.eon 5.27 0.15 4
253.perlbmk 1.78 0.13 5
254.gap 2.59 0.51 8
255.vortex 13.01 0.51 8
256.bzip2 4.25 0.00 0
300.twolf 1.83 0.49 5
gdb-6.8 9.88 0.45 16
httpd-2.064 3.63 0.08 5
icecast-2.3.1 2.20 0.05 2
sendmail-8.14.2 5.98 0.45 12
wine-0.9.24 4.21 0.66 15
Average 5.85 0.36 6

result, many edges in a program’s constraint graph are introduced unnecessarily, slowing down the
analysis performance. Among the 19 benchmarks analysable by FULCRA, gcc is the most costly
to analyse, taking a little over an hour to complete, because of a large number of constraints moved
from callees to their callers during its analysis. In contrast, ICON spends less than 3 min in analysing
this benchmark. It should be noted that both FULCRA and ICON analyse all the 21 programs with
their SCCs collapsed.

Comparing ICON and NONPA. NONPA does not terminate within 5 h when analysing wine. For
the remaining 20 benchmarks, NONPA spends 5173.85 s (>86 min) while ICON spends 1094.77 s
(<19 min).

Full parameterisation has no benefits for small programs such as art, equake and gzip or
even hurts performance in the case of mcf due to the use of virtual variables. However, signif-
icant performance improvements occur for large programs such as eon, gap, gcc, perlbmk,
gdb, sendmail and wine. This is because these programs have a larger number of pointers as
well as loads and stores (Table II). For some large programs such as mesa, vortex and vpr, the
improvements are less remarkable because they require more virtual variables to be used, as shown
in Table V. In the case of httpd, with many pointers as well as loads and stores but few virtual
variables, the improvement is small because the number of levels of indirections among its pointers
is small (Figure 2).

More analysis. To the best of our knowledge, ICON is the fastest context-sensitive inclusion-based
pointer analysis ever reported, at least measured in terms of the 16 C/C++ SPEC2000 benchmarks,
five open-source applications, and the 12 C/C++ SPEC2006 benchmarks (discussed in Section 5.4).
There are several reasons behind this.

� By using virtual variables to parameterise pointer information, ICON propagates points-to infor-
mation across copy edges significantly less frequently than FULCRA and NONPA, as shown in
Figure 7. This is particularly pronounced in the benchmarks for which ICON achieves the best
speedups. The analysis overhead thus incurred is small because the alias graphs, as shown in
Table V, are small.
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Figure 7. Number of times on processing copy edges by NONPA and FULCRA (normalised w.r.t. ICON).
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Figure 8. Percentage of virtual variables discovered after the first top-down phase is completed.
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Figure 9. Percentage of procedure pointer targets resolved after the first top-down phase is completed.

� Analyzing a program top-down rather than bottom-up first has two benefits. After the first top-
down phase is completed, two observations are made. First, the majority of aliasing variables
(77.88% on average) in a program have been introduced as shown in Figure 8. In several small
to medium benchmarks, such as ammp, equake, mcf and vpr, however, most aliases still
need to be discovered. Second, the majority of procedure pointer targets in a program have
also been resolved, as shown in Figure 9. However, in some benchmarks, such as gcc and
vortex, most of their indirect call edges will have to be resolved later, because they need to
be discovered with at least one bottom-up phase being performed.
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� Pre-analysis helps avoid unnecessary checks for aliasing (lines 3 and 4 in UPDATEALIAS-
GRAPH). Most of PFPs are not aliased as shown in Figure 10. On average, around 85% of the
procedures in a program are alias free.

Memory usage. Table VI compares ICON, FULCRA and NONPA in terms of memory usage. For
the 20 benchmarks that can be analysed by NONPA, ICON consumes 16% more memory on aver-
age. ICON needs extra space to store virtual variables but saves space as parameterisation reduces
the number of copy edges created (Figure 7). Compared with NONPA, ICON uses more memory in
15 of the 20 benchmarks that are analysable by NONPA. For some small benchmarks with a few
procedures and pointers (Table II), such as art, mcf and equake, ICON consumes slightly more
memory than NONPA. Some relatively large pointer-intensive benchmarks (Figure 2), including
mesa, eon, gap, vortex and httpd, require at least 20 MB of memory each to analyse in either
case. For these benchmarks, ICON requires more space to store virtual variables and thus consumes
slightly more memory than NONPA. For the largest benchmarks, such as gcc, perlbmk and gdb,
ICON has succeeded in exploiting parameterisation to reduce significantly the number of copy edges
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Figure 10. Percentage found to be aliased among all pairs of pointer formal parameters by pre-analysis.

Table VI. Memory usage of ICON, NONPA and FULCRA.

Memory usage (MB)
ICON increase ICON increase

Program ICON NONPA (ICON/NONPA) FULCRA (ICON/NONPA)

164.gzip 2.90 1.15 2.52 1.23 2.36
175.vpr 9.40 8.23 1.14 8.15 1.15
176.gcc 425.86 535.11 0.80 754.38 0.56
177.mesa 67.36 60.48 1.11 87.37 0.77
179.art 0.83 0.82 1.01 0.82 1.01
181.mcf 1.09 1.09 1.00 1.06 1.03
183.equake 1.07 1.07 1.00 1.07 1.00
186.crafty 5.93 5.32 1.11 5.41 1.10
188.ammp 7.21 7.01 1.03 6.81 1.06
197.parser 10.85 9.55 1.14 8.56 1.27
252.eon 68.07 58.07 1.17 59.90 1.14
253.perlbmk 131.54 186.18 0.71 306.18 0.43
254.gap 85.85 51.84 1.66 57.19 1.50
255.vortex 38.20 34.88 1.10 35.96 1.06
256.bzip2 2.18 1.67 1.31 1.71 1.27
300.twolf 12.22 12.13 1.01 12.21 1.00
gdb-6.8 1633.45 2333.45 0.70 >5 h >5 h
httpd-2.064 29.99 20.09 1.49 23.14 1.30
icecast-2.3.1 20.19 16.87 1.20 16.66 1.21
sendmail-8.14.2 132.58 116.11 1.14 120.38 1.10
wine-0.9.24 1820.88 >5 h >5 h >5 h >5 h
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created by NONPA (Figure 7). As a result, for gcc, perlbmk and gdb, ICON consumes only 80%,
71% and 70%, respectively, of the amount of memory consumed by NONPA.

Let us now compare ICON and FULCRA. For the 19 benchmarks that can be analysed by FULCRA,
ICON consumes 12% more memory on average. The extra amount of memory incurred by ICON

for small and medium benchmarks is negligible. However, for large benchmarks, ICON uses less
memory than FULCRA. In the case of gcc, mesa and perlbmk, ICON consumes only 56%, 77%
and 43%, respectively, of the amount of memory consumed by FULCRA, as FULCRA introduces a
large number of extra constraints when promoting side-effect-causing statements from a callee to
its callers, especially in the presence of large recursion cycles.

5.3.3. Simplicity. For this design goal, we aim to leverage the recent advances in inclusion-based
analysis so that context sensitivity can be achieved in the same constraint resolution framework. In
other words, the existing code base should be reused as much as possible.

ICON’s pre-analysis is bootstrapped by the standard Steensgaard’s unification-based analysis [2].
During each iteration, both the top-down and bottom-up phases are performed using the same con-
straint resolution engine based on an existing module for wave propagation [50] in Open64. This
module is modified so that guarded copy edges are handled in the presence of aliasing variables.

5.4. SPEC 2006

We briefly discuss the results obtained on comparing ICON and FULCRA using the 12 C programs
in SPEC2006 (totalling 1.0 MLOC). ICON is once again nearly as precise as FULCRA in terms of
their capabilities in alias disambiguation and the quality of the SSA form built for a program.

ICON spends only less than 14 min (803.04 s) in analysing all the 12 programs in SPEC2006. In
contrast, FULCRA spends over 48 min (2922.48 s) in analysing 10 benchmarks and fails to terminate
within 5 h for the remaining two benchmarks, 400.perlbench and 403.gcc. These are the top
two in SPEC2006 ranked in terms of how many pointers and SCCs they contain: 400.perlbench
has 13 283 pointers, 46 792 loads and stores and 30 SCCs (with the largest SCC containing 461 pro-
cedures), and 403.gcc has 35 697 pointers, 123 389 loads and stores and 317 SCCs (with the
largest SCC containing 436 procedures). As in the case of Table II, the statistics on SCCs are col-
lected before procedure pointers are resolved. For these two benchmarks, FULCRA is not scalable
for the same reason explained earlier for 176.gcc in Section 5.3.2.

6. RELATED WORK

Context sensitivity. There are many pointer analyses in the literature with different types of flow sen-
sitivity assumed: some are flow sensitive [32–35,38–40,46,55], some are inclusion based [28,44,45]
and some are unification based [47, 51, 56–58]. To account for the interprocedural side effects of a
procedure context sensitively, some pointer analyses resort to cloning [26, 45, 46], while others rely
on procedure summarisation [32, 34, 39, 40, 59, 60]. While binary decision diagrams can be used
to handle efficiently the exponential number of contexts by exploiting their similarities [26, 60, 61],
cloning-based algorithms are still not scalable to large programs. When context sensitivity is consid-
ered, different types of precision are distinguished if calling contexts are identified by full call paths
[34, 40], assumed aliases at callsites [32, 35], acyclic call paths (with the SCCs in the call graph
being collapsed) [34, 40] and approximated call paths within the SCCs [26, 39, 46]. The research
described in [29, 51] focuses on achieving scalability for context-sensitive heap cloning and is thus
orthogonal to this research.

There are some earlier attempts [42–45] on adding context sensitivity to Andersen’s analysis to
analyse C/C++ programs. Cloning [45] achieves context sensitivity trivially by analysing different
calls to a procedure using different clones of the procedure. FULCRA [43,44], which improves [42],
clones only the side-effect-causing constraints, that is, the so-called critical edges in a procedure.
The analysis introduced in [62] is demand driven rather than a whole-program analysis.
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ICON is more powerful than a 1-callsite-sensitive analysis and less so than a cloning-based
context-sensitive analysis when recursion cycles are collapsed in all cases (Theorem 2). Therefore, a
good balance between efficiency and precision is maintained to make ICON practical for compilers.

Parameterisation. To distinguish the side effects of a procedure context sensitively at its different
callsites, symbolic names have been used to represent points-to relations passed from its callers
into the procedure, such as invisible blocks [35, 46], auxiliary parameters [47], extended parame-
ters [39] and semi-parameterised spaces [40]. Some important benefits include improved precision
(due to more strong updates enabled) if flow sensitivity is considered [39,40] and faster analysis (by
propagating one symbolic name instead of all individual locations abstracted). In [47], its parameter-
isation is performed on a unification-based analysis. In [39,46], when flow sensitivity is considered,
some aliased symbolic names of a procedure are either allowed or merged, trading precision for effi-
ciency. In [27], the analysis proposed for Java uses parameterised points-to escape graphs to identify
memory blocks escaping from a method.

In this paper, we consider inclusion-based analysis without strong updates. The points-to val-
ues passed into a procedure are fully parameterised in terms of (symbolic) virtual variables. To
the best of our knowledge, this is the first paper exploiting fully parameterised pointer information
on inclusion-based pointer analysis, resulting in (1) faster convergence facilitated by parameterised
side-effect summarisation and (2) call-path-based context sensitivity in the special case when the
formal parameters of every procedure are alias free (Theorem 2).

Side-effect summarisation. There are two earlier summary-based approaches to achieving context
sensitivity, by using relevant context inference (RCI) [32] and partial transfer functions (PTFs) [39],
which were both originally proposed for flow-sensitive analysis. In the case of inclusion-based anal-
ysis, both are not as efficient as ICON. RCI builds one transfer function for a procedure eagerly by
assuming the presence of all possible aliases at its entry, which is unnecessarily costly as revealed
by (lack of) the aliasing relations in real code given in Table V. On the other hand, building multiple
PTFs for a procedure lazily based on different aliasing combinations at its callsites is also unneces-
sarily costly, as this would require multiple constraint graphs to be constructed for the procedure.
By exploiting the absence of strong updates, ICON is designed to perform its analysis quickly by
summarising a procedure iteratively in-place, that is, in the same constraint graph of the procedure.

Pre-analysis. An analysis can be bootstrapped with the results of a prior analysis that is faster but
less precise [33, 34]. In [40], Steensgaard’s analysis is performed first to assign a level to each
variable. Then, the program is re-analysed level by level for greater precision. In [54], Andersen’s
analysis is used to accelerate static detection of memory leaks for C/C++ programs. In this paper,
ICON is boosted by must-not-aliased information to accelerate its convergence.

7. CONCLUSION

We introduce a new context-sensitive pointer analysis on top of Andersen’s analysis that can scale
to millions of lines of C/C++ code, making it deployable in modern optimising compilers to drive
advanced compiler optimisations. We have validated its scalability in Open64 using a total of 21
C/C++ programs (totalling 2.7 MLOC), by comparing it with the state of the art. By summaris-
ing the points-to side effects of a procedure parametrically using virtual variables, our analysis is
significantly faster than the state of the art while yielding nearly the same precision.
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