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Abstract. Points-to analysis is a fundamental static analysis, on which
many other analyses and optimisations are built. The goal of points-to
analysis is to statically approximate the set of abstract objects that a
pointer can point to at runtime. Due to the nature of static analysis,
points-to analysis introduces much redundancy which can result in du-
plicate points-to sets and duplicate set union operations, particularly
when analysing large programs precisely. To improve performance, there
has been extensive effort in mitigating duplication at the algorithmic
level through, for example, cycle elimination and variable substitution.
Unlike previous approaches which make algorithmic changes to points-to
analysis, this work aims to improve the underlying data structure, which
is less studied. Inspired by hash consing from the functional programming
community, this paper introduces the use of hash consed points-to sets
to reduce the effects of this duplication on both space and time without
any high-level algorithmic change. Hash consing can effectively handle
duplicate points-to set by representing points-to sets once, and referring
to such representations through references, and can speed up duplicate
union operations through efficient memoisation. We have implemented
and evaluated our approach using 16 real-world C/C++ programs (more
than 9.5 million lines of LLVM instructions). Our results show that our
approach speeds up state-of-the-art Andersen’s analysis by 1.85× on av-
erage (up to 3.21×) and staged flow-sensitive analysis (SFS) by 1.69×
on average (up to 2.23×). We also observe an average ≥4.93× (up to
≥15.52×) memory usage reduction for SFS.

Keywords: Points-to analysis · Hash consing · Memoisation.

1 Introduction

Points-to analysis is a fundamental static analysis used to, for example, detect
memory errors [32, 53], detect concurrency bugs [9, 37], perform typestate veri-
fication [17, 51], enforce control-flow integrity [14, 15], perform symbolic execu-
tion [48, 49], and perform code embedding [10, 45]. The aim of points-to analysis
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is to compute an approximation of the set of abstract objects that a pointer can
refer to. Inclusion-based analysis, as the most commonly used form of points-
to analysis, formulates points-to resolution as a set constraint solving problem
whereby each program statement produces one or more set constraints which
are translated into union operations between two points-to sets and are solved
until a fixed-point is reached.

When analysing real-world programs, many pointers may yield exactly the
same points-to sets during constraint resolution. This becomes more prevalent
especially as analyses become more precise. For example, unlike flow-insensitive
analysis which computes a single points-to set for each pointer, flow-sensitive
analysis computes and maintains points-to sets at different program points, but
unfortunately introduces many duplicate points-to sets. Table 1 provides the
proportions of duplicate points-to sets under two popular points-to analyses
(Andersen’s analysis [36] and staged flow-sensitive analysis or SFS [23]) for 16
real-world programs. Columns 2 and 5 show the number of pointers maintained
in the analyses. Columns 3 and 6 list the number of those pointers which refer
to the 5 most common points-to sets. Columns 4 and 7 list the proportions of
the pointers in Columns 3 and 6. The empty points-to set and pointers which
have an empty points-to set are excluded. Both Andersen’s analysis and SFS are
field-sensitive inclusion-based analyses, however, SFS maintains pointers on a per
program point basis to achieve flow-sensitivity, resulting in more pointers and
duplicate points-to sets. We see that, on average, the 5 most common points-to
sets are referred to by around 60% and 90% of pointers for Andersen’s analysis
and SFS, respectively. Clearly, repeatedly representing the same points-to sets
is redundant, memory-wise.

Furthermore, since the resulting points-to sets of many pointers are the same,
most may have reached that result with the same union operations and it is very
costly to perform duplicate unions. That is, if two pointers points-to set are the
same (i.e., pt(p) = pt(q)) by the end of the analysis, it is possible that both
points-to sets were built up through the same union operations. Thus, many
union operations are in fact duplicates of operations which have been previously
performed. This has strong implications on performance as conducting points-to
set unions produced by the set constraints forms a bulk of analysis time.

Both the number of duplicate points-to sets tracked and the number of unions
performed can be reduced but most previous solutions have been analysis-specific
requiring algorithmic changes, which may not be applicable to other points-to
analyses. For example, either, or both, can be achieved by merging equivalent
pointers offline [4, 21, 23, 22, 39] or online [20, 29, 34], selectively applying preci-
sion [30, 41], or carefully choosing how to solve constraints [35, 36]. Despite these
efforts, duplication still exists and pushing the boundaries through algorithmic
changes to the points-to analysis may lead to increasingly diminishing returns
on performance.

In this paper, we aim to explore solutions at the data structure level – which
is easily applicable to a range of points-to analyses – to reduce the influence
of these duplicate operations and points-to sets on time and space. We leverage
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Table 1: The number of pointers tracked, the number of those pointers which refer
to one of the 5 most common points-to sets, and that proportion for Andersen’s
analysis and SFS.

Program
Andersen SFS

Pointers Top 5 Prop. Pointers Top 5 Prop.

dhcpcd 21572 13651 63.28% 851784 839518 98.56%
nsd 38328 28022 73.11% 2423193 2399449 99.02%
tmux 49080 36999 75.39% 4331232 2483020 57.33%
gawk 47673 30631 64.25% 8467667 8353204 98.65%
bash 36924 27118 73.44% 6067608 5470244 90.15%
mutt 65756 44886 68.26% 8261029 7897442 95.60%
lynx 260220 181359 69.69% 17451804 16362946 93.76%
xpdf 105743 55651 52.63% 32507885 32387655 99.63%
python3 184189 119043 64.63% 114439707 94946890 82.97%
svn 213125 167042 78.38% 91817728 88324837 96.20%
emacs 250739 163956 65.39% 252728727 248665346 98.39%
git 243388 132674 54.51% 182364152 155306147 85.16%
kakoune 182631 55491 30.38% 37689778 37157978 98.59%
ruby 114277 66634 58.31% 71941456 69333326 96.37%
squid 725067 389949 53.78% 189749146 159336073 83.97%
wireshark 326974 147939 45.24% 23789094 22960321 96.52%

Geo. Mean 60.48% 91.19%

the idea of hash consing [7, 16, 19, 24], which aims to quickly identify structurally
equivalent values, from the functional programming community, to help solve the
problem of duplicate points-to sets and unions operations. Hash consing is the
process of maintaining single immutable representations of data structures which
can then be shared elsewhere referentially [38, 42]. In our context, this means
that each unique points-to set is maintained only once such that points-to sets
becomes persistent.

Originally, hash consing was used to memoise construction to avoid creating
the same object twice, transforming construction into a hash table lookup of the
elements of the object. If we view our union operation as a constructor, taking
two points-to sets to create a new one, we can transform many union operations
into hash table lookups (of a pair of references), which would be much cheaper
than standard set unions as points-to sets become larger. Thus hash consing
is a means for efficient memoisation allowing us to perform faster set unions.
During points-to set resolution, we build up hash tables of previously performed
operations, and use those results if the same operation occurs again.

Moreover, with points-to sets being represented as references we can perform
fast comparisons between such sets in constant, instead of linear, time. Thus, we
also explore the possibility of practically skipping some set operations completely
by exploiting mathematical set properties. For example, since each points-to set,
e.g., x and y, is represented as a reference, the operands of a union like x ∪ y
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can be compared cheaply for equality, in which case the result is x/y, since the
union operation is idempotent.

Our approach is efficient yet simple to implement, independent to the points-
to analysis used, maintains precision, and works alongside the many algorithmic
advances listed earlier. Moreover, our approach does not mandate a specific rep-
resentation of points-to sets as long as each pointer would otherwise be assigned
discrete points-to sets. As far as we know, this paper is the first to describe gen-
eral hash consing and its effects to the base aspects of inclusion-based points-to
analysis. We have implemented our approach on top of points-to analysis frame-
work SVF [47] and evaluated our approach using 16 real-world open-source pro-
grams (more than 9.5 million lines of LLVM instructions). For these programs,
we find an average improvement in time taken of 1.85× for Andersen’s analysis
and 1.69× for SFS, and we observe improvements of up to 3.21× and 2.23× for
the two analyses, respectively. Along with improved time, we see roughly the
same memory usage for Andersen’s analysis and an average reduction of ≥4.93×
(up to ≥15.52×) for SFS.

To summarise, our contributions are:

– Persistent points-to data structure using hash consed points-to sets with less
memory for precise whole program points-to analyses.

– The use of hash consing to more efficiently perform points-to set union op-
erations through cheap memoisation and exploitation of set properties.

– An evaluation of the impact of hash consing on field-sensitive Andersen’s
analysis and SFS using 16 real world open source C/C++ programs, as well
as a discussion on the amount of duplication found in these analyses.

2 Background and Motivation

This section first introduces a program representation for points-to analysis to be
built upon. We then provide a brief summary of whole-program flow-insensitive
and flow-sensitive inclusion-based points-to analysis. Finally, we give two short
examples to illustrate the presence of duplicate points-to sets and union opera-
tions produced by these two analyses to motivate how hash consing can help.

2.1 Background

Like many other C/C++ analyses [2, 4, 23, 30, 47], we perform points-to analysis
on top of the LLVM-IR of a program. In LLVM’s partial SSA form [28], the set
of all program variables V = O∪P is split into two subsets: (1) O, or the set of
address-taken variables, which represents all possible abstract memory objects
and their fields, and (2) P, or the set of top-level variables, which represents all
stack virtual registers (symbols starting with %) and global pointers (symbols
starting with @). Top-level variables, P, are explicit in that they are accessed
directly whereas address-taken objects, O, are implicit and can only be accessed
indirectly at Load and Store instructions through top-level variables.
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Given p, q ∈ P and o ∈ O, after the SSA conversion, we represent a C/C++
program using the following five types of instructions:

– Alloc instructions, p = alloco, representing allocation of abstract object o.
– Copy instructions, p = q, representing assignment between two top-level

pointers.
– Field instructions, p = &q→ fi, representing assignment of the i-th field

(fi) of the object which q points to.
– Load instructions, p = ∗q, representing assignment from a dereferenced

top-level pointer.
– Store instructions, ∗p = q, representing assignment to an abstract memory

object through a dereferenced top-level pointer.

With the above instructions, Figure 1 presents a flow-insensitive inclusion-
based analysis commonly referred to as Andersen’s analysis [1] augmented with
field-sensitivity [35]. Each pointer p is assigned a points-to set pt(p) representing
an approximation of the set of abstract memory objects that p may point to.
Andersen’s analysis is performed by generating constraints between points-to
sets according to the five inference rules. The Copy, Load, and Store rules
produce inclusion or union constraints like pt(q) ⊆ pt(p) which means the points-
to set of p is the union of its old value and the points-to set of q, i.e., pt(p) =
pt(p)∪ pt(q). The produced constraints are iteratively solved with points-to sets
growing monotonically until a fixed-point is reached.

[ALLOC]
p = alloco
{o} ⊆ pt(p)

[COPY]
p = q

pt(q) ⊆ pt(p)
[FIELD]

p = &q→fi o ∈ pt(q)

{o.fi} ⊆ pt(p)

[LOAD]
p = ∗q o ∈ pt(q)

pt(o) ⊆ pt(p)
[STORE]

∗p = q o ∈ pt(p)

pt(q) ⊆ pt(o)

Fig. 1: Inference rules for a flow-insensitive inclusion-based points-to analysis.

More precise analyses typically need to compute and maintain more points-to
relations. For example, in a flow-sensitive analysis, an object accessed at different
program points can have different points-to sets, thus requiring more points-
to sets and constraints. Figure 2 gives a simple inclusion-based flow-sensitive
analysis [30] augmented with field-sensitivity. Since the analysis is flow-sensitive,
the order of instructions now matters and so each instruction is prefixed by a
label like ` to represent the points-to information at a particular program point.

Unlike flow-insensitive analysis which computes a single points-to set for each
variable, flow-sensitive analysis maintains separate points-to sets at different pro-
gram points for each memory object. To represent points-to information flow-
sensitively, points-to sets of memory objects are maintained before (pt[`](o)) and
after (pt[`](o)) instructions. Thus, points-to sets need to be propagated within
program points through the [SU/WU] rule and, if there exists control flow be-
tween two instructions (` → `′), across program points through the [CFLOW]
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[ALLOC]
` : p = alloco
{o} ⊆ pt(p)

[COPY]
` : p = q

pt(q) ⊆ pt(p)
[FIELD]

p = &q→fi o ∈ pt(q)

{o.fi} ⊆ pt(p)

[LOAD]
` : p = ∗q o ∈ pt(q)

pt[`](o) ⊆ pt(p)
[STORE]

` : ∗p = q o ∈ pt(p)

pt(q) ⊆ pt[`](o)

[SU/WU]
` : ∗p = o ∈ O \ kill(`)

pt[`](o) ⊆ pt[`](o)
[CFLOW]

`→ `′

∀o ∈ O. pt[`](o) ⊆ pt[`′](o)

kill(` : ∗p = )
∆
=


{o} if pt(p) ≡ {o} ∧ o is singleton

O if pt(p) ≡ ∅
∅ otherwise

Fig. 2: Inference rules for a field-sensitive and flow-sensitive inclusion-based
points-to analysis.

rule. This all results in extra set unions between points-to sets being performed.
With the kill function, the [SU/WU] rule can perform strong updates for sin-
gletons [30], another way flow-sensitivity produces more precise results.

To reduce some of these redundancies, state-of-the-art flow-sensitive analyses
like staged flow-sensitive analysis (SFS) [23] perform points-to propagation on a
sparse def-use graph rather than a control-flow graph of a program. Despite this,
redundancies still exist, and duplication is high, as will be shown in Section 4.

2.2 Motivating Examples

In this section, we show the duplication of points-to sets and operations that
occurs in flow-insensitive and flow-sensitive analyses. First, let us consider flow-
insensitive analysis of the small program fragment in Figure 3a where p, q, r, x, y ∈
P and o1, o2, o3, o4 ∈ O. Figure 3b shows the constraints produced to analyse
this program fragment following the rules in Figure 1. Since the analysis is flow-
insensitive, we solve for a points-to set per variable. We use pt(p) to denote the
points-to set of pointer p and use {o1}p to denote the value of pt(p) when it, for
example, contains the points-to target o1. In analysing the program fragment,
we assume pt(p) = {o1}, pt(q) = {o2}, and pt(r) = {o3, o4}.

In practice, these constraints are handed to a constraint solver [36, 35, 20, 13]
which will perform unions like those in Figure 3c until a fixed-point is reached,
i.e., when points-to sets no longer change. In Figure 3c, operations are numbered
with the constraints they correspond to and duplicate operations are highlighted
in grey. For brevity, we have only shown the first operation which would result
from a constraint. Ultimately, each constraint actually results in the same initial
union being performed so 3 of the 4 operations are duplicates of the first. In
real-world programs, such points-to sets may be large, containing hundreds or
thousands of objects, meaning repeatedly performing these unions can be ex-
pensive. The final resulting points-to sets of the analysis are shown in Figure 3d,
with duplicates also highlighted in grey. We see that 5 of the 9 points-to sets
have occurred before, pointing to much duplication. This can be problematic as
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1 : ∗p = r;

2 : ∗q = r;

3 : x = ∗p;

4 : y = ∗q;

(a) Program
fragment.

1 : ∀o ∈ pt(p). pt(r) ⊆ pt(o)

2 : ∀o ∈ pt(q). pt(r) ⊆ pt(o)

3 : ∀o ∈ pt(p). pt(o) ⊆ pt(x)

4 : ∀o ∈ pt(q). pt(o) ⊆ pt(y)

(b) Constraints.

1 : {o3, o4}r ⊆ { }o1
2 : {o3, o4}r ⊆ { }o2

3 : {o3, o4}o1 ⊆ { }x

4 : {o3, o4}o2 ⊆ { }y

(c) Operations.

pt(p) = {o1} pt(q) = {o2} pt(r) = {o3, o4} pt(x) = {o3, o4} pt(y) = {o3, o4}

pt(o1) = {o3, o4} pt(o2) = {o3, o4} pt(o3) = { } pt(o4) = { }

(d) Result.

Fig. 3: Example program fragment in (a), the constraints generated for An-
dersen’s analysis in (b), the operations performed to fulfil the constraints in
(c), and the final results in (d). We assume pt(p) = {o1}, pt(q) = {o2}, and
pt(r) = {o3, o4}. Duplicate points-to sets and operations are highlighted in grey .

points-to sets grow, with statically sized representations, or as analyses introduce
more variables.

We shorten the program fragment above in Figure 4a3 to illustrate the same
issues in flow-sensitive points-to analysis. Figure 4b lists the constraints gen-
erated according to the rules in Figure 2 followed by the (initial) operations
performed to fulfil those constraints and the final result of the analysis in Fig-
ures 4c and 4d. We highlight duplicate operations and points-to sets in grey.

Since the analysis is flow-sensitive, we need to maintain points-to sets of
objects at program points for precise results, thus resulting in more pointers
being kept track of. By maintaining points-to sets at program points, we also
require more operations to handle the flow of control. This can all be seen by
the increase in number of operations and points-to sets in Figures 4c and 4d de-
spite the smaller program fragment. The improved precision can be seen through
the differing points-to sets of some objects at different program points, for ex-
ample, pt[1](o1) 6= pt[1](o1). However, this increased precision comes at a cost
of increased redundancy as some points-to sets do not differ between program
points, like those of o3 and o4. Thus, we see that there are only 4 unique points-
to sets out of 19, and 3 unique operations out of 14, meaning that the analysis
is maintaining duplicate points-to sets and performing duplicate operations.

We note that SFS, one of the analyses we evaluate our approach on, can
remove some of this duplication and redundancy through complex algorithmic
changes to the analysis in Figure 2, but much duplication still exists, as will
be seen in Section 4. We also note that although many points-to sets in these

3 Due to the large number of points-to sets and unions flow-sensitive analysis produces.
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1 : ∗p = r;

2 : ∗q = r;

(a) Program.

1 : ∀o ∈ pt(p). pt(r) ⊆ pt(o)

1 : ∀o ∈ O. pt[1](o) ⊆ pt[1](o)

1/2 : ∀o ∈ O. pt[1](o) ⊆ pt[2](o)

2 : ∀o ∈ pt(q). pt(r) ⊆ pt(o)

2 : ∀o ∈ O. pt[2](o) ⊆ pt[2](o)

(b) Constraints.

1 : {o3, o4}r ⊆ { }[1]o1 2 : {o3, o4}r ⊆ { }o2

1 : { }[1]o1 ⊆ {o3, o4}[1]o1 1/2 : {o3, o4}[1]o1 ⊆ { }[2]o1 2 : {o3, o4}[2]o1 ⊆ { }[2]o1

1 : { }[1]o2 ⊆ { }[1]o2 1/2 : { }[1]o2 ⊆ { }[2]o2 2 : { }[2]o2 ⊆ {o3, o4}[2]o2

1 : { }[1]o3 ⊆ { }[1]o3 1/2 : { }[1]o3 ⊆ { }[2]o3 2 : { }[2]o3 ⊆ { }[2]o3

1 : { }[1]o4 ⊆ { }[1]o4 1/2 : { }[1]o4 ⊆ { }[2]o4 2 : { }[2]o4 ⊆ { }[2]o4

(c) Operations.

pt(p) = {o1} pt(q) = {o2} pt(r) = {o3, o4}

pt[1](o1) = { } pt[1](o2) = { } pt[1](o3) = { } pt[1](o4) = { }

pt[1](o1) = {o3, o4} pt[1](o2) = { } pt[1](o3) = { } pt[1](o4) = { }

pt[2](o1) = {o3, o4} pt[2](o2) = { } pt[2](o3) = { } pt[2](o4) = { }

pt[2](o1) = {o3, o4} pt[2](o2) = {o3, o4} pt[2](o3) = { } pt[2](o4) = { }

(d) Result.

Fig. 4: Example program in (a), the constraints generated for a flow-sensitive
analysis in (b), the operations performed to fulfil the constraints in (c), and the
final results in (d). We assume pt(p) = {o1}, pt(q) = {o2}, and pt(r) = {o3, o4}.
Duplicate points-to sets and operations are highlighted in grey .

examples were empty sets which can be easily represented, real-world programs
show duplication of larger points-to sets and more complex union operations.

3 Approach

This section introduces hash consed points-to sets and its application to points-to
analysis. We then describe optimisations that can use hash consing to efficiently
exploit set properties for further performance improvement.

3.1 Hash Consed Points-To Sets

Hash consing is used to create immutable data structures which can be shared
(referentially) to avoid duplication. A common example of hash consing is string
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interning [18, §3.10.5] whereby a compiler or runtime stores strings in a global
pool and assigns pointers to strings in that global pool rather than private copies.
In our context, we want points-to sets to be stored once in a global pool, so that
we deal with references to points-to sets rather than concrete points-to sets.

To do this, whenever a points-to set is created, we perform an interning
routine. We check if that points-to set exists in our global pool, and

– If it exists, return a reference to the equivalent set in the global pool.
– Otherwise, add the points-to set to the global pool and return a reference to

the newly added points-to set.

This process can be achieved by a single hash table mapping each points-to sets
to a single canonical reference. Now, instead of using pt(p) during the analy-
sis, we use ptr(p) which is a reference to the points-to set of p in the global
pool. Dereferencing a points-to set reference as dr(ptr(p)) would be equivalent
to pt(p) and can be used to iterate over the points-to set, for example. Given that
ptr(p) = ptr(q), dr(ptr(p)) and dr(ptr(q)) would also be equivalent and actually
be accessing the same singly stored points-to set in the global pool. This can
save significant memory if duplicate points-to sets are common.

On its own, this process does not save time, and may cost more time to
perform the interning routine, especially as we perform many unions creating
points-to sets which need to be interned. Since each unique points-to set exists
once in the program, we can efficiently memoise operations, including the union
operation. This can be achieved by a hash table, which we call an operations
table, mapping two points-to set references to the points-to set reference which
refers to the result of the actual operation. The union between two points-to set
references ptr(p) ∪ ptr(q) can be performed by looking up the union operations
table with the 〈ptr(p), ptr(q)〉 pair as the key (i.e., operation), and

– If the key exists, returning the associated value, i.e., the reference to the
result of the operation.

– Otherwise, performing a concrete union between dr(ptr(p)) and dr(ptr(q)),
interning the result, associating the operation with the result in the opera-
tions table, and returning it.

With many union operations being duplicates, those would be performed as
constant time hash table lookups, rather than linear time set unions4 which can
be expensive depending on sizes of points-to sets. The intersection and difference
operations can also be memoised the same way, if necessary.

Without hash consing, memoising operations would not be efficient as we
would need to hash entire points-to sets, i.e., we would map 〈pt(p), pt(q)〉 to an-
other concrete points-to set rather than mapping a reference pair to a reference.
Collisions would also be expensive to resolve as determining equality would then
be linear in the size of the colliding points-to set pairs. With references, equality
can be determined in constant time.

4 For our SVF-based implementation we use sparse bit-vectors (Section 4.1).
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{o1} 7→ r1

{o2} 7→ r2

{o3, o4} 7→ r3

{ } 7→ r4

(a) Global pool mapping points-
to sets to references.

〈r3, r4〉 7→ r3

(b) Union operations table.

ptr(p) = r1 ptr(q) = r2 ptr(r) = r3 ptr(x) = r3 ptr(y) = r3

ptr(o1) = r3 ptr(o2) = r3 ptr(o3) = r4 ptr(o4) = r4

(c) Result.

Fig. 5: Global pool of points-to sets in (a), the union operations table in (b),
and the result in (c) using references instead of concrete points-to sets for the
analysis in Figure 3.

{o1} 7→ r1

{o2} 7→ r2

{o3, o4} 7→ r3

{ } 7→ r4

(a) Global pool mapping points-
to sets to references.

〈r3, r4〉 7→ r3

〈r4, r4〉 7→ r4

〈r4, r3〉 7→ r3

(b) Union operations table.

pt(p) = r1 pt(q) = r2 pt(r) = r3

pt[1](o1) = r4 pt[1](o2) = r4 pt[1](o3) = r4 pt[1](o4) = r4

pt[1](o1) = r3 pt[1](o2) = r4 pt[1](o3) = r4 pt[1](o4) = r4

pt[2](o1) = r3 pt[2](o2) = r4 pt[2](o3) = r4 pt[2](o4) = r4

pt[2](o1) = r3 pt[2](o2) = r3 pt[2](o3) = r4 pt[2](o4) = r4

(c) Result.

Fig. 6: Global pool of points-to sets in (a), the union operations table in (b),
and the result in (c) using references instead of concrete points-to sets for the
analysis in Figure 4.
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Figures 5 and 6 show how our analysis would look for the examples in Fig-
ures 3 and 4 respectively. Three of the four union operations between points-to
sets {o3, o4} and { } are performed as cheap lookups in the operations table in
Figure 5b. This is because the first time we perform a concrete operation, we
cache it in the operations table, and perform a fast lookup on subsequent oper-
ations. As in Figure 5c, we store references to points-to sets in the global pool
(Figure 5a) rather than concrete points-to sets, and so we only store 4 concrete
points-to sets. Figure 6 illustrates that all points-to unions in the flow-sensitive
example are translated into 3 unique reference operations (as opposed to 1).
Furthermore, for the flow-sensitive example, the effect of using references into
the global pool for points-to sets is more drastic since there are so many pointers
tracked, saving significant memory.

3.2 Exploiting Set Properties

In this section, we describe some optimisations which exploit the properties of
sets to further improve efficiency of union operations on hash consed points-to
sets. We note that even though our rules in Figures 1 and 2 only perform unions,
practical implementations may perform intersection and difference operations.
Furthermore, clients may perform some of these operations too, like alias analysis
which performs intersection tests. These operations can be memoised in the same
way as unions above, and we exploit their properties in this section too.

Commutative operations For commutative operations like unions and inter-
sections, performing an operation twice with the operands flipped is duplication
though this would not be detected in the operations tables. For example, assum-
ing ptr(p) = x and ptr(q) = y, if we perform x ∪ y = z for the first time, we
would store a mapping from the pair 〈x, y〉 to the result z in the union opera-
tions table. If the analysis was to perform y ∪ x, it would not find the operation
memoised, despite the result also being z, as 〈y, x〉 would not be cached in the
union operations table.

To resolve this, operations should always be ordered deterministically. This
is easy to achieve with hash consing because points-to sets are references and
can be compared in constant time. Now, to perform x ∪ y or y ∪ x, we would
perform the operation in the same order depending on whether x is “less than”
y, and so only a single instance would be stored in the union operations table. In
Figure 6b, the first and third operation are actually equivalent, and under this
scheme would be stored once as 〈r3, r4〉 7→ r3.

Property Operations In some cases, the result of an operation can be deter-
mined instantly with only trivial comparisons without any concrete operation
or hash table lookup. We refer to these cases as property operations, and we
describe these cases for unions, intersections, and differences below. We set e to
refer to the empty points-to set, and for commutative operations (i.e., unions
and intersections), we assume the operands have already been ordered and that
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the reference e is the least reference (so it is always the first operand in the
commutative operations it appears in).

Unions Given the ordered union operation between references x and y, x ∪ y,
and that the result would be r,

x = e⇒ r = y, and

x = y ⇒ r = x.

All operations in Figures 5b and 6b are actually property operations and caching
is unnecessary.

Intersections Given the ordered intersection operation between references x and
y, x ∩ y, and that the result would be r,

x = e⇒ r = e, and

x = y ⇒ r = x.

Difference Given the difference operation between references x and y, x−y, and
that the result would be r,

x = e⇒ r = e,

y = e⇒ r = x, and

x = y ⇒ r = e.

Preemptive Memoisation After performing an actual operation and caching
that operation in the operation table, we can preemptively cache other operations
too by exploiting standard set properties. This would avoid performing an actual
operation later if the analysis needed that result. An implementation can choose
which operations are worth preemptively memoising and which are not.

Unions Assume the ordered operation x ∪ y = r is not a property operation. If
x 6= r, we can instantly determine and cache

x ∪ r = r, and

x ∩ r = x,

and similarly if y 6= r,

y ∪ r = r, and

y ∩ r = y.

We guard with the conditions x 6= r and y 6= r because in each of these cases
the preemptively cached unions would be property unions.
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Intersections Assume the ordered operation x ∩ y = r is not a property opera-
tion. If r 6= e ∧ x 6= r, we can instantly determine and cache

x ∩ r = r, and

x ∪ r = x,

and similarly if r 6= e ∧ y 6= r,

y ∩ r = r, and

y ∪ r = y.

We are not interested in preemptively memoising when r = e because these
intersections and unions would otherwise be property operations.

Difference Assume the difference operation x−y = r is not a property operation.
If r 6= e ∧ x 6= r we can instantly determine and cache

x ∪ r = x, and

x ∩ r = r,

and similarly if r 6= e,

y − r = y,

r − y = r, and

r ∩ y = e.

4 Evaluation

This section describes our implementation, programs used to evaluate our ap-
proach, and then discusses results obtained when applying our hash consed
points-to sets to state-of-the-art inclusion-based flow-insensitive analysis (An-
dersen’s analysis [1, 36]) and inclusion-based flow-sensitive analysis (staged flow-
sensitive analysis [23]).

4.1 Implementation and Experimental Setup

We have implemented our approach using open source points-to analysis frame-
work SVF [47] built on LLVM 10.0.0. We have not modified any algorithms,
rather just how points-to sets are represented, that is, when an analysis at-
tempts to perform a union or access a points-to set, our code is called. For
concrete points-to sets, we use LLVM’s sparse bit-vector. SVF’s flow-insensitive
points-to analysis or Andersen’s analysis uses a state-of-the-art constraint reso-
lution algorithm, wave propagation [36], and performs cycle detection. Indirect
calls (function pointers and virtual calls) are resolved on-the-fly during points-to
resolution. SVF’s flow-sensitive analysis is staged flow-sensitive analysis (SFS) as
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Table 2: Program versions, bitcode sizes, lines of LLVM instructions, and de-
scriptions.

Program Version Size LOI Description

dhcpcd 9.3.4 1.19 MB 82 939 DHCP client
nsd 4.3.4 1.72 MB 117 191 Name server
tmux 3.1c 2.41 MB 156 872 Terminal multiplexer
gawk 5.1.0 2.48 MB 179 805 GNU AWK interpreter
bash 5.0.18 2.68 MB 196 168 Bourne Again Shell (Unix shell)
mutt 2.0.3 3.28 MB 224 500 Text-based email client
lynx 2.8.9 5.31 MB 287 159 Text-based web browser
xpdf 4.03 7.90 MB 494 764 PDF viewer
python3 3.7.9 9.80 MB 635 361 Python 3 interpreter
svn 1.14.0 11.40 MB 673 144 Version control system
emacs 27.2 11.85 MB 804 291 extensible text editor
git 2.29.2 12.29 MB 739 968 Distributed version control system
kakoune 2020.08.04 12.39 MB 733 327 Modal text editor
ruby 2.7.2 13.05 MB 864 114 Ruby interpreter
squid 4.13 20.36 MB 1 252 756 Web proxy cache
wireshark 3.4.0 32.59 MB 2 145 391 Network packet analyser

described in Section V of the original work [23]. Unlike Figure 2, SFS performs
points-to analysis on a pre-computed def-use graph, not a control-flow graph,
vastly reducing the number of constraints. Both analyses are field-sensitive and
assume analysed programs do not perform pointer arithmetic to access fields.
Fields of struct objects are distinguished by their unique indices [35].

For our hash consed points-to sets, we map concrete points-to sets to unique
integer identifiers (which act as our references), and a second map, implemented
as an array for performance, mapping those identifiers back to the concrete
points-to set. This allows us to use 32-bit identifiers, rather than 64-bit addresses
as would be required if our references were pointers. Our operations tables are
implemented as maps mapping two such identifiers to another. Our hash function
is simply the concatenation of the two 32-bit identifier operands which is another
benefit of using integral identifiers as references.

We have run Andersen’s analysis and SFS with and without hash consed
points-to sets on 16 real-world open source programs from various domains.
Table 2 lists these programs along with their version, bitcode size, number of
lines of LLVM instructions, and a short description. xpdf, kakoune, squid, and
wireshark are written in C++ and the remainder are C programs. We ran the
analyses on a machine running 64-bit Ubuntu 18.04.2 LTS with an Intel Xeon
6132 processor and we limited analyses to 100 GB of memory. To measure time,
we use C’s clock function and to measure memory we refer to the maximum
resident set size of the entire SVF execution reported by GNU’s time.
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Table 3: Time taken (seconds) and memory usage (GB) for Andersen’s analysis
with and without hash consing, followed by the time and memory difference of
the two approaches.

Program
Baseline Hash consed Time

diff.
Memory

diff.
Time Memory Time Memory

dhcpcd 4.52 0.30 3.58 0.28 1.26× 1.07×
nsd 9.32 0.55 7.23 0.51 1.29× 1.07×
tmux 18.86 0.59 14.11 0.56 1.34× 1.05×
gawk 19.92 0.64 14.15 0.58 1.41× 1.10×
bash 10.93 0.64 7.29 0.58 1.50× 1.11×
mutt 41.79 1.01 20.09 0.95 2.08× 1.06×
lynx 61.09 1.11 44.51 1.03 1.37× 1.08×
xpdf 179.52 1.94 111.80 1.88 1.61× 1.03×
python3 5509.52 4.13 1779.64 3.51 3.10× 1.18×
svn 5869.05 4.24 1829.20 2.82 3.21× 1.50×
emacs 5082.81 13.63 2651.32 13.05 1.92× 1.05×
git 5905.84 6.73 2499.55 6.79 2.36× 0.99×
kakoune 673.88 3.07 263.08 3.26 2.56× 0.94×
ruby 67.32 2.74 32.08 2.58 2.10× 1.06×
squid 2752.84 6.30 949.33 5.03 2.90× 1.25×
wireshark 271.60 6.42 211.42 6.21 1.28× 1.03×

Geo. Mean 1.85× 1.09 ×

4.2 Results and Discussion

In this section, we discuss the effects of hash consing on points-to analysis. We
first look at Andersen’s analysis then SFS, and conclude with a brief discussion
on preemptive memoisation.

Andersen’s Analysis Table 3 shows the time and memory of Andersen’s anal-
ysis with and without hash consing, and comparisons are shown in the Time
diff. and Memory diff. columns. We see a positive trend in time, showing that
using hash consing speeds up the analysis by a geometric mean of 1.85× for
our programs. At most, the analysis is 3.21× faster, and at worst 1.26× faster.
Generally, slower to analyse programs saw the greatest improvement in speed,
with all programs which originally took over 5000 seconds to analyse seeing an
improvement of over 2× with the exception of emacs which saw a slightly lower
improvement.

For memory, we see around the same usage generally with the hash consed
analysis using slightly more or slightly less. We have not implemented garbage
collection for the global pool of points-to sets. When there exists no references to
a certain points-to set in the global pool, that points-to set can be destroyed, or
garbage collected. This would save memory, as intermediate points-to sets which
are no longer in use litter the global pool. We strongly suspect that garbage
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Table 4: Number of union operations which are concrete operations, property
operations (and their proportion), lookups into the union operations table (and
their proportion), and the total for Andersen’s analysis using our approach.

Program Concrete Property Lookup Total

dhcpcd 3766 (3.10%) 58 424 (48.14%) 59 185 (48.76%) 121 375

nsd 2900 (1.76%) 98 068 (59.45%) 64 001 (38.80%) 164 969

tmux 5651 (1.58%) 102 511 (28.58%) 250 552 (69.85%) 358 714

gawk 6378 (2.26%) 155 251 (55.09%) 120 172 (42.64%) 281 801

bash 1358 (0.93%) 126 307 (86.61%) 18 167 (12.46%) 145 832

mutt 8135 (3.07%) 145 604 (55.02%) 110 881 (41.90%) 264 620

lynx 10 750 (3.19%) 188 602 (56.04%) 137 205 (40.77%) 336 557

xpdf 29 622 (4.32%) 249 768 (36.41%) 406 582 (59.27%) 685 972

python3 33 274 (3.16%) 560 048 (53.25%) 458 319 (43.58%) 1 051 641

svn 22 879 (1.45%) 808 308 (51.13%) 749 564 (47.42%) 1 580 751

emacs 92 677 (4.61%) 809 938 (40.27%) 1 108 850 (55.13%) 2 011 465

git 124 333 (9.03%) 684 809 (49.73%) 567 897 (41.24%) 1 377 039

kakoune 86 364 (8.72%) 394 225 (39.81%) 509 693 (51.47%) 990 282

ruby 11 090 (3.15%) 195 495 (55.47%) 145 827 (41.38%) 352 412

squid 55 792 (3.23%) 796 024 (46.09%) 875 241 (50.68%) 1 727 057

wireshark 47 856 (3.02%) 592 647 (37.34%) 946 580 (59.64%) 1 587 083

Geo. Mean – (2.98%) – (48.40%) – (44.24%)

collection of the global pool can further save memory and eliminate memory
usage regressions, which we would like to explore in the future.

Table 4 lists the union operations performed by the Andersen’s analysis and
categorises them as concrete (unique) unions, property unions, or lookups. When
we preemptively memoise, we count such an operation as a property operation.
We see that in every program, less than 10% of unions are concrete unions,
meaning the remainder are either property unions, and thus trivial, or duplicates
of a non-property union. In fact, we only see more than 5% for two programs,
git and kakoune. In most programs, the number of property unions and lookups
are roughly even. It is interesting to note that despite the small number of unions
(compared to more precise analyses, as will be seen in the next section), hash
consing has produced a noticeable speedup.

SFS Table 5 shows the time taken and memory used by SFS with and without
hash consing. For time, we see a very similar to trend to that of Andersen’s
analysis. Unexpectedly, considering how many more constraints flow-sensitive
analysis can produce, we see a lower geometric mean of 1.69×. This can be ex-
plained by the lack of analysis timing data for 9 programs without hash consing,
i.e., the baseline, because those analyses exceeded the allocated 100 GB of mem-
ory, and thus we cannot draw a time comparison. If sufficient memory resources
were available, we would expect to see a much larger average improvement as
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Table 5: Time taken (seconds) and memory usage (GB) for SFS with and without
hash consing, followed by the time and memory difference of the two approaches.
OOM means the analysis exhausted the allocated 100 GB of memory.

Program
Baseline Hash consed Time

diff.
Memory

diff.
Time Memory Time Memory

dhcpcd 77.27 1.08 73.04 0.66 1.06× 1.65×
nsd 113.39 2.97 75.76 0.74 1.50× 4.02×
tmux 280.09 3.33 212.25 1.14 1.32× 2.93×
gawk 1526.61 12.13 685.78 2.42 2.23× 5.02×
bash 337.01 8.55 165.28 1.51 2.04× 5.65×
mutt 797.92 13.95 400.08 2.15 1.99× 6.49×
lynx 3256.47 26.71 1594.90 3.65 2.04× 7.32×
xpdf OOM OOM 7210.36 6.44 – ≥15.52×
python3 OOM OOM 23534.00 16.72 – ≥5.98×
svn OOM OOM 14000.10 22.61 – ≥4.42×
emacs OOM OOM 51367.00 44.50 – ≥2.25×
git OOM OOM 49264.50 39.59 – ≥2.53×
kakoune OOM OOM 12845.40 9.49 – ≥10.53×
ruby OOM OOM 4250.19 9.77 – ≥10.24×
squid OOM OOM 72733.50 37.53 – ≥2.66×
wireshark OOM OOM 24820.20 14.50 – ≥6.90×

Geo. Mean 1.69× ≥4.93×

these 9 benchmarks are the largest and would be likely improve most. This can
be gleaned from the data in Table 6 which shows the union type breakdown for
SFS. We see that the number of unions is very high giving much room for our
approach to improve time. Concrete unions never exceed 1% when using hash
consing, thus hash consing and memoisation have improved over 99% of unions
for our programs. We also see that, compared to Andersen’s analysis, a larger
proportion of unions have become property unions rather than lookups.

As for memory usage in Table 5, we see a significant improvement with
a geometric mean reduction of over 4.93×, and at most over 15.52× (xpdf).
Hash consing brings memory requirements to a level acceptable for commodity
hardware: of the 9 programs which exceeded the allocated 100 GB in the baseline
analysis, 6 now require less than 32 GB, and all suffice with less than 64 GB. Even
though our implementation does not include garbage collection of unnecessary
intermediate points-to sets in the global pool, our approach still shows significant
memory reduction for more precise analyses like SFS. With garbage collection
we expect to see an even greater improvement in memory usage.

Effect of Preemptive Memoisation For our programs, preemptive mem-
oisation generally does not have a discernible effect on time. This is because
preemptive memoisation reduces the number of concrete unions after the ap-
plication of our techniques (i.e., after our other techniques have made the most
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Table 6: Number of union operations which are concrete operations, property
operations (and their proportion), lookups into the union operations table (and
their proportion), and the total number of unions for SFS using hash consing.

Program Concrete Property Lookup Total

dhcpcd 858 019 (0.95%) 60 000 495 (66.20%) 29 772 284 (32.85%) 90 630 798

nsd 106 236 (0.06%) 131 385 659 (70.44%) 55 032 002 (29.50%) 186 523 897

tmux 265 726 (0.05%) 515 202 000 (89.33%) 61 282 554 (10.63%) 576 750 280

gawk 2 568 240 (0.11%) 1 674 478 472 (72.11%) 645 178 369 (27.78%) 2 322 225 081

bash 27 701 (0.01%) 435 565 965 (84.61%) 79 195 559 (15.38%) 514 789 225

mutt 319 829 (0.02%) 1 033 079 848 (78.53%) 282 194 806 (21.45%) 1 315 594 483

lynx 788 833 (0.02%) 3 836 871 871 (79.72%) 975 346 188 (20.26%) 4 813 006 892

xpdf 2 375 069 (0.02%) 9 475 061 599 (76.93%) 2 838 361 665 (23.05%) 12 315 798 333

python3 1 125 561 (0.00%) 27 494 110 299 (83.29%) 5 516 560 498 (16.71%) 33 011 796 358

svn 9 536 154 (0.04%) 15 950 564 702 (73.53%) 5 731 542 295 (26.42%) 21 691 643 151

emacs 40 525 287 (0.04%) 62 746 471 959 (67.68%) 29 925 669 621 (32.28%) 92 712 666 867

git 15 868 477 (0.03%) 36 002 062 086 (75.28%) 11 805 253 473 (24.69%) 47 823 184 036

kakoune 833 730 (0.00%) 21 708 874 709 (81.56%) 4 907 142 103 (18.44%) 26 616 850 542

ruby 1 219 328 (0.01%) 11 142 763 302 (83.49%) 2 202 254 328 (16.50%) 13 346 236 958

squid 3 080 598 (0.00%) 117 192 828 125 (85.99%) 19 097 056 263 (14.01%) 136 292 964 986

wireshark 9 219 867 (0.06%) 7 534 330 653 (50.97%) 7 237 949 555 (48.97%) 14 781 500 075

Geo. Mean – (0.02%) – (75.61%) – (22.10%)

expensive operations cheaper, like transforming N occurrences of a particularly
expensive union into one concrete union followed by N − 1 lookups). That is,
it reduces the number of the already reduced concrete unions (second column
of Tables 4 and 6). Regardless, we notice that the number of concrete unions
does meaningfully shrink. For example, for Andersen’s and SFS respectively, we
see about 2500 and 1 million fewer for svn, about 10 000 and 500 000 fewer for
squid, and about 1000 and 7 million fewer for emacs. This indicates that as
input programs grow and the difference in concrete unions starts to have a no-
ticeable effect on time (e.g., when points-to sets become unreasonably large), the
role preemptive memoisation plays can become more significant. As expected,
we see a slight increase in memory usage due to storing more operations in the
operations table (each entry taking 12 bytes, modulo any table overhead).

5 Related Work

Inclusion-based Points-to Analysis The study of inclusion-based points-to
analysis has a long history [1, 6, 13, 20, 26, 29, 35, 36, 39, 44, 46]. Resolving points-
to relations in inclusion-based analysis is formalised as a set-constraint problem
often solved by using a constraint graph of a program. To boost the performance
of points-to analysis, most existing efforts focus on improving the analysis at the
algorithmic level (e.g., via developing more efficient constraint solvers [35, 36,
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44]) or simplifying the constraint graph (e.g., cycle elimination [13, 20], variable
substitution [21, 39], or selective precision [30, 41]).

Despite these efforts, redundant and duplicate points-to sets and operations
still exist and can not be completely tamed by existing techniques. Pushing the
boundaries through algorithmic changes to the points-to analysis may produce
increasingly diminishing returns on performance. Unlike previous approaches
which simplify constraints or make algorithmic changes to points-to analysis,
the goal of this work is to improve underlying data structures.

Data Structures for Points-to Analysis There has been a handful of work
on using and developing data structures, particularly through better represent-
ing points-to sets, for efficient points-to analysis. For computing and representing
points-to sets, several data structures have been used including binary decision
diagrams (BDDs) [5, 52], bit-vectors [22, 23, 31] and explicit representations such
as B-trees [8] and hash-based sets [31]. BDD-based points-to analysis often re-
quires expensive variable reordering to be efficient. Thus the benefits may not
outweigh using explicit representations [8]. Moreover, they often require algo-
rithmic changes to the points-to analysis [5, 54], introducing extra implemen-
tation complexity. Bit-vectors as arguably the most popular data structure to
represent points-to sets having been used in mainstream frameworks such as
Soot [31], WALA [50], and LLVM-based static analysis tools [23, 40, 47]. Bit-
vectors have been shown more efficient than hash-based sets and sorted ar-
rays [31], and BDDs [22]. In this paper, we demonstrate that our hash consed
points-to sets work well on top of LLVM’s sparse bit-vectors to boost the perfor-
mance of state-of-the-art flow-insensitive and flow-sensitive points-to analyses.

Hash Consing for Static Analysis In unpublished work [25], Heintze de-
scribed splitting points-to sets into two parts: a unique part (called an overflow
list) and a shared part. The shared part can be described as hash consing and
thus implements a finer-grained hash consing since it does this on subsets rather
than entire sets. However, no memoisation is performed, and doing so would
be less effective due to the overflow list where, for example, two sets may be
equivalent but not share any parts (i.e. the unique parts are different and the
shared parts are different). The data structure is also much more difficult to
implement whereas what we have presented can be retrofitted onto most set-like
data structures exposing necessary operations (largely the set union operation).
An implementation is available in Soot [43] as the SharedHybridSet.

Hash consing has also more generally been explored for static analysis to
represent, for example, memory maps and program states [12, 33], invocation
graphs [11], subtrees [3], and constants [27], with success. Static analyses are ripe
for hash consing and memoisation because they are by nature approximations
designed to capture a class of runtime data and so contain many duplicate
data structures, operations, or both. We believe this work is the first to apply
hash consing to the base aspects of points-to analysis, i.e. points-to sets and
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their unions, describe extra optimisations, and show why points-to analysis is
perfectly suited for hash consing.

6 Conclusion

This paper uses hash consed points-to sets to produce a persistent data struc-
ture to reduce duplicate points-to sets, saving space, and memoise union oper-
ations, saving time, without any high-level algorithmic changes. Hash consing
can effectively handle duplication during points-to resolution by representing
points-to sets once and referring to such representations through references. Our
approach can speed up duplicate union operations through efficient memoisation
and operand comparisons. We have evaluated our approach using 16 real-world
C/C++ programs (>9.5 million lines of LLVM instructions). We observe an
average memory reduction of ≥4.93× (up to ≥15.52×) in staged flow-sensitive
analysis (SFS) and an average speed up of 1.69× (up to 2.23×). We also observe
a speed up in state-of-the-art Andersen’s analysis of 1.85× on average (up to
3.21×) while using roughly the same amount of memory.
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27. Hubert, L., Barré, N., Besson, F., Demange, D., Jensen, T., Monfort, V., Pichardie,
D., Turpin, T.: Sawja: Static analysis workshop for Java. In: Formal Veri-
fication of Object-Oriented Software. pp. 92–106. Springer, Germany (2011).
https://doi.org/10.1007/978-3-642-18070-5 7

28. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In: Proceedings of the International Sym-
posium on Code Generation and Optimization: Feedback-Directed and Run-
time Optimization. p. 75. CGO ’04, IEEE Computer Society, USA (2004).
https://doi.org/10.1109/CGO.2004.1281665

29. Lei, Y., Sui, Y.: Fast and precise handling of positive weight cycles for field-sensitive
pointer analysis. In: International Static Analysis Symposium. pp. 27–47. SAS ’19,
Springer, Germany (2019). https://doi.org/10.1007/978-3-030-32304-2 3

30. Lhoták, O., Chung, K.C.A.: Points-to analysis with efficient strong updates. In:
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. pp. 3–16. POPL ’11, ACM, USA (2011).
https://doi.org/10.1145/1926385.1926389

31. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using SPARK. In: Proceed-
ings of the 12th International Conference on Compiler Construction. pp. 153–169.
CC ’03, Springer, Germany (2003)

32. Livshits, V.B., Lam, M.S.: Tracking pointers with path and context sensitivity for
bug detection in C programs. In: Proceedings of the 9th European Software Engi-
neering Conference Held Jointly with 11th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. pp. 317–326. ESEC/FSE ’11, ACM,
USA (2003). https://doi.org/10.1145/940071.940114

33. Manevich, R., Ramalingam, G., Field, J., Goyal, D., Sagiv, M.: Compactly repre-
senting first-order structures for static analysis. In: Proceedings of the 9th Inter-
national Symposium on Static Analysis. pp. 196–212. SAS ’02, Springer, Germany
(2002). https://doi.org/10.5555/647171.716101

34. Pearce, D.J., Kelly, P.H., Hankin, C.: Online cycle detection and difference propa-
gation for pointer analysis. In: Proceedings of the Third IEEE International Work-
shop on Source Code Analysis and Manipulation. pp. 3–12. SCAM ’03, IEEE Com-
puter Society, USA (2003). https://doi.org/10.1109/SCAM.2003.1238026



Hash Consed Points-To Sets 23

35. Pearce, D.J., Kelly, P.H., Hankin, C.: Efficient field-sensitive pointer analysis of C.
ACM Transactions on Programming Languages and Systems 30(1), 4:1–4:42 (Nov
2007). https://doi.org/10.1145/1290520.1290524

36. Pereira, F.M.Q., Berlin, D.: Wave propagation and deep propagation for pointer
analysis. In: Proceedings of the 7th Annual IEEE/ACM International Symposium
on Code Generation and Optimization. pp. 126–135. CGO ’09, IEEE Computer
Society, USA (2009). https://doi.org/10.1109/CGO.2009.9

37. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Context-sensitive correlation
analysis for race detection. In: Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 320–331. PLDI ’06,
ACM, USA (2006). https://doi.org/10.1145/1133981.1134019

38. What is Referential Transparency? https://www.sitepoint.com/what-is-referential-
transparency (2017)

39. Rountev, A., Chandra, S.: Off-line variable substitution for scaling points-to anal-
ysis. In: Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation. pp. 47—-56. PLDI ’00, ACM, USA (2000).
https://doi.org/10.1145/349299.349310

40. Schubert, P.D., Hermann, B., Bodden, E.: PhASAR: An inter-procedural static
analysis framework for C/C++. In: Tools and Algorithms for the Construction
and Analysis of Systems. pp. 393–410. TACAS ’19 (2019)

41. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Understand-
ing object-sensitivity. In: Proceedings of the 38th annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 17–30. POPL ’11, ACM,
USA (2011)

42. Sondergaard, H., Sestoft, P.: Referential transparency, definiteness and unfoldabil-
ity. Acta Informatica 27(6), 505–517 (Jan 1990)

43. Soot. https://github.com/soot-oss/soot (2021)

44. Sridharan, M., Fink, S.J.: The complexity of Andersen’s analysis in practice. In:
Proceedings of the 16th International Symposium on Static Analysis. pp. 205–221.
SAS ’09, Springer, Germany (2009). https://doi.org/10.1007/978-3-642-03237-0 15

45. Sui, Y., Cheng, X., Zhang, G., Wang, H.: Flow2Vec: Value-flow-based precise code
embedding. Proceedings of the ACM on Programming Languages 4(OOPSLA),
1–27 (2020). https://doi.org/10.1145/3428301

46. Sui, Y., Xue, J.: On-demand strong update analysis via value-flow refinement.
In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. pp. 460–473. FSE ’16, ACM, USA (2016).
https://doi.org/10.1145/2950290.2950296

47. Sui, Y., Xue, J.: SVF: Interprocedural static value-flow analysis in LLVM. In:
Proceedings of the 25th International Conference on Compiler Construction. pp.
265–266. CC ’16, ACM, USA (2016). https://doi.org/10.1145/2892208.2892235

48. Trabish, D., Kapus, T., Rinetzky, N., Cadar, C.: Past-sensitive pointer anal-
ysis for symbolic execution. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. pp. 197–208. ESEC/FSE ’20, ACM, USA (2020).
https://doi.org/10.1145/3368089.3409698

49. Trabish, D., Mattavelli, A., Rinetzky, N., Cadar, C.: Chopped symbolic execution.
In: Proceedings of the 40th International Conference on Software Engineering. pp.
350–360. ICSE ’18, ACM, USA (2018). https://doi.org/10.1145/3180155.3180251

50. The T. J. Watson libraries for analysis (WALA). http://wala.sf.net/ (2021)



24 M. Barbar and Y. Sui

51. Wang, H., Xie, X., Li, Y., Wen, C., Li, Y., Liu, Y., Qin, S., Chen, H., Sui, Y.:
Typestate-guided fuzzer for discovering use-after-free vulnerabilities. In: Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineering. pp.
999–1010. ICSE ’20, ACM, USA (2020). https://doi.org/10.1145/3377811.3380386

52. Whaley, J.: Context-Sensitive Pointer Analysis Using Binary Decision Diagrams.
Ph.D. thesis, Stanford University, USA (2007)

53. Yan, H., Sui, Y., Chen, S., Xue, J.: Spatio-temporal context reduction: A pointer-
analysis-based static approach for detecting use-after-free vulnerabilities. In: Pro-
ceedings of the 40th International Conference on Software Engineering. pp. 327–
337. ICSE ’18, ACM, USA (2018). https://doi.org/10.1145/3180155.3180178

54. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language De-
sign and Implementation. pp. 145–157. PLDI ’04, ACM, USA (2004).
https://doi.org/10.1145/996841.996860


