
Per-Dereference Verification of Temporal
Heap Safety via Adaptive
Context-Sensitive Analysis

Hua Yan1,4,5(B), Shiping Chen2, Yulei Sui3, Yueqian Zhang1,2,
Changwei Zou1(B), and Jingling Xue1(B)

1 University of New South Wales, Sydney, Australia
2 Data61, CSIRO, Sydney, Australia

3 University of Technology Sydney, Sydney, Australia
4 Sangfor Technologies Inc., Shenzhen, China

5 Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, China
yanhuacs@outlook.com, changwei.zou@student.unsw.edu.au, j.xue@unsw.edu.au

Abstract. We address the problem of verifying the temporal safety of
heap memory at each pointer dereference. Our whole-program analysis
approach is undertaken from the perspective of pointer analysis, allow-
ing us to leverage the advantages of and advances in pointer analysis to
improve precision and scalability. A dereference ω, say, via pointer q is
unsafe iff there exists a deallocation ψ, say, via pointer p such that on
a control-flow path ρ, p aliases with q (with both pointing to an object
o representing an allocation), denoted Aψ

ω(ρ), and ψ reaches ω on ρ via
control flow, denoted Rψ

ω(ρ). Applying directly any existing pointer anal-
ysis, which is typically solved separately with an associated control-flow
reachability analysis, will render such verification highly imprecise, since
∃ρ.Aψ

ω(ρ) ∧ ∃ρ.Rψ
ω(ρ) � ∃ρ.Aψ

ω(ρ) ∧ Rψ
ω(ρ) (i.e., ∃ does not distribute

over ∧). For precision, we solve ∃ρ.Aψ
ω(ρ) ∧ Rψ

ω(ρ), with a control-flow
path ρ containing an allocation o, a deallocation ψ and a dereference
ω abstracted by a tuple of three contexts (co, cψ, cω). For scalability, a
demand-driven full context-sensitive (modulo recursion) pointer analysis,
which operates on pre-computed def-use chains with adaptive context-
sensitivity, is used to infer (co, cψ, cω), without losing soundness or pre-
cision. Our evaluation shows that our approach can successfully verify
the safety of 81.3% (or 93,141

114,508
) of all the dereferences in a set of ten C

programs totalling 1,166 KLOC.

1 Introduction

Unmanaged programming languages such as C/C++ still remain irreplaceable
in developing performance-critical systems such as operating systems, databases
and web browsers. Such languages, however, suffer from memory safety issues.
While spatial errors (e.g., buffer overflows) result in disastrous consequences
(e.g., crashes, data corruption, information leakage, privilege escalation and
control-flow hijacking), their temporal counterparts have also been shown to be
c© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 48–72, 2019.
https://doi.org/10.1007/978-3-030-32304-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32304-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-32304-2_4

Adaptive Context-Sensitive Verification for Temporal Heap Safety 49

equally deadly [28,54]. In particular, verifying absence of dangling pointer deref-
erences, an important temporal heap safety (referred to TH-safety hereafter), is
thus desirable.

A quite flourishing research thread focuses on separation logic [15,42,59],
which enables precise shape analysis for pointer-based data structures. Much
research effort has been devoted to improving scalability and automation of
separation-logic-based verification [13,58]. In particular, bi-abduction [8] empow-
ers separation-logic-based verification to generate program specifications auto-
matically for large programs with millions of lines of code, in a compositional
manner rather than as a whole-program analysis. However, one of its inevitable
downsides (from the perspective of whole-program analysis) is the loss of pre-
cision due to a maximum size limit imposed on disjunctions of pre-conditions
manipulated in order to improve performance [7,8].

Memory errors can also be found by other techniques, such as data-
flow analysis [14,41] and model checking [24,26,38]. Notably, pointer anal-
ysis [25,31,45,47,49,62] has recently made significant strides, providing a
solid foundation for developing many pointer-analysis-based static analyses for
detecting memory errors [9,30,44,56,57,60]. In this paper, we present a fully-
automated pointer-analysis-based approach, called D3 (a Disprover of Dangling
pointer Dereferences), to verifying absence of (i.e., disproving presence of) dan-
gling pointers on a per dereference basis. Compared to separation-logic-based
approaches, our approach tackles this verification task from a different angle.
Instead of focusing on reasoning about a variety of pointer-based data struc-
tures precisely in separation logic, we focus on reasoning about pointer alias-
ing and control-flow reachability context-sensitively in a whole-program setting
on-demand.

Challenges. We highlight three challenges, from the perspective of pointer
analysis:

Challenge 1: Modeling the Triple Troublemakers. A TH-safety violation
involves three distinct program locations, an allocation o (representing an
allocation site), a deallocation ψ and a dereference ω , which must be all
modelled precisely.
Challenge 2: Resolving Aliases. A dereference ω (via pointer q) is unsafe iff
there exists a deallocation ψ (via pointer p) such that on a control-flow path
ρ, p aliases with q (with both pointing to an object o), denoted Aψ

ω(ρ), and ψ
reaches ω on ρ via control flow, denoted Rψ

ω(ρ). Pointer aliasing, a well-known
difficult static analysis problem, must be solved to guarantee both soundness
and precision scalably for large programs. For the TH-safety verification, this
is particularly challenging. Any existing k-limited context-sensitive pointer
analysis that scales for large programs [25,45] (where k ≤ 3 currently) is not
precise enough (as o, ψ and ω can often span across more than three func-
tions). In addition, off-the-shelf pointer analyses provide the alias information
between ψ and ω but are oblivious to the control-flow reachability information
from ψ to ω (even if solved flow-sensitively), causing potentially a significant
precision loss, since ∃ρ.Aψ

ω(ρ)∧∃ρ.Rψ
ω(ρ) � ∃ρ.Aψ

ω(ρ)∧Rψ
ω(ρ) (i.e., ∃ does not

50 H. Yan et al.

distribute over ∧). Thus, increasing precision in our verification task requires
pointer analysis to be not only more precise (with longer calling-contexts)
but also synergistic with control-flow reachability analysis.
Challenge 3: Pruning the Search Space. To achieve high precision, a fine
abstraction of control-flow paths (e.g., with adequate context-sensitivity) is
required, but at a risk for causing path explosion. Furthermore, the presence
of a large number of deallocation-dereference (ψ, ω) pairs that need to be
checked further exacerbates the problem. Pruning the search space without
any loss of precision is essential.

Our Solution. In this paper, we present a whole-program analysis approach
that verifies TH-safety for each dereference ω. Specifically, ω is considered safe
iff there exists no deallocation ψ such that the pair (ψ, ω) causes a dangling
pointer dereference at ω.

To meet Challenge 1, we model this verification problem context-sensitively
with three contexts. We identify an allocation o, a deallocation ψ (via pointer
p) and a dereference ω (via pointer q) by a context tuple (co, cψ, cω) so that
⟪co, o⟫ represents a context-sensitive heap object, i.e, an object o created under
co, (cψ, p) deallocates what is pointed to by p under cψ, and (ω, q) dereferences
pointer q under context cω. We verify TH-safety with respect to (o, ψ, ω) by
disproving the presence of a control-flow path that contains a context tuple,
(co, cψ, cω), such that ⟪co, o⟫, once deallocated at (cψ, p), is still accessed subse-
quently at (cω, q) along the path.

To meet Challenge 2, we introduce a demand-driven pointer analysis that
automatically infers the context information in pointer aliases so that the result-
ing alias analysis can correlate with an associated control-flow reachability anal-
ysis as required. Given a pointer p at a deallocation (resp. a pointer q at a deref-
erence) without any context given, our pointer analysis will infer a context cψ

(resp. cω), together with a context-sensitive object ⟪co, o⟫, such that the context-
sensitive pointer (cψ, p) (resp. (cω, q)) points to ⟪co, o⟫, implying that ∃ρ.Aψ

ω(ρ).
In addition, cψ and cω are also required to satisfy the control-flow reachability
constraint ∃ρ.Rψ

ω(ρ) simultaneously so that ∃ρ.Aψ
ω(ρ)∧Rψ

ω(ρ) holds. This avoids
false positives that satisfy Rψ

ω and Aψ
ω only for two distinct paths, respectively,

which happens when ∃ρ.Aψ
ω(ρ) ∧ ∃ρ.Rψ

ω(ρ) � ∃ρ.Aψ
ω(ρ) ∧Rψ

ω(ρ). Finally, points-
to queries are raised on-demand by traversing pre-computed def-use chains (in
order to improve efficiency) and by supporting full context-sensitivity (modulo
recursion) to transcend k-limiting (in order to improve precision).

To meet Challenge 3, we make our context-sensitive analysis adaptive. A
context tuple (co, cψ, cω) is reduced to (c′

o, c
′
ψ, c′

ω) if co, cψ and cω share a
common prefix cpre, so that co = cons(cpre, c

′
o), cψ = cons(cpre, c

′
ψ), and

cω = cons(cpre, c
′
ω), where cons denotes string concatenation. This adaptive

analysis aims to reduce exponentially many prefixes starting from main(), which
would otherwise significantly impede scalability.

Adaptive Context-Sensitive Verification for Temporal Heap Safety 51

Fig. 1. A small unmanaged imperative language.

Contributions. This paper makes the following main contributions:

• We propose a fully automated approach to TH-safety verification on a per
dereference basis, with a precise context-sensitive model, which enables a
control-flow path to be abstracted by three contexts for its allocation, deallo-
cation and dereference. This provides a balanced trade-off between precision
and scalability.

• We present a static whole-program analysis that solves this three-point ver-
ification problem in the presence of both data-dependence and control-flow
constraints. To this end, we develop a demand-driven pointer analysis with
full context-sensitivity (modulo recursion) that automatically infers the con-
text information required.

• We present an adaptive context-sensitive policy for TH-safety verification that
automatically truncates redundant context prefixes without losing soundness
or precision. This enables our approach to scale to some large real-world
programs.

• We have implemented D3 in LLVM and evaluated it using a suite of ten real-
world programs. Our results show that D3 scales to hundreds of KLOC, with
a capability of verifying 81.3% of all the 114,508 dereferences to be safe.

2 Preliminaries

We describe our techniques using a small language in Fig. 1. Function definitions
and statements are identified by their labels or line numbers. The language
is standard. Pointers are propagated via copy (x = y), load (x = ∗y), store
(∗x = y) and address-taking (x = &y) statements; heap objects are allocated
and deallocated by malloc() and free(), respectively; the callee of a function

52 H. Yan et al.

call (x = fp(�y)) is specified by a function pointer (fp) with its parameters (�y)
passed by value (as in LLVM-IR); and ret, if and while represent standard
return, branching and looping statements.

As with previous work [8,34,36,58], we currently do not handle concurrent
programs.

Inter-Procedural Control-Flow Graph (ICFG). This is a directed graph
(N,E), where each node n ∈ N represents a statement and each edge e =
(src, dst) ∈ E represents the control flow from statement src to statement dst.
In particular, if e represents a function call/return, then e is labeled with the
corresponding call-site ID κ.

Contexts. Given any statement in function f , a calling context (or context, for
short) c = [κ1, κ2, ..., κn] is a sequence of n call-site IDs in their invocation order
that uniquely specifies an abstract call-path to f on the ICFG of the program.

Allocation, Deallocation and Dereference. A context-sensitive (abstract)
object, denoted ⟪co, o⟫, represents the set of concrete objects created at alloca-
tion site o under context co. We write ψ(cψ, lψ, p) to signify a context-sensitive
deallocation of the object pointed to by p at line lψ under context cψ. Similarly,
a context-sensitive dereference ω(cω, lω, q) accesses the object pointed to by q at
line lω under context cω. Context-insensitively, these notations are simplified to
o, ψ(lψ, p) and ω(lω, q), respectively.

Pointer Analysis. A context-sensitive pointer analysis conservatively computes
a function ptcs : C × V → 2C×O that relates each context-sensitive pointer
(c, v) ∈ C × V to the set of context-sensitive objects ⟪co, o⟫ ∈ C × O pointed to
by (c, v). A pointer analysis is formulated by a set of inference rules that can be
solved using a standard fixed-point algorithm. Andersen-style [4] subset-based
context-insensitive pointer analysis pt : V → 2O is given in Fig. 2. P�s� signifies
that statement s appears in program P.

We consider only field-sensitive pointer analysis techniques. As with previ-
ous techniques [6,22,39,58], we assume that our programs are ANSI-compliant
that are devoid of buffer overflows and data misalignments. Arrays are handled
monolithically. Any access to a member of an array or struct object with a stat-
ically unknown offset is viewed to be a non-deterministic operation on the given
object (soundly but imprecisely).

TH-Safety Violation. A context-sensitive TH-safety violation, denoted
⧼⟪co, o⟫, ψ(cψ, lψ, p), ω(cω, lω, q)⧽, occurs when ⟪co, o⟫, which is deallocated at
lψ under cψ, is accessed later at lω under cω. Our context-insensitive notation is
⧼o, ψ(lψ, p), ω(lω, q)⧽.

3 Illustrating Examples

In Sect. 3.1, we explain why aliasing and control-flow reachability must be solved
synergistically rather than separately in order to achieve high precision in our
verification task, no matter how precise pointer analysis is. In Sect. 3.2, we

Adaptive Context-Sensitive Verification for Temporal Heap Safety 53

Fig. 2. Andersen-style subset-based, flow- and context-insensitive pointer analysis [4].
Passing arguments into and returning results from functions are handled as copy state-
ments.

describe how our synergistic approach works on top of a demand-driven pointer
analysis, by taming path explosion with full context-sensitivity (modulo recur-
sion) adaptively.

Fig. 3. An example without any TH-safety violation.

3.1 Aliasing and Control-Flow Reachability: Separately vs.
Synergistically

Figure 3(a) gives a program, in which ψ(l5, y) does not cause a TH-safety viola-
tion at ω(l7, z) (Fig. 3(b)). The wrappers, alloc(), dealloc() and deref(),

54 H. Yan et al.

allocate o2, deallocate the object pointed by y at ψ(l5, y) and dereference
z at ω(l7, z), respectively. In Reach But NoAlias(), ⟪[κ9], o2⟫ is first deallo-
cated in l11 and then another object ⟪[κ10], o2⟫ is accessed indirectly in l12.
In Alias But NoReach(), ⟪[κ14], o2⟫ is first accessed indirectly in l15 and then
deallocated in l16.

If aliasing and control-flow reachability for ψ(l5, y) and ω(l7, z) are solved
separately, a TH-safety violation will be reported (but as a false positive), no
matter how precise the underlying pointer analysis is used. As illustrated in
Fig. 3(b), aliasing (the orange path) and reachability (the blue path) happen
along two different paths in the ICFG, and consequently, cannot be satisfied
simultaneously in the same path.

To avoid false positives like this, aliasing and control-flow reachability must
be solved together. In our synergistic approach, we identify o2, ψ(l5, y) and
ω(l7, z) by their respective contexts co, cψ and cω, and disprove the presence
of a context tuple (co, cψ, cω), such that ⟪co, o2⟫ is first deallocated in l5 under
cψ and subsequently accessed in l7 under cω along the same path. Therefore,
our approach will report no TH-safety violation for this program. Note that any
context-insensitive analysis that merges ⟪[κ9], o2⟫ and ⟪[κ10], o2⟫ into o2 (by
disregarding their contexts) will report a false violation as ⧼o2, ψ(l5, y), ω(l7, z)⧽.

Fig. 4. Two representative TH-safety violations caused by ψ(l5, y) and ω(l7, z) appear-
ing in Fig. 3, where the three wrappers, alloc(), dealloc() and deref() are defined.

3.2 Synergizing Pointer Analysis and Control-Flow Reachability
Analysis: On-Demand with Adaptive Context-Sensitivity

Let us illustrate our approach further by expanding Fig. 3 into Fig. 4 by examin-
ing how it detects two representative TH-safety violations caused now by ψ(l5, y)

Adaptive Context-Sensitive Verification for Temporal Heap Safety 55

and ω(l7, z) considered earlier. In Fig. 4(a) (with its relevant ICFG given in
Fig. 4(c)), o2 and ψ(l5, y) are reached transitively via the two call sites in the
same function, bar(), which is called by foo(), in which ω(l7, z) is reached
via a call to deref() transitively. In Fig. 4(b) (with its relevant ICFG given in
Fig. 4(d)), ψ(l5, y) and ω(l7, z) are reached transitively via the two call sites in
the same function, qux(), which is called by baz(), in which o2 is reached via a
call to alloc() transitively.

We will only discuss Fig. 4(a) below as Fig. 4(b) can be understood similarly.

Verifying TH-Safety by Synergizing Pointer and Reachability Anal-
yses On-Demand. Our approach relies on ptdd

cs , a demand-driven version of
pointer analysis ptcs introduced in Sect. 2. For Fig. 4(a), we report a TH-safety
violation ⧼⟪[κ18, κ21], o2⟫, ψ([κ18, κ22], l5, y), ω([κ19], l7, z)⧽. To obtain this, we
check to see if y aliases z by querying ptdd

cs for the points-to sets of y and z,
i.e., ptdd

cs ([], y) and ptdd
cs ([], z), respectively, where their initial unknown con-

texts [] will be eventually filled up by ptdd
cs . On-demand, ptdd

cs traces back-
wards the flow of objects along the pre-computed def-use chains (obtained by
a pre-analysis) in the program. To compute ptdd

cs ([], y), for example, starting
from l5, ptdd

cs traces back to l4 where y is defined; moves to the call-site κ22

where y receives the value of e via parameter passing; reaches l21 where e is
defined; encounters l3 where x is returned (by entering alloc() from its exit
at κ21); and finally, arrives at l2 where x is defined, giving rise to ⟪[κ21], o2⟫∈
ptdd

cs ([κ22], y). Note that the initial unknown context [] has been inferred to
be [κ22] as desired. This implies that ⟪[κ18, κ21], o2⟫ ∈ ptdd

cs ([κ18, κ22], y). Simi-
larly we obtain ⟪[κ18, κ21], o2⟫ ∈ ptdd

cs ([κ19], z). Thus, ψ([κ18, κ22], l5, y) aliases
with ω([κ19], l7, z) (with y and z both pointing to ⟪[κ18, κ21], o2⟫), and in
addition, the former also reaches the latter along the same path identified by
[κ18, κ21], [κ18, κ22] and [κ19]. As a result, our approach reports this violation as
⧼⟪[κ18, κ21], o2⟫, ψ([κ18, κ22], l5, y), ω([κ19], l7, z)⧽.

Taming Path Explosion with Adaptive Context-Sensitivity. In our
approach, ptdd

cs applies context-sensitivity adaptively without analyzing the
callers of foo(), avoiding the possible path explosion that may occur between
main() and foo() in Fig. 4(c). Soundness is still guaranteed, since the con-
text elements between main() and foo() do not affect the value-flows of
⟪[κ18, κ21], o2⟫ and are thus redundant. To see this, if we extend the two
contexts in ψ([κ18, κ22], l5, y) and ω([κ19], l7, z) with two distinct prefixes,
[κa1] and [κa2], we will fail to obtain any additional violation witness, since
both are no longer aliased: ptdd

cs ([κa1, κ18, κ22], y) = {⟪[κa1, κ18, κ21], o2⟫} �=
{⟪[κa2, κ18, κ21], o2⟫} = ptdd

cs ([κa2, κ19], z). If we use the same prefix instead,
we will end up with a finer abstraction, yielding the results already subsumed.

4 Our Approach

The workflow of our four-stage approach is given in Fig. 5. To start with (1©), we
perform a fast but imprecise pre-analysis for a program using Andersen’s pointer

56 H. Yan et al.

analysis pt (Fig. 2). Then (2©), we build a value-flow graph to capture the flow
of values across the program based on the points-to information obtained in the
pre-analysis (Sect. 4.1). Next (3©), we obtain the points-to set at each dereference
by querying ptdd

cs , a demand-driven version of ptcs (discussed in Sect. 2) that now
operates on the value-flow graph (Sect. 4.2). This way, ptdd

cs will traverse pre-
computed def-use chains rather than control-flow, achieving better efficiency.
Finally (4©), we verify absence of a TH-safety violation at a dereference by
considering aliasing and control-flow reachability synergistically with adaptive
context-sensitivity (Sects. 4.3 and 4.4).

Fig. 5. The workflow of our approach on synergizing pointer analysis with reachability
analysis.

4.1 Value-Flow Graph Construction

We construct a value-flow graph for a program, following [12,44,49], based on
the points-to information discovered during the pre-analysis to capture the flow
of values across the program. This entails building the def-use chains for its
top-level variables (which are conceptually regarded as register variables) and
address-taken variables (which are all referred to as memory objects or objects
for short in this paper).

The def-use chains for top-level variables are readily available. However, those
for address-taken variables (accessed indirectly at loads, stores and call sites) are
implicit. To make such indirect memory accesses explicit, we resort to the rules
in Fig. 6. For an address-taken variable o, there are two types of annotations:
�μ(o)�, which represents a potential use of o, and �o = χ(o)�, which represents
both a potential definition and a potential use of o. We define Δ : L × ORD →
2ANNOT, where ANNOT is the set of annotations (shown in brackets), L is the
set of statement labels, and ORD = {≺,�} indicates if an annotation appears
immediately before (≺) or after (�) a statement.

Let us go through the rules in Fig. 6, where allow us to soundly model both
strong updates (by killing old values) and weak updates (by preserving old val-
ues) for address-taken variables. For a load statement x = ∗y at l, if y points
to o, then �μ(o)� is added before l to indicate that o may be used at this load
(Rule [Mu]). For a store statement ∗x = y at l, if x points to o, then �o = χ(o)�
is added after l to indicate that o (LHS) may be redefined in terms of both o
(RHS) in the case of a weak update and y at this store (Rule [Chi]). Rules [Ref]
and [Mod] prescribe the standard inter-procedural MOD/REF analysis. Let a
function f be defined at lf and called at a call site l via a function pointer fp.
Consider [Ref] first. If �μ(o)� is annotated inside f , then �μ(o)� is added before l
(as o may be used in f directly or indirectly), and �o = χ(o)� is added before f ’s
definition at lf (as o may be passed indirectly as a parameter to f). Consider

Adaptive Context-Sensitive Verification for Temporal Heap Safety 57

Fig. 6. Rules for adding two types of annotations, �μ(o)� and �o = χ(o)�, to make
explicit the accesses of a memory object o. L(f) denotes the set of statement labels
in function f . Δ(l, ≺) and Δ(l, �) represent the sets of annotations added just before
and after l, respectively.

[Mod] now. If �o = χ(o)� is annotated inside f , then we add not only the same
annotations at l and lf as in [Ref], but also �μ(o)� after lf (as o may be returned
to its call sites) and �o = χ(o)� after l (as o may be modified at l).

Once a program has been annotated, its top-level variables and objects
appearing in the annotations are put into SSA form [11], with their versions
denoted in superscripts.

Example 1. Let us see how to add o5-related annotations in Fig. 7. For now,
the value-flow edges shown are irrelevant. In line 8, �o25 = χ(o15)� is added after
l8, i.e., as 8�, in put() as pctn is found to point to o5 by the pre-analysis in
Fig. 2 (Rule [Chi]). As a result, this inter-procedural MOD/REF effect needs to
be reflected at its definition and call sites, by adding 7≺, 7�, 14≺, 14�, 15≺, and
15� (Rule [Mod]). In line 16, �μ(o25)� is added before l16 since tray is found to
point to o5 (Rule [Mu]).

Given an annotated program in SSA form, we build its value-flow graph,
Gvfg = (L × V,E), to capture the flow of values through its def-use chains and
inter-procedural call/return edges, by using the rules in Fig. 8 to construct its
value-flow edges. We make use of two mappings, D : V → 2L and U : V → 2L,
that map a variable v ∈ V to the set of its definition sites ldef ∈ L and use sites
luse ∈ L, respectively. We write 〈lsrc, v〉 −→ 〈ldst, v

′〉 to denote the flow of a value
initially in v at lsrc to v′ at ldst. For a top-level variable x ∈ VT, Rule [DT] adds
the definition site l to D(x) and Rules [UT

Copy], [UT
Load], [UT

Store], [UT
Addr], [UT

Free]
and [UT

Call] add the use site l to U(x). For an address-taken variable o ∈ VA,
Rules [DA] and [UA

χ]/[UA
μ] simply collect its definition and use sites into D(o) and

U(o), respectively. The last five rules construct the edges in Gvfg by connecting
a definition site with all its use sites. [VFIntra] adds intra-procedural value-flow
edges while the other four add inter-procedural value-flow edges (with [VFT

Call]
and [VFT

Ret] for top-level variables and [VFA
Call] and [VFA

Ret] for address-taken
variables).

58 H. Yan et al.

Fig. 7. A program (referred to in Example 1 (annotations), Example 2 (value-flow
edges) and Example 3 (pointer analysis)), decorated with μ and χ annotations and
all the value-flow edges 1 – 9 that capture the flow of o2 from bone in line 10 through
to feedDog in line 16.

Once Gvfg has been constructed, the SSA versions of a variable will be
ignored.

Example 2. Figure 7 shows all the value-flow edges 1 – 9 capturing the flow
of o2 via fd, bone, pfd, o5 and feedDog. We obtain these edges by apply-
ing the following rules (Fig. 8): 1 for 〈l2, fd〉 −→ 〈l3, fd〉 ([VFIntra]); 2 for
〈l3, fd〉 −→ 〈l10, bone〉 ([VFT

Ret]); 3 for 〈l10, bone〉 −→ 〈l14, bone〉 ([VFIntra]); 4

for 〈l14, bone〉 −→ 〈l7, pfd〉 ([VFT
Call]); 5 for 〈l7, pfd〉 −→ 〈l8, pfd〉 and 6 for

〈l�8 , o25〉 −→ 〈l�7 , o25〉 ([VFIntra]); 7 for 〈l�7 , o25〉 −→ 〈l�14, o05〉 ([VFA
Ret]); and 8 for

〈l�14, o15〉 −→ 〈l�15, o15〉 and 9 for 〈l�15, o25〉 −→ 〈l≺16, o25〉 ([VFIntra]).
In Fig. 10 (discussed in Sect. 4.2), we will give a version of Fig. 7 with all the

value-flow edges included for the program.

4.2 Demand-Driven Context-Sensitive Pointer Analysis

Our context-sensitive pointer analysis ptdd
cs operates on the value-flow graph

Gvfg of a program. We write to signify a demand query for
the points-to set of variable v at statement l under context c. In the case of

with an empty context [], ptdd
cs will find all pointed-to objects

⟪co, o⟫ ∈ ptdd
cs (c, l, v), where c is also inferred automatically. This automatic

context inference is essential for achieving high precision as it provides a mech-
anism for us to synergize alias and control-flow reachability analyses as needed.
As is solved on-demand (with possibly many other points-to
queries raised along the way), by traversing backwards only the value-flow edges

Adaptive Context-Sensitive Verification for Temporal Heap Safety 59

Fig. 8. Rules for building the value-flow graph Gvfg for an annotated program in SSA
form (with the version of an SSA variable omitted when it is irrelevant to avoid clutter-
ing). D(v) (U(v)) denotes the set of definition (use) sites of a variable v. F (l) identifies
the function containing l.

in Gvfg established on the fly, imprecision in Gvfg (due to spurious value-flow
edges) will affect only the efficiency but not precision of ptdd

cs .
Figure 9 gives the rules for answering , where , which

is transitive by [VFTrans], represents the flow of a value across one or more
value-flow edges in Gvfg actually traversed. Note that ⟪co, o⟫ is essentially
〈co, o, o〉 since o is the line number for the corresponding allocation site. We
say that x flows to y if . To solve , we solve

, i.e., find what flows to 〈c, l, v〉 (Rule [QRY]). If ⟪co, o⟫ flows to
〈c, l, v〉, then 〈c, l, v〉 points to ⟪co, o⟫ (Rule [PT]). If 〈c, l, v〉 has been reached,
we need to continue exploring backwards what may flow to 〈c, l, v〉 on-demand
(Rule [DDBack]). Rules [VFAddr] and [VFAlloc] handle allocation statements that
allocate memory for an address-taken variable on the stack and in the heap,
respectively.

For a load lx = ∗y with a query , ptdd
cs first checks

to see if holds by issuing a demand query
(Rule [DDLoad]), and if this is the case, then is

60 H. Yan et al.

Fig. 9. Rules for demand-driven context-sensitive pointer analysis ptdd
cs (with denot-

ing a demand query issued and denoting the flow of a value from nsrc to
ndst on Gvfg).

established (Rule [VFLoad]). Similarly, for a store l ∗ x = y with a query
, ptdd

cs checks to see if holds by issu-
ing a demand query (Rule [DDStore]), and if this is the case, then

is established (Rule [VFStore]).

Adaptive Context-Sensitive Verification for Temporal Heap Safety 61

Rules [VFCopy], [VFT] and [VFA] simply propagate values across assignments
(with the former for copy statements and the latter two for def-use chains). In
particular, [VFA] performs a weak update at a store. Note that ptdd

cs is also
flow-sensitive with strong updates performed for singleton objects as is standard
[19,29,49].

To support the inter-procedural analysis at the function calls and returns,
[VFT

Call] and [VFT
Ret] handle top-level variables while [VFA

Call] and [VFA
Ret] handle

address-taken variables. Context-sensitivity is achieved by maintaining a context
with push (⊕) and pop (�) operations in a stack-like manner. When handling
a function call at a call site l, a new context c--- is generated by popping off l
from the current context c, denoted c--- = c� l, to track the value-flow backwards
outside the callee (c---) from inside the callee (c). Conversely, when handling a
callee function’s return statement that returns to a call site l, a new context c+++

is created by pushing l to the top of the current context c, denoted c+++ = c ⊕ l,
to represent the fact that the backward analysis will now enter the callee (c+++)
at its return statement from the call-site l outside the callee (c).

Example 3. Given for the program in Fig. 7,
ptdd

cs yields the following facts related to the nine value-flow edges marked as
1 – 9 :

This means that by Rule [VFTrans]. Finally,
we can conclude that ⟪[κ10], o2⟫ ∈ ptdd

cs ([], 16, feedDog) by Rule [PT].
In addition to 1 – 9 , there are other facts generated on-demand, in an

(unsuccessful) attempt to identify some other objects pointed to by feedDog.

Table 1 gives a step-by-step trace of when operating
on Fig. 10, a version of Fig. 7 with a complete value-flow graph for the same
program. For Table 1, we would like to highlight the following three aspects:

1. Value-Flow Transitivity. The flow of ⟪[κ10], o2⟫ into 〈[], 16, feedDog〉, i.e.,
, discussed in Example 3, is obtained by

Steps #11 – #13 – #32 – #34 – #36 – #51 – #53 – #55 – #57 – #59
– #61 – #63.

2. Generating Demand Points-to Queries. In addition to

, the other demand queries are issued in by
firing 1© Rule [DDBack] (e.g., Steps #4, #6 and #8) to start a new backward
traversal, and 2© Rules [DDLoad] and [DDStore] (e.g., Steps #2 and #19) at
a load or store statement to resolve a dereferenced pointer.

62 H. Yan et al.

3. Context-sensitivity. Starting with ,
i.e., at Step #1, we obtain

in Steps #2–#10. There are two call sites, κ14

and κ15, for put(). Once we know what tray points to, we can enter put()
backwards from its exit at line 7� in two ways, depending on whether it is
called from κ15 or κ14.

By performing Steps #11–#18 (with the assumption that put() is called
from κ15), we reach line 8, where we issue a demand query at Step #19,

, but only to find that ,
i.e., at the end of Steps #19–#31.

Alternatively, after having performed Steps #32–#37 (with the assump-
tion that put() is called from κ14), we reach line 8 again, where we issue
another query at Step #38, . This time, however, we
obtain , i.e., at the end of Steps #38–#50. By
completing Steps #51–#64, as already demonstrated in Example 3, we obtain
⟪[κ10], o2⟫ ∈ ptdd

cs ([], 16, feedDog).

Fig. 10. The program given in Fig. 7 decorated with all the value-flow edges.

4.3 Synergizing Aliasing and Control-Flow Reachability

Given a pair of deallocation ψ(lψ, p) and dereference ω(lω, q), we proceed to prove
absence of ⧼⟪co, o⟫, ψ(cψ, lψ, p), ω(cω, lω, q)⧽ on all the control-flow paths ρ across
the ICFG of the program, where cψ ∈ Cψ and cω ∈ Cω are calling contexts for
lψ and lω, respectively. We abstract ρ with a context tuple (co, cψ, cω), which is
shortened to (cψ, cω), since co can be automatically inferred by ptdd

cs from cψ and
cω.

The following two properties are checked context-sensitively:

Adaptive Context-Sensitive Verification for Temporal Heap Safety 63

Table 1. A step-by-step trace of , for computing
⟪[κ10], o2⟫ ∈ ptdd

cs ([], 16, feedDog), with ptdd
cs operating on the value-flow graph of the

program in Fig. 10 by applying the rules given in Fig. 9.

• Aliasing, Aψ
ω : Cψ × Cω → {true, false}, indicating if (cψ, p) aliases (cω, q),

and
• Reachability, Rψ

ω : Cψ × Cω → {true, false}, indicating if lψ reaches lω on
the ICFG by going through first the return edges specified by cψ and then
the call edges specified by cω.

64 H. Yan et al.

Fig. 11. Rules for synergizing aliasing and control-flow reachability.

We consider aliasing and reachability together, Sψ
ω : Cψ × Cω → {true, false},

by requiring Aψ
ω and Rψ

ω to be satisfied for the same context pair (cψ, cω).
We report a TH-safety violation at the dereference iff Sψ

ω is satisfied, thereby
avoiding false-positives that satisfy both constraints on two different paths only.

Figure 11 gives our rules. Rule [Aliasing] computes an abstract path, (cψ, cω),
on which p aliases q. Note that ⟪hcψ, o⟫ and ⟪hcω, o⟫ may represent the same
(concrete) object if one of these two contexts is a suffix of (i.e., coarser than)
the other. Rule [Reaching] computes an abstract path, (cψ, cω), on which lψ
reaches lω, which happens if lψ first reaches lψ inter-procedurally via the return
edges specified by cψ, then lψ reaches lω intra-procedurally in the same function
(denoted RIntra(lψ, lω)), and finally, lω reaches lω inter-procedurally via the call
edges specified by cω.

4.4 Adaptive Context-Sensitivity

To guarantee soundness, all context pairs (cψ, cω) ∈ Cψ × Cω in the program
must be considered, making [Aliasing] in Fig. 11 prohibitively costly to verify.
To tame path explosion, we use the two rules in Fig. 12 instead with adaptive
context-sensitivity, thereby reducing significantly the number of context pairs
considered without losing soundness or precision. We explain these two rules,
illustrated in Fig. 13, below.

The key insight behind is that ptdd
cs ([], l, v), when asked to com-

pute the points-to set of (l, v) with an empty context [], which repre-
sents an abstraction of all possible contexts (from main()), will return
⟪hc, o⟫ ∈ ptdd

cs (c, l, v), where the contexts c and hc are automatically
inferred. In particular, c and hc are appropriately k-limited (with any
unnecessary context prefix cpre from main() truncated), since we have:

Adaptive Context-Sensitive Verification for Temporal Heap Safety 65

Fig. 12. Two rules for replacing [Aliasing] in Fig. 11 with adaptive context-sensitivity.

Fig. 13. An illustration of the two rules in Fig. 12, where a fat dot represents a function
and an arrow represents a sequence of (transitive) function calls across the functions
in the program.

In [Aliasing], there are three possibilities for ⟪hcψ, o⟫ and ⟪hcω, o⟫ to be
aliases:

1. hc = hcψ = hcω. This case, illustrated in Fig. 13(a), is handled by [Aliasing-
EqHeapCtx], which says that it suffices to consider only (cψ, cω) by removing
any common prefix cpre from cψ and cω, since (cψ, cω) is coarser than (cψ, cω).
In addition, all context pairs (cons(c1pre, cψ), cons(c2pre, cω)), where c1pre �=c2pre,
can also be soundly removed, since ⟪cons(c1pre, hc), o⟫ cannot be aliased with
⟪cons(c2pre, hc), o⟫. By construction, car(cons(cψ, lψ)) and car(cons(cω, lω))
are guaranteed to be in the same function, allowing Rψ

ω in [Reaching] to be
checked trivially.

2. hcω = cons(c, hcψ). To check Rψ
ω in [Reaching] efficiently, [Aliasing-

NeqHeapCtx], as shown in Fig. 13(b), constructs cψ by extending cψ such
that car(cons(cψ, lψ)) and car(cons(cω, lω)) reside in the same function.
As in [Aliasing-EqHeapCtx], all context-pairs (cons(c1pre, cψ), cons(c2pre, cω)),
where c1pre �= c2pre, are ignored soundly. In addition, car(cons(cψ, lψ)) and
car(cons(cω, lω)) always reside in the same function, allowing Rψ

ω in [Reach-
ing] to be checked trivially as above.

3. hcψ = cons(c, hcω). This case, which indicates a use-before-free, is always
safe.

66 H. Yan et al.

Our approach D3 is adaptive since its search space exploration selects calling con-
texts with appropriate lengths adaptively without losing soundness or precision.

Example 4. Let us apply our rules to the program in Fig. 4(a) to detect
the TH-safety violation ⧼⟪[κ18, κ21], o2⟫, ψ([κ18, κ22], l5, y), ω([κ19], l7, z)⧽. Let
us consider [Aliasing-NeqHeapCtx] first. For the two points-to queries

and issued, we obtain ⟪[κ21], o2⟫ ∈
ptdd

cs ([κ22], l5, y) and ⟪[κ18, κ21], o2⟫ ∈ ptdd
cs ([κ19], l7, z). As hcω = [κ18, κ21] =

cons([κ18], [κ21]) = cons(cpre, hcψ), we have cψ = cons(cpre, cψ) = [κ18, κ21].
By applying [Aliasing-NeqHeapCtx], Aψ

ω([κ18, κ21], [κ19]) holds. Let lψ = κ18

and lω = κ19. By applying [Reaching], Rψ
ω([κ18, κ21], [κ19]) holds. Finally, by

[AliasingAndReaching], S([κ18, κ21], [κ19]) holds, triggering this as a TH-safety
violation.

4.5 Soundness

For a program P considered in Sect. 2, D3 (Fig. 5) is sound. First, Gvfg con-
structed for P , based on the rules in Fig. 8, over-approximates the flow of any
value in P as Andersen’s analysis (Fig. 2) is sound. Second, ptdd

cs (Fig. 9) is sound
as it over-approximates the points-to information in P . Third, we suppress a TH-
safety violation warning soundly according to [AliasingAndReaching] (Fig. 11).
Finally, our adaptive analysis (Fig. 12) is sound as the context pairs (cψ, cω)
pruned for [AliasingAndReaching] during the search space exploration are redun-
dant (Sect. 4.4).

5 Evaluation

We show that D3 can accomplish our TH-safety verification task for reasonably
large C programs efficiently with good precision in the context of the prior work.

5.1 Methodology

We have implemented D3 in the open-source program analysis framework,
SVF [50], which is implemented in LLVM [27]. Given a program, its source
files are first compiled individually into LLVM IR by the Clang compiler front-
end, before linked together into a single whole-program IR file by the LLVM
Gold Plugin. Our TH-safety verification task is then performed statically on the
whole-program LLVM IR file.

Two sets of benchmark are used. One set consists of 138 test cases with the
ground truth for use-after-free vulnerabilities (CWE-416) from the NIST Juliet
Test Suite for C [1], which are all TH-safety violations extracted from real-world
scenarios, with one per test case. The other set consists of ten popular open-
source C programs (with 40–260 KLOC) given in Table 2, containing a total of
114,508 pointer dereferences.

Adaptive Context-Sensitive Verification for Temporal Heap Safety 67

Table 2. Results for verifying 10 open-source C programs. DSEP is a version of
D3 with aliasing Aψ

ω and reachability Rψ
ω checked separately. %Impr is computed as

D3.#Safe-DSEP.#Safe
#Deref-DSEP.#Safe

× 100%.

Program Characteristics Value-Flow Graph DSEP D3

KLOC #Derefs #Nodes #Edges Time (s) #Safe %Safe Time (s) #Safe %Safe %Impr

a2ps-4.14 65 12,601 35,201 58,255 428 7,000 55.6% 5,653 9,944 78.9% 52.6%

cpio-2.12 94 5,211 13,486 23,379 10 3,805 73.0% 180 4,964 95.3% 82.4%

ctags-5.8 42 14,628 56,320 152,846 54 10,538 72.0% 520 14,014 95.8% 85.0%

MCSim-6.0.1 60 8,718 17,914 28,365 64 5,233 60.0% 1,010 8,105 93.0% 82.4%

parted-3.2 138 1,493 7,703 16,415 9 1,133 75.9% 14 1,371 91.8% 66.1%

patch-2.7.6 88 5,334 16,926 35,269 50 4,065 76.2% 480 4,961 93.0% 70.6%

sendmail-8.15 260 21,536 128,312 328,892 1,332 12,368 57.4% 3,277 15,570 72.3% 34.9%

tar-1.31 191 11,671 54,594 109,269 225 7,741 66.3% 7,672 9,200 78.8% 37.1%

tmux-2.8 54 24,877 91,373 185,594 166 12,366 49.7% 12,295 18,266 73.4% 47.2%

wget-1.20 174 8,439 31,460 63,738 100 5,957 70.6% 1,920 6,746 79.9% 31.8%

Avg 117 11,451 45,329 100,202 244 7,021 65.7% 3,302 9,314 85.2% 59.0%

Total 1,166 114,508 453,289 1,002,022 2,438 70,206 61.3% 33,022 93,141 81.3% 51.8%

We compare D3 with a C bounded model checker, CBMC (version 5.11) [26].
CBMC, as confirmed by the authors, does not provide an option to verify TH-
safety only by disabling other types of memory errors. Thus, we have configured
it with the “pointercheck” option to detect all pointer-related errors and then
manually extracted all the TH-safety violations reported. For the small test cases
in the NIST Juliet Test Suite, loops are not bounded. For the ten real-world
programs, loops are unwound by using ”unwind 2” to accelerate termination (at
the expense of losing soundness).

Infer [7] (i.e., Abductor earlier [8]) has evolved into a bug detector by sacri-
ficing soundness, with its older verification-oriented versions no longer available
(as confirmed by its authors), The latest version of SLAyer [6] does not compile
(as also confirmed by its authors) since it relies on a specific yet unknown old
subversion of the Z3 SMT-solver. So we will not compare with such separation-
logic-based verifiers, as Infer, for example, is now designed to lower its false
positive rate by tolerating for false negatives.

In addition, we also evaluate D3 against a version of D3, denoted DSEP, for
which aliasing and control-flow reachability are considered separately.

As ptdd
cs is demand-driven, the time budget for a points-to query issued from

[Aliasing] (Fig. 12) is set to be a maximum of 10,000 value-flow edges traversed.
On time out, ptdd

cs will fall back to the result computed by Andersen’s pointer
analysis, pt, soundly (Fig. 2). We have done our experiments on a machine with
a 3.5 GHz Intel Xeon 16-core CPU and 256 GB memory, running Ubuntu OS
(version 16.04 LTS). The analysis time of a program is the average of five runs.
For D3/DSEP, the analysis times from all its stages (Fig. 5) are included, except
the pre-analysis, since Andersen’s analysis is expected to be reused by many
other static analyses for the program.

68 H. Yan et al.

5.2 Results and Analysis

5.2.1 Juliet Test Suite: Soundness
Both CBMC and D3 report soundly all the 138 use-after-free bugs without any
false positives. Each test case is small, with a few hundreds of LOC, costing less
than one second to verify by either tool.

5.2.2 The Ten Open-Source Programs: Precision and Scalability
For any of these programs, CBMC, which is bounded by even “unwind 2”, cannot
terminate within a 1-day time budget. We have decided to evaluate D3 against a
version, DSEP, in which both aliasing and control-flow reachability are considered
separately, as shown in Table 2.

• Precision. For a total of 114,508 dereferences in the ten programs, D3 proves
successfully 81.3% (or 93,141

114,508) to be safe. This translates into an average of
85.2% per program, ranging from 72.3% in sendmail to 95.8% for ctags. For
the remaining 14.8%, anout an average of 33% fail due to the out-of-budget
problem. In contrast, DSEP finds only 61.3% of all the dereferences to be safe,
with an average of 65.7% per program, ranging from 49.7% for tmux to 76.2%
for patch.
D3 is significantly more precise than DSEP (as measured by %Impr). For a
total of 44,302 dereferences that cannot be verified to be safe by DSEP, D3

recognizes 51.8% of these (i.e., 22,935
44,302) as being safe. The largest improve-

ments are observed for ctags (85.0%), cpio (82.4%) and MCSim (82.4%),
which contain many cases as illustrated in Fig. 3, causing DSEP to fail but D3

to succeed, since aliasing and reachability must be considered together. On
the other hand, the precision improvements for wget (31.8%) and sendmail
(34.9%), where linked lists are heavily used, are the least impressive.

• Scalability. For a given program, the size of its value-flow graph affects the
time complexity of our approach. D3 scales reasonably well to these programs,
spending a total of 33,022 s on analyzing a total of 1,166 KLOC, while DSEP

is faster (finishing in 2,438 s) but less precise. For sendmail (the largest with
260 KLOC), D3 takes 3,277 s to complete. For ctags (the smallest with 42
KLOC), D3 finishes in 520 s. D3 is the fastest for parted, which has the
smallest value-flow graph with the smallest number of dereferences. D3 is
the slowest for tmux, which has the second largest value-flow graph with the
largest number of dereferences.

6 Related Work

Pointer Analysis. Substantial progress has been made for whole-program
[23,33,48] and demand-driven [20,47,51] pointer analyses, with flow-
sensitivity [19,31], call-site-sensitivity [40,61], object-sensitivity [37,55] and
type-sensitivity [25,45]). These recent advances in both precision and scalability

Adaptive Context-Sensitive Verification for Temporal Heap Safety 69

have resulted in their widespread adoption in detecting memory bugs [2,17], such
as memory leaks [9,52], null dereferences [34,36], uninitialized variables [35,60],
buffer overflows [10,30], and typestate verification [12,16]. Pointer-analysis-based
tools [44,57] can detect TH-safety violations with low false-positive rates, but
at the expense of missing true bugs. Some recent advances on pointer analysis
for object-oriented languages [32,46] improve the efficiency of the traditional k-
object-sensitivity by analyzing some methods context-insensitively, but due to
the lack of flow-insensitivity, such techniques are unsuitable for analyzing TH-
safety. In contrast, D3 is designed to be a verifier for finding TH-safety violations
with good precision soundly by considering aliasing and control-flow reachability
synergistically.

Separation Logic. As an extension of Hoare logic for heap-manipulating pro-
grams, separation logic [42] provides the basis for a long line of research on
memory safety verification. At its core is the separating conjunction ∗ that splits
the heap into disjoint heaplets, allowing program reasoning to be confined in
heaplets [15,59]. For separation-logic-based verification, scalability has consid-
erably improved with techniques like bi-abduction at the expense of sacrificing
some precision [8,58], leading to industrial-strength tools such as Microsoft’s
SLAyer [6] and Facebook’s Infer [7]. By giving up also some soundness, many
industrial-strength static analyzers, such as Clang Static Analyzer [3,43] and
Infer (the current release 0.15.0) are bug detectors, which reduce false posi-
tives at the expense of exhibiting false negatives as well. Unlike separation-
logic-based approaches that support compositional and modular reasoning, D3

takes a pointer-analysis-based approach by analyzing also only the relevant code
on-demand.

Model Checking. Model checking represents a powerful framework for reason-
ing about a wide range of properties [24]. To analyze pointer-intensive C pro-
grams, model checkers such as SLAM [5] and BLAST [21] rely on pre-computed
points-to information. Goal-driven techniques like SMACK+Corral [18] aim at
improving scalability by simplifying verification conditions. However, as pointed
out in [26], model checking still suffers from limitations in fully automated
TH-safety verification for large-sized programs, partly due to complex pointer
aliasing. Model checkers with symbolic execution (e.g., Symbiotic [53]) can find
bugs precisely but with limited scalability for large-sized programs due to path
explosion.

7 Conclusion

This paper presents D3, a novel approach for addressing the TH-safety verifica-
tion problem based on a demand-driven context-sensitive pointer analysis. D3

achieves its precision (by considering both aliasing and control-flow reachabil-
ity simultaneously) and scalability (with adaptive context-sensitivity). In future
work, we plan to empower D3 by also considering (partial) path-sensitivity and
shape analysis.

70 H. Yan et al.

Acknowledgement. We would like to thank the anonymous reviewers for their
valuable comments. This research is supported by an Australian Research Grant
DP180104169.

References

1. Juliet Test Suite 1.2. https://samate.nist.gov/srd/testsuite.php
2. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview

of the Saturn project. In: PASTE 2007, pp. 43–48 (2007)
3. Clang Static Analyzer. http://clang-analyzer.llvm.org/
4. Andersen, L.O.: Program analysis and specialization for the C programming lan-

guage. Ph.D. thesis, DIKU, University of Copenhagen (1994)
5. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate

abstraction of C programs. In: PLDI 2001, pp. 203–213 (2001)
6. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.

In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 15

7. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

8. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL 2009, pp. 289–300 (2009)

9. Cherem, S., Princehouse, L., Rugina, R.: Practical memory leak detection using
guarded value-flow analysis. In: PLDI 2007, pp. 480–491 (2007)

10. Cifuentes, C., et al.: Static deep error checking in large system applications using
parfait. In: ESEC/FSE 2011, pp. 432–435 (2011)

11. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Effi-
ciently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst. (TOPLAS) 13(4), 451–490 (1991)

12. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in poly-
nomial time. In: PLDI 2002, pp. 57–68 (2002)

13. Dillig, I., Dillig, T.: Explain: a tool for performing abductive inference. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 684–689. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 46

14. Dillig, I., Dillig, T., Aiken A.: Sound, complete and scalable path-sensitive analysis.
In: PLDI 2008, pp. 270–280 (2008)

15. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 19

16. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate veri-
fication in the presence of aliasing. ACM Trans. Softw. Eng. Methodol. (TOSEM)
17, 9 (2008)

17. Hackett, B., Aiken, A.: How is aliasing used in systems software? In: FSE 2006,
pp. 69–80 (2006)

18. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:
SMACK+Corral: a modular verifier. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 451–454. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 42

https://samate.nist.gov/srd/testsuite.php
http://clang-analyzer.llvm.org/
https://doi.org/10.1007/978-3-642-22110-1_15
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-39799-8_46
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/978-3-662-46681-0_42
https://doi.org/10.1007/978-3-662-46681-0_42

Adaptive Context-Sensitive Verification for Temporal Heap Safety 71

19. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In: POPL 2009,
pp. 226–238 (2009)

20. Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: PLDI 2001, pp. 24–34
(2001)

21. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL 2004, pp. 232–244 (2004)

22. Henzinger, T.A., Necula, G.C., Jhala, R., Sutre, G., Majumdar, R., Weimer, W.:
Temporal-safety proofs for systems code. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 526–538. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45657-0 45

23. Jeong, S., Jeon, M., Cha, S., Oh, H.: Data-driven context-sensitivity for points-to
analysis. In: OOPSLA 2014, pp. 100:1–100:28 (2017)

24. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. (CSUR)
41(4), 21 (2009)

25. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: PLDI 2013, pp. 423–434 (2013)

26. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

27. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004, pp. 75–86 (2004)

28. Lee, B., et al.: Preventing use-after-free with dangling pointers nullification. In:
NDSS 2015 (2015)

29. Lhoták, O., Chung, K.-C.A.: Points-to analysis with efficient strong updates. In:
POPL 2011, pp. 3–16 (2011)

30. Li, L., Cifuentes, C., Keynes, N.: Practical and effective symbolic analysis for buffer
overflow detection. In: FSE 2010, pp. 317–326 (2010)

31. Li, L., Cifuentes, C., Keynes, N.: Boosting the performance of flow-sensitive points-
to analysis using value flow. In: ESEC/FSE 2011, pp. 343–353 (2011)

32. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Precision-guided context sensitivity
for pointer analysis. In: OOPSLA 2018, p. 141 (2018)

33. Liang, P., Tripp, O., Naik, M.: Learning minimal abstractions. In: POPL 2011, pp.
31–42 (2011)

34. Loginov, A., Yahav, E., Chandra, S., Fink, S., Rinetzky, N., Nanda, M.: Verify-
ing dereference safety via expanding-scope analysis. In: ISSTA 2008, pp. 213–224
(2008)

35. Lu, K., Song, C., Kim, T., Lee, W.: UniSan: proactive kernel memory initialization
to eliminate data leakages. In: CCS 2016, pp. 920–932 (2016)

36. Madhavan, R., Komondoor, R.: Null dereference verification via over-approximated
weakest pre-conditions analysis. In: OOSPLA 2011, pp. 1033–1052 (2011)

37. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol. (TOSEM) 14(1),
1–41 (2005)

38. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: a prag-
matic approach to model checking real code. In: OSDI 2002, pp. 75–88 (2002)

39. Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: CETS: compiler
enforced temporal safety for C. In: ISMM 2010, pp. 31–40 (2010)

40. Oh, H., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity guided by
impact pre-analysis. In: PLDI 2014, pp. 475–484 (2014)

41. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL 1995, pp. 49–61 (1995)

https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.1007/978-3-642-54862-8_26

72 H. Yan et al.

42. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS 2002, pp. 55–74 (2002)

43. Coverity Scan. https://scan.coverity.com/
44. Shi, Q., Xiao, X., Wu, R., Zhou, J., Fan, G., Zhang, C.: Pinpoint: fast and precise

sparse value flow analysis for million lines of code. In: PLDI 2018, pp. 693–706
(2018)

45. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understand-
ing object-sensitivity. In: POPL 2011, pp. 17–30 (2011)

46. Smaragdakis, Y., Kastrinis, G., Balatsouras, G.: Introspective analysis: context-
sensitivity, across the board. In: PLDI 2014, pp. 485–495 (2014)

47. Späth, J., Do, L.N.Q., Ali, K., Bodden, E.: Boomerang: demand-driven flow-and
context-sensitive pointer analysis for Java. In: ECOOP 2016, pp. 22:1–22:26 (2016)

48. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: PLDI 2016, pp. 387–400 (2006)

49. Sui, Y., Xue, J.: On-demand strong update analysis via value-flow refinement. In:
FSE 2016, pp. 460–473 (2016)

50. Sui, Y., Xue, J.: SVF: interprocedural static value-flow analysis in LLVM. In: CC
2016, pp. 265–266 (2016)

51. Sui, Y., Xue, J.: Value-flow-based demand-driven pointer analysis for C and C++.
IEEE Trans. Softw. Eng. (TSE) (2018)

52. Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse value-flow
analysis. In: ISSTA 2012, pp. 254–264 (2012)

53. Symbiotic. https://github.com/staticafi/symbiotic
54. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: SP

2013, pp. 48–62 (2013)
55. Tan, T., Li, Y., Xue, J.: Efficient and precise points-to analysis: modeling the heap

by merging equivalent automata. In: PLDI 2017, pp. 278–291 (2017)
56. Yan, H., Sui, Y., Chen, S., Xue, J.: Machine-learning-guided typestate analysis for

static use-after-free detection. In: ACSAC 2017, pp. 42–54 (2017)
57. Yan, H., Sui, Y., Chen, S., Xue, J.: Spatio-temporal context reduction: a pointer-

analysis-based static approach for detecting use-after-free vulnerabilities. In: ICSE
2018, pp. 327–337 (2018)

58. Yang, H., et al.: Scalable shape analysis for systems code. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1 36

59. Yang, H., O’Hearn, P.: A semantic basis for local reasoning. In: Nielsen, M., Eng-
berg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 402–416. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45931-6 28

60. Ye, D., Sui, Y., Xue, J.: Accelerating dynamic detection of uses of undefined values
with static value-flow analysis. In: CGO 2014, pp. 154–164 (2014)

61. Yu, H., Xue, J., Huo, W., Feng, X., Zhang, Z.: Level by level: making flow-and
context-sensitive pointer analysis scalable for millions of lines of code. In: CGO
2010, pp. 218–229 (2010)

62. Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in datalog. In: PLDI 2014, pp. 239–248 (2014)

https://scan.coverity.com/
https://github.com/staticafi/symbiotic
https://doi.org/10.1007/978-3-540-70545-1_36
https://doi.org/10.1007/3-540-45931-6_28

	Per-Dereference Verification of Temporal Heap Safety via Adaptive Context-Sensitive Analysis
	1 Introduction
	2 Preliminaries
	3 Illustrating Examples
	3.1 Aliasing and Control-Flow Reachability: Separately vs. Synergistically
	3.2 Synergizing Pointer Analysis and Control-Flow Reachability Analysis: On-Demand with Adaptive Context-Sensitivity

	4 Our Approach
	4.1 Value-Flow Graph Construction
	4.2 Demand-Driven Context-Sensitive Pointer Analysis
	4.3 Synergizing Aliasing and Control-Flow Reachability
	4.4 Adaptive Context-Sensitivity
	4.5 Soundness

	5 Evaluation
	5.1 Methodology
	5.2 Results and Analysis

	6 Related Work
	7 Conclusion
	References

