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Abstract. This paper presents Icpp, a new data-flow-based InCremental
analysis for Probabilistic Programs, to infer their posterior probability
distributions in response to small yet frequent changes to probabilistic
knowledge, i.e., prior probability distributions and observations. Unlike
incremental analyses for usual programs, which emphasize code changes,
such as statement additions and deletions, Icpp focuses on changes made
to probabilistic knowledge, the key feature in probabilistic programming.
The novelty of Icpp lies in capturing the correlation between prior and
posterior probability distributions by reasoning about the probabilistic
dependence of each data-flow fact, so that any posterior probability af-
fected by newly changed probabilistic knowledge can be incrementally
updated in a sparse manner without recomputing it from scratch, thereby
allowing the previously computed results to be reused. We have evaluated
Icpp with a set of probabilistic programs. Our results show that Icpp
is an order of magnitude faster than the state-of-the-art data-flow-based
inference in analyzing probabilistic programs under small yet frequent
changes to probabilistic knowledge, with an average analysis overhead of
around 0.1 seconds in response to a single change.

1 Introduction

Uncertainty is a common feature in many modern software systems, especially
statistical applications (e.g., climate change prediction, spam email filtering and
ranking the skills of game players). Probabilistic programming provides a power-
ful approach to quantifying and characterizing the effects of these uncertainties.
A Probabilistic Programming Language (PPL) usually extends an imperative
language (e.g., C and Java) by adding two types of language constructs, i.e.,
probabilistic assignments for generating random values based on prior probabil-
ity distributions and observe statements for conditioning values of variables.

Unlike an imperative program, which is mainly written for the purposes of
being executed, a probabilistic program is a specification that specifies implic-
itly posterior probability distributions to model uncertainty of the program.
Probabilistic inference is the key to reasoning about a probabilistic program by
extracting explicit distributions that are implicitly specified in the program.

Generally, there are two approaches to probabilistic inference: (1) dynamic
inference, which runs a probabilistic program a finite number of times through
sampling-based Monte Carlo methods [4,7,19,25,28] and then performs inference



2 Jieyuan Zhang, Yulei Sui, and Jingling Xue

to calculate the statistics based on the execution traces, and (2) static inference,
which statically computes the probability distributions without repeatedly exe-
cuting the program. A typical static method [2] is to abstract a loop-free program
as a probabilistic model (e.g., a Bayesian network) and then resorts to existing
inference algorithms, e.g., belief propagation [24] and variational inference [35].
A recent work, DFI [8], provides more precise inference results than sampling
algorithms and Bayesian modeling methods by applying data-flow analysis to
analyze probabilistic programs with and without loops.

Unlike the case for imperative programs, applying data-flow analysis to infinite-
state probabilistic programs is generally more expensive. Data-flow facts of prob-
abilistic programs are probability distributions, including the values of program
variables and their corresponding probabilities. Given a probabilistic program,
the number of its data-flow facts depends not only on its size parameters but also
the prior distributions at its probabilistic assignments and the conditions at its
observe statements. As a common practice in probabilistic programming, prob-
abilistic knowledge, which is represented by prior probability distributions and
observations, is often updated under different scenarios or settings [3,6,37]. To
achieve precise modeling, probabilistic assignments and observe statements are
often changed in order to obtain various posterior probability distributions when
writing a probabilistic program [36]. However, such small yet frequent changes
affect the performance of static inference as the previous inference results become
invalid once the program has been modified. Repeatedly reanalyzing a proba-
bilistic program that undergoes small changes makes static inference costly.

Incremental analysis aims to efficiently update existing analysis results with-
out recomputing them from scratch, allowing the previously computed infor-
mation to be reused. There are a few existing works that support incremental
analysis, such as pointer analysis [18,31], IDE/IFDS analysis [1], data race detec-
tion [38], symbolic execution [26], and fixed-point analysis for logic programs [14].
However, these existing techniques cannot be directly applied to analyze prob-
abilistic programs. For probabilistic programs, frequent changes in probabilistic
knowledge pose a new challenge to incremental analysis. It is still an open ques-
tion as to whether we can replicate the success of previous incremental analysis
for usual programs in analyzing probabilistic programs.

In this paper, we present Icpp, a new InCremental analysis for analyzing
Probabilistic Programs, to infer its posterior probability distributions in re-
sponse to small yet frequent changes to probabilistic knowledge, i.e., prior prob-
ability distributions and observations. Unlike previous incremental analyses for
usual programs, which emphasize code changes, such as statement additions and
deletions, Icpp focuses on changes made to probabilistic knowledge, which is the
key feature in probabilistic programming.

As illustrated in Figure 1, Icpp first performs data-flow-based pre-inference.
Unlike DFI [8], which explicitly computes and maintains the probability of every
program state, our pre-inference generates data-flow facts with each consisting
of a program state and its corresponding probabilistic dependence, which is used
to maintain the correlation between the posterior and prior probability distri-
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Fig. 1. Workflow of Icpp.

butions at probabilistic assignments. This probabilistic dependence is later re-
trieved to facilitate incremental inference once a change is made to a probabilistic
assignment or an observe statement. Based on the dependence information, the
data-flow facts are updated incrementally and propagated sparsely along the
control flow to adapt to program changes, making Icpp an instantaneous in-
cremental analysis for users to query posterior probability distributions, while
achieving the same precision achieved when the program is re-analyzed entirely.

In summary, the contributions of this paper are as follows:

– We present Icpp, a new InCremental analysis for Probabilistic Programs,
in response to small yet frequent changes to probabilistic knowledge.

– We propose a new probabilistic dependence analysis to analyze the two
distinct language constructs in probabilistic programs, probabilistic assign-
ments and observe statements.

– We evaluate Icpp using a set of probabilistic programs from R2 [25] and
DFI [8]. Our results show that Icpp is an order of magnitude faster than
the state-of-the-art data-flow-based inference [8] in analyzing these programs
under small yet frequent changes to probabilistic knowledge, with an average
analysis overhead of around 0.1 seconds in response to a single change.

2 Background

In this section, we describe the preliminaries for our analysis, by focusing on the
representation and inference of a probabilistic program.

2.1 Probabilistic Programs

Following [8,12], we represent a probabilistic program using a tiny language de-
fined in Figure 2. This is a single-function imperative language with two added
constructs: (1) a probabilistic assignment, x = Dist(θ), that assigns random val-
ues to variable x based on a probability distribution Dist(θ), such as Bernoulli,
UniformInt and Gauss, where θ is a list of parameters according to a distribu-
tion model (with a continuous distribution being approximated by a discrete
distribution over a finite set, following [8,21]), and (2) an observe statement,



4 Jieyuan Zhang, Yulei Sui, and Jingling Xue

x, y, a, b ∈ Vars program variables
θ ∈ R real numbers
Dist ∈ {UniformInt, Bernoulli, Gauss, ...} distributions
uop ::= {++,−−, !} unary operations
bop ::= {+,−,×, /,&&, ||,==, 6=, <,>,≤,≥} binary operations

E ::= expressions
| x variable
| c constant
| E1 bop E2 binary operation
| uop E unary operation

` ::= labeled statements
| x = E deterministic assignment
| `1; `2 sequential composition
| if E then `1 else `2 conditional composition
| while E do ` loop
| skip skip

| x = Dist(θ) probabilistic assignment
| observe(E) observe

Prog ::= ` program

Fig. 2. Syntax of a probabilistic program.

observe(E), that conditions the expression E to be true. The effect of the ob-
serve statement is to block all program executions violating condition E .

Figure 3 gives examples to illustrate the differences between an imperative
program in Figure 3(a) and its probabilistic counterparts in Figures 3(b) and
3(c). Figure 3(b) replaces the deterministic assignment at line 2 in Figure 3(a)
with a probabilistic assignment, so that the variable a is assigned a random value
based on the discrete uniform distribution UniformInt(0,1), which returns one
of two integers 0 and 1 with equal probability, 1/2. Figure 3(c) gives another
probabilistic program by adding further observe(b==1) after statement `4 in
Figure 3(b) to block any execution such that b is not equal to 1 at `5.

As shown in Figure 3(d), executing the imperative program in Figure 3(a)
always produces the deterministic result (a = 0, b = 1). However, probabilistic
programs are nondeterministic. Executing the one in Figure 3(b) may produce
one of the two different results: (a=1, b=0) and (a=0, b=1). Figure 3(e) shows a
posterior distribution with equal probability 1/2 for each result. The imperative
program in Figure 3(a) can be seen as a special case of the probabilistic program
in Figure 3(b) with the probability of its unique deterministic result being 1.

Figure 3(f) demonstrates that the result (a = 1, b = 0) becomes infeasible
with its possibility being 0 due to the condition at the observe statement. After
normalization, the probability for the other result (a = 0, b = 1) becomes 1.

2.2 Probabilistic Inference

The key mechanism for reasoning about a probabilistic program is probabilis-
tic inference, which explicitly calculates the posterior probability distributions
implicitly specified in the program. There are two approaches: (1) dynamic in-
ference, which executes programs a finite number of times through sampling-
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ℓ1: bool a=1;
ℓ2: int b=1;
ℓ3: if (b>0)
ℓ4:    a=!a;

ℓ1: bool a=1;
ℓ2: int b=uniformInt(0,1);
ℓ3: if (b>0)
ℓ4:    a=!a;
ℓ5: observe(b==1);

(a) Imperative program (b)  Probabilistic assignment (added) (c) Observe statement (added further)

1/2
(a=1, b=0) 1/2
(a=0, b=1)(a=0, b=1) 

What are the values of a and b at the end of every program?

(d) Deterministic result 
for program (a) 

(e) Posterior probability 
  distribution for program (b) 

   (f) Posterior probability 
    distribution for program (c)  

(a=1, b=0)
(a=0, b=1) 1

0

ℓ1: bool a=1;
ℓ2: int b=uniformInt(0,1);
ℓ3: if (b>0)
ℓ4:    a=!a;

Fig. 3. Imperative vs. probabilistic programs.

based methods [19], such as importance sampling [11], Gibbs sampling [28] and
Metropolis-Hastings sampling [7], and (2) static inference, which computes the
probability distributions statically without running the program.

A recent data-flow-based inference, DFI [8], applies the data-flow theory for
probabilistic inference by treating probability distributions as data-flow facts.
DFI is path-sensitive by analyzing control-flow branch conditions. The resulting
inference provides better precision than many existing methods, e.g., Expecta-
tion Propagation [22], message passing algorithm [16] and MCMC sampling [13].

In DFI, the static inference is formulated as a forward data-flow problem
(D,u, F ). Here, D represents all data-flow facts with each 〈σ, ρ〉 ∈ D consisting
of a program state σ (a set of values) and its corresponding probability ρ when σ
holds. u is the meet operator. F : D → D represents the set of transfer functions
with f` being associated with node (statement) at ` in the CFG of the program.

A path-sensitive analysis computes the data-flow facts (probability distri-
butions) by considering every executable path. We write π to denote a path
[`1, `2 . . . `n] consisting a sequence of n statements in a CFG. The transfer func-
tion for π is fπ ∈ F , which is the composition of transfer functions of the first
n − 1 statements on π, i.e., fπ = f`1 ◦ f`2 . . . f`n−1

. Note that we speak of the
path π by excluding the last statement at `n. Finally, the set of data-flow facts,
D`n, that reach the beginning of a statement `n is computed as follows:

D`n = ⊔

π∈paths(`n)

fπ(>) (1)

where paths(`n) denotes the set of paths from the program entry to statement
`n and > ∈ D is the standard top element in the lattice used.

When analyzing a statement ` in DFI [8], its transfer function f`, which is
defined based on the standard Gen/Kill sets, is distributive, so that f`(d1) ∪
f`(d2) = f`(d1 ∪ d2) holds, where d1, d2 ∈ D. Therefore, the meet operator u is
the set union (∪), causing the data-flow facts at a joint point to be merged, in
order to reduce the number of facts propagated without affecting the precision of
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else

 Dℓ5 

Dℓ4 

Dℓ3 

Dℓ2

ℓ1: a=1

ℓ2: b=UniformInt(0,1)

ℓ3: if (b>0)

ℓ4: a=!a

ℓ5: observe(a==1)

ℓ6: end

<(a=1), 1>

<(a=1, b=0), 1/2>
<(a=1, b=1), 1/2>

<(a=1, b=1), 1/2>

∅

if

Dℓ6

<(a=1, b=0), 1/2>
<(a=0, b=1), 1/2>

Dℓ1

[ℓ1, ℓ2, ℓ3, ℓ4];
[ℓ1, ℓ2, ℓ3];

[ℓ1]; 

[ℓ1, ℓ2]; 

[ℓ1, ℓ2, ℓ3]; 

[ℓ1, ℓ2, ℓ3, ℓ4, ℓ5];
[ℓ1, ℓ2, ℓ3, ℓ5]; <(a=0, b=1),   0 >

<(a=1, b=0), 1/2>

path along if branch:     
  [ℓ1, ℓ2, ℓ3, ℓ4, ℓ5]   

path along else branch: 
 [ℓ1, ℓ2, ℓ3, ℓ5];           

  Data-flow facts <!,  "> 

Fig. 4. Data-flow-based probabilistic inference.

the posterior probability distribution results. In particular, two data-flow facts
〈σ1, ρ1〉 and 〈σ2, ρ2〉 at a joint point are merged into 〈σ1, ρ1 + ρ2〉 if σ1 == σ2.

Let us take a look at the data-flow-based inference in Figure 4 by revisiting
the example in Figure 3(c). After analyzing the deterministic assignment `1, D`2

at the beginning of `2 is 〈(a = 1), 1〉. After analyzing the probabilistic assignment
`2, we obtain two data-flow facts representing the probability distributions for
two possible states, (a = 1, b = 0) and (a = 1, b = 1), with their corresponding
probabilities being ρ(a=1,b=0) = Pr(`1 :a=1) ∗ Pr(`2 :b=0) = 1 ∗ 1/2 = 1/2 and
ρ(a=1,b=1) = Pr(`1 :a=1) ∗ Pr(`2 :b=1) = 1 ∗ 1/2 = 1/2, respectively.

D`5 contains the two data-flow facts reaching the beginning of `5, 〈(a =
0, b = 1), 1/2〉 and 〈(a = 1, b = 0), 1/2〉, which are computed and propagated
from the if and else branches, respectively. Finally, after analyzing the observe
statement `5, D`6 (without normalization) is the same as D`5 except that the
probability of (a=0, b=1) has been updated to from 1/2 to 0.

3 A Motivating Example

Figure 5 gives an example to illustrate the basic idea behind Icpp when the prior
probability distribution at `2 is changed from UniformInt(0,1) to
UniformInt(−1, 1). This change affects the probabilities of b’s existing values
and introduces a new value -1 to b. Note that observe statements are handled as
a special case of probabilistic statements and will be discussed in Section 4.2.2.

Unlike DFI [8], which explicitly computes and maintains the probability ρ
of every state σ reaching statement ` in terms of a data-flow fact 〈σ, ρ〉 ∈D`,
Icpp represents a data-flow fact in the form of 〈σ, γσ〉 ∈ D`, where γσ is σ’s
all-path probabilistic dependence (Definition 3), which implicitly represents σ’s
probability ρσ. We obtain γσ by merging σ’s single-path dependences γπ,σ for all
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the paths π reaching ` (Definition 2), where γπ,σ collects the probability seeds
generated from the relevant probabilistic assignments on π (Definition 1). When
building a particular single-path dependence γπ,σ, only one single seed is selected
for a probabilistic assignment every time when it is analyzed. Therefore, a seed
may appear multiple times in γπ,σ when π contains a loop, which is handled by
approximating a KL-divergence [22] between two consecutive loop iterations.

Definition 1 (Probability Seed). For a probabilistic assignment ` : x =
Dist(θ), we define a probability seed at ` as s = 〈` :x = a〉, where a is one of all
the possible values returned by the prior distribution Dist(θ). One probabilistic
assignment ` may induce multiple seeds s ∈ Seeds(`) from the distribution.

Definition 2 (Single-Path Probabilistic Dependence). For a data-flow
fact 〈σ, γπ,σ〉∈fπ(>) associated with path π = [`1, . . . , `n], its single-path proba-
bilistic dependence is γπ,σ = [s1, . . . , sm], which consists of a sequence of probabil-
ity seeds (Definition 1) based on all the probabilistic assignments on π (m < n).
The probability of σ for π is ρπ,σ = Pr(γπ,σ) = Pr(s1) ∗ Pr(s2) ∗ · · · ∗ Pr(sm).

Definition 3 (All-Path Probabilistic Dependence). For a data-flow fact
〈σ, γσ〉 ∈ D` at the beginning of `, its all-path probabilistic dependence γσ =
{γπ,σ | π ∈ paths(`)} consists of the dependence information for every single
path π reaching `, with σ’s probability being ρσ = Pr(γσ) = Σπ∈paths(`) ρπ,σ.

Let us look at the example in Figure 5 to illustrate how Icpp incrementally
computes the posterior probability distributions at `6 once the prior probabil-
ity distribution at a probabilistic assignment is changed. Pre-inference is first
performed to generate the probabilistic dependences for all the data-flow facts
during the on-the-fly data-flow analysis. Based on the dependence information,
sparse incremental update is performed to recalculate the posterior probability
distributions of the existing data-flow facts at `6 affected by the change made.
Finally, we propagate the new data-flow facts introduced by the change across
the entire program in a sparse manner via sparse incremental propagation.

Pre-inference. For the program given in Figure 5(a), the data-flow facts ob-
tained by pre-inference are listed in Figure 5(b).

To start with, the probabilistic assignment `1 based on the Bernoulli distri-
bution assigns a random value 0 or 1 to variable a with each value’s probability
being 1/2. As shown, D`2 therefore contains the two data-flow facts, where the
probabilistic dependence of each state is its corresponding probability seed gen-
erated from `1 (e.g., (a = 0) is annotated with its seed [`1 :a = 0]).

The probabilistic assignment at `2 gives variable b a random value, 0 or 1,
based on a discrete uniform distribution. By combining with the two values of
variable a, we obtain the four data-flow facts in D`3 to represent the four possible
states for a and b with the probability of each state being 1/4. The corresponding
probabilistic dependence of each state (e.g., (a = 0, b = 0)) is a sequence of
probability seeds (e.g., [`1 : a = 0, `2 : b = 0]), which are used to compute its
corresponding probability (e.g., ρ(a=0,b=0) = Pr(`1 :a = 0)∗Pr(`2 :b = 0) = 1/4).
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ℓ1: a=Bernoulli(0.5)

ℓ2: b=UniformInt(0,1)

ℓ3: if (b>0)

ℓ4: a=!a

ℓ5: b=UniformInt(0,1)

1/2
1/2

<(a=1),{[ℓ1: a=1]}>
<(a=0),{[ℓ1: a=0]}>

1/4
1/4

1/4
1/4

<(a=0,b=1),{[ℓ1: a=0, ℓ2: b=1]}>
<(a=0,b=0),{[ℓ1: a=0, ℓ2: b=0]}>

<(a=1,b=0),{[ℓ1: a=1, ℓ2: b=0]}>
<(a=1,b=1),{[ℓ1: a=1, ℓ2: b=1]}>

<(a=0,b=1),{[ℓ1: a=0, ℓ2: b=1]}>
1/4
1/4

<(a=1,b=1),{[ℓ1: a=1, ℓ2: b=1]}>

ℓ6: end

...

...unchanged <…>
unchanged <…>

1/4
1/4<(a=1,b=1),{[ℓ1: a=0, ℓ2: b=1]}>

<(a=0,b=1),{[ℓ1: a=1, ℓ2: b=1]}>

(b) Pre-inference results of the original program 

Sparse 
Incremental 

Update

  Data-flow facts <!, "!>                          #!

Inference results of original 
program

Dℓ2 

Dℓ3 

Dℓ4 

else
if

Dℓ5 

Dℓ6 

 Dependence 
Look up

Dℓ1

path along if branch:       [ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6]   
path along else branch:  [ℓ1, ℓ2, ℓ3 ℓ6];           

∅

unchanged <…> 1/12

unchanged <…>

<(a=0,b=-1),{(ℓ1: a=0, ℓ2: b=-1)}>

1/4

1/6

1/4
<(a=1,b=-1),{(ℓ1: a=1, ℓ2: b=-1)}>

unchanged <…>

unchanged <…>

1/6

1/12

Sparse 
incremental
propagation

ge
ne

ra
te

d 
ne

w 
fa

ct
s

(c) Incremental inference results of the modified program
(a) A program 
and its CFG

<(a=0,b=1),{[ℓ1: a=1, ℓ2: b=1, ℓ5: b=1]}> 1/8

1/8
+

1/4
<(a=0,b=0),{[ℓ1: a=1, ℓ2: b=1, ℓ5: b=0],
                    [ℓ1: a=0, ℓ2: b=0]}>

<(a=1,b=1),{[ℓ1: a=0, ℓ2: b=1, ℓ5: b=1]}> 1/8

<(a=1,b=0),{[ℓ1: a=0, ℓ2: b=1, ℓ5: b=0],
                    [ℓ1: a=1, ℓ2: b=0]}>

1/8
+

1/4

1/6<(a=1,b=-1),{(ℓ1: a=1, ℓ2: b=-1)}>
1/6<(a=0,b=-1),{(ℓ1: a=0, ℓ2: b=-1)}>

...

...

...

...
unchanged <…>
unchanged <…>

unchanged <…>
unchanged <…>
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y 
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o 
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All-path probabilistic dependence:

  Data-flow facts <!, "!>                        #!

Inference  results after changing 
ℓ2 to b=UniformInt(-1,1)

...

...unchanged <…>
unchanged <…>

...

...unchanged <…>
unchanged <…>

Fig. 5. A motivating example illustrating how Icpp works in response to the change
at `2 from UniformInt(0,1) to UniformInt(−1, 1) (as highlighted in red).

There are two branches at `3 when propagating D`3 forward. Only two data-
flow facts whose states satisfy condition b > 0 are propagated to the if branch as
illustrated in D`4 while the other two are propagated to the else branch. After
analyzing `4, a’s value in each data-flow fact of D`4 is flipped, while b’s value
stays the same. Note that the probabilistic dependence recorded in each data-
flow fact remains unchanged, as indicated in D`5 , because `4 is a deterministic
statement, which does not affect any probabilistic dependence in any way.

After analyzing `5, D`6 contains six data-flow facts at the join point before
`6 (the end of the program). The four data-flow facts highlighted in green are
generated after analyzing `5 in the if branch and the two data-flow facts in
orange are propagated from the else branch. Let πif = [`1, `2, `3, `4, `5, `6] and
πelse = [`1, `2, `3, `6] as shown in Figure 5(b). The data-flow facts whose states
are the same are merged by computing their all-path probabilistic dependence
(Definition 3). Therefore, 〈(a = 0, b = 0), γπif ,(a=0,b=0)〉 from the if branch and
〈(a = 0, b = 0), γπelse,(a=0,b=0)〉 from the else branch are merged into 〈(a =
0, b = 0), {γπif ,(a=0,b=0), γπelse,(a=0,b=0)}〉, where

γπif ,(a=0,b=0) = [`1 :a = 1, `2 :b = 1, `5 :b = 0]
γπelse,(a=0,b=0) = [`1 :a = 0, `2 :b = 0]

(2)
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Likewise, the two data-flow facts with the same state (a = 1, b = 0) are also
merged. Finally, we calculate the joint posterior probability ρσ for each data-flow
fact reaching `6 based on its probabilistic dependence as shown in Figure 5(b).

Sparse Incremental Update. Here, our incremental analysis is concerned
with updating the posterior probabilities of the existing data-flow facts in D`6 ,
which are affected by the changes made to the prior probability distributions dis-
covered by the computed probabilistic dependences. Icpp does not reanalyze the
program to recompute any of the existing data-flow facts 〈σ, γσ〉 ∈ D`6 . Instead,
it just recalculates its posterior probability ρσ. For example, the probabilistic
assignment `2, changed from b = UniformInt(0, 1) to b = UniformInt(−1, 1),
causes the prior probabilities of the two probability seeds to change from Prold(`2 :
b = 0) = Prold(`2 : b = 1) = 1/2 to Prnew(`2 : b = 0) = Prnew(`2 : b = 1) = 1/3.
In this motivating example, we are interested in the effects of the change on the
posterior probabilities at `6. As shown in Figure 5(b), D`6 contains four data-flow
facts that are computed before the change is made. Therefore, their probabilities
need to be updated. Consider first 〈(a = 0, b = 0), {γπif ,(a=0,b=0), γπelse,(a=0,b=0)}〉,
where γπif ,(a=0,b=0) and γπelse,(a=0,b=0) are given in (2). The following equation
recalculates the posterior probability of its corresponding state (a = 0, b = 0),
whose probabilistic dependence contains the two probability seeds, `2 : b = 0
and `2 : b = 1:

ρnew(a=0,b=0) =
Prold(γπif ,(a=0,b=0) ∗ Prnew(`2 :b = 1)

Prold(`2 :b = 1)

+
Prold(γπelse,(a=0,b=0) ∗ Prnew(`2 :b = 0)

Prold(`2 :b = 0)

=
1/8 ∗ 1/3

1/2
+

1/4 ∗ 1/3

1/2
= 1/4

Likewise, the probabilities of the other three data-flow facts in D`6 are updated
as ρnew(a=1,b=0) = 1/4, ρnew(a=1,b=1) = 1/12 and ρnew(a=0,b=1) = 1/12. These updated

posterior probabilities are reflected in the bottom of Figure 5(c).
Updating existing data-flow facts incrementally this way is lightweight. As

we are interested in the effects of a change on `6 in our motivating example, the
posterior probabilities for the data-flow facts in D`6 are recalculated directly. All
the other data-flow facts from D`1 to D`5 remain untouched, without requiring
any expensive data-flow analysis that computes and propagates data-flow facts
(probabilistic dependences) along the program’s control-flow.

Sparse Incremental Propagation. The change made to the prior probability
distribution at `2 also introduces a new probability seed [`2 : b = −1] with its
probability Pr(`2 :b = −1) = 1/3, as illustrated in Figure 5(c). During the sparse
incremental propagation, the two new data-flow facts, 〈(a = 0, b = −1), {[`1 :a =
0, `2 : b = −1]}〉 and 〈(a = 1, b = −1), {[`1 : a = 1, `2 : b = −1]}〉, are generated
and appended to D`3 . In general, the new data-flow facts generated this way are
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propagated sparsely along the control flow in the program, without causing the
existing data-flow facts to be modified. Finally, we obtain the updated posterior
joint distributions at `6 by combining the results of both existing and new data-
flow facts incrementally computed for `6, as shown in Figure 5(c).

4 ICPP: Incremental Analysis for Probabilistic Programs

In this section, we describe our pre-inference and incremental inference, which
are conducted in response to changes made to probabilistic knowledge at prob-
abilistic assignments and/or observe statements.

4.1 Pre-inference

The probabilistic dependence analysis during pre-inference forms the basis for
Icpp. It takes a probabilistic program as input and produces as output the data-
flow facts with a probabilistic dependence γσ over each state σ of the program.
Figure 6 gives our algorithm, which introduces the transfer functions for analyz-
ing each type of statements in Figure 2 by computing the data-flow facts in a
forward traversal of the CFG of the program being analyzed.

4.1.1 Notations. We adopt some notations from [8]. For a state σ, σ(x)
denotes the value of variable x in σ. Likewise, the notation σ(E) evaluates the
value of expression E in σ. σ[x← σ(x)] represents the state obtained by updating
the value of x in σ, with the values of all the other variables in σ remaining
unchanged. The function ite(b, x, y) evaluates to x if b = true and y if b = false.

Given a statement `, Ω` is used to denote all the states recorded in the
data-flow facts of D`. For the purposes of explaining our algorithm cleanly, D` is
represented by a lambda function λσ.expr, where each state σ ∈ Ω` is bounded in
expression expr, which represents the all-path probabilistic dependence of σ. By
default, we define > = λσ.∅. For (σ, γσ) ∈ D`, we write γσ⊕ s for seed collection
by adding a probability seed s into every single-path dependence γπ,σ ∈ γσ
(where π ∈ paths(`) ranges from all the paths reaching ` by Definition 3).

4.1.2 Probabilistic Dependence Analysis. Given a program ` ∈ Prog, we
call PreIn(>, `) (Figure 6) recursively to compute its data-flow facts.

Lines 2–3 handle a deterministic assignment ` : x := E , where multiple states
σ ∈ Ω` of the data-flow facts in D` may become (i.e., be merged into) the same
new state σ′ after the value of x is updated with a new value σ(E). Consequently,
the corresponding probabilistic dependences of these states σ ∈ Ω` are merged
together to obtain the all-path probabilistic dependence of σ′.

For each probability seed [` : x = a] generated at a probabilistic assignment
`, lines 4–5 compute new data-flow facts for all states σ ∈ Ω` similarly as the case
when a deterministic statement is handled, except that the all-path dependence
γσ of σ is updated by adding the new probability seed [` : x = a] into γσ. The
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Algorithm PreIn(D`, `)
Input: set of data-flow facts 〈σ, γσ〉 ∈ D` over all the states

σ ∈ Ω` before analyzing ` and a statement at `
Output: set of data-flow facts 〈σ′, γ′σ〉 ∈ D′` in the form of λσ.expr after analyzing `
1: switch(`)
2: case x := E :
3: return λσ′.

⋃
{σ∈Ω` | σ[x←σ(E)]=σ′}

γσ ;

4: case x := Dist(θ):
5: return λσ′.

⋃
(`:x=a)∈Seeds(`)((

⋃
{σ∈Ω` | σ[x←a]=σ′}

γσ)⊕ (` : x = a));

6: case observe(E):
7: return λσ.ite(σ(E), γσ, ∅);
8: case skip:
9: return D`;
10: case `1; `2:
11: D`2 = PreIn(D`, `1);
12: return PreIn(D`2 , `2);
13: case if E then `1 else `2:
14: D`1 = λσ.ite(σ(E), γσ, ∅);
15: D`2 = λσ.ite(σ(E), ∅, γσ);
16: return λσ′.(PreIn(D`1 , `1)(σ′)

⋃
PreIn(D`2 , `2)(σ′));

17: case while E do `1:
18: Dpre = ⊥, Dcur = D`;
19: while KL-divergence(Dpre, Dcur) 6= true do
20: Dpre = Dcur;
21: Dcur = PreIn(Dpre, if E then `1 else skip);
23: end while
24: return λσ′.ite(σ′(E), ∅, Dcur(σ′));
25: end switch

Fig. 6. An algorithm for pre-inference.

set of data-flow facts obtained at a probabilistic statement ` is the union of the
sets of data-flow facts computed for all its probability seeds s ∈ Seeds(`) at `.

Lines 6–7 handle an observe statement observe(E) by simply removing the
dependence information γσ of any state σ ∈ Ω` if σ(E) evaluates to false. Lines
9–10 handle a sequence of two statements `1; `2 by first computing the data-flow
facts for `1 and using the resulting facts as the input to analyze `2.

Lines 13–16 handle an if statement. Our path-sensitive analysis first splits
the set of data-flow facts reaching ` into two subsets, D`1 and D`2 , based on the
Boolean predicate E . Then the bodies of the if and else branches are recursively
computed by applying PreIn. Finally, we return the results by merging the
data-flow facts obtained from both the if and else branches.

Lines 17–24 handle a while loop by computing the results until a fixed-point
is reached. We define Dpre and Dcur to represent the sets of previous and cur-
rent data-flow facts across two consecutive iterations of the while loop. Initially,
Dpre is set as ⊥ and Dcur as D` obtained just before the while loop. PreIn
is repeatedly applied to the data-flow facts in Dpre with the statement “if E
then `1 else skip” until a fixed-point based on KL-divergence [17]. Due to the
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non-determinism of probabilistic programs [8,10,12] (e.g., a probabilistic assign-
ment generates a probability seed randomly during each loop iteration), finding
a loop iteration under which Dcur = Dpre is potentially nonterminating. Thus,
we use KL-divergence to enforce the termination of a while loop. In line 19,
KL-divergence(Dcur, Dpre) is true if the following condition holds:

|
∑

σ∈Ωcur

ρσ ∗ ln(
ρσ
ρ′σ

) | < threshold (3)

where ρσ is the probability of σ ∈ Ωcur calculated based on 〈σ, γσ〉 ∈ Dcur, ρ
′
σ

is the probability calculated based on 〈σ, γ′σ〉 ∈ Dpre, and threshold is a user-
determined parameter (set to 0.01 in our experiments). Note that a probability
seed s may appear multiple times in a single-path dependence when a fixed-point
is reached. For example, γπ,σ = [s, s, . . . , s] if the path π contains some loops.

`1: b=0;
`2: while(!b) do {
`3: b=Bernoulli(0.5)

`4: }

Fig. 7. An OneCoin example.

Example 1. Let us use a simple OneCoin program in Figure 7 to explain KL-
divergence in a while loop. At the k-th iteration, there are two states, (b = 0) and
(b = 1), with their all-path probabilistic dependences being γ(b=0) = {[`3 : b =
0, `3 : b = 0; · · · ]} and γ(b=1) = {[`3 : b = 1], [`3 : b = 0, `3 : b = 1], [`3 : b = 0, `3 :
b = 0, `3 : b = 1], · · · } immediately after `3. Their corresponding probabilities
are ρ(b=0) = (0.5)k and ρ(b=1) = 0.5 + ... + (0.5)k. Thus, the KL-divergence
between iterations k and k − 1 is computed as follows:

(0.5)k × ln(
(0.5)k

(0.5)k−1
) + (0.5 + ...+ (0.5)k)× ln(

0.5 + ...+ (0.5)k

0.5 + ...+ (0.5)k−1
)

�

Let us revisit the example in Figure 5 to go through our pre-inference al-
gorithm in Figure 6. Given the program `1; `2; `3; `6 in Figure 5(a), we see how
calling PreIn(>, `1; `2; `3; `6) yields the data-flow facts obtained in Figure 5(b).

Example 2. The sequence `1; `2; `3; `6 is analyzed in order, starting from `1 :a =
Bernoulli(0.5) (lines 10–12). `1 generates two probability seeds, `1 :a = 0 and
`1 : a = 1 (lines 4–5). Thus, we obtain two states, (a = 0) and (a = 1), which
are recorded in Ω`2 . Their probability seeds are added to their probabilistic
dependences, resulting in γ(a=0) = {[`1 :a = 0]} and γ(a=1) = {[`1 :a = 1]}. As a
result, D`2 contains the two data-flow facts, as shown in Figure 5(b).

When analyzing `2 : b = UniformInt(0, 1) (lines 4–5), we obtain also two
probability seeds, `2 : b = 0 and `2 : b = 1. By combining each seed with each of
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the two states in Ω`2 = {(a = 0), (a = 1)}, we obtain the four states in D`3 , as
shown in Figure 5(b), with the probabilistic dependence γσ of each state σ ∈ Ω`3
containing an additional probability seed of either `2 : b = 0 or `2 : b = 1. As a
result, D`3 contains the four data-flow facts, as shown in Figure 5(b).

When analyzing `3 : if (b > 0) then `4; `5 else skip (lines 13–16), we split
D`3 into D`4;`5 and Dskip according to the condition b > 0, where D`4;`5 is
propagated into the if branch and and Dskip into the else branch. Then we
continue to apply PreIn to compute the data-flow facts for `4; `5 (lines 10–12)
and skip (lines 8–9). Finally, we merge the data-flow facts flowing out of the two
branches at the beginning of `6 to obtain D`6 (line 16). �

4.2 Incremental Inference

Based on the computed probabilistic dependence information, our incremental
analysis handles two type of changes made to a probabilistic program, i.e, prior
distribution changes at a probabilistic assignment (Section 4.2.1) and condition
changes at an observe statement (Section 4.2.2). Icpp aims to recalculate the
posterior probability ρσ for each data-flow fact 〈σ, γσ〉 ∈ D`end at `end (the end of
a program) according to the computed probabilistic dependence γσ, in response
to the changes made to probabilistic knowledge in the program.

Without loss of generality, we restrict ourselves to a change made to one single
statement at a time. Our incremental inference generalizes straightforwardly to
the changes made simultaneously to multiple statements.

4.2.1 Handling Changes Made at Probabilistic Assignments. For a
probabilistic assignment x = Dist(θ), Icpp focuses on a change made to the
prior distribution Dist(θ), which is defined over a measurable sample space
with a probability measure. Thus, a change can be a modification of the sample
space or the probability measure. For example, if x=Bernoulli(0.5) is modified
to x = Bernoulli(0.6), the sample space, {0, 1}, remains the same, but the
probability measure is adjusted, with the probability of x=1 changed from 0.5
and 0.6. However, modifying x= UniformInt(0, 1) into x= UniformInt(−1, 1)
will change both its sample space and probability measure. Similarly, modifying
a distribution model from Dist to Dist′ also affects both.

Modifying a probability measure changes the posterior probabilities of exist-
ing data-flow facts computed by pre-inference. Modifying a sample space gener-
ates new probability seeds, and consequently, introduces new data-flow facts.

For a change made at a probabilistic assignment, the algorithm in Figure 8
updates the posterior probabilities of the existing data-flow facts affected via
IncUpdate and propagates the newly introduced data-flow facts via IncProp.

Sparse Incremental Update. According to our algorithm in Figure 8, Scom =
Seeds(`old) ∩ Seeds(`new) is the set of probability seeds that exist in both the
original and modified programs. D`end is the set of data-flow facts that reach `end
computed before the change. IncUpdate(D`end , S

com) can instantly recalculate
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HandleProbAssign(`old : x=Dist(θ), `new : x=Dist′(θ
′
))

1: Scom = Seeds(`old) ∩ Seeds(`new);
2: Let D`end be the set of existing data-flow facts before the end of the program;
3: Ψ1=IncUpdate(D`end , S

com); // handling the existing data-flow facts
4: D∆ = PreIn(D`old , `new) \ PreIn(D`old , `old);
5: Ψ2=IncProp(D∆); // handling the new data-flow facts
6: return Ψ1 ∪ Ψ2;

Fig. 8. An algorithm for performing incremental analysis due to a change made from
`old :x=Dist(θ) to `new :x=Dist′(θ

′
) at a probabilistic assignment. Ψ1 and Ψ2 are the

posterior distributions obtained in analyzing the existing and new data-flow facts.

the posterior probability distributions for the states in D`end based on the all-
path probabilistic dependence γσ computed by pre-inference for each data-flow
fact in D`end , without a need for performing any data-flow analysis.

The new posterior probability distributions for D`end are obtained directly:

IncUpdate(D`end , S
com) = {〈σ, ρnewσ 〉 | 〈σ, γσ〉 ∈ D`end} (4)

with the new posterior probability ρnewσ = Cal(γσ, S
com) being obtained as:

Cal(γσ, S
com)=

∑
(γπ,σ,S)∈Affectedσ

Prold(γπ,σ)×
∏
s∈S

Prnew(s)

Prold(s)
+

∑
γπ,σ∈NotAffectedσ

Prold(γπ,σ)

(5)
where Affectedσ = {(γπ,σ, S) | γπ,σ ∈ γσ, S = {s | s ∈ γπ,σ ∧ s ∈ Scom}}, which
consists of a set of pairs with each (γπ,σ, S) representing the fact that the single-
path dependence γπ,σ ∈ γσ is affected by some seeds in S whose probabilities
are changed, on the path π containing `old. Note that S is a multiset as it may
contain multiple instances of a seed s from γπ,σ due to loops on π.

We also define NotAffectedσ = {γπ,σ ∈ γσ | ∀ s ∈ γπ,σ : s 6∈ Seeds(`old)}.
This contains the single-path dependences such that each γπ,σ is not affected by
any seed in Seeds(`old) generated by the old statement `old, i.e., `old is not on π.

The probability of γπ,σ is set to 0 if γπ,σ contains any seed s ∈ (Seeds(`old)\
Seedscom` ), which will be removed from the modified program.

Finally, Prold(s) and Prnew(s) represent the probabilities of seed s in the
original and modified programs, respectively.

Example 3. Let us revisit the example in Figure 5(c) to explain our incremen-
tal update for an existing data-flow fact 〈(a = 0, b = 0), γ(a=0,b=0)〉 ∈ D`6 . Re-
call that γ(a=0,b=0) = {γπif ,(a=0,b=0), γπelse,(a=0,b=0)}, where γπif ,(a=0,b=0) and
γπelse,(a=0,b=0) are from (2). Given the change from `old :b=UniformInt(0, 1) to
`new : b= UniformInt(−1, 1), we have Scom = Seeds(`old) = {`2 : b = 0, `2 : b =
1}. Thus, Affected(a=0,b=0) = {(γπif ,(a=0,b=0), {[`2 : b= 1]}), (γπelse,(a=0,b=0), {[`2 :
b=0]})} and NotAffected(a=0,b=0) = ∅. Based on (5), we obtain:

Cal(γ(a=0,b=0), Scom) =
Prold(γπif ,(a=0,b=0)) ∗ Prnew(`2 :b=1)

Prold(`2 :b=1)
+
Prold(γπelse,(a=0,b=0)) ∗ Prnew(`2 :b=0)

Prold(`2 :b=0)

=
1/8 ∗ 1/3

1/2
+

1/4 ∗ 1/3

1/2
= 1/4

�
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Sparse Incremental Propagation. According to Figure 8, we first collect
D∆, the set of new data-flow facts introduced by comparing the data-flow facts
obtained after analyzing `new and `old. Then we make use of IncProp(D∆) to
perform incremental propagation by calling PreIn(D∆, L), where L is the set
of statements L reachable from `old on the CFG of the program being analyzed:

IncProp(D∆)={〈σ, Pr(γσ)〉 | 〈σ, γσ〉 ∈ D∆
`end

=PreIn(D∆, L)} (6)

Example 4. Let us still consider the example in Figure 5(c). For the change made
from b = UniformInt(0, 1) to b = UniformInt(−1, 1) at `2, we first collect the
two new data-flow facts introduced by the change at `2: D∆ = {〈(a = 0, b =
−1), {[`1 : a = 0, `2 : b = −1]}〉, 〈(a = 1, b = −1), {[`1 : a = 1, `2 : b = −1]}〉}. In
this case, L = {`3, `6}. Following (6), we then call PreIn(D∆, {`3, `6}) to obtain
the two new data-flow facts in D∆

`6
highlighted in red at the end of the program

by incrementally propagating the two new data-flow facts in D∆ across the CFG
of the program without affecting any of the existing data-flow facts. �

4.2.2 Handling Changes Made at Observe Statements. In our data-
flow analysis, an observe statement ` : observe(E) filters out any data-flow fact
〈σ, γσ〉, whose state σ violates the condition E by blocking the propagation of
〈σ, γσ〉 after analyzing `. All the others satisfying E remain unchanged.

For a modification of a probabilistic assignment `, we find any existing data-
flow fact 〈σ, γσ〉∈D`end affected by the change and update its probability based
on the new seeds generated at `. However, for a modification of an observe
statement, we will need to find any 〈σ, γσ〉∈D`end affected by the change based
on the dependence information from one or more probabilistic assignments. This
is because the value E in observe(E) may be affected by multiple probabilistic
assignments. For example, observe(a||b) contains a||b, where a and b may be
defined by two different Bernoulli assignments in the program.

HandleObserve(`old : observe(E), `new : observe(E ′))
1: Ddiff = PreIn(D`old , `old) \ PreIn(D`old , `new);

2: Γ diff =
⋃
〈σ,γσ〉∈Ddiff γσ;

3: Let D`end be the existing data-flow facts before the end of the program;

4: Ψ1=IncUpdate](D`end , Γ
diff ); // handling the existing data-flow facts

5: D∆ = PreIn(D`old , `new) \ PreIn(D`old , `old);
6: Ψ2=IncProp(D∆); // handling the new data-flow facts
7: return Ψ1 ∪ Ψ2;

Fig. 9. An algorithm for performing incremental analysis due to a change made from
observe(E) to observe(E ′). Ψ1 and Ψ2 are the posterior distributions obtained in ana-
lyzing the existing and new data-flow facts.

Our algorithm given in Figure 9 for handling an observe statement is the same
as the one for handling a probabilistic assignment given in Figure 8, except that
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IncUpdate in Figure 8 is replaced by IncUpdate] in order to deal with exist-
ing data-flow facts in D`end . Unlike IncUpdate, which uses the seeds in Scom

collected from only one probabilistic assignment ` (modified), IncUpdate] uses
Γ diff , which contains a set of single-path dependences possibly from multiple
probabilistic assignments based on the data-flow facts in Ddiff that exist in the
original program but not the modified program (lines 1–2).

At line 5, IncProp is reused based on (6) to propagate the new data-flow
facts that were filtered out by the original observe statement but become valid
after the change. At line 6, we obtain the new posterior probability distributions
at `end by combining the results from incremental update and propagation.

To update the posterior probability distributions of the states in D`end , we
first find a set of affected single-path probabilistic dependences: Affectedσ =
{γπ,σ ∈ γσ | ∃ γ ∈ Γ diff : γ ⊆ γπ,σ} for each fact 〈σ, γσ〉 ∈ D`end . These
affected dependences are no longer existent in the modified program according
to Γ diff due to the change made at `, Thus, they are excluded with their old
probabilities set to 0. We only recalculate the posterior probabilities based on
NotAffectedσ = {γπ,σ | γπ,σ ∈ (γσ \ Affectedσ)}, which contains the single-path
dependences that are not affected by the change. Therefore, the new posterior
distributions for the states in D`end are computed as:

IncUpdate](D`end , Γ
diff ) = {〈σ, ρnewσ 〉|〈σ, γσ〉 ∈ D`end} (7)

with the new posterior probability ρnewσ = Cal](γσ, Γ
diff ) being obtained by:

Cal](γσ, Γ
diff ) =

∑
γπ,σ∈Affectedσ

Prold(γπ,σ)× 0 +
∑

γπ,σ∈NotAffectedσ

Prold(γπ,σ) (8)

D

<(a=1,b=1),{[ℓ1: a=1, ℓ2: b=1]}>
<(a=1,b=0),{[ℓ1: a=1, ℓ2: b=0]}>
<(a=0,b=1),{[ℓ1: a=0, ℓ2: b=1]}>

<(a=0,b=0),{[ℓ1: a=0, ℓ2: b=0]}>
<(a=1,b=1),{[ℓ1: a=1, ℓ2: b=1]}>
<(a=1,b=0),{[ℓ1: a=1, ℓ2: b=0]}>

ℓ1: bool a=Bernoulli(0.5);
ℓ2: bool a=Bernoulli(0.6);
ℓ3: observe( a || b);

ℓ1: bool a=Bernoulli(0.5);
ℓ2: bool a=Bernoulli(0.6);
ℓ3: observe( a || !b );

D

NotAffected

Change ℓ3 to
observe( a || !b )

(a) Data-flow facts after analyzing 
ℓ3 of the original program

diff

!

(b) Data-flow facts after analyzing 
ℓ3 of the modified program

<(a=1,b=0),{[ℓ1: a=1, ℓ2: b=0]}>

<(a=0,b=0),{[ℓ1: a=0, ℓ2: b=0]}>
<(a=0,b=1),{[ℓ1: a=0, ℓ2: b=1]}>

<(a=1,b=1),{[ℓ1: a=1, ℓ2: b=1]}>

Dℓ3

"  #"

3/10
1/5

1/5(a=0,b=0)
(a=1,b=1)
(a=1,b=0)

(d) Posterior distribution recalculated 
by ICPP

(c) Data-flow facts before analyzing ℓ3 

Fig. 10. An example for incremental analysis of an observe statement.

Example 5. Figure 10 illustrates our incremental analysis for handing a change
at an observe statement. In Figure 10(a), its top part shows a small program con-
taining an observe statement, observe(a||b), at `3. In Figure 10(b), its top part
shows the same program with the observe statement changed to observe(a||!b).
Figure 10(c) gives the data-flow facts in D`3 obtained just before either observe
statement. In Figures 10(a) and (b), their bottom parts give the data-flow facts
after analyzing their observe statements in terms of the data-flow facts in D`3 .

We then obtain the single data-flow fact in Ddiff blocked by the new observe
statement as highlighted in green (Figure 10(a)). Thus, we have Γ diff ={[`1 :a=



Incremental Analysis for Probabilistic Programs 17

0, `2 : b= 1]}, Affectedσ={[`1 :a= 0, `2 : b= 1]}, and NotAffectedσ={[`1 :a= 1, `2 :
b=0], [`1 :a=1, `2 :b=1]}. Based on (8), we recalculate the posterior probability
of each state as ρnew(a=0,b=1) = Pr([`1 :a=0, `2 :b=1])×0 = 0, ρnew(a=1,b=0) = Pr([`1 :

a=1, `2 :b=0]) = 1/5, and ρnew(a=1,b=1) = Pr([`1 :a=1, `2 :b=1]) = 3/10.

The data-flow fact in D∆ as highlighted in red in Figure 10(b) is a new one
introduced by the change. Finally, we combine the computed probabilities of the
existing and new data-flow facts to obtain the posterior probability distributions
given in Figure 10(d). Note that 1/5 + 3/10 + 1/5 6= 1 due to the observe
statement. Thus, after having computed the posterior probabilities as desired,
we normalize these probabilities as 2/7, 3/7 and 2/7, respectively. �

4.3 Precision

Theorem 1. Icpp achieves the same precision as DFI [8] (which analyzes a
program from scratch) in terms of answering posterior probability distributions
under the changes made to the probabilistic knowledge of a probabilistic program.

Proof. The pre-inference of Icpp (Figure 6) captures the all-path dependence
(Definition 3) of each data-flow fact in order to allow the posterior probability
distributions to be updated during the incremental analysis. Every loop in the
program is handled by approximating a KL-divergence between its two consecutive
loop iterations. A continuous prior distribution is approximated by a discrete
distribution over a finite set, following [8,21].

Based on the dependence information, our incremental sparse update recal-
culates the posterior probability of any existing data-flow fact affected by any
change to a probabilistic assignment based on (4) or an observe statement based
on (7) while keeping the probabilities of unaffected dependences unchanged. Our
incremental sparse propagation computes and propagates any new data-flow fact
introduced by the changes along the CFG based on (6). Following the algorithms
in Figures 8 and 9, we can obtain the same posterior probability distributions as
the program is reanalyzed entirely by DFI (or our pre-inference). �

5 Evaluation

Our objective is to demonstrate that Icpp is effective in inferring the posterior
distributions incrementally in response to small yet frequent changes made to a
probabilistic program. Icpp is an order of magnitude faster than DFI [8], a state-
of-the-art data-flow-based inference. Our experiment is conducted on a 2.70 GHz
Intel Core i5 processor system with 8 GB RAM running macOS.10.12.4.

We have implemented Icpp in Soot [34], a Java analysis framework. We
choose Figaro [27] as our probabilistic language, which is based on Scala and can
be translated into the .class format for our analysis in Soot. Following DFI [8],
we use the ADD library [30] to store our data-flow facts, i.e., probabilistic depen-
dences over states, with each single-path dependence naturally represented by an
ADD. Updating data-flow facts affected by changes to probabilistic assignments
and observe statements is done by the graph operations in ADD.
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Table 1. Analysis times of DFI and Icpp (seconds).

Program
Analyzing original program Analyzing 10 changes

Speedup
DFI/PreInIcpp DFI Icpp

BurglarAlarm 1.27 / 1.38 12.60 0.65 19
NoisyOr 1.85 / 2.22 19.01 1.70 11
Grass 1.91 / 2.31 21.85 1.71 13
Grade 1.31 / 1.57 12.78 0.93 13
Loopy 1.53 / 1.72 15.15 1.47 10

MotWhile 1.46 / 1.68 15.51 1.34 13

To cover different change scenarios, we have selected a set of 6 probabilis-
tic programs, with 3 using the Bernoulli distribution (Grass, BurglarAlarm,
and NoisyOR) from the existing inference engine R2 [25], 1 using a UniformInt

(MotWhile) distribution by replacing if with while statement in our motivating
example (Figure 5), and 2 using the Bernoulli distribution (Grade and Loopy)
from [15]. Grass, BurglarAlarm, TwoCoins and NoisyOR are loop-free, Grade
contains an observe statement in its middle, and Loopy and MotWhile contain
unbounded loops (similar to Figure 5 with its if replaced by a while statement).

For each program, ten small changes are made to simulate the process of de-
veloping a probabilistic program with different versions and tuning new posterior
probability distributions through each change. Note that we choose ten changes
(a relatively small number) to demonstrate Icpp’s effectiveness. Our incremental
analysis becomes more effective than DFI [8] if more changes are added. These
changes are selected to exercise as many scenarios as possible. For example, one
worst-case scenario happens if a sample space is completely changed, e.g., from
UniformInt(-10,-1) to UniformInt (0,9), which requires computing all new
data-flow facts without reusing any old ones. Our small modifications are made
so that the probabilistic model underlying each program is not changed.

Table 1 compares Icpp with DFI [8] (which can be regarded as a special case
of PreIn without recording probabilistic dependences but computing explicitly
the probabilities for all the states). In Column 2, we compare the analysis times
of DFI and Icpp’s pre-inference in analyzing a program. Our pre-inference is
slightly more costly as it must collect probabilistic dependences for all the states.
In Columns 3 and 4, we compare DFI and Icpp in terms of the total analysis
time spent for the 10 changes made in a program. Icpp is an order of magnitude
faster than DFI. For each program, DFI must reanalyze it from scratch after
each change. In contrast, Icpp performs incremental analysis for the program
based on the probabilistic dependences computed during its pre-inference.

For the 5 programs with the Bernoulli distribution, which does not intro-
duce new data-flow facts when prior probabilities are changed, their posterior
distributions can be directly recomputed by IncUpdate and IncUpdate], with-
out using IncProp. Icpp updates existing results instantaneously with negligi-
ble overheads. For MotWhile with a uniform distribution, Icpp also achieves a
significant performance improvement over DFI by 13x.
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Figure 11 shows that Icpp is much faster than DFI for three representative
programs, Grass, Loopy and MotWhile. For Grass with the Bernoulli distribu-
tion, Icpp has negligible overheads for all the 10 changes made (Figure 11(a)).
For Loopy with a uniform distribution containing an unbounded loop, Icpp
spends relatively more time for the fourth and sixth changes (Figure 11(b)) due
to the modifications of a probabilistic assignment in its unbounded loop, affecting
the probability of a single-path dependence when the loop is analyzed until KL-
divergence. For MotWhile with a UniformInt distribution, Icpp takes relatively
more time in handling the fourth change (Figure 11(c)), because the change is
made to a probabilistic assignment with a Uniform distribution, causing new
data-flow facts to be propagated repeatedly inside a loop.

(a) Grass (b) Loopy (c) MotWhile
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Fig. 11. Analysis times of Icpp and DFI over ten changes made in a program.

6 Related Work

In addition to the work already discussed in Section 1, we focus on the most
relevant work on probabilistic inference and incremental static analysis.

Probabilistic inference for probabilistic programs. The existing approaches
on probabilistic inference can be classified into static and dynamic ones. Dy-
namic inference methods usually execute a probabilistic program a finite number
of times through sampling-based Monte Carlo methods [4,7,19,25,28] and then
perform inference based on the execution traces. Static methods [5,8,20,23,29]
statically infer the posterior probability distributions without running the pro-
gram. Sankaranarayanan et al. [29] propose a static analysis to reason about
infinite-state probabilistic programs by quantifying the solution space of linear
constraints over bounded floating-point domains. DFI [8] performs data-flow-
based static inference that explicitly computes and maintains distributions as
data-flow facts at each program point following the program’s control-flow on
a CFG. DFI focuses on discrete distributions and makes approximations when
computing data-flow facts over continuous distributions. Recently, PSI [10] rep-
resents an exact symbolic inference for analyzing both discrete and continuous
distributions for probabilistic programs with bounded loops. Based on DFI, our
work enables (for the first time) efficient incremental Bayesian inference over dis-
crete distributions with finite concrete states, in response to small yet frequent
changes to probabilistic knowledge in a probabilistic program.
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Incremental static analysis for usual programs. The goal of incremental
static analysis is to efficiently update existing analysis results without recom-
puting them from scratch, allowing the previously computed information to be
reused. Emu [18,31] represents an incremental analysis for performing demand-
driven context-sensitive pointer analysis based on Context-Free Language (CFL)
reachability, which precisely recomputes points-to sets affected by the program
changes. Reviser [1] is an incremental analysis technique developed as an exten-
sion to the IDE-/IFDS- based framework for efficiently updating inter-procedural
data-flow analysis results. Echo [38] is an incremental analysis for data-race
detection based on program dependences computed by static happens-before
analysis. DiSE [26] is an incremental symbolic execution technique that uses
pre-computed results from a static analysis to direct symbolic execution for ex-
ploring only the parts of a program affected by the changes. Unlike previous
incremental analysis techniques for imperative programs emphasizing on code
changes, i.e., statement addition and deletion, Icpp focuses on changes made to
probabilistic knowledge, the key feature in probabilistic programming.

7 Conclusion and Future work

In this paper, we present Icpp, a new data-flow based incremental analysis for
analyzing probabilistic programs. Icpp captures the correlation relation between
prior and posterior probability distributions through a probabilistic dependence
analysis. The resulting analysis significantly improves the efficiency of data-flow
based inference by incrementally updating the posterior distributions with previ-
ous computed information being reused in response to small yet frequent changes
made to probabilistic knowledge, i.e., prior distributions and observations.

This work has opened up some new research opportunities. We can extend
our incremental analysis for probabilistic programs by combining it with tradi-
tional incremental analyses for usual programs via demand-driven [31,32] and/or
partial program analysis [9,33] in order to also handle the changes made to usual
statements. In addition, we can combine our incremental inference with symbolic
analysis [10,29] to support incremental symbolic inference with hybrid discrete
and continuous distributions being supported.
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