Accelerating Dynamic Data Race Detection
Using Static Thread Interference Analysis

Peng Di and Yulei Sui

School of Computer Science and Engineering
The University of New South Wales
2052 Sydney Australia

March 12-13, 2016

1/18

PMAM 2016 co-located with PPoPP 2016

Outline

¢ Motivation
¢ Analysis phases
e Evalution

PMAM 2016 co-located with PPoPP 2016

Dynamic Data Race Detector: ThreadSanitizer

ThreadSanitizer (TSan) finds data races in multithreaded
programs by inserting instrumentations at compile-time to
perform runtime checks for all memory accesses.
void foo(int *p) {
*p = 42;
}
Orignial C code

void foo(int *p) {
__tsan_func_entry(__builtin_return_address(0));
__tsan_write4(p);
*p = 42;
__tsan_func_exit();

}
Code after instrumentation

2/18

PMAM 2016 co-located with PPoPP 2016

TSan performance slowdown over native code for
SPLASH2 benchmarks (under compiler option -00)

B 4 Threads [l 16 Threads

40x - B

20x |- i

Machine: Ubuntu Linux 3.11.0-15-generic Intel Xeon Quad Core HT, 3.7GHZ, 64GB

PMAM 2016 co-located with PPoPP 2016

Outline

e Motivation
e Analysis phases
e Evalution

PMAM 2016 co-located with PPoPP 2016

Framework

Analyses Optimizations

Memory Pairs
Collection

Call Graph Reachability
Construction Optimization

Interleaving Interleavir
Analysis Optimization

Pointer Alias
Analysis Optimization

Thread-Local
Optimization

4/18

PMAM 2016 co-located with PPoPP 2016

THE UNIVERSITY OF NEW SOUTH WALES

Framework

Analyses Optimizations

Memory Pairs
Collection

Pointer
Analysis

Thread-Local
Optimization

4/18

PMAM 2016 co-located with PPoPP 2016

THE UNIVERSITY OF NEW SOUTH WALES

Framework

Analyses Optimizations

Memory Pairs
Collection

Call Graph Reachability
Construction Optimization

Interleaving Interleavir
Analysis Optimization

Thread-Local
Optimization

4/18

THE UNIVERSITY OF NEW SOUTH WALES

PMAM 2016 co-located with PPoPP 2016

Framework

Analyses Optimizations

Memory Pairs
Collection

Call Graph Reachability
Construction Optimization

Interleaving Interleavir
Analysis Optimization

Pointer Alias
Analysis Optimization

Thread-Local
Optimization

4/18

PMAM 2016 co-located with PPoPP 2016

THE UNIVERSITY OF NEW SOUTH WALES

Framework

Analyses Optimizations

Memory Pairs
Collection

Call Graph Reachability
Construction Optimization

Interleaving
Analysis Optimization

Pointer Alias
Analysis Optimization

Thread-Local
Optimization

4/18

PMAM 2016 co-located with PPoPP 2016

THE UNIVERSITY OF NEW SOUTH WALES

Refining Pairs
Only statements in the paris that are not filtered are instrumented for
runtime check.

b file
i |

Memory Pairs
Collection

Memory Pairs

Reachable Pairs

Escaped Pairs

Unlocked Pairs

Guided
Instrumentation

Instrumented bc file

PMAM 2016 co-located with PPoPP 2016

5/18

Context-Sensitive Abstract Threads

An abstract thread t refers to a call of pthread_create() at a
context-sensitive fork site during the analysis.

void main(){ void foo(X
cs1: foo(); cs3: fork(t1, bar);
cs2: foo(); }

}

t1 refers to fork site t1' refers to fork site
under context [1,3] under context [2,3]

t1 and t1' are context-sensitive threads

6/18

PMAM 2016 co-located with PPoPP 2016

Context-Sensitive Abstract Threads

An abstract thread t refers to a call of pthread_create() at a
context-sensitive fork site during the analysis.

void main(){ void foo(X
void main(){
cs1: foo(); cs3: fork(t1, bar);
cs2: foo(); } for(i=0;i<10;i++){
fork(t[i], foo)
}
t1 refers to fork site 1 refers to fork site }

under context [1,3] under context [2,3]

t1 and t1' are context-sensitive threads t is multi-forked thread

A thread t always refers to a context-sensitive fork site, i.e., a
unique runtime thread unless t € M is multi-forked, in which
case, t may represent more than one runtime thread.

PMAM 2016 co-located with PPoPP 2016

Outline

¢ Motivation

e Analysis phases

Thread Interleaving Analysis
Alias Analysis

Thread Local Analysis

Lock Analysis

e Evalution

6/18

PMAM 2016 co-located with PPoPP 2016

Context-sensitive Thread Interleaving Analysis

(t1 s C~|,S1) || (l’g, Co, 32) holds if:

tb e Z(t,c1,81) Nty € Z(f, o, 82) ifty # b
heM otherwise

where Z(t, ¢, s): denotes a set of interleaved threads may run in
parallel with s in thread t under calling context c,
M is the set of multi-forked threads.

71/18

PMAM 2016 co-located with PPoPP 2016

Interleaving Analysis

Computing Z(t, c, s) is formalized as a forward data-flow
problem (V, 1, F).

e V: the set of all thread interleaving facts.

e 1. meet operator (U).

e F: V — V transfer functions associated with each node in
an ICFG.

8/18

PMAM 2016 co-located with PPoPP 2016

Interleaving Analysis Rule

£ Mt tk) o (tet) (6 0) = Entry(Se)

[I-DESCENDANT] M Ct.cl) {0 CI(F.c.0)

tat’ (c,f)=Entry(S;) (c,0')=Entry(Sy) t# Ut At #t
ST [CI(r.df) {f1CItel)

¢ Loy (t.c.0) & (t,¢,¢) ¢ = c.push(i)
[I-JOIN] - - ; [I-CALL] ;
I(t, ¢, jmj) = Z(t, ¢, j)\{t'} I(t,c,0) CI(t, . 0)
) (t,c.0) = (t,c,0) (t,c,0) 2% (t,¢/,¢') i=cpeek() ¢ = c.pop()
T (XY k5 (X0 [1-RET]

I(t,c,0) C (1, 0)

9/18

PMAM 2016 co-located with PPoPP 2016 ? UNSW

THE UNIVERSITY OF NEW SOUTH WALES

Interleaving Analysis Rule

t M (tefkg) = (te.b) () = Entry(Sy)

[I-DESCENDANT] {tYCI(tct) {tycCi(t.c.,0)

fork
S s'
I(tcs) = {t} I(t'c's)={t}

(tes) Il (t'c's')

10/18

PMAM 2016 co-located with PPoPP 2016

Interleaving Analysis Rule

[I-JOIN] t — £
I(t, ¢, jnj) = Z(t, ¢, jn)\{t'}
t t'
fork
s ° s'
Ites) ={t} It e s)=(t
join
I(tesl) ={} s1
(tes) Il (tes) (t'c's)W (tc,s1)

10/18

PMAM 2016 co-located with PPoPP 2016

Interleaving Analysis Rule

tat! (¢, f) = Entry(Sy) (c,0)=Entry(Sy) t#UAV ¥t

[I-SIBLING] {tt CI(f,c,¢) {t}C1I(tch)

) I(tcs)=(}

fork

Ites)=0 9 y
join

(tes)N(t'c's')

10/18

PMAM 2016 co-located with PPoPP 2016

Interleaving Analysis Rule

tat! (¢, f) = Entry(Sy) (c,0)=Entry(Sy) t#UAV ¥t

[I-SIBLING] {tt CI(f,c,¢) {t}C1I(tch)

I(te.s)={t}

It'c's)={ty ¢

(tes) Il (t'c's')

10/18

PMAM 2016 co-located with PPoPP 2016

Interleaving Analysis Rule

£ Mt tk) o (tet) (6 0) = Entry(Se)

[I-DESCENDANT] M Ct.cl) {0 CI(F.c.0)

tat’ (c,f)=Entry(S;) (c,0')=Entry(Sy) t# Ut At #t
ST [CI(r.df) {f1CItel)

¢ Loy (t.c.0) & (t,¢,¢) ¢ = c.push(i)
[I-JOIN] - - ; [I-CALL] ;
I(t, ¢, jmj) = Z(t, ¢, j)\{t'} I(t,c,0) CI(t, . 0)
) (t,c.0) = (t,c,0) (t,c,0) 2% (t,¢/,¢') i=cpeek() ¢ = c.pop()
T (XY k5 (X0 [1-RET]

I(t,c,0) C (1, 0)

11/18

PMAM 2016 co-located with PPoPP 2016 ? UNSW

THE UNIVERSITY OF NEW SOUTH WALES

Outline

e Motivation

e Analysis phases

Thread Interleaving Analysis
Alias Analysis

Thread Local Analysis

Lock Analysis

e Evalution

11/18

PMAM 2016 co-located with PPoPP 2016

Alias Analysis

Obtain aliasing pairs by refining
MHP store-load and store-store
pairs [(t,c,s),(t,c,s’)], where
Alias(xp,*q) is the set of ob-
jects pointed to by both p and

q.

S:xp=_ !

(t,c,s) || (t',c,s)

S :_=x%q Or *q—=_

o0 € Alias(xp, *q)

o /
S—— S

PMAM 2016 co-located with PPoPP 2016

sl:
s2:

s3:

int x,y;

int *p,*q,*r;
p=&x;

q=&x;

r=&y;

void main(){

fork(t, foo);
*xp=...;
*xr=...;

}

void foo(){
.. .=%q;

12/18

Outline

e Motivation

e Analysis phases

Thread Interleaving Analysis
Alias Analysis

Thread Local Analysis

Lock Analysis

e Evalution

12/18

PMAM 2016 co-located with PPoPP 2016

Thread-Local Analysis

An object is not thread-local, i.e.
escaping, if it escapes via void main(){
. int x,y;
e arguments at a forksite fork(t,f00,&x);
| | . sl: x=...;
* global pointers Join(t);
83: y=...;
}

void foo(int* p){
s82: ...=*p;
}

13/18

PMAM 2016 co-located with PPoPP 2016

Outline

e Motivation

e Analysis phases

Thread Interleaving Analysis
Alias Analysis

Thread Local Analysis

Lock Analysis

e Evalution

13/18

PMAM 2016 co-located with PPoPP 2016

Lockset Analysis

Statements from different lock-

unlock spans, are interference- int x;

. mutex m;
free if these spans are protected void mainO{
by a common lock. fork(t,foo);
Our framework does this by per- si: ﬁei{&;))
forming a flow- and context- s3: x=...;
sensitive analysis for lock/un- untockm);
lock operations 3 '

void foo(){
lock(m);
s2: ...=X;
unlock(m) ;
}

14/18

PMAM 2016 co-located with PPoPP 2016

Outline

e Motivation
¢ Analysis phases
o Evalution

- ___| 14/18

PMAM 2016 co-located with PPoPP 2016

Evaluation

e Implementation:
¢ On top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/)
o Based on our previous papers CGO '16 and ICPP '15
e Benchmarks:
¢ 11 SPLASH2 Pthread benchmarks
e Machine setup:

e Ubuntu Linux 3.11.0-15-generic Intel Xeon Quad Core HT,
3.7GHZ, 64GB

15/18

UNSW

PMAM 2016 co-located with PPoPP 2016

Instrumentation Statistics (under Option -O0)

Pthread API TSan |Our Approach

Fork|Join|Lock|Unlock|Read|Write| Read|Write
barnes 1 1 12 |12 2188 (1222|982 |601
fft 1 1 8 |8 1048 387 |576 (261
lucb 1 1 |6 |6 1097 |408 |396 (199
lu_ncb 1 1 6 6 840 (303 |392 |182
ocean_cp 1 1 (24 |24 9531|2301 |5722 (1809
ocean._ncp 1 1 |23 |23 5465(1381(2909 (1103
radiosity 3 |3 (38 |50 5250 (1917|3006 | 1500
radix 1 1 [13 [13 777 |354 |329 |208
raytrace 1 1 13 |16 6049 |2368 |2865 |1057
water_nsquared|1 1 18 (18 2188|703 |1313|510
water_spatial |1 1 19 (19 2437|833 |1168 440

- ___| 16/18

PMAM 2016 co-located with PPoPP 2016 NSW

THE UNIVERSITY OF NEW SOUTH WALES

Speedups over Original TSan (under Option -00)

H 4 Threads [l 16 Threads

- ___| 17/18

PMAM 2016 co-located with PPoPP 2016

Thanks!

Q&A

18/18

PMAM 2016 co-located with PPoPP 2016

	Motivation

