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Dynamic Data Race Detector: ThreadSanitizer

ThreadSanitizer (TSan) finds data races in multithreaded
programs by inserting instrumentations at compile-time to
perform runtime checks for all memory accesses.
void foo(int *p) {
*p = 42;
}
Orignial C code

void foo(int *p) {
__tsan_func_entry(__builtin_return_address(0));
__tsan_write4(p);
*p = 42;
__tsan_func_exit();

}
Code after instrumentation
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TSan performance slowdown over native code for
SPLASH2 benchmarks (under compiler option -00)

B 4 Threads [l 16 Threads

40x - B

20x |- i

Machine: Ubuntu Linux 3.11.0-15-generic Intel Xeon Quad Core HT, 3.7GHZ, 64GB
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Refining Pairs
Only statements in the paris that are not filtered are instrumented for
runtime check.

b file
i |
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Context-Sensitive Abstract Threads

An abstract thread t refers to a call of pthread_create() at a
context-sensitive fork site during the analysis.

void main(){ void foo(X
cs1: foo(); cs3: fork(t1, bar);
cs2: foo(); }

}

t1 refers to fork site  t1' refers to fork site
under context [1,3] under context [2,3]

t1 and t1' are context-sensitive threads

6/18

PMAM 2016 co-located with PPoPP 2016




Context-Sensitive Abstract Threads

An abstract thread t refers to a call of pthread_create() at a
context-sensitive fork site during the analysis.

void main(){ void foo(X
void main(){
cs1: foo(); cs3: fork(t1, bar);
cs2: foo(); } for(i=0;i<10;i++){
fork(t[i], foo)
}
t1 refers to fork site 1 refers to fork site }

under context [1,3] under context [2,3]

t1 and t1' are context-sensitive threads t is multi-forked thread

A thread t always refers to a context-sensitive fork site, i.e., a
unique runtime thread unless t € M is multi-forked, in which
case, t may represent more than one runtime thread.
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Context-sensitive Thread Interleaving Analysis

(t1 s C~|,S1) || (l’g, Co, 32) holds if:

tb e Z(t,c1,81) Nty € Z(f, o, 82) ifty # b
heM otherwise

where Z(t, ¢, s): denotes a set of interleaved threads may run in
parallel with s in thread t under calling context c,
M is the set of multi-forked threads.
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Interleaving Analysis

Computing Z(t, c, s) is formalized as a forward data-flow
problem (V, 1, F).

e V: the set of all thread interleaving facts.

e 1. meet operator (U).

e F: V — V transfer functions associated with each node in
an ICFG.
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Interleaving Analysis Rule

£ Mt tk) o (tet) (6 0) = Entry(Se)

[I-DESCENDANT] M Ct.cl) {0 CI(F.c.0)

tat’ (c,f)=Entry(S;) (c,0')=Entry(Sy) t# Ut At #t
ST [ CI(r.df) {f1CItel)

¢ Loy (t.c.0) & (t,¢,¢) ¢ = c.push(i)
[I-JOIN] - - ; [I-CALL] ;
I(t, ¢, jmj) = Z(t, ¢, j)\{t'} I(t,c,0) CI(t, . 0)
) (t,c.0) = (t,c,0) (t,c,0) 2% (t,¢/,¢') i=cpeek() ¢ = c.pop()
T (XY k5 (X0 [1-RET]

I(t,c,0) C (1, 0)
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Interleaving Analysis Rule

t M (tefkg) = (te.b) () = Entry(Sy)

[I-DESCENDANT] {tYCI(tct) {tycCi(t.c.,0)

fork
S s'
I(tcs) = {t} I(t'c's)={t}

(tes) Il (t'c's')
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Interleaving Analysis Rule

[I-JOIN] t — £
I(t, ¢, jnj) = Z(t, ¢, jn)\{t'}
t t'
fork
s ° s'
Ites) ={t} It e s)=(t
join
I(tesl) ={} s1
(tes) Il (tes) (t'c's)W (tc,s1)
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Interleaving Analysis Rule
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Alias Analysis

Obtain aliasing pairs by refining
MHP store-load and store-store
pairs [(t,c,s),(t,c,s’)], where
Alias(xp,*q) is the set of ob-
jects pointed to by both p and

q.

S:xp=_ !

(t,c,s) || (t',c,s)

S :_=x%q Or *q—=_

o0 € Alias(xp, *q)

o /
S—— S
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sl:
s2:

s3:

int x,y;

int *p,*q,*r;
p=&x;

q=&x;

r=&y;

void main(){

fork(t, foo);
*xp=...;
*xr=...;

}

void foo(){
.. .=%q;
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Thread-Local Analysis

An object is not thread-local, i.e.
escaping, if it escapes via void main(){
. int x,y;
e arguments at a forksite fork(t,f00,&x);
| | . sl: x=...;
* global pointers Join(t);
83: y=...;
}

void foo(int* p){
s82: ...=*p;
}
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Lockset Analysis

Statements from different lock-

unlock spans, are interference- int x;

. mutex m;
free if these spans are protected void mainO{
by a common lock. fork(t,foo);
Our framework does this by per- si: ﬁei{&;) )
forming a flow- and context- s3: x=...;
sensitive analysis for lock/un- untockm);
lock operations 3 '

void foo(){
lock(m);
s2: ...=X;
unlock(m) ;
}
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Evaluation

e Implementation:
¢ On top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/)
o Based on our previous papers CGO '16 and ICPP '15
e Benchmarks:
¢ 11 SPLASH2 Pthread benchmarks
e Machine setup:

e Ubuntu Linux 3.11.0-15-generic Intel Xeon Quad Core HT,
3.7GHZ, 64GB
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Instrumentation Statistics (under Option -O0)

Pthread API TSan  |Our Approach

Fork|Join|Lock|Unlock|Read|Write| Read|Write
barnes 1 1 12 |12 2188 (1222|982 |601
fft 1 1 8 |8 1048 387 |576 (261
lucb 1 1 |6 |6 1097 |408 |396 (199
lu_ncb 1 1 6 6 840 (303 |392 |182
ocean_cp 1 1 (24 |24 9531|2301 |5722 (1809
ocean._ncp 1 1 |23 |23 5465(1381(2909 (1103
radiosity 3 |3 (38 |50 5250 (1917|3006 | 1500
radix 1 1 [13 [13 777 |354 |329 |208
raytrace 1 1 13 |16 6049 |2368 |2865 |1057
water_nsquared|1 1 18 (18 2188|703 |1313|510
water_spatial |1 1 19 (19 2437|833 |1168 440
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Speedups over Original TSan (under Option -00)

H 4 Threads [l 16 Threads
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Thanks!

Q&A
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