Loop-Oriented Array- and Field-Sensitive
Pointer Analysis for Automatic
SIMD Vectorization

Yulei Sui, Xiaokang Fan, Hao Zhou and Jingling Xue

School of Computer Science and Engineering
The University of New South Wales
2052 Sydney Australia

Jun 13, 2016

1/25

LCTES 2016, June 13th, Santa Barbara

Contributions

¢ A new loop-oriented array- and field-sensitive
inter-procedural pointer analysis using access-based
location sets built in terms of a lazy memory modeling.

e The technique improves the effectiveness of both SLP and
Loop-Level Vectorization by vectorizing more basic blocks
and reducing runtime checks

¢ Improves the performance of LLVM’s SLP (best speedup of
2.95%) and Loop vectorizer (best speedup of 7.18%)

2/25

LCTES 2016, June 13th, Santa Barbara

Outline

e Background and Motivation
e Our approach: LPA
e Evalution

2/25

LCTES 2016, June 13th, Santa Barbara

Pointer Alias Analysis and SIMD Vectorization
Pointer Analysis

e Statically approximate runtime values of a pointer.

e Serves as the foundation for compiler optimisations and software bug
detection.

e Generally answers the questions, such as does two pointer expressions
(e.g., *a and *b) may access the same memory.

LCTES 2016, June 13th, Santa Barbara

Pointer Alias Analysis and SIMD Vectorization
Pointer Analysis

e Statically approximate runtime values of a pointer.

e Serves as the foundation for compiler optimisations and software bug
detection.

e Generally answers the questions, such as does two pointer expressions
(e.g., *a and *b) may access the same memory.

LCTES 2016, June 13th, Santa Barbara

Pointer Alias Analysis and SIMD Vectorization
Pointer Analysis

e Statically approximate runtime values of a pointer.

e Serves as the foundation for compiler optimisations and software bug
detection.

e Generally answers the questions, such as does two pointer expressions
(e.g., *a and *b) may access the same memory.

Automatic SIMD Vectorization

e Superword-Level Parallelism (SLP) vectorization packs isomorphic
scalar instructions in the same basic block into a vector instruction

e [oop-Level Vectorization (LLV) combines multiple consecutive iterations
of a loop into a single iteration of a vector instruction.

LCTES 2016, June 13th, Santa Barbara

Pointer Alias Analysis and SIMD Vectorization
Pointer Analysis

e Statically approximate runtime values of a pointer.

e Serves as the foundation for compiler optimisations and software bug
detection.

e Generally answers the questions, such as does two pointer expressions
(e.g., *a and *b) may access the same memory.

Automatic SIMD Vectorization

e Superword-Level Parallelism (SLP) vectorization packs isomorphic
scalar instructions in the same basic block into a vector instruction

e [oop-Level Vectorization (LLV) combines multiple consecutive iterations
of a loop into a single iteration of a vector instruction.

Aim of this work:

e Study and develop interprocedural pointer analysis to generate more
vectorized code (SLP) and reduce dynamic dependence checks
(LLV).

LCTES 2016, June 13th, Santa Barbara

Pointer Alias Analysis and SLP Vectorization

void foo(float* A, float* B void foo(float* A, float* B){
ﬁ[?] f g[?] vectorization AI0:3] = B[0:3]:
AH;BI[:Z}z —— oe=Eesl
Al3] = B3]

} b

SLP vectorization: pack isomorphic non-alias memory accesses

4/25

LCTES 2016, June 13th, Santa Barbara

Pointer Alias Analysis and SLP Vectorization

void foo(float* A, float* BX void foo(float* A, float* B){
ﬁ[?] f g[?] vectorization AI0:3] = B[0:3]:
AH:BI[:Z%z —— oe= Rl
Al3] = B3]

} }

SLP vectorization: pack isomorphic non-alias memory accesses

Imprecise alias information (e.g., A[i] and B][i] are aliases)
miss the vectorization opportunity!

4/25

LCTES 2016, June 13th, Santa Barbara

Pointer Alias Analysis and LLV Vectorization

void foo(float* A, float* B){
void foo(float* A, float* B){ vectorization if((&A[N-1] >= &B[0]) && (&B[N-1]) >= &A[0]))
for(inti=0;i<N;i++) ——P» for(inti=0;i<N;i++)
Ali] = B[i] + K; Ali] = B[i] + K;
else
for(inti=0;i<N;i+=4)
A[i:i+3] = BJi:i+3] + K;

}

Loop vectorization: Dynamic checks due to imprecise aliases

4/25

LCTES 2016, June 13th, Santa Barbara

Pointer Alias Analysis and LLV Vectorization

void foo(float* A, float* BY
void foo(float* A, float* B){ vectorization if((&A[N-1] >= &B[0]) && (&B[N-1]) >= &A[0]))
for(inti=0;i<N;i++) ——p» for(inti=0;i<N;i++)
Alil = B[] + K; Alil = Bli] + K;
else
for(inti=0;i<N;i+=4)
Alfi:i+3] = B[i:i+3] + K;

}

Loop vectorization: Dynamic checks due to imprecise aliases

Imprecise alias information (e.g., A[i] alias BJ[i])
increases the runtime overhead!

4/25

LCTES 2016, June 13th, Santa Barbara

Motivation
Impact of LLVM’s Basic Alias Analysis on the effectiveness of SLP in LLVM
vectorizable non-vectorizable ==

160

[y
N
o

basic blocks
B [=2] =]
o o o

N
o

SLP: number of vectorizable and non-vectorizable basic blocks

LCTES 2016, June 13th, Santa Barbara

Motivation
Impact of LLVM’s Basic Alias Analysis on the effectiveness of SLP in LLVM
vectorizable non-vectorizable ==

160

[y
N
o

basic blocks
B [=2] =]
o o o

N
o

SLP: number of vectorizable and non-vectorizable basic blocks
On average, up to 30.04% of basic blocks are vectorizable
if more precise alias analysis is used in the above benchmarks!

5/25

LCTES 2016, June 13th, Santa Barbara

THE UNIVERSITY OF NEW SOUTH WALES

Motivation

Impact of LLVM’s Basic Alias Analysis on the effectiveness of LLV in LLVM

disjoint &3 overlapping =
100] pping

80 - B

60 - B

40 |- 1

% runtime checks

20 B

&ﬁ o°© @Wﬁ N et oot
K OV 0N
D‘c,k D‘q,&“ 66 u%"'
9

No)

c© Q e’b"*
16‘3 R Qvﬂ “e ‘,1 Ex
hY v,,% 00 Qx\ b‘o'& b?’
of
LLV: percentage of runtime checks for disjoint and overlapping memory
On average, up to 96.35% of dynamic alias checks

which return disjoint regions can be removed in the above benchmarks!
6/25

s UNSW

LCTES 2016, June 13th, Santa Barbara

Precision of Pointer Alias Analysis

e Analysis dimensions (Most previous works):
o flow-sensitivity
e context-sensitivity
o path-sensitivity

e Abstract memory modeling (This work)

o Partition the infinite-size concrete addresses
(stack/global/heap) into a finite number of abstract objects.

7125

LCTES 2016, June 13th, Santa Barbara

Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

struct ST{ Field-Insensitive Modeling:
int f1;
int f2; st
int 3;
}

struct ST st;
int* p = &st.f1;
int* q = &st.f2;

8/25

LCTES 2016, June 13th, Santa Barbara

Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

struct ST{ Field-Insensitive Modeling:
int f1;
int f2; st
int f3;
; Field-Sensitive Modeling:
struct ST st;
int* p = &st.f1; stfl | stf2 | stf3
int* q = &st.f2;

8/25

LCTES 2016, June 13th, Santa Barbara

Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

struct ST{ Field-Insensitive Modeling:
int f1;
int f2; st Alias(*p,*q) = true
int f3; (P q)

; Field-Sensitive Modeling:

struct ST st;

int* p = &st.f1; stfl | stf2 | sti3 Alias(*p,*q) = false

int* q = &st.f2;

LCTES 2016, June 13th, Santa Barbara

Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

Array-Insensitive Modeling:

int a[3]; a Alias(*p,*q) = true
Array-Sensitive Modeling:
int* p = &a[0];
H % %k
int* q = &al[1]; a0] | al1] | a[2] Alias(*p, q) = false

LCTES 2016, June 13th, Santa Barbara

Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

Array-Insensitive Modeling:

int a[3]; a Alias(*p,*q) = true
Array-Sensitive Modeling:
int* p = &a[0];
H % %k
int* q = &al[1]; a0] | al1] | a[2] Alias(*p, q) = false

Insensitive modeling: coarse-grained (commonly used in pointer analysis)
Sensitive modeling: costly and overkill for precision

8/25

LCTES 2016, June 13th, Santa Barbara

Challenges

» How to find the right balance between efficiency and
precision to model abstract objects?

e How to model an array access when its index is variant
including nested aggregates (e.g., array of struct, struct of
array)?

e How to integrate byte-precise abstract modeling into an
inter-procedural pointer analysis to improve vectorization?

LCTES 2016, June 13th, Santa Barbara

LPA: Loop-oriented Pointer Analysis

e Loop-oriented array- and field-sensitive inter-procedural
pointer analysis using access-based location sets built in
terms of lazy memory modeling.

o Statically evaluate the symbolic range of pointers according
to loop information.
e Generate location sets lazily during points-to resolution.

10/25

5 UNSW

LCTES 2016, June 13th, Santa Barbara

LPA: Loop-oriented Pointer Analysis

e Loop-oriented array- and field-sensitive inter-procedural
pointer analysis using access-based location sets built in
terms of lazy memory modeling.

o Statically evaluate the symbolic range of pointers according
to loop information.
e Generate location sets lazily during points-to resolution.

e Separates memory modeling as an independent concern
from the rest of the pointer analysis.

o Facilitating the development of pointer analyses with
desired efficiency and precision tradeoffs by reusing
existing pointer resolution algorithms.

10/25

LCTES 2016, June 13th, Santa Barbara

LPA: Loop-oriented Pointer Analysis

e Loop-oriented array- and field-sensitive inter-procedural
pointer analysis using access-based location sets built in
terms of lazy memory modeling.

o Statically evaluate the symbolic range of pointers according
to loop information.
e Generate location sets lazily during points-to resolution.

e Separates memory modeling as an independent concern
from the rest of the pointer analysis.

o Facilitating the development of pointer analyses with
desired efficiency and precision tradeoffs by reusing
existing pointer resolution algorithms.

o Generate efficient vector code and improves the
performance of both SLP and loop vectorizer (best
speedup over 7%).

10/25

LCTES 2016, June 13th, Santa Barbara

Access-based location set

A location set o represents memory locations in terms of
numeric offsets from the beginning of an abstract memory
block’.

Our array-sensitive modeling, e.g., arr|[i] inside a loop:
e Interval range i € [Ib, ub]

o Access step X € N* (e.g., X = 1 if arr is accessed
consecutively inside the loop)

1 R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. In PLDI '95
(Field-Sensitive array-insensitive modeling based on location set)

- ___| 11/25

LCTES 2016, June 13th, Santa Barbara

Access-based location set

A location set o represents memory locations in terms of
numeric offsets from the beginning of an abstract memory
block’.

Our array-sensitive modeling, e.g., arr|[i] inside a loop:
e Interval range i € [Ib, ub]
o Access step X € N* (e.g., X = 1 if arr is accessed
consecutively inside the loop)
o Access trip is a pair (t, s) consists of
(ub — Ib)

(X-1)
o Astride s = esx X where es is the size of an array element.

e Atripcountt =

1 R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. In PLDI '95
(Field-Sensitive array-insensitive modeling based on location set)

. 11/ 25
LCTES 2016, June 13th, Santa Barbara :

Access-based location set

An access-based location set derived from an object a is:

o= <Off, [[(t1 , S1), ey (tm, Sm)]]>a

where off € N is an offset from the beginning of object a, and
T =1[(t,s1),...,(tm, Sm)] is an access-trip stack containing a
sequence of (trip count, stride) pairs for handling a nested
struct of arrays.

12/25

LCTES 2016, June 13th, Santa Barbara

Access-based Location Set (Examples)

1 float a[16]; float *p = &al[0];
2 for(i=0;i<8;i++) i€l0, 7], X=1, es=4
3 plil = pl[i+8]; i+8€[8,15], X=1, es=4

(I) 4 8 121620242.8323640444852566064
e pm <o [[(8 4)n>a pt1+81 <32 [[(8 4)11>

(a) An array with consecutive accesses

13/25

LCTES 2016, June 13th, Santa Barbara

Access-based Location Set (Examples)

1 float a[16]; float *p = &al[0];
2 for(i=0;i<16;i+=4){

3 plil =1 ; i€[0,12], X=4, es=4
4 pli+1] =i + 1; i+1€[1,13], X=4, es=4
5 pli+2] =i + 2; i+2€[2,14], X=4, es=4
6 pli+3] =i + 3; i+3€[3,15], X=4, es=4
7}

0 4 8 12162.02|42i8323640444852566064

Ly Rl Ig T A

(b) An array with non-consecutive accesses

13/25

LCTES 2016, June 13th, Santa Barbara

Access-based Location Set (Examples)

1 struct {float f1[2]; float f2[2];} al4], *p, *q;

2 float *r;

3 p = &al0];

4 for(i=0;i<4;i++){

5 q = &plil; i€[0,3], X=1, es=16
6 r = qg-—>fl;

7 x = q->f2;

8 for(j=0;j<2;j++)

9 r[jl = x[j]; j€[0, 1], X=1, es=4
10 }

(l) 1|6 3i2 4|8 6|4

(l) ll} ? 1i2 1|6 2i0 2|4 2i8 3i2 3|6 4|0 4|4 4|8 5i2 5|6 6|0 6|4

? 4|} ?12162.0242.832364]04|44852566|06|4

plil: (0,[(4,16)])a = l51: (0,[(4.16).(2.4)])a =x[31: (8,(4,16),(2,4)])a

(c) Nested arrays and structs with consecutive accesses
-] 13/25

LCTES 2016, June 13th, Santa Barbara NSW

Andersen’s Pointer Analysis based on
Access-based Location Set

p=&a o=1(0,[])a q=e ocpta) o = GetLS(o, eq)
[S-ALLOC] ————~——— [S-L0AD]
{0} Cpt(p) pi(o’) C pt(a)
p=q ep=q oeptp) o = GetlLS(o,ep)
[S-COPY] ———~———~— [S-STORE]
pi(q) < pt(p) pt(a) C pt(o”)
(off, T)a if ep is #p

else if ey is p —f, where off; is the offset of
field f in array object a
GetLS((off, T)a, ep)=4 (off + Cx es, T)a else if ey is p[i], where i is constant C
else if ey is p[i], where i € [Ib, ub] with step X,
(off + Ibx es, T.push(“O52 +1,X xes))a b/, ub'] = [Ib,ub] 1[0, m — 1]
and mis size of array object a

(off + off, T)a

Points-to target in the points-to set of a pointer is not an abstract object
but rather a location set derived from it.

14 /25

UNSW

LCTES 2016, June 13th, Santa Barbara

Disambiguation of location sets

{true it 3o,€pt(p) Aogept(q) : (op, 52p)>(0q, 5Zq),
alias(ep, eq) = where op = GetLS(ap) A 0g= GetLS(og)
false otherwise
@)
{tme if obj(op)=0bj(sq) and
(0p, S2p)=i(0gq, 829) = I lp € LS(op) N lg € LS(0g): (Ip < lg+52q) A (lg < lp+52p)
false otherwise

()

- ___| 15/25

LCTES 2016, June 13th, Santa Barbara

Disambiguation of location sets

1 float a[16]; float *p = &al[0];

2 for(i=0;i<16;i+=2){

3 plil = ...

; }pEi+1] = ({0, [(8,8)])a,4) 4 ({4, [(8,8)]) 2, 4)

(E 411 %1%16%0%4%83%364044485&566064
?AT&?1|216210242‘&3'2364044485'256%064

? 411 %1E16%0%4%83&364044485&566064

plil pli+1]

(a) Disjoint location sets

1 float a[16]; float *p = &al[0];

2 for(i=0;i<16;i++)

3 plil = ...

4 for(3=0;3<16; j+-2) (0. [(16,4)]),4) 5 ((0. [(8.8)])as 4)
5 plil= ..

? ATi ?1Ig16%024%83,2364044485?566064

12 16 20 24 36 40 44 48 52 56 60 64

? ATt ?1Ig16%024%83?364044485?566064

plil plj] overlapping

(b) Overlapping location sets

16/25
LCTES 2016, June 13th, Santa Barbara

THE CNIVERSITY OF NEW SOUTH WALES

Field Unification

1 struct {float f1[8]; float f2[8];} a, *p;
2 p=&a; 9 4 8 121620242832 36 40 44 48 52 56 60 64
3 float *q = p->fl, *r = p->f2; = [] 0. [1]I (L 4.5 1
i+
4 for(iny 1=0;1<8;1m2){ 200 <§ HE HBZ R (o) sgﬂi
i = ...
6 3[1+1] = ... (b) Default location sets
7}
8 for(int j=0;j<8;j=j+2){ 0 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64
9 rlil =... i e e oy i g i
10 rl+1] = ... qlil,r[31: (0, [(4.8)D)a" qli*1],rj+11: (4,((4,8)])a
m o} (c) Location sets with max offset limit: F = 32
(a) Code

- ___| 17/25

LCTES 2016, June 13th, Santa Barbara > UNSW

Twaiss

Experiments

Compilation Process

source

file n Answer SLP|and LLV Alias Queries

| |
| Basican | [scevan | | LPaFI |

Our experiments are conducted on

e An Intel Core i7-4770 CPU (3.40GHz) with an AVX2 SIMD
extension, which supports 256 bit floating point and integer
SIMD operations.

e 64-bit Ubuntu (14.0.4) with 32 GB memory.

18/25

LCTES 2016, June 13th, Santa Barbara

Experiments

Program Characteristics

[Program | KLoc | #stmt #Pirs | #Objs | #CallSite
173.applu 39 3361 | 20951 159 346
176.gcc 226.5 | 215312 | 545962 | 16860 | 22595
177.mesa 613 | 99154 | 242317 | 9831 3641
183.equake 15 2082 6688 236 235
188.ammp 134 [14665 | 56992 | 2216 1225
191.fmadd 60.1 | 119914 | 276301 | 6497 | 18713
197 parser 11.3 | 13668 | 36864 | 1177 1776
256.bzip2 46 1556 | 10650 436 380
300.twolf 204 | 23354 | 75507 | 1845 2059
400.perlbench 168.1 | 130640 | 296288 | 3398 | 15399
401.bzip2 82 7493 | 28965 669 439
433.milc 15| 11219 | 30873 | 1871 1661
435.gromacs 1085 | 84966 | 224967 | 12302 8690
436.cactusADM || 103.8 | 62106 | 188284 | 2980 8006
437 leslie3d 38| 12228 [38850 513 2003
454 calculix 1667 | 135182 | 532836 | 18814 | 23520
459.GemsFDTD || 115 | 25681 | 107656 | 3136 6566
464.h264ref 51.5 | 55548 | 184660 | 3747 3553
465.tonto 143.1 | 418494 | 932795 | 28704 | 58756
482.sphinx3 25 [20918 [60347 | 1917 2775
Total 1208.2 | 1457541 | 3898253 | 117308 | 182338

- ___| 19/25

LCTES 2016, June 13th, Santa Barbara

THE UNIVERSITY OF NEW SOUTH WALES

Analysis Time

Percentage of analysis time over total compilation time

S EZ3 LPA [Other

‘é100.0 —

g 7]

= 80.0 / .

IS4 >
BT R R 7 - 1 A W R R 0 R /
(0]

7 || B
E4o_o.,/7¢.;../.7'.,,...,.,.,// %
g 1 ? 1
£ 200 |- /R sREE R RERCRENCRIR RS
El 0.0 / &

Q T LA RN AL ILICEXRFQ OO
o & iy @Q,% & &éb S8 & S @q?@ & \OS\QQ’\ S ‘@o\‘.\g(g
PN Fo P S, TS PN H S E P P EEE L
LNLoZ R PRG0S W & FaP i &0
QNIRRT Y QQ‘Q IR PEE WO
W &5‘5 g{gb

LPA’s analysis times ranging from 94.4 secs to 240.8 secs
On average, LPA’s analysis time occupies 42% over the total compilation time.

- ___| 20/25

LCTES 2016, June 13th, Santa Barbara

& UNSW

F NEW SOUTH WAL

Experiments

SLP Vectorization Static Statistics

Benchmark BASICAA | SCEVAA | LPA
173.applu 20 4| 26
176.gcc 4 3 6
177.mesa 24 23| 64
183.equake 2 1 4
188.ammp 1 2 4
191.fma3d 46 23| 53
433.milc 21 13| 69
435.gromacs 53 35| 57
454 calculix 161 92 | 166
465.tonto 19 21 32
482.sphinx 0 0 1
Total 351 217 | 482

Number of basic blocks vectorized by SLP under
the three alias analyses (larger is better).

e 21/ 25
LCTES 2016, June 13th, Santa Barbara

Experiments

Loop Vectorization Static Statistics

Benchmark BASICAA | SCEVAA | LPA
176.gcc 4 8 2
177.mesa 121 137 | 88
197.parser 1 1 0
256.bzip2 1 6

300.twolf 11 13| 10
400.perlbench 23 21 13
401.bzip2 6 9 5
436.cactusADM 71 112 2
437 .leslie3d 21 21 4
454.calculix 83 90 | 57
459.GemsFDTD 65 79 | 16
464.h264ref 30 32 2
465.tonto 110 118 | 38
482.sphinx3 4 5 1
Total 551 652 | 238

Number of static alias checks inserted by LLV under
the three alias analyses (smaller is better).

22/25

UNSW

LCTES 2016, June 13th, Santa Barbara

Experiments

SLP: whole-program performance speedups

1.04
[] Baseline 24 LPAI

__1.03 | - -
o3
2 1.02
3
2 1.01
&

1.00

0.99

2 30, e S | bk, o0 3
3 2996 9\11 “\es3 o3t a«\‘é‘? L A.33 P 8 5ol o155 o \0“2 e

The whole-program speedups achieved by SLP under LPA
normalized with respect to LLVM’s alias analyses

23/25

LCTES 2016, June 13th, Santa Barbara

THE UNIVERSITY OF NEW SOUTH WALES

Experiments

Loop Vectorization: whole-program performance speedups

1.08 H[] Baseline @24 LPA

1.07
< 1.06
% 1.01
S 1.008
3 1.006
g 1.004
1.002
%)
1.0
0-98 9 > 2 o))
Cf = Q & SO0 o) < 95 QO
o9 AN VG LA\ \o 0 Q0™ X0 N
A ‘\11 S‘\'?f)‘ ,5(30 \O&Q\ %,l\ 65,6& o ? u@b 'L'Q
@Q’

The whole-program speedups achieved by LLV under LPA normalized
with respect to LLVM'’s alias analyses

24/25

5 UNSW

LCTES 2016, June 13th, Santa Barbara

Conclusion

¢ A new loop-oriented array- and field-sensitive
inter-procedural pointer analysis using access-based
location sets built in terms of lazy memory model.

e The technique improves the effectiveness of both SLP and
Loop-Level Vectorization by vectorizing more basic blocks
and reducing dynamic checks

¢ Improves the performance of LLVM’s SLP (best speedup of
2.95%) and Loop vectorizer (best speedup over 7%)

25/25

LCTES 2016, June 13th, Santa Barbara

Thanks!

Q&A

25/25

LCTES 2016, June 13th, Santa Barbara

Limitations

e Range analysis
e SCEV in LLVM
o Indirect array access e.g., a[*p]
e Irregular loops, e.g., iterating arrays inside a loop with
variant bounds
e More precise analysis methods, e.g,
context-,heap-sensitivity

25/25

LCTES 2016, June 13th, Santa Barbara

Andersen’s Analysis based on Field-Insensitive
Modeling

p=2&a p=q
{a} S pt(p) pt(q) S pt(p)
*p=q o€pt(p) p=7q o€ept(q)
pt(q) S pt(o) pt(o) < pt(p)

Every allocation site is treated as a single memory object. Array and field
accesses like p[i] = .. and p— f = ... are treated as copies.

25/25

LCTES 2016, June 13th, Santa Barbara

	Motivation
	Backgroud
	Access-based location set

