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Contributions

¢ A new loop-oriented array- and field-sensitive
inter-procedural pointer analysis using access-based
location sets built in terms of a lazy memory modeling.

e The technique improves the effectiveness of both SLP and
Loop-Level Vectorization by vectorizing more basic blocks
and reducing runtime checks

¢ Improves the performance of LLVM’s SLP (best speedup of
2.95%) and Loop vectorizer (best speedup of 7.18%)
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Outline

e Background and Motivation
e Our approach: LPA
e Evalution
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Pointer Alias Analysis and SIMD Vectorization
Pointer Analysis

e Statically approximate runtime values of a pointer.

e Serves as the foundation for compiler optimisations and software bug
detection.

e Generally answers the questions, such as does two pointer expressions
(e.g., *a and *b) may access the same memory.
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Pointer Analysis

e Statically approximate runtime values of a pointer.

e Serves as the foundation for compiler optimisations and software bug
detection.

e Generally answers the questions, such as does two pointer expressions
(e.g., *a and *b) may access the same memory.

Automatic SIMD Vectorization

e Superword-Level Parallelism (SLP) vectorization packs isomorphic
scalar instructions in the same basic block into a vector instruction

e [oop-Level Vectorization (LLV) combines multiple consecutive iterations
of a loop into a single iteration of a vector instruction.

LCTES 2016, June 13th, Santa Barbara




Pointer Alias Analysis and SIMD Vectorization
Pointer Analysis

e Statically approximate runtime values of a pointer.

e Serves as the foundation for compiler optimisations and software bug
detection.

e Generally answers the questions, such as does two pointer expressions
(e.g., *a and *b) may access the same memory.

Automatic SIMD Vectorization

e Superword-Level Parallelism (SLP) vectorization packs isomorphic
scalar instructions in the same basic block into a vector instruction

e [oop-Level Vectorization (LLV) combines multiple consecutive iterations
of a loop into a single iteration of a vector instruction.

Aim of this work:

e Study and develop interprocedural pointer analysis to generate more
vectorized code (SLP) and reduce dynamic dependence checks
(LLV).
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Pointer Alias Analysis and SLP Vectorization

void foo(float* A, float* B void foo(float* A, float* B){
ﬁ[?] f g[?] vectorization AI0:3] = B[0:3]:
AH;BI[:Z}z —— oe=Eesl
Al3] = B3]

} b

SLP vectorization: pack isomorphic non-alias memory accesses
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Pointer Alias Analysis and SLP Vectorization

void foo(float* A, float* BX void foo(float* A, float* B){
ﬁ[?] f g[?] vectorization AI0:3] = B[0:3]:
AH:BI[:Z%z —— oe= Rl
Al3] = B3]

} }

SLP vectorization: pack isomorphic non-alias memory accesses

Imprecise alias information (e.g., A[i] and B][i] are aliases)
miss the vectorization opportunity!
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Pointer Alias Analysis and LLV Vectorization

void foo(float* A, float* B){
void foo(float* A, float* B){ vectorization if( (&A[N-1] >= &B[0]) && (&B[N-1]) >= &A[0]))
for(inti=0;i<N;i++) ——P» for(inti=0;i<N;i++)
Ali] = B[i] + K; Ali] = B[i] + K;
else
for(inti=0;i<N;i+=4)
A[i:i+3] = BJi:i+3] + K;

}

Loop vectorization: Dynamic checks due to imprecise aliases
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Pointer Alias Analysis and LLV Vectorization

void foo(float* A, float* BY
void foo(float* A, float* B){ vectorization if( (&A[N-1] >= &B[0]) && (&B[N-1]) >= &A[0]))
for(inti=0;i<N;i++) ——p» for(inti=0;i<N;i++)
Alil = B[] + K; Alil = Bli] + K;
else
for(inti=0;i<N;i+=4)
Alfi:i+3] = B[i:i+3] + K;

}

Loop vectorization: Dynamic checks due to imprecise aliases

Imprecise alias information (e.g., A[i] alias BJ[i])
increases the runtime overhead!
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Motivation
Impact of LLVM’s Basic Alias Analysis on the effectiveness of SLP in LLVM
vectorizable non-vectorizable ==

160

[y
N
o

# basic blocks
B [=2] =]
o o o

N
o

SLP: number of vectorizable and non-vectorizable basic blocks
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SLP: number of vectorizable and non-vectorizable basic blocks
On average, up to 30.04% of basic blocks are vectorizable
if more precise alias analysis is used in the above benchmarks!
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Motivation

Impact of LLVM’s Basic Alias Analysis on the effectiveness of LLV in LLVM
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LLV: percentage of runtime checks for disjoint and overlapping memory
On average, up to 96.35% of dynamic alias checks

which return disjoint regions can be removed in the above benchmarks!
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Precision of Pointer Alias Analysis

e Analysis dimensions (Most previous works):
o flow-sensitivity
e context-sensitivity
o path-sensitivity

e Abstract memory modeling (This work)

o Partition the infinite-size concrete addresses
(stack/global/heap) into a finite number of abstract objects.
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Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

struct ST{ Field-Insensitive Modeling:
int f1;
int f2; st
int 3;
}

struct ST st;
int* p = &st.f1;
int* q = &st.f2;
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Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

struct ST{ Field-Insensitive Modeling:
int f1;
int f2; st
int f3;
; Field-Sensitive Modeling:
struct ST st;
int* p = &st.f1; stfl | stf2 | stf3
int* q = &st.f2;
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Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

struct ST{ Field-Insensitive Modeling:
int f1;
int f2; st Alias(*p,*q) = true
int f3; ( P q)

; Field-Sensitive Modeling:

struct ST st;

int* p = &st.f1; stfl | stf2 | sti3 Alias(*p,*q) = false

int* q = &st.f2;

LCTES 2016, June 13th, Santa Barbara




Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

Array-Insensitive Modeling:

int a[3]; a Alias(*p,*q) = true
Array-Sensitive Modeling:
int* p = &a[0];
H % %k
int* q = &al[1]; a0] | al1] | a[2] Alias(*p, q) = false
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Abstract Memory modeling for Pointer Analysis

Abstract memory modeling is to partition the infinite-size
concrete addresses (stack/global/heap) into a finite number of
abstract objects.

Array-Insensitive Modeling:

int a[3]; a Alias(*p,*q) = true
Array-Sensitive Modeling:
int* p = &a[0];
H % %k
int* q = &al[1]; a0] | al1] | a[2] Alias(*p, q) = false

Insensitive modeling: coarse-grained (commonly used in pointer analysis)
Sensitive modeling: costly and overkill for precision
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Challenges

» How to find the right balance between efficiency and
precision to model abstract objects?

e How to model an array access when its index is variant
including nested aggregates (e.g., array of struct, struct of
array)?

e How to integrate byte-precise abstract modeling into an
inter-procedural pointer analysis to improve vectorization?
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LPA: Loop-oriented Pointer Analysis

e Loop-oriented array- and field-sensitive inter-procedural
pointer analysis using access-based location sets built in
terms of lazy memory modeling.

o Statically evaluate the symbolic range of pointers according
to loop information.
e Generate location sets lazily during points-to resolution.
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LPA: Loop-oriented Pointer Analysis

e Loop-oriented array- and field-sensitive inter-procedural
pointer analysis using access-based location sets built in
terms of lazy memory modeling.

o Statically evaluate the symbolic range of pointers according
to loop information.
e Generate location sets lazily during points-to resolution.

e Separates memory modeling as an independent concern
from the rest of the pointer analysis.

o Facilitating the development of pointer analyses with
desired efficiency and precision tradeoffs by reusing
existing pointer resolution algorithms.
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LPA: Loop-oriented Pointer Analysis

e Loop-oriented array- and field-sensitive inter-procedural
pointer analysis using access-based location sets built in
terms of lazy memory modeling.

o Statically evaluate the symbolic range of pointers according
to loop information.
e Generate location sets lazily during points-to resolution.

e Separates memory modeling as an independent concern
from the rest of the pointer analysis.

o Facilitating the development of pointer analyses with
desired efficiency and precision tradeoffs by reusing
existing pointer resolution algorithms.

o Generate efficient vector code and improves the
performance of both SLP and loop vectorizer (best
speedup over 7%).
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Access-based location set

A location set o represents memory locations in terms of
numeric offsets from the beginning of an abstract memory
block’.

Our array-sensitive modeling, e.g., arr|[i] inside a loop:
e Interval range i € [Ib, ub]

o Access step X € N* (e.g., X = 1 if arr is accessed
consecutively inside the loop)

1 R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. In PLDI '95
(Field-Sensitive array-insensitive modeling based on location set)
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Access-based location set

A location set o represents memory locations in terms of
numeric offsets from the beginning of an abstract memory
block’.

Our array-sensitive modeling, e.g., arr|[i] inside a loop:
e Interval range i € [Ib, ub]
o Access step X € N* (e.g., X = 1 if arr is accessed
consecutively inside the loop)
o Access trip is a pair (t, s) consists of
(ub — Ib)

(X-1)
o Astride s = esx X where es is the size of an array element.

e Atripcountt =

1 R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. In PLDI '95
(Field-Sensitive array-insensitive modeling based on location set)
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Access-based location set

An access-based location set derived from an object a is:

o= <Off, [[(t1 , S1), ey (tm, Sm)]]>a

where off € N is an offset from the beginning of object a, and
T =1[(t,s1),...,(tm, Sm)] is an access-trip stack containing a
sequence of (trip count, stride) pairs for handling a nested
struct of arrays.
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Access-based Location Set (Examples)

1 float a[16]; float *p = &al[0];
2 for(i=0;i<8;i++) i€l0, 7], X=1, es=4
3  plil = pl[i+8]; i+8€[8,15], X=1, es=4

(I) 4 8 121620242.8323640444852566064
e pm <o [[(8 4)n>a pt1+81 <32 [[(8 4)11>

(a) An array with consecutive accesses
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Access-based Location Set (Examples)

1 float a[16]; float *p = &al[0];
2 for(i=0;i<16;i+=4){

3 plil =1 ; i€[0,12], X=4, es=4
4  pli+1] =i + 1; i+1€[1,13], X=4, es=4
5 pli+2] =i + 2; i+2€[2,14], X=4, es=4
6 pli+3] =i + 3; i+3€[3,15], X=4, es=4
7}

0 4 8 12162.02|42i8323640444852566064

Ly Rl Ig T A

(b) An array with non-consecutive accesses
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Access-based Location Set (Examples)

1 struct {float f1[2]; float f2[2];} al4], *p, *q;

2 float *r;

3 p = &al0];

4 for(i=0;i<4;i++){

5 q = &plil; i€[0,3], X=1, es=16
6 r = qg-—>fl;

7 x = q->f2;

8  for(j=0;j<2;j++)

9 r[jl = x[j]; j€[0, 1], X=1, es=4
10 }

(l) 1|6 3i2 4|8 6|4

(l) ll} ? 1i2 1|6 2i0 2|4 2i8 3i2 3|6 4|0 4|4 4|8 5i2 5|6 6|0 6|4

? 4|} ?12162.0242.832364]04|44852566|06|4

plil: (0,[(4,16)])a = l51: (0,[(4.16).(2.4)])a =x[31: (8,(4,16),(2,4)])a

(c) Nested arrays and structs with consecutive accesses
-] 13/25
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Andersen’s Pointer Analysis based on
Access-based Location Set

p=&a o=1(0,[])a q=e ocpta) o = GetLS(o, eq)
[S-ALLOC] ————~——— [S-L0AD]
{0} Cpt(p) pi(o’) C pt(a)
p=q ep=q oeptp) o = GetlLS(o,ep)
[S-COPY] ———~———~— [S-STORE]
pi(q) < pt(p) pt(a) C pt(o”)
(off, T)a if ep is #p

else if ey is p —f, where off; is the offset of
field f in array object a
GetLS((off, T)a, ep)=4 (off + Cx es, T)a else if ey is p[i], where i is constant C
else if ey is p[i], where i € [Ib, ub] with step X,
(off + Ibx es, T.push(“O52 +1,X xes))a b/, ub'] = [Ib,ub] 1[0, m — 1]
and mis size of array object a

(off + off, T)a

Points-to target in the points-to set of a pointer is not an abstract object
but rather a location set derived from it.

14 /25

UNSW

LCTES 2016, June 13th, Santa Barbara




Disambiguation of location sets

{true it 3o,€pt(p) Aogept(q) : (op, 52p)>(0q, 5Zq),
alias(ep, eq) = where op = GetLS(ap) A 0g= GetLS(og)
false otherwise
@)
{tme if obj(op)=0bj(sq) and
(0p, S2p)=i(0gq, 829) = I lp € LS(op) N lg € LS(0g): (Ip < lg+52q) A (lg < lp+52p)
false otherwise

()
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Disambiguation of location sets

1 float a[16]; float *p = &al[0];

2 for(i=0;i<16;i+=2){

3 plil = ...

; }pEi+1] = ({0, [(8,8)])a,4) 4 ({4, [(8,8)]) 2, 4)

(E 411 %1%16%0%4%83%364044485&566064
?AT&?1|216210242‘&3'2364044485'256%064

? 411 %1E16%0%4%83&364044485&566064

plil pli+1]

(a) Disjoint location sets

1 float a[16]; float *p = &al[0];

2 for(i=0;i<16;i++)

3 plil = ...

4 for(3=0;3<16; j+-2) (0. [(16,4)]),4) 5 ((0. [(8.8)])as 4)
5 plil= ..

? ATi ?1Ig16%024%83,2364044485?566064

12 16 20 24 36 40 44 48 52 56 60 64

? ATt ?1Ig16%024%83?364044485?566064

plil plj] overlapping

(b) Overlapping location sets
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Field Unification

1 struct {float f1[8]; float f2[8];} a, *p;
2 p=&a; 9 4 8 121620242832 36 40 44 48 52 56 60 64
3 float *q = p->fl, *r = p->f2; = [] 0. [1]I (L 4.5 1
i+
4 for(iny 1=0;1<8;1m2){ 200 <§ HE HBZ R (o) sgﬂi
i = ...
6 3[1+1] = ... (b) Default location sets
7}
8 for(int j=0;j<8;j=j+2){ 0 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64
9 rlil =... i e e oy i g i
10 rl+1] = ... qlil,r[31: (0, [(4.8)D)a" qli*1],rj+11: (4,((4,8)])a
m o} (c) Location sets with max offset limit: F = 32
(a) Code
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Experiments

Compilation Process

source

file n Answer SLP|and LLV Alias Queries

| |
| Basican | [ scevan | | LPaFI |

Our experiments are conducted on

e An Intel Core i7-4770 CPU (3.40GHz) with an AVX2 SIMD
extension, which supports 256 bit floating point and integer
SIMD operations.

e 64-bit Ubuntu (14.0.4) with 32 GB memory.
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Experiments

Program Characteristics

[ Program | KLoc |  #stmt #Pirs | #Objs | #CallSite
173.applu 39 3361 | 20951 159 346
176.gcc 226.5 | 215312 | 545962 | 16860 | 22595
177.mesa 613 | 99154 | 242317 | 9831 3641
183.equake 15 2082 6688 236 235
188.ammp 134 [ 14665 | 56992 | 2216 1225
191.fmadd 60.1 | 119914 | 276301 | 6497 | 18713
197 parser 11.3 | 13668 | 36864 | 1177 1776
256.bzip2 46 1556 | 10650 436 380
300.twolf 204 | 23354 | 75507 | 1845 2059
400.perlbench 168.1 | 130640 | 296288 | 3398 | 15399
401.bzip2 82 7493 | 28965 669 439
433.milc 15| 11219 | 30873 | 1871 1661
435.gromacs 1085 | 84966 | 224967 | 12302 8690
436.cactusADM || 103.8 | 62106 | 188284 | 2980 8006
437 leslie3d 38| 12228 [ 38850 513 2003
454 calculix 1667 | 135182 | 532836 | 18814 | 23520
459.GemsFDTD || 115 | 25681 | 107656 | 3136 6566
464.h264ref 51.5 | 55548 | 184660 | 3747 3553
465.tonto 143.1 | 418494 | 932795 | 28704 | 58756
482.sphinx3 25 [ 20918 [ 60347 | 1917 2775
Total 1208.2 | 1457541 | 3898253 | 117308 | 182338
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Analysis Time

Percentage of analysis time over total compilation time
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LPA’s analysis times ranging from 94.4 secs to 240.8 secs
On average, LPA’s analysis time occupies 42% over the total compilation time.
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Experiments

SLP Vectorization Static Statistics

Benchmark BASICAA | SCEVAA | LPA
173.applu 20 4| 26
176.gcc 4 3 6
177.mesa 24 23| 64
183.equake 2 1 4
188.ammp 1 2 4
191.fma3d 46 23| 53
433.milc 21 13| 69
435.gromacs 53 35| 57
454 calculix 161 92 | 166
465.tonto 19 21 32
482.sphinx 0 0 1
Total 351 217 | 482

Number of basic blocks vectorized by SLP under
the three alias analyses (larger is better).
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Experiments

Loop Vectorization Static Statistics

Benchmark BASICAA | SCEVAA | LPA
176.gcc 4 8 2
177.mesa 121 137 | 88
197.parser 1 1 0
256.bzip2 1 6

300.twolf 11 13| 10
400.perlbench 23 21 13
401.bzip2 6 9 5
436.cactusADM 71 112 2
437 .leslie3d 21 21 4
454.calculix 83 90 | 57
459.GemsFDTD 65 79 | 16
464.h264ref 30 32 2
465.tonto 110 118 | 38
482.sphinx3 4 5 1
Total 551 652 | 238

Number of static alias checks inserted by LLV under
the three alias analyses (smaller is better).

22/25
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Experiments

SLP: whole-program performance speedups
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The whole-program speedups achieved by SLP under LPA
normalized with respect to LLVM’s alias analyses
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Experiments

Loop Vectorization: whole-program performance speedups
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The whole-program speedups achieved by LLV under LPA normalized
with respect to LLVM'’s alias analyses
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Conclusion

¢ A new loop-oriented array- and field-sensitive
inter-procedural pointer analysis using access-based
location sets built in terms of lazy memory model.

e The technique improves the effectiveness of both SLP and
Loop-Level Vectorization by vectorizing more basic blocks
and reducing dynamic checks

¢ Improves the performance of LLVM’s SLP (best speedup of
2.95%) and Loop vectorizer (best speedup over 7%)

25/25

LCTES 2016, June 13th, Santa Barbara




Thanks!

Q&A
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Limitations

e Range analysis
e SCEV in LLVM
o Indirect array access e.g., a[*p]
e Irregular loops, e.g., iterating arrays inside a loop with
variant bounds
e More precise analysis methods, e.g,
context-,heap-sensitivity
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Andersen’s Analysis based on Field-Insensitive
Modeling

p=2&a p=q
{a} S pt(p) pt(q) S pt(p)
*p=q o€pt(p) p=7q o€ept(q)
pt(q) S pt(o) pt(o) < pt(p)

Every allocation site is treated as a single memory object. Array and field
accesses like p[i] = .. and p— f = ... are treated as copies.
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