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Abstract
Compiler-based auto-vectorization is a promising solution to au-
tomatically generate code that makes efficient use of SIMD pro-
cessors in high performance platforms and embedded systems.
Two main auto-vectorization techniques, superword-level paral-
lelism vectorization (SLP) and loop-level vectorization (LLV), re-
quire precise dependence analysis on arrays and structs in order
to vectorize isomorphic scalar instructions and/or reduce dynamic
dependence checks incurred at runtime.

The alias analyses used in modern vectorizing compilers are ei-
ther intra-procedural (without tracking inter-procedural data-flows)
or inter-procedural (by using field-insensitive models, which are
too imprecise in handling arrays and structs). This paper pro-
poses an inter-procedural Loop-oriented Pointer Analysis, called
LPA, for analyzing arrays and structs to support aggressive SLP
and LLV optimizations. Unlike field-insensitive solutions that pre-
allocate objects for each memory allocation site, our approach uses
a fine-grained memory model to generate location sets based on
how structs and arrays are accessed. LPA can precisely analyze ar-
rays and nested aggregate structures to enable SIMD optimizations
for large programs. By separating the location set generation as an
independent concern from the rest of the pointer analysis, LPA is
designed to reuse easily existing points-to resolution algorithms.

We evaluate LPA using SLP and LLV, the two classic vec-
torization techniques on a set of 20 CPU2000/2006 benchmarks.
For SLP, LPA enables it to vectorize a total of 133 more basic
blocks, with an average of 12.09 per benchmark, resulting in the
best speedup of 2.95% for 173.applu. For LLV, LPA has reduced
a total of 319 static bound checks, with an average of 22.79 per
benchmark, resulting in the best speedup of 7.18% for 177.mesa.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

General Terms Algorithms, Languages, Performance

Keywords Pointer Analysis, SIMD, Loop, Array, Field

1. Introduction
SIMD (Single-Instruction Multiple-Data) technology is ubiqui-
tous in both desktop computers and embedded systems (e.g., In-
tel’s AVX, ARM’s NEON and MIPS’s MDMX/MXU) and DSPs
(e.g., Analog Devices’s SHARC and CEVA’s CEVA-X) in order to
improve performance and energy-efficiency. Existing vectorizing
compilers (e.g., LLVM) enable two main vectorization techniques
to extract data-level parallelism from a loop: (1) basic block or
superword-level parallelism (SLP) vectorization [3, 7, 19, 22, 33],
which packs isomorphic scalar instructions in the same basic
block into vector instructions, and (2) loop-level vectorization
(LLV) [15, 16, 21, 29], which combines multiple consecutive iter-
ations of a loop into a single iteration of vector instructions.

Generating efficient vector code using these two optimizations
relies on precise dependence analysis. For example, in order to
successfully vectorize isomorphic instructions in Figure 1(a), SLP
checks conflicting memory accesses using the alias information be-
fore packing the four isomorphic instructions into a vector instruc-
tion (line 2 in Figure 1(b)). Given a write to an element of an array
(e.g., A[0] = ...), any subsequent store or load (e.g., = B[1]) should
not access the same memory address as &A[0]. Figure 1(c) shows
another example that can be vectorized by LLV. In order to dis-
ambiguate memory addresses inside a loop where aliases cannot
be determined statically, LLV performs loop versioning by insert-
ing code that performs runtime alias checks to decide whether the
vectorized version or scalar version of a loop is executed. As il-
lustrated in Figure 1(d), LLV creates two versions of the loop and
places code that checks, at run time, whether the pointers A and
B point to disjoint memory regions. In the case of any overlap be-
ing detected, the scalar version (line 3) is executed. Otherwise, the
vectorized version (line 5) is used, instead.

1.1 Motivation
A conservative alias analysis may cause either some vectorization
opportunities to be missed or some redundant but costly runtime
checks to be introduced. Figure 2 shows the impact of LLVM’s
BasicAA alias analysis on the effectiveness of SLP and LLV on all
relevant SPEC CPU2000/2006 benchmarks compiled by LLVM.

Figure 2(a) gives the number of vectorizable and non-vectorizable
basic blocks by SLP in all 11 relevant SPEC CPU2000/2006
benchmarks. A SPEC benchmark is included if and only if SLP-
related must-not-alias queries are issued to some basic blocks but
not answered positively. These are the SPEC benchmarks for which
SLP may benefit from more precise alias information. A basic
block that receives some SLP-related alias queries is said to be
vectorizable if SLP can generate at least one vectorized instruc-
tion for the basic block. 433.milc has the largest number of basic
blocks (57) that cannot be vectorized, representing 73.07% of the
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(a) SLP: number of vectorizable and non-vectorizable basic blocks
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Figure 1: Impact of LLVM’s BasicAA alias analysis on the effectiveness of SLP and LLV in LLVM.

1 foo (float *A, float *B) {
2 A[0] = B[0]; A[1] = B[1]; A[2] = B[2]; A[3] = B[3];
3 }

(a) Code before SLP

1 foo (float *A, float *B) {
2 A[0:3] = B[0:3];
3 }

(b) Code after SLP

1 foo (float *A, float *B) {
2 for (int i = 0; i < N; i++) A[i] = B[i] + K;
3 }

(c) Code before LLV (N%4==0)

1 foo (float *A, float *B) {
2 if ((&A[N-1] ≥ &B[0]) && (&B[N-1] ≥ &A[0]))
3 for (int i = 0; i < N; i++) A[i] = B[i] + K;
4 else
5 for (int i = 0; i < N; i+=4) A[i:i+3] = B[i:i+3] + K;
6 }

(d) Code after LLV (N%4==0)

Figure 2: Examples for SLP and LLV vectorizations.

total number of basic blocks (78) with alias queries. Across the 11
benchmarks, 30.04% of basic blocks are vectorizable on average.

Figure 2(b) gives the percentage of runtime alias checks that re-
turn “disjoint” or “overlapping” for the two memory regions (e.g.,
arrays) pointed by two pointers for all the 12 CPU2000/CPU2006
benchmarks that contain dynamic alias checks inserted by LLV.
LLV relies on these checks to disambiguate the aliases that cannot
be resolved at compile time. Compared to SLP, the impact of alias
analysis on the effectiveness of LLV can be more pronounced for
some benchmarks. Across the 12 benchmarks evaluated, an aver-
age of 96.35% of dynamic alias checks return “disjoint regions”.
In fact, the vectorized rather than scalar version of a loop is al-
ways executed in all the benchmarks except 454.calculix and
459.GemsFDTD. Thus, runtime checks are redundant and can be
eliminated if a more precise alias analysis is applied, reducing both
instrumentation and code-size overheads incurred.

1.2 Challenges and Insights
The main source of imprecision in alias analysis for SIMD vector-
ization is lack of a precise inter-procedural analysis for aggregate
data structures including arrays and structs. The alias analysis used
in LLVM is intra-procedural, which is overly conservative with-
out tracking the inter-procedural data flows. Existing field-sensitive
pointer analyses for C [4, 17] use a field-index-based approach to

distinguish the fields by their unique indices (with nested structs
expanded). However, this approach ignores the size information for
each field, by treating all the fields as having the same size. As C is
not strongly-typed, the types of a pointer and its pointed-to objects
may be incompatible due to casting. Such a field-sensitive solution
may not obtain sound results to support SIMD optimizations.

To the best of our knowledge, location sets [31] represent still
the most sophisticated field-sensitive memory model to be used to
enable pointer analysis for C programs. A location set 〈off, s〉 ∈
Z × N represents a set of memory locations {off + i × s | i ∈ Z}
accessed from the beginning of a memory block B, where off is an
offset within B and s is a stride, both measured in bytes. The stride
s is 0 if the location set contains a single element. Otherwise, it
represents an unbounded set of locations.

Although location sets are byte-precise when used in analyzing
the fields in a struct, there are several limitations preventing them
from being used to enable developing precise alias analyses for
auto-vectorization. First, arrays are modeled monolithically, with
all the elements in the same array collapsed. Second, the lengths
of array are not recorded. Thus, an array inside a memory block is
assumed to extend until the end of the block, making it difficult
to handle nested arrays and structs accurately. Finally, the loop
information, which is critical for loop-oriented optimization, such
as SIMD vectorization, is ignored. Therefore, how to perform loop-
oriented memory modeling for arrays and structs to enable precise
alias analysis required for SIMD vectorization remains open.

1.3 Our Solution
To address the above challenges for analyzing arrays and nested
data structures, including arrays of structs and structs of arrays, we
introduce a fine-grained access-based memory modeling method
that enables a Loop-oriented array- and field-sensitive Pointer
Analysis (LPA) to be developed, with one significant application
to automatic SIMD vectorization. The novelty lies in disambiguat-
ing aliases by generating access-based location sets lazily so that
location sets are dynamically created during the on-the-fly points-to
resolution based on how arrays and structs are accessed.

Access-based location sets are a generalization of location
sets [31] so that both arrays and structs are handled in a uni-
form manner. Unlike the location-set model [31], which ignores
the loop information and does not distinguish the elements of an
array, LPA leverages the loop trip count and stride information to
precisely model array accesses including nested aggregate struc-
tures. The symbolic ranges of an array access expression are fully
evaluated if they are statically determined (e.g., constant values) or
partially evaluated using our value range analysis, developed based
on LLVM’s SCEV (SCalar EVolution) pass.
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To make LPA scalable in whole-program SIMD optimizations
for large programs, LPA provides tunable parameters to find a right
balance between efficiency and precision by merging location sets.
In addition, LPA separates memory modeling as an independent
concern from the rest of the pointer analysis, thereby facilitating
the development of different pointer analyses (e.g., flow-insensitive
and flow-sensitive variants) with desired efficiency and precision
tradeoffs by reusing existing pointer resolution frameworks.

This paper makes the following contributions:

• We introduce LPA, a new loop-oriented array- and field-
sensitive inter-procedural pointer analysis based on access-
based location sets built in terms of a lazy memory model.
• We apply LPA to improve the effectiveness of SLP and LLV,

by enabling SLP to vectorize more basic blocks and LLV to
insert fewer dynamic runtime checks.
• We evaluate LPA with 20 SPEC CPU2000/2006 benchmarks,

for which SLP or LLV can benefit from more precise alias
information. For SLP, LPA enables a total of 133 more ba-
sic blocks to be vectorized, with an average of 12.09 more per
benchmark, resulting in the best speedup of 2.95% observed in
173.applu. For LLV, LPA has successfully reduced a total of
319 static bound checks, with an average of 22.79 per bench-
mark, resulting in the best speedup of 7.18% in 177.mesa. We
also provide a detailed discussion about where our fine-grained
alias analysis is applicable and its limitations.

2. Background
We introduce the partial SSA form used in LLVM for representing
a program and the standard inclusion-based pointer analysis based
on a simple field-insensitive memory model.

2.1 Program Representation
A program is represented in LLVM’s partial SSA form [4, 8, 32].
The set of all program variables, V , is separated into two subsets:
A containing all possible targets, i.e., address-taken variables of a
pointer and T containing all top-level variables, where V = T ∪A.

The following statements and expressions are relevant:

Statement s ::= p = &a | p = q | q = ep | ep = q
MemExpr ep ::= ∗p | p→f | p[i]

There are four types of statements: p = &a (ADDROF), p = q
(COPY), q = ep (LOAD), and ep = q (STORE), where p, q ∈ T ,
a ∈ A and ep denotes a memory access expression involving a
pointer p, including a pointer dereference, a field access or an ar-
ray access. Our memory expressions are considered to be ANSI-
compliant. For example, given a pointer to an array, using pointer
arithmetic to access anything other than the array itself has unde-
fined behavior [5], thus not allowed in our model.

Top-level variables are put directly in SSA form, while address-
taken variables are only accessed indirectly via memory access
expressions. For an ADDROF statement p = &a, known as an
allocation site, a is a stack or global variable with its address taken
or a dynamically created heap object (at, e.g., a malloc() site).
Interprocedural parameter assignments and procedure returns are
modeled using COPY statements (e.g., p = q).

Figure 3 gives a code fragment and its partial SSA form, where
p, q, y, z, t ∈ T and a, b, x ∈ A. Here, a is accessed indirectly
at a store ∗p = t by introducing a top-level pointer t in partial
SSA form. Any field access x.f via an address-taken variable is
transformed into a field dereference via a top-level pointer, e.g.,
q→f . Similarly, an array access, e.g., x[i] is transformed to q[i].

Passing arguments into and returning results from functions are
modeled by copies. The complex statements like ∗p = ∗q are

  p = &a;
  a = &b;

  q = &x;
x.f = y
x[i] = z

   p = &a;
    t = &b;

*p = t;

  q = &x;
q->f = y
q[i] = z

(a) C code (b) Partial SSA 

Figure 3: A C code fragment and its partial SSA form.

decomposed into the basic ones t= ∗q and ∗p= t by introducing
a top-level pointer t. Accessing a multi-dimensional array as in
q = p[i][j] is transformed into q = p[k], where k = i ∗ n + j
and n represents the size of the second dimension of the array.

2.2 Inclusion-Based Field-Insensitive Pointer Analysis
Figure 4 gives the rules used in a field- and flow-insensitive
inclusion-based analysis [1] with statements transformed into con-
straints for points-to resolution until a fixed point is reached.

A field-insensitive solution [4, 8] treats every address-taken
variable at its allocation site as a single abstract object. Field and
array memory access expressions, p → f and p[i], in terms of a
pointer p are handled in the same way as a pointer dereference ∗p.
The objects are pre-allocated so that the total number of objects
remains unchanged during points-to resolution. The two pointer
dereferences ∗p and ∗q are not aliases if the intersection of their
corresponding points-to sets pt(p) and pt(q) is empty.

[I-ALLOC]
p = &a

{a} ⊆ pt(p) [I-LOAD]
p = ∗q a ∈ pt(q)

pt(a) ⊆ pt(p)

[I-COPY]
p = q

pt(q) ⊆ pt(p) [I-STORE]
∗p = q a ∈ pt(p)

pt(q) ⊆ pt(a)

Figure 4: Field-insensitive inclusion-based pointer analysis.

3. The LPA Analysis
We first describe our memory model (AMM) on access-based loca-
tion sets (Section 3.1). We then discuss how to perform our loop-
oriented array- and field-sensitive pointer analysis based on AMM
(Section 3.2), including required value-range analysis and location
set disambiguation. Finally, we focus on field unification and han-
dling positive weight cycles (Section 3.3).

3.1 AMM: Access-based Memory Modeling
In the field-insensitive approach, an object at an allocation site is
considered monolithically. In contrast, our access-based memory
modeling achieves field-sensitivity by representing an abstract ob-
ject in terms of one or more location sets based on how the object is
accessed. A location set σ represents memory locations in terms of
numeric offsets from the beginning of an object block. Unlike [31],
which ignores the loop and array access information, AMM mod-
els field-sensitivity in accessing an array, e.g., a[i] by maintaining a
range interval [lb, ub], where lb, ub∈N and an access stepX ∈ N+

(with X=1 if a is accessed consecutively inside a loop) by lever-
aging the loop information using our value-range analysis.

To precisely model the locations based on the array access
information, we introduce a new concept called access trip, which
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1 float a[16]; float *p = &a[0];
2 for(i=0;i<8;i++) i∈[0, 7], X=1, es=4
3 p[i] = p[15-i]; 15-i∈[8, 15], X=1, es=4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

p[i]: 〈0, J(8, 4)K〉a p[15-i]: 〈32, J(8, 4)K〉a

(a) An array with consecutive accesses

1 float a[16]; float *p = &a[0];
2 for(i=0;i<16;i+=4){
3 p[i] = ...; i∈[0, 12], X=4, es=4
4 p[i+1] = ...; i+1∈[1, 13], X=4, es=4
5 p[i+2] = ...; i+2∈[2, 14], X=4, es=4
6 p[i+3] = ...; i+3∈[3, 15], X=4, es=4
7 }

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

p[i]: 〈0, J(4, 16)K〉a p[i+1]: 〈4, J(4, 16)K〉a
p[i+2]: 〈8, J(4, 16)K〉a p[i+3]: 〈12, J(4, 16)K〉a

(b) An array with non-consecutive accesses

1 struct {float f1[2]; float f2[2];} a[4], *p, *q;
2 float *r;
3 p = &a[0];
4 for(i=0;i<4;i++){
5 q = &p[i]; i∈[0, 3], X=1, es=16
6 r = q->f1;
7 for(j=0;j<2;j++)
8 r[j] = ...; j∈[0, 1], X=1, es=4
9 }

0 16 32 48 64

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

p[i]: 〈0, J(4, 16)K〉a r[j]: 〈0, J(4, 16), (2, 4)K〉a

(c) Nested arrays and structs with consecutive accesses

Figure 5: Examples for access-based location sets.

is a pair (t, s) consisting of a trip count t = (ub− lb)/X + 1 and
a stride s = es ∗X , where es is the size of an array element.

An access-based location set σ derived from an object a is:

σ = 〈off, J(t1, s1), ..., (tm, sm)K〉a (1)

where off ∈ N is an offset from the beginning of object a, and
T = J(t1, s1), ..., (tm, sm)K is an access-trip stack containing a
sequence of (trip count, stride) pairs for handling a nested struct
of arrays. Here, m is the depth of an array in a nested aggregate
structure. In Figure 5(c), a[4] is an array of structs containing two
array fields f1[2] and f2[2] whose depths are m = 2.

Finally, LS(σ) denotes a set of positions from the beginning of
an object a:

LS(σ) = {off +
m∑

k=1

(nk × sk) | 0 ≤ nk < tk} (2)

Let us go through three examples with consecutive and non-
consecutive accesses to single and nested arrays in Figure 5.

EXAMPLE 1 (Consecutive Array Access). Figure 5(a) shows sym-
metric assignments from the last eight to the first eight elements of
an array, a[16]. Two expressions p[i] and p[15−i], where i ∈ [0, 7]
and (15 − i) ∈ [8, 15], always access disjoint memory locations,
as highlighted in green and yellow, respectively. Therefore, loop-

level vectorization can be performed without adding dynamic alias
checks due to the absence of dependences between p[i] and p[15−i].

The location set for representing the consecutive accesses of p[i]
is σ=〈0, J((7−0)/1+1, 4∗1)K〉a = 〈0, J(8, 4)K〉a, where the size
of an array element es = 4 and step X = 1. According to Equa-
tion 2, LS(σ) = {0 + n ∗ 4 | 0 ≤ n < 8} = {0, 4, 8, 12, 16, 20,
24, 28}. Similarly, the location set for p[15−i] is σ′=〈32, J((15−
8)/1+1, 4∗1)K〉a = 〈32, J(8, 4)K〉a, representing a set of locations
with offsets: LS(σ′)= {32, 36, 40, 44, 48, 52, 56, 60}. Therefore,
when accessing an array element, σ and σ′ always refer to disjoint
memory locations.

EXAMPLE 2 (Non-Consecutive Array Access). Figure 5(b) gives
a program obtained after loop unrolling with a step X = 4. Four
expressions p[i], p[i+1], p[i+2], and p[i+3] also access disjoint
memory locations, which can be disambiguated statically without
inserting runtime checks by LLV. The location set for representing
the non-consecutive accesses of p[i] is 〈0, J((12−0)/4+1, 4∗4)K〉a
= 〈0, J(4, 16)K〉a, where i ∈ [0, 12], es = 4 and X = 4,
representing a set of positions from the beginning of object a: {0,
16, 32, 48}, which is disjoint with all other location sets shown.

EXAMPLE 3 (Nested Array Access). Figure 5(c) gives a more
complex program that requires several (trip count, stride) pairs
to model its array access information precisely. Here a[4] is an
array of structs containing two array fields f1[2] and f2[2]. The
outer loop iterates over the array a[4] via p[i] while the inner loop
iterates over the array elements of field f1[2] via r[j].

The location set for representing the consecutive accesses of p[i]
is 〈0, J((3−0)/1+1, 16∗1)K〉a = 〈0, J(4, 16)K〉a, where i ∈ [0, 3],
es = 16 (the size of the structure including four floats) and X=1.

The location set of r[j] in accessing the inner field f1[2] is
〈0, J(4, 16), ((1 − 0)/1 + 1, 4 ∗ 1)K〉a = 〈0, J(4, 16), (2, 4)K〉a,
representing a set of locations with offsets: {0, 4, 16, 20, 32, 36,
48, 52}, where j ∈ [0, 1], es = 4 and X = 1.

3.2 Pointer Analysis Based on AMM

AMM is designed by separating the location set generation as an
independent concern from the rest of the pointer analysis. It facil-
itates the development of a more precise field- and array-sensitive
analysis by reusing existing points-to resolution algorithms.

Figure 6 gives the rules for an inclusion-based pointer analy-
sis based on AMM. Unlike the field-insensitive counterpart given in
Figure 4, the points-to set of a field-sensitive solution contains lo-
cation sets instead of objects. For each allocation site, e.g., p = &a
([S-ALLOC]), the location set σ = 〈0, JK〉a is created, represent-
ing the locations starting from the beginning of object a. [S-LOAD]
and [S-STORE] handle not only pointer dereferencing but also field
and array accesses by generating new location sets via GetLS.
[S-COPY] is the same as in the field-insensitive version.

For a field access p→ f , GetLS(〈off, T〉a, p→ f) generates a
new location set by adding off with the offset (measured in bytes
after alignment has been performed) of field f in object a while
keeping the access trip information T unchanged.

For an array access, there are two cases. In one case, the array
index i is a constant value C so that p[C] accesses a particular
array element. AMM generates a new location set with a new
offset off + C ∗ es. In the other case, i is a variable i ∈ [lb, ub]
with an access step X , where lb, ub and X are obtained by our
value-range analysis. As a range interval obtained statically by our
analysis is always over-approximated, the resulting range is the
intersection between [lb, ub] and array bounds, i.e., [lb′, ub′] =
[0,m − 1] u [lb, ub] = [max(0, lb),min(m − 1, ub)], where m
is the length of the array.
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[S-ALLOC]
p = &a σ = 〈0, JK〉a

{σ} ⊆ pt(p) [S-LOAD]
q = ep σ ∈ pt(q) σ′ = GetLS(σ, eq)

pt(σ′) ⊆ pt(q)

[S-COPY]
p = q

pt(q) ⊆ pt(p) [S-STORE]
ep = q σ ∈ pt(p) σ′ = GetLS(σ, ep)

pt(q) ⊆ pt(σ′)

GetLS(〈off, T〉a, ep)=



〈off, T〉a if ep is ∗p

〈off + offf , T〉a else if ep is p→f , where offf is the offset of field f in array object a

〈off + C ∗ es, T〉a else if ep is p[i], where i is constant C

〈off + lb ∗ es, T.push(ub
′−lb′
X + 1, X ∗ es)〉a

else if ep is p[i], where i ∈ [lb, ub] with step X ,
[lb′, ub′] = [lb, ub] u [0,m− 1] and m is size of array object a

Figure 6: Rules for field- and array-sensitive inclusion-based pointer analysis equipped with an access-based memory model.

alias(ep, eq) =

{
true if ∃ σ′p∈pt(p) ∧ σ′q∈pt(q) : (σp, szp)./(σq, szq),where σp=GetLS(σ

′
p) ∧ σq=GetLS(σ

′
q)

false otherwise
(3)

(σp, szp)./(σq, szq) =

{
true if obj(σp)=obj(σq) and ∃ lp ∈ LS(σp) ∧ lq ∈ LS(σq) : (lp < lq+szq) ∧ (lq < lp+szp)

false otherwise
(4)

Figure 7: Disambiguation of location sets (where obj(σ) denotes the object on which σ is generated).

1 float a[16]; float *p = &a[0];
2 for(i=0;i<16;i+=2){
3 p[i] = ...;
4 p[i+1] = ...; (〈0, J(8, 8)K〉a, 4) 6./ (〈4, J(8, 8)K〉a, 4)
5 }
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

p[i] p[i+1]

(a) Disjoint location sets

1 float a[16]; float *p = &a[0];
2 for(i=0;i<16;i++)
3 p[i] = ...;
4 for(j=0;j<16;j+=2) (〈0, J(16, 4)K〉a, 4) ./ (〈0, J(8, 8)K〉a, 4)
5 p[j] = ...;

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

p[i] p[j] overlapping

(b) Overlapping location sets

Figure 8: Examples for disjoint and overlapping location sets.

Finally, the new offset is off + lb′ ∗ es and the new trip stack
is generated by pushing the trip count and stride pair into the stack
T, i.e., T.push(ub

′−lb′

X
+ 1, X ∗ es), so that the hierarchical trip

information is recorded when accessing arrays nested inside structs.

Value Range Analysis Our value range analysis estimates con-
servatively the range of values touched at a memory access based
on LLVM’s SCEV pass, which returns closed-form expressions for
all top-level scalar integer variables (including top-level pointers)
in the way described in [30]. This pass, inspired by the concept of
chains of recurrences [2], is capable of handling any value taken by
an induction variable at any iteration of its enclosing loops.

As we are interested in analyzing the range of an array index in-
side a loop in order to perform SIMD optimizations, we only extract
the value range from an integer variable if it can be represented by
an add recurrence SCEV expression. For other SCEV expressions
that are non-computable in the SCEV pass or outside a loop, our
analysis approximates their ranges as [−∞,+∞] with their steps

being X = 1. This happens, for example, when an array index is a
non-affine expression or indirectly obtained from a function call.

An add recurrence SCEV has the form of <se1,+, se2>lp,
where se1 and se2 represent, respectively, the initial value (i.e.
the value for the first iteration) and the step per iteration for the
containing loop lp. For example, in Figure 5(b), the SCEV for the
array index i inside the for loop at line 2 is <0,+, 4>2, where its
lower bound is lb = 0 and its step is X = 4.

The SCEV pass computes the trip count of its containing loop,
which is also represented as a SCEV. A trip count can be non-
computable. For a loop with multiple exits, the worst-case trip
count is picked. Similarly, a loop upper bound is also represented
by a SCEV, deduced from the trip count and step information.

Disambiguation of Location Sets In a field-insensitive analysis,
two pointer dereferences are aliases if they may refer to the same
object. In AMM, every object may generate multiple location sets.
Two location sets can refer to disjoint memory locations even if
they are generated originally from the same object.
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1 struct {float f1[8]; float f2[8];} a, *p;
2 p = &a;
3 float *q = p->f1, *r = p->f2;
4 for(int i=0;i<8;i=i+2){
5 q[i] = ...;
6 q[i+1] = ...;
7 }
8 for(int j=0;j<8;j=j+2){
9 r[j] = ...;

10 r[j+1] = ...;
11 }

(a) Code

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

q[i]: 〈0, J(4, 8)K〉a q[i+1]: 〈4, J(4, 8)K〉a
r[j]: 〈32, J(4, 8)K〉a r[j+1]: 〈36, J(4, 8)K〉a

(b) Default location sets

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

q[i],r[j]: 〈0, J(4, 8)K〉a q[i+1],r[j+1]: 〈4, J(4, 8)K〉a

(c) Location sets with max offset limit: F = 32

Figure 9: Field unification for location sets.

1 struct {char f1; char f2;} a,*p;
2 void *q = &a;
3 p = q;
4 q = &(p->f2);

q p

+1

{<0, [[ ]]>a} { }

1 struct {char f1; char f2;} a[10], *p, *q;
2 p = &a[0];
3 for (int i = 0; i < 10; i++) {
4 q = p + 1; p = q;
5 }

p q

+1

{ }{<0, [[ ]]>a}

(a) C code and its PWC formed with field accesses (b) C code and its PWC formed with array accesses

Figure 10: Handling of positive weight cycles.

Our analysis checks whether two memory expressions ep and eq
are aliases or not by using both their points-to information and their
memory access sizes szp and szq obtained from the types of the
points-to targets of the two pointers p and q, as shown in Figure 7.
We say that ep and eq are aliases if Equation 3 holds, where
(σp, szp) ./ (σq, szq) denotes that two locations may overlap, i.e.,
a particular memory location may be accessed by both ep and eq .

According to Equation 4, (σ, szp)./(σ′, szq) holds if and only
if σ and σ′ are generated from the same memory object (i.e., obj(σ)
= obj(σ′)) and there exists an overlapping zone accessed by the two
expressions based on the size information szp and szq (measured
in bytes). In all other cases, two location sets, e.g., two generated
from two different memory objects, are disjoint.

EXAMPLE 4 (Disjoint and Overlapping Location Sets). Figure 8(a)
illustrates disjoint memory accesses. Two expressions ep and eq
are not aliases since their location sets are disjoint. According to
Equation 1, the location sets of p[i] and p[i+ 1] are 〈0, J(8, 8)K〉a
and 〈4, J(8, 8)K〉a, respectively. The sizes of both accesses to the
elements of an array with the float type are 4. According to Equa-
tion 4 (σp, szp) 6./(σq, szq), p[i] and p[i+1] always access disjoint
regions. In contrast, Figure 8(b) shows a pair of overlapping loca-
tion sets, with their overlapping areas shown in gray.

3.3 Field Unification and PWCs
Field Unification Optimization For some programs, a field-
sensitive analysis may generate a large number of location sets
due to deeply nested aggregates, which may affect the efficiency of
points-to propagation during the analysis. To make a tradeoff be-
tween efficiency and precision, we introduce a simple yet effective
unification technique call field-unification, which aims to reduce
analysis overhead by merging existing location sets. It provides an
offset limit parameter F for the starting offset of a location set. The
parameter allows users to find a right balance between efficiency
and precision by tuning the number of location sets.

A location set using field unification is represented by σ =
〈off % F, T〉a and the trip stack of array access information remains
unchanged in order to exploit vectorization opportunities.

EXAMPLE 5 (Field Unification). Figure 9(a) gives a field unifica-
tion example with a struct containing two array fields f1[8] and
f2[8]. Field f1[8] is accessed via q[i] and q[i + 1] inside the for
loop (lines 4-7). Field f2[8] is accessed via r[j] and r[j+1] inside
the other loop (lines 8-11). The default location sets generated for
the four memory accesses are shown in Figure 9(b). If we limit the
maximum starting field offset to be 32, then the location set of r[j]
is merged into q[i] and r[j+1] is merged into q[i+1], so that only
two location sets are generated. However, for each loop, our mem-
ory modeling can still distinguish the two array accesses (e.g., q[i]
and q[i+1]) even after unification, as illustrated in Figure 9(c).

Handling Positive Weight Cycles With field-sensitivity, one dif-
ficulty lies in handling positive weight cycles (PWCs) [17] during
points-to resolution. Without field-sensitivity [4, 18], a cycle on a
constraint graph formed by copy edges is detected and collapsed to
accelerate convergence during its iterative constraint resolution.

In a field-sensitive constraint graph, a cycle may contain a copy
edge with a specific field offset, resulting in a PWC. Figure 10(a)
shows a PWC with an edge from p to q, indicating a field offset
causing infinite derivations unless field limits are bounded. Eventu-
ally, p and q always have the same solution. Thus, all derived fields
are redundant and unnecessary for precision improvement. Simply
collapsing p and q may be unsound, as they can point to other fields
of the struct a during the on-the-fly derivation. To handle PWCs ef-
ficiently while maintaining precision, we follow [17, 20] by mark-
ing the objects in the points-to set of the pointers inside a PWC to
be field-insensitive, causing all their fields to be merged.

AMM models both field and array accesses of an object. This
poses another challenge for PWC handling as a cycle may involve
pointer arithmetic when array elements are accessed. Figure 10(b)
shows a PWC example simplified from 181.mcf. The pointer p
iterates over all the elements in an array of structs, a[10], inside the
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Program KLOC #Stmt #Ptrs #Objs #CallSite

173.applu 3.9 3361 20951 159 346
176.gcc 226.5 215312 545962 16860 22595
177.mesa 61.3 99154 242317 9831 3641
183.equake 1.5 2082 6688 236 235
188.ammp 13.4 14665 56992 2216 1225
191.fma3d 60.1 119914 276301 6497 18713
197.parser 11.3 13668 36864 1177 1776
256.bzip2 4.6 1556 10650 436 380
300.twolf 20.4 23354 75507 1845 2059
400.perlbench 168.1 130640 296288 3398 15399
401.bzip2 8.2 7493 28965 669 439
433.milc 15 11219 30373 1871 1661
435.gromacs 108.5 84966 224967 12302 8690
436.cactusADM 103.8 62106 188284 2980 8006
437.leslie3d 3.8 12228 38850 513 2003
454.calculix 166.7 135182 532836 18814 23520
459.GemsFDTD 11.5 25681 107656 3136 6566
464.h264ref 51.5 55548 184660 3747 3553
465.tonto 143.1 418494 932795 28704 58756
482.sphinx3 25 20918 60347 1917 2775
Total 1208.2 1457541 3898253 117308 182338

Table 1: Program characteristics.

for loop. Simply marking object a as being field-insensitive may
lead to a loss of precision. Although p and q can access any element
in a, the two fields of an array element are still distinguishable, i.e.,
p→ f1 and p→ f2 refer to two different memory locations. Our
analysis performs a partial collapse for array-related PWCs so that
only the location sets generated by array accesses are merged, while
the location sets generated by field accesses remain unchanged.

4. Evaluation
Our objective is to demonstrate that LPA (our loop-oriented array-
and field-sensitive pointer analysis) can improve the effectiveness
of SLP and LLV, two classic auto-vectorization techniques, on
performing whole-program SIMD vectorization. For comparison
purposes, we have selected publicly available sound alias analyses,
LLVM’s BasicAA and SCEVAA, as the baselines. The field-index-
based Andersen’s analysis [4, 17], which ignores the size infor-
mation for each field, is not considered due to its unsoundness in
supporting SIMD optimization, as also discussed in Section 1.

We have included all the SPEC CPU2000/CPU2006 bench-
marks for which SLP or LLV can benefit from more precise alias
analysis (as discussed in Figure 2). There are a total of 20 bench-
marks (totaling 1208.2 KLOC) qualified, including the 18 bench-
marks shown in Figure 2 and two more benchmarks, 197.parser
and 436.cactusADM, for which some dynamic alias checks are
eliminated by LPA but not executed under the reference inputs. For
SLP, LPA enables a total of 133 basic blocks to be vectorized, with
an average of 12.09 per benchmark, resulting in the best speedup of
2.95% in 173.applu. For LLV, LPA eliminates a total of 319 static
bound checks, with an average of 22.79 per benchmark, resulting
in the best speedup of 7.18% in 177.mesa.

It should be remarked that most auto-vectorization techniques
reported in the literature have been evaluated with small kernels.
Compared to a few, e.g., [11, 19], targeting whole-program per-
formance evaluation, LPA has delivered comparable performance
improvements across a large number of SPEC 2000/2006 bench-
marks. More importantly, LPA (with an open-source implementa-
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Figure 11: Percentage of analysis time over total compilation time.

tion) represents a general-purpose and complementary approach
that can be directly used to improve the effectiveness of existing
auto-vectorization techniques, including SLP and LLV, as demon-
strated in this paper.

Below we describe first our implementation of LPA (Sec-
tion 4.1), then our experimental setup (Section 4.2), and finally,
our experimental results and case studies (Section 4.3).

4.1 Implementation
We have implemented LPA on top of the open-source software,
SVF [24] based on LLVM. Every allocation site is modeled as a
distinct abstract object. The size of each object is recorded. For
a global or stack object, its size is statically known according
to the type information at its allocation site, while the size of a
heap object created by an allocator function, e.g., malloc(sz) is
obtained according to its parameter sz. The size of a heap object
is set to ∞ if sz can only be determined at runtime (e.g., under
a program input). The location sets are generated according to the
rules in Section 3.2. The default field limit (Section 3.3) is set to
1024. LLVM’s ScalarEvolution pass is executed before LPA. Then
the SCEVAddRecExpr class is used to extract loop information
including trip count, step, and bounds for array accesses.

For pointer analysis, we have used the wave propagation tech-
nique [18, 32] for constraint resolution. The positive weight cycles
(PWCs) [17] are detected by using Nuutila’s SCC detection algo-
rithm [14]. A program’s call graph is built on the fly and points-to
sets are represented using sparse bit vectors.

4.2 Experiment Setup
Our experiments are conducted on an Intel Core i7-4770 CPU
(3.40GHz) with an AVX2 SIMD extension, which supports 256-
bit floating point and integer SIMD operations. The machine runs
a 64-bit Ubuntu (14.0.4) with 32 GB memory.

FE

opt llc

ScevAABasicAA LPA-FI

source 
code 
file1

executable
-O3bc file

optimized
bc file

Answer SLP and LLV Alias Queries

code 
gen

FE
source 
code 
file n

LLVM
Link

....
bc file

assembly
code

bc 
file

Figure 12: The compilation workflow.

Figure 12 describes the compilation workflow used in our ex-
periments. The source code is compiled into bit-code files using
clang (for C code) and gfortran and dragonegg (for Fortran code),
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and then linked together using llvm-link. Next, the generated bit-
code file is fed into LLVM’s opt module to perform vectoriza-
tion. The effects of an alias analysis on LLV and SLP are eval-
uated separately. When testing SLP, the compiler flags used are
“-O3 -march=core-avx2 -disable-loop-vectorization” (with LLV
disabled). When testing LLV, the compiler flags used are “-O3 -
march=core-avx2 -disable-slp-vectorization” (with SLP disabled).
llc is used as the back-end to emit assembly code. Finally, executa-
bles are generated using clang and gfortran code generators.

We have applied LLV and SLP by using three different alias
analyses: (1) LLVM’s BASICAA, (2) LLVM’s SCEVAA, (3) LPA.
To compare fairly the effects of these three alias analyses on the
performance benefits achieved by SLP and LLV, we have modified
LLVM’s alias interface to allow these different alias results to be
used only in the SLP and LLV passes. All the other optimizations
use BASICAA.

We will focus on a set of 20 SPEC CPU2000/CPU2006 bench-
marks, for which LPA is more precise than either BASICAA or
SCEVAA: (1) LPA enables more basic blocks to be vectorized by
SLP or (2) LPA eliminates some static bounds checks that would
otherwise be inserted by LLV. The remaining benchmarks are ex-
cluded as LPA has the same capability in answering alias queries as
the other two. Table 1 lists some statistics for the 20 benchmarks
selected. In our experiments, the execution time of each program is
the average of five runs under its reference input.

4.3 Results and Analysis
We first describe the compilation overhead incurred by LPA for the
20 benchmarks examined. To demonstrate how LPA helps harness
vectorization opportunities and improve program performance, we
provide (1) the number of new basic blocks that are vectorized by
SLP under LPA (but not under LLVM’s alias analyses), (2) the
number of dynamic alias checks that are eliminated under LPA (but
introduced under LLVM’s alias analyses), and more importantly,
(3) the performance speedups obtained given (1) and (2).

4.3.1 Compile-Time Statistics
Analysis Times Figure 11 gives the percentage of LPA analy-
sis time over the total compilation time. LPA is fast in analyz-
ing programs under 100KLOC, with under one minute per bench-
mark. For larger programs (with >100KLOC), such as 176.gcc,
435.gromacs and 465.tonto, LPA takes longer to finish, with
the analysis times ranging from 94.4 to 240.8 secs.

Benchmark BASICAA SCEVAA LPA
173.applu 20 4 26
176.gcc 4 3 6
177.mesa 24 23 64
183.equake 2 1 4
188.ammp 1 2 4
191.fma3d 46 23 53
433.milc 21 13 69
435.gromacs 53 35 57
454.calculix 161 92 166
465.tonto 19 21 32
482.sphinx 0 0 1
Total 351 217 482

Table 2: Number of basic blocks vectorized by SLP under the three
alias analyses (larger is better).

Static Results of SLP Table 2 lists the number of basic blocks
vectorized by SLP with its alias queries answered by the four anal-
yses compared across the 11 benchmarks. Among the 20 bench-
marks listed in Table 1, these 11 benchmarks are the only ones for

Benchmark BASICAA SCEVAA LPA
176.gcc 4 8 2
177.mesa 121 137 88
197.parser 1 1 0
256.bzip2 1 6 0
300.twolf 11 13 10
400.perlbench 23 21 13
401.bzip2 6 9 5
436.cactusADM 71 112 2
437.leslie3d 21 21 4
454.calculix 83 90 57
459.GemsFDTD 65 79 16
464.h264ref 30 32 2
465.tonto 110 118 38
482.sphinx3 4 5 1
Total 551 652 238

Table 3: Number of static alias checks inserted by LLV under the
three alias analyses (smaller is better).

which LPA is more effective than either BASICAA or SCEVAA or
both.

There are totally 351 and 217 basic blocks vectorized by SLP
under BASICAA and SCEVAA, respectively. LPA has improved
these results to 482, outperforming BASICAA and SCEVAA by
1.38× and 2.23×, respectively. The most significant improvements
happen at 177.mesa and 433.milc. In each case, LPA enables
SLP to discover 40+ vectorizable basic blocks, yielding an im-
provement of around 3× over BASICAA and SCEVAA. LPA pro-
vides more precise aliases since it is more precise in analyzing ar-
rays and nested data structures and in disambiguating must-not-
aliases for the arguments of a function.

Static Results of LLV Table 3 gives the number of static alias
checks inserted by LLV under the four analyses compared across
the 14 benchmarks. Again, among the 20 benchmarks listed in
Table 1, these 14 benchmarks are the only ones for which LPA can
avoid some checks introduced either by BASICAA or SCEVAA or
both.

LLV introduces totally 551 and 652 checks under BASICAA
and SCEVAA, respectively, but only 238 under LPA-FI, repre-
senting a reduction by 2.32× and 2.74×, respectively. Although
the number of static checks is not large, the number of dynamic
checks can be huge. For example, a static check inserted for a loop
in Utilities DV.c of 454.calculix is executed up to 28 mil-
lion times at run time under its reference input (Table 5). Even if a
check is inserted at the preheader of a loop, it may still be executed
frequently if the loop is nested inside another loop or in recursion.

When LPA is applied, all runtime checks have been elim-
inated in 197.parser and 256.bzip2. For benchmarks such
as 176.gcc, 436.cactusADM, 437.leslie3d, 459.GemsFDTD,
464.h264ref, 465.tonto, 482.sphinx3, over 50% of static
checks introduced by LLVM’s alias analyses have been eliminated.

4.3.2 Runtime Performance
Let us examine the performance gains obtained under LPA given
the above compile-time improvements achieved by SLP and LLV.
For a program, the baseline is the smaller of the two execution
times achieved by a vectorization technique (either SLP or LLV)
considered under BASICAA and SCEVAA.

Performance Improvements of SLP Figure 13 gives the whole-
program speedups achieved by SLP under LPA normalized with
respect to LLVM’s alias analyses. Table 4 lists the code locations
and execution frequencies for the new basic blocks that are vector-
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Figure 13: SLP: whole-program speedups (with the baseline being
the better of BASICAA and SCEVAA).
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Figure 14: LLV: whole-program speedups (with the baseline being
the better of BASICAA and SCEVAA).

ized by SLP under LPA and executed under the reference inputs.
Note that for 177.mesa, its new basic blocks vectorized under LPA
are never executed using its reference input.

For all the benchmarks evaluated, 173.applu and 433.milc
achieve the best speedups of 1.0295× and 1.0218×, respectively,
because many new basic blocks vectorized under LPA are fre-
quently executed according to Table 4. For 176.gcc, 191.fma3d
and 482.sphinx3, many new basic blocks are also vectorized un-
der LPA, but their performance improvements are small, ranging
from 0.1% to 0.5%, because some of these blocks are executed ei-
ther infrequently or zero times (under their reference inputs).

Interestingly, 183.equake experienced a performance slow-
down under LPA, because LLVM’s code motion optimization is not
as effective in handling the vectorized version of a loop as it does
in handling the scalar version of the same loop. This benchmark
has a loop (executed 151173 times) that contains one basic block
(executed 6 times) inside a conditional branch. In its scalar ver-
sion, all getelementptr instructions in the loop are moved into
its preheader. In the vectorized version, however, some of these
getelementptr instructions stay inside the loop. Vectorizing this
loop is thus not beneficial.

Performance Improvements of LLV Figure 14 is an analogue
of Figure 13 to demonstrate the performance speedups achieved by
LLV under LPA with the same baseline. Correspondingly, Table 5
is an analogue of Table 4 except that we are here concerned with
the loops whose runtime alias checks are completely removed by
LPA but introduced by BASICAA or SCEVAA.

For these benchmarks, the performance improvements achieved
vary, depending on how costly their removed runtime checks are.
We have omitted 197.parser and 436.cactusADM as their elim-
inated runtime checks are not executed under the reference inputs.

For 177.mesa, we observe a speedup of 1.0718×, as its re-
moved runtime checks involve complex range checks for 10
different pointer pairs, with each pair executed 96512 times.
For many other benchmarks, such as 256.bzip2, 300.twolf,
400.perlbench, 464.h264ref and 482.sphinx3, the perfor-

Benchmark Basic Blocks Vectorized and Executed Execution
Source Files Line Numbers Frequency

173.applu applu.f

2688-2715,2838-2865 68484312
2988-3015
2738-2747,2888-2897 63761256
3038-3047

176.gcc regclass.c 904-906 1781066
1597-1600 537972

177.mesa not executed
183.equake quake.c 913-914 6

188.ammp rectmm.c 323-351 843216
1028-1043 559731147

191.fma3d platq.f90 1986-1990,1998-2002 163182300

433.milc

addvec.c 11-13 33600000
s m mat.c 29-48 6400000
s m vec.c 15-18 800000
s m a vec.c 18-21 446480000
make ahmat.c 40-45 657920000
s m a mat.c 17-20 302080000
su3mat copy.c 13-16 270080000
rephase.c 44-47 14720000

435.gromacs coupling.c 77-79 7001
vec.h 487-495 21006

454.calculix results.f 803-808 3417876
incplas.f 669-672 278437

465.tonto rys.fppized.f90
1179-1195 6769676
1198-1218 4768547
1221-1241 3759643

482.sphinx3 utt.c 384-387 2808

Table 4: The code locations and execution frequencies for the basic
blocks that are vectorized by SLP under LPA but not LLVM’s alias
analyses and executed under the reference inputs.

mance improvements are under 1.01×, as their removed runtime
checks are not costly relative to their total execution times.

For 176.gcc, a performance slowdown is observed despite
removal of some of its runtime checks. We examined its vectorized
code and found that the slowdown is caused by function inlining.
There is a loop in function gen rtvec v of emit-rtl.c. By
removing the runtime checks for the loop, its containing function
becomes smaller. As a result, LLVM has decided to inline this
function in its callers, causing the performance slowdown. If we
add “ attribute ((noinline))” for this function, the slowdown will
disappear.

4.3.3 Case Studies
To further understand the performance improvements observed in
Figures 13 and 14, we have selected four representative kernels
from the 18 benchmarks evaluated to show how LPA facilitates
SIMD vectorization in some real code scenarios, where both BA-
SICAA and SCEVAA are ineffective. We consider two kernels for
improving SLP and two kernels for improving LLV, as listed in
Figures 15(a) and (b), and their code snippets in Figures 15(c) –
(f). Figures 15(g) and (h) give the speedups achieved by SLP and
LLV, respectively, under LPA over BASICAA and SCEVAA.

SLP Kernels In SLP K1, the loop given at lines 2 – 3 in Fig-
ure 15(c) is fully unrolled by LLVM’s code optimizer, due to its
small loop trip count (N REG CLASSES=7), before it is passed
to LLVM’s vectorizer. In order to vectorize the eight isomorphic
statements after loop unrolling, SLP needs to check if any depen-
dence exists when accessing the array field cost[j] via the two
pointers p and q that are the parameters of the containing function.
BASICAA and SCEVAA are ineffective as disambiguating p and q
requires an inter-procedural analysis. Guided by LPA, SLP has suc-
cessfully vectorized this kernel, resulting in a speedup of 2.03×.
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Kernel Function Benchmark
SLP K1 regclass 176.gcc
SLP K2 rephase 433.milc

(a) Kernels with new basic blocks
vectorizable by SLP under LPA

1 p->mem cost += q->mem cost * loop cost;
2 for (j = 0; j < N REG CLASSES; j++)
3 p->cost[j] += q->cost[j] * loop cost;

(c) Source code of SLP K1

1 for(dir=XUP;dir<=TUP;dir++){
2 for(j=0;j<3;j++)for(k=0;k<3;k++){
3 s->link[dir].e[j][k].real *= s->phase[dir];
4 s->link[dir].e[j][k].imag *= s->phase[dir];
5 }
6 }

(d) Source code of SLP K2

SLP K1 SLP K2
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1.2
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)
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(g) Kernel speedups for SLP

Kernel Function Benchmark
LLV K1 hbCreateDecodeTables 256.bzip2
LLV K2 UPDATE 437.leslie3d

(b) Kernels with runtime alias checks
avoided by LLV under LPA

1 for (i = minLen + 1; i <= maxLen; i++)
2 base[i] = ((limit[i-1] + 1) << 1) - base[i];

(e) Source code of LLV K1

1 Q(1:I2,J,K,1,M) = (RNM1 * Q(1:I2,J,K,1,M)
2 + Q(1:I2,J,K,1,N) + DU(1:I2,J,K,1)) * RNI

(f) Source code of LLV K2 LLV K1 LLV K2
0.9

1.0

1.1

1.2

1.3

1.4

1.5

S
pe

ed
up

s
(X

)

BasicAA//SCEVAA LPA

(h) Kernel speedups for LLV

Figure 15: Case studies for four selected kernels with their improved performance under LPA (over BASICAA and SCEVAA).

SLP K2 represents an example demonstrating the power of LPA
on analyzing deeply nested arrays of structs. The inner loop at lines
2 – 5 in Figure 15(d) is fully unrolled by LLVM’s code optimizer.
Thus, a basic block with 18 isomorphic statements is formed. All
the data in the basic block are accessed via one pointer, s. However,
enabling SLP requires the struct fields link and phase to be
modeled separately in the nested aggregate, which is supported
by LPA but not by BASICAA or SCEVAA. With LPA, SLP has
vectorized this kernel, resulting in a speedup of 1.42×.

LLV Kernels LLV K1 is a loop containing array accesses via
pointers base and limit, which are parameters of its containing
function. To vectorize this loop and avoid runtime checks, LLV
needs to recognize that the two memory accesses base[i] and
limit[i-1] are actually disjoint, which cannot be done by the
intra-procedural alias analyses, BASICAA and SCEVAA. By dis-
ambiguating the two array accesses, LPA enables their redundant
runtime checks to be avoided. Thus, a speedup of 1.29x is achieved.

LLV K2 is a Fortran loop containing accesses to a multi-
dimensional array Q. To vectorize the loop without introducing run-
time checks, the dependence for the two array accesses Q(1:I2,
J, K, 1, M) and Q(1:I2, J, K, 1, N) needs to be analyzed.
LPA generates two location sets that access disjoint locations of
Q under different indices for its highest dimension (i.e., M and N)
based on our value-range analysis. Therefore, runtime checks are
eliminated and the performance is improved (by 1.05×).

5. Related Work
Pointer Analysis As a fundamental enabling technique, pointer
or alias analysis [1, 4, 6, 23, 28] paves the way for software bug de-
tection [9, 10, 25] and compiler optimizations [13, 26, 27]. In auto-
matic SIMD vectorization, statements grouped together for vector-
ization must be dependence-free. A recent evaluation on vectoriz-
ing compilers [12] reveals some limitations of existing dependence
analyses, calling for more precise alias analyses in order to uncover
more vectorization opportunities.

The alias analyses used in modern compilers (e.g., LLVM)
are intra-procedural, yielding conservative answers to many alias
queries. In the literature on inter-procedural alias analysis for C
programs, many field-sensitive pointer analysis algorithms [4, 17]

rely on a field-index-based model to distinguish fields in a struct
by treating all fields to have the same size, which are not sound
to support SIMD optimizations. Wilson and Lam [31] introduced a
byte-precise model based on location sets, without handling loops
and arrays precisely enough to support SIMD optimizations.

This paper introduces an inter-procedural pointer analysis
that precisely analyzes aggregate data structures including deeply
nested arrays, arrays of structs and structs of arrays to enable ad-
vanced SIMD optimizations in vectorizing compilers.

Auto-Vectorization Loops are the main target of the two im-
portant vectorization techniques, superword-level parallelism vec-
torization (SLP) [3, 7, 19, 22, 33] and loop-level vectorization
(LLV) [16, 21, 29]. The first SLP approach is proposed in [7],
which obtains isomorphic statement groups by tracing data flows
starting from consecutive memory accesses. Dynamic program-
ming [3] is later adopted to consider different possibilities of com-
bining isomorphic statements and search for an effective vectoriza-
tion solution. How to generalize SLP on predicated basic blocks in
the presence of control flows is discussed in [22]. More recently,
some researchers [19] focused on transforming non-isomorphic
statement sequences into isomorphic ones in order to broaden the
scope of SLP [7]. Loop-level vectorization is developed based
on the technology originally designed for vector machines. Many
improvement have been made, by handling interleaved data ac-
cesses [16], control flow divergence [21], and loop transforma-
tions [29]. Recently, Zhou and Xue [34] introduce an approach to
exploiting both SLP and loop-level SIMD parallelism simultane-
ously by reducing the data reorganization overhead incurred.

6. Conclusion
This paper proposes a new loop-oriented pointer analysis for pre-
cisely analyzing arrays and structs to uncover vectorization op-
portunities that would otherwise be missed by existing alias anal-
yses. Our approach employs lazy memory modeling to generate
access-based location sets according to how structs and arrays are
accessed. Our experimental results show that LPA improves the
performance of LLVM’s SLP and LLV across a number of SPEC
benchmarks.
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Benchmark Loops With Their Runtime Checks Removed Execution
Source Files Line Numbers Frequency

176.gcc tree.c 1155-1156 62263
emit-rtl.c 469-470 53

177.mesa osmesa.c 746-748 96512
256.bzip2 bzip2.c 1081-1082 2674

300.twolf qsortg.c 60-64 1091
141-145 312

400.perlbench

pp sort.c 116 526879

regcomp.c

580-581 10
583-584 191784
623-624 3
637-638 315240

401.bzip2 huffman.c 239 22554

437.leslie3d tml.f
3572,3573,3576,3577,

88636803578,3581,3582,3583,
3586,3587,3588,3648

454.calculix

A2 util.c 1320-1324 15990856
Chv swap.c 505-515 1261407
IV util.c 486-488 222
InpMtx init.c 182-192 111

Utilities DV.c

59-61 28864631
118-120 2490749
1147-1152 6
1184-1188 34

Utilities IV.c 121-123 4922420

Utilities newsort.c 1130-1134,1136-1140 36075
1424-1428,1430-1434 1354311

459.GemsFDTD

huygens.fppized.f90

706-707,714-715,725-726, 192000735-736,820-821,826-827,
839-840,847-848
709-710,717-718,730-731, 191000738-739,818-819,824-825,
833-834,844-845
465-468,478-481,493-496, 192506-509,521-524,534-537,
555-558,568-571,583-586,
596-599,611-614,624-627
470-473,483-486,498-501, 191511-514,526-529,539-542,
550-553,563-566,578-581,
591-594,606-609,619-622

NFT.fppized.f90

805,818,831,844,859,872, 724890,903,916,929,942,955
811,824,837,850,865,878, 728896,909,922,935,948,961

464.h264ref
macroblock.c 2059-2060 250704
mv-search.c 236 16708450
rdopt.c 1858-1860 8110368

465.tonto realmat.fppized.f90 3087,3095 348490
482.sphinx3 new fe sp.c 207-209 64584

Table 5: The code locations and execution frequencies for the
loops without (with) runtime alias checks under LPA (LLVM’s alias
analyses), executed under the reference inputs.
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