
The Journal of Systems & Software 198 (2023) 111606

H
a

b

c

m
(
i
p
t
a
f
p
a
t
t
i
t

S
P

t

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Event-aware precise dynamic slicing for automatic debugging of
Android applications✩

su Myat Win a,b, Shin Hwei Tan b,c,∗, Yulei Sui a,∗∗
Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, PR China
Research Institute of Trustworthy Autonomous System, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, PR China

a r t i c l e i n f o

Article history:
Received 20 April 2022
Received in revised form 29 December 2022
Accepted 1 January 2023
Available online 7 January 2023

Keywords:
Android
Delta-debugging
Slicing

a b s t r a c t

Dynamic slicing aims to find the program statements that affect the values computed at some point
of interest (i.e., a particular statement or variable) under a given program input. It is an enabling
technique for many software engineering tasks (e.g., program understanding and debugging). Due to
Android’s event-driven nature, dynamic slicing for Android is more challenging than that for traditional
Java programs. Its asynchronous events drive the execution of an app through inter-component
communications. These non-deterministic user events often yield a large search space when applying
existing dynamic slicing techniques, which introduce redundant statements into the resulting slice.
We present ESDroid, an Event-aware dynamic Slicing technique for AnDroid applications. The novelty
of our approach lies in the combination of segment-based delta debugging and backward dynamic
slicing to narrow the search space to produce precise slices for Android. Our experiment across 38 apps
shows that ESDroid can help with slicing buggy code from exception program points. We compare the
effectiveness of ESDroid with the state-of-the-art dynamic slicing tools (AndroidSlicer and Mandoline).
ESDroid outperforms both tools by reporting up to 72% fewer spurious statements than AndroidSlicer,
and 50% fewer than Mandoline in the resulting slice (the number of instructions to be examined).

© 2023 Elsevier Inc. All rights reserved.
p
c
e
o
s
t
P
o
t
m
t
m
g
u
c
r
e

1. Introduction

Program slicing (Weiser, 1984) collects the program state-
ents that affect the values computed at some point of interest

i.e., a particular statement or variable, often referred to as a slic-
ng criterion). While static slicing evaluates all possible program
aths leading to the slicing criterion, dynamic slicing concen-
rates on one concrete execution for the given input (Agrawal
nd Horgan, 1990). Due to Android’s event-driven nature, slicing
or Android is more challenging than that for traditional Java
rograms. Its asynchronous events drive the execution of an
pp through Inter-Component Communication (ICC). In addition,
he Android framework supports the event queue mechanism
o schedule and execute a user event. Due to arbitrary user
nteractions, adding an event to and dispatching another from
he queue is non-deterministic. Such an event-driven system

✩ Editor: Fabio Palomba.
∗ Corresponding author at: Department of Computer Science and Engineering,
outhern University of Science and Technology, Shenzhen, Guangdong, 518055,
R China.
∗∗ Corresponding author.

E-mail addresses: hsumyat.win@student.uts.edu.au (H.M. Win),
ansh3@sustech.edu.cn (S.H. Tan), yulei.sui@uts.edu.au (Y. Sui).
ttps://doi.org/10.1016/j.jss.2023.111606
164-1212/© 2023 Elsevier Inc. All rights reserved.
makes debugging and fault localization more complicated than
traditional Java programs.

Static slicing techniques perform on a program dependence
graph (PDG); the nodes of the PDG represent statements or
a basic block, and the edges correspond to data or control-
dependences between nodes (Horwitz et al., 1988). Specifically,
a directed data dependence edge Si

d
−→ Sj means any computation

erformed in Si depends on the computed value at node Sj. A
ontrol dependence edge Si

c
−→ Sj indicates that the decision to

xecute Si is made by Sj, that is, Sj contains a predicate whose
utcome controls the execution of Si. The dynamic PDG, which is a
ubgraph of the static PDG (Ferrante et al., 1987), consists of only
hose nodes and edges that are exercised during a particular run.
recisely, a dynamic slicing tool first collects an execution trace
f a program by instrumenting the program. Then, the tool checks
he control and data dependences of the trace statements, deter-
ining statements that affect the slicing criterion and omitting

he rest. The dynamic slices are more compact than static ones,
aking them suitable for debugging activities (Agrawal and Hor-
an, 1990; Agrawal et al., 1991; Korel and Laski, 1988), program
nderstanding (Wang and Roychoudhury, 2008; Weiser, 1984),
hange impact analysis (Alves et al., 2011), regression test suite
eduction (Gupta et al., 1992), and fault localization (Agrawal
t al., 1995). However, dynamic slicing may include redundant

https://doi.org/10.1016/j.jss.2023.111606
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111606&domain=pdf
mailto:hsumyat.win@student.uts.edu.au
mailto:tansh3@sustech.edu.cn
mailto:yulei.sui@uts.edu.au
https://doi.org/10.1016/j.jss.2023.111606

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

s
d
e
i

i
p
t
f
s
(
a
c
s
s
n
b
s

i
a
A
s
w
s
i
i
l
c
d
t
g
c
f
p
s
A
s
r
r
c
s
o
T
s
m

C
d
i
f
s
s
e
a
b
t
i
f
t
m
t
i

/

tatements if we do not consider input events, especially in An-
roid apps with an event-driven nature. Specifically, redundant
vents with executed statements that do not affect the point of
nterest can lead to bigger slice with redundant statements.

Existing Efforts and Limitations. Basically, a backward slice
dentifies those statements that affect the point of interest (i.e., a
articular statement or variable, often referred to as a slicing cri-
erion), and a forward slice identifies those statements that are af-
ected by the point of interest. Specifically, the backward dynamic
lice at instruction s concerning slicing criterion ⟨t, s, value⟩
where t is a timestamp) consists of executed instructions with
direct or indirect effect on value. More precisely, the transitive
losure over dynamic data and control-dependences in the PDG
tarts from the slicing criterion. The primary goal of dynamic
licing is to produce a precise PDG that excludes as many spurious
odes and edges as possible while soundly preserving the true
uggy statements relevant to the bug-triggering point under a
pecific program input.
However, these traditional dynamic slicing approaches are

nadequate for Android apps, yielding unsound outcomes (un-
ware of Android’s ICCs) or imprecise results (many redundant
ndroid events taken as inputs). Specifically, the input event
equence impacts the slicing size for Android apps. In this paper,
e focus on addressing this challenge, contributing an effective
olution for slicing Android mobile apps by isolating the failure-
nducing event sequence. Android slicing was already attempted
n the tools called AndroidSlicer (Alavi et al., 2019) and Mando-
ine (Ahmed et al., 2021). AndroidSlicer presents asynchronous
allback constructions for control- and data-dependences by
efining callbacks as nodes containing other nodes (i.e., instruc-
ions) or a supernode. Mandoline enables tracking data propa-
ation via object fields with low-overhead instrumentation and
laims slicing accuracy for Android applications. Since Mandoline
ocuses on data-dependences by proposing an inter-callback de-
endency graph, there is no clear explanation for ICC, lifecycle
tages, or control-dependences among callbacks. Moreover, both
ndroidSlicer and Mandoline do not consider the input (i.e., a
equence of user events) for debugging and still suffer from many
edundant or bug-irrelevant nodes on its slice when analyzing
eal-world apps. The inputs of an Android app are inherently
omplex (in the form of a wide variety of user events), and the
licing results are sensitive to Android events and their execution
rder. Hence, the inputs are crucial for precise slicing in Android.
his paper aims to investigate, for the first time, an event-aware
licing approach by simplifying Android’s input events to produce
ore precise slicing results.
Consider, for example, the SiliCompressor app in Fig. 1. Sili-

ompressor,1 is a Video and Image compression library for An-
roid with 1200 stars in GitHub. It provides a demo app for
llustrating its functionality. The code of the app was simplified
or illustration purposes. We also discuss the example and the
licing algorithm at the source-code level for simplicity. At the
ame time, our solution can process apps at the bye-code level,
ven when no source code is available. Fig. 1a is the simplified
pp code of SiliCompressor, and Fig. 1b is the slice produced
y AndroidSlicer. Fig. 1c shows the activity state changes when
he user clicks the event sequences shown in Fig. 1d. Fig. 1d
s the randomly generated event sequence that makes the app
ail with ArithmeticException: divide by zero. Fig. 1e is
he stack trace. In our example app, the method widthDecre-
entClick of SiliCompressor class (Lines 4–8) is called when
he user clicks ‘‘-’’ for width. This method decreases the value
n width. Similarly, the method heightDecrementClick (Lines

1 https://github.com/Tourenathan-G5organisation/SiliCompressor, https:
/github.com/Tourenathan-G5organisation/SiliCompressor/issues/10.
2

9–13) is called when the user clicks ‘‘-’’ for height. This method
decreases the value in height . If the user clicks ‘‘COMPRESS’’,
the method compressImageClick (Lines 14–16) is called. This
method calculates maxRatio by dividing width by height .

The app fails when the user decreases the value of height
to zero and calculates for maxRatio, making ‘‘divide by zero’’,
which leads to the ArithmeticException (Line 15). Regard-
less of the integer value in the object of width, if the value in
the object of height is zero, the ArithmeticException: di-
vide by zero will be thrown. Consequently, in the randomly
generated event sequence, only two click events (i.e., E299KE3)
are failure-inducing events. Only the statements of the callbacks
(i.e., heightDecrementClick, and compressImageClick), en-
abled by the failure-inducing events, affecting the point of in-
terest should be in the resulting slice. Specifically, a slice from
the faulty line can help narrow down the program execution
only to code relevant to the failure, e.g., omitting the code deal-
ing with width (Lines 4–8). However, the state-of-the-art tools
(i.e., AndroidSlicer Alavi et al., 2019 and Mandoline Ahmed et al.,
2021) do not consider the input events and include spurious
slices, resulting in a larger slice and search space. Thus, it leads
to time-consuming for the developer. In our approach, to address
this problem, we isolate the failure-inducing events by using
delta-debugging before backward dynamic slicing.

Insights and Challenges. A typical technique to simplify a test
input is delta-debugging, which systematically breaks down the
original test input into smaller sequences until a minimal failure-
inducing sequence is found (Zeller and Hildebrandt, 2002). The
delta-debugging has been used in dynamic program slicing to
narrow down the search space for faulty code in non-event-based
programs (Gupta et al., 2005). The delta-debugging also has been
used to simplify the trace for Android events (Clapp et al., 2016;
Jiang et al., 2017). These techniques work purely on test inputs,
treat an app as a black box and do not perform code analysis on
Android bytecode or source code. Thus, their end goal is not dy-
namic slicing whose objective is to extract precisely the control-
and data-dependence at bytecode level. How to incorporate and
simplify the input events to obtain sound and precise dynamic
slices for Android apps using a slicing criterion remains an open
research question.

Our Solution. This paper presents ESDroid, an Event-Aware
precise dynamic Slicing approach for Android by introducing
segment-based delta-debugging into backward dynamic slicing.
ESDroid first simplifies program inputs (i.e., the third phase in
Fig. 2) when exercising Android apps before backward dynamic
slicing (i.e., the fourth phase in Fig. 2). Thus, ESDroid signifi-
cantly reduces spurious nodes and edges on the dynamic PDG.
Specifically, ESDroid reduces the event sequence (i.e., program
inputs) by using segment-based delta-debugging and then ap-
plies the backward dynamic slicing. For dynamic slicing, ESDroid
builds control and data dependence at both the instruction and
event levels (i.e., the fourth phase in Fig. 2). ESDroid aims to
find a sub-set of slices produced by the state-of-the-art dynamic
slicing technique AndroidSlicer. Our approach yields a more com-
pact and precise slice than AndroidSlicer through input events
reduction to isolate bug-relevant events further while soundly
capturing the same bug reported by the original event sequence.

Fig. 2 gives an overview of our approach consisting of four
major phases. In the first phase, ESDroid conducts instrumen-
tation on the target app to log the execution history so that
ESDroid can track UI events plus the underlying methods and
instructions in each activity. To record the number of events
triggered and construct the dependences among events, ESDroid
appends eventID to the timestamp and the information of ex-
ecuted instructions (Alavi et al., 2019). Note that we use the
timestamp only for the node (instruction) creation, which is

https://github.com/Tourenathan-G5organisation/SiliCompressor
https://github.com/Tourenathan-G5organisation/SiliCompressor/issues/10
https://github.com/Tourenathan-G5organisation/SiliCompressor/issues/10

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

i
R
a
t
g
c
e
t
g

t
i

Fig. 1. Our Motivation. SiliCompressor app. ArithmeticException has thrown while the program attempted to divide by zero.
Fig. 2. Overview architecture of ESDroid.
mportant for detecting dynamic data dependences (Wang and
oychoudhury, 2008) and distinguishing between objects created
t the same allocation site. Section 3.1 describes this in detail. In
he second phase, ESDroid applies Monkey-style stress testing to
enerate random event sequences to exercise an app to trigger a
rash/exception. To avoid the modification of Monkey files (Jiang
t al., 2017) in the device, we implement a Python program
hat supports different device versions using MonkeyRunner2 to
enerate random events.
The third and fourth phases together form our main contribu-

ion (as highlighted in Fig. 2). The third phase accepts a failure-
nducing sequence of events (FSoE) and removes the redundant

2 https://developer.android.com/studio/test/monkeyrunner.
3

and/or irrelevant events to produce a minimum failure-inducing
sequence of events (∆FSoE). To get the shortest event sequence,
ESDroid adopts two strategies; (1) Divide and Conquer and (2)
Complement. Section 3.3 describes this in detail. The final phase
conducts dynamic slicing using ∆FSoE as the input and pro-
duces a precise dynamic slice based on the slicing criteria against
the static PDG. We have evaluated ESDroid using 38 real-world
apps. Our results show that ESDroid outperforms AndroidSlicer
in terms of precision by reporting up to 72% (27% on average)
less execution of false instructions (i.e., Jimple instructions) on
the slices (i.e., dynamic PDG).

In summary, this paper makes the following contributions:

• We present ESDroid, a new event-aware dynamic slicing tech-
nique for simplifying inputs for Android apps.

https://developer.android.com/studio/test/monkeyrunner

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

T
a
o
e
i
r

2

f
a
d
a
t
m
s
m
S
u
D
c
F
(
S
D
s
m
h

e
D

Table 1
Iteration process of simplifying FSoE for Fig. 3 - Motivating example.
Iteration Sequence of events Value stored in the object at

the timestamp once after the
last event is triggered.

Test result Remarks

width height maxRatio

0 E199KE299KE3 0 0 ArithmeticException Fail Original FSoE.

1 E299KE3 1 0 ArithmeticException Fail Divide the original event sequence (i.e., FSoE) into two
sub-sequences and test the last sub-sequence (E299KE3) and the
test failed. Bring the failed sub-sequence.

E1 – – – –

2 E3 1 1 1 Pass Divide the last failed event sequence into two sub-sequences and
test both sub-sequences. The reduction finished with 1-minimal
event. The latest test which made the app fail is ∆FSoE (E299KE3).

E2 1 0 – Pass
• We present how to apply delta-debugging in dynamic slicing
to yield a more precise and compact PDG while capturing
the same bugs as the state-of-the-art tools AndroidSlicer, and
Mandoline.
• We have implemented ESDroid and evaluated it using 38 real-

world apps against AndroidSlicer, and 10 apps against Mando-
line. The results show that ESDroid outperforms AndroidSlicer
and Mandoline by reducing redundant nodes (i.e., up to 72%
fewer than AndroidSlicer, and 50% fewer than Mandoline) on
the dynamic PDG while maintaining all relevant nodes on the
PDG. The evaluation data and the source code for ESDroid are
publicly available (GitHub,3 Zenodo4).

he rest of the paper is organized as follows. Section 2 presents
motivating example to illustrate our key ideas. Section 3 states
ur approach. Section 4 describes our implementation. Section 5
valuates ESDroid by reporting its effectiveness and comparing
t with AndroidSlicer, and Mandoline. Section 6 discusses the
elated work. Finally, Section 7 concludes the paper.

. A motivating example

This section uses an example bug found in a SiliCompressor
rom GitHub shown in Fig. 3, as our motivating example. We
im to highlight the important insights and motivate our design
ecisions. We explain the typical challenge (i.e., if more events
re triggered, the larger searching space occurs.) faced by the
raditional debugging techniques. Fig. 3(a) gives the code frag-
ent of the demo app. Fig. 3(b) shows a randomly generated
equence of user click events (i.e., FSoE) which triggers an Arith-
eticException at Line 15 and the slice produced by Android-
licer. Specifically, widthDecrementClick callback is invoked
pon clicking ‘‘-’’ for width on app screen. The callback height-
ecrementClick is invoked when clicking ‘‘-’’ sign for height.
ompressImageClick is invoked upon clicking on ‘‘COMPRESS’’.
ig. 3(c) shows the simplified failure-inducing event sequence
i.e., ∆FSoE) and the slice produced by ESDroid. While Android-
licer has three click events and 9 nodes (i.e., statements), ES-
roid has two click events and 6 nodes. The original click event
equence and the simplified one both trigger the same Arith-
eticException. This is because the app will always crash if
eight at Line 15 represents a zero value.
Although there are three click events in total for the original

vent sequence, only the last two click events (i.e., height-
ecrementClick and compressImageClick) are the failure-

inducing events. Thus, the dynamic slice should only include
program statements of these two events affecting the point of
interest. Specifically, the resulting dynamic slice should contain
only Lines 2, 3, 10, 11, 12, and 15 shown in Fig. 3(c). With a

3 https://github.com/hsumyatwin/ESDroid-artifact.
4 https://doi.org/10.5281/zenodo.7074680.
4

thinner slice, the developer will have fewer buggy lines to inspect,
which helps reduce the time and effort in debugging process.
Moreover, the shorter event sequence saves developers time in
validating the app’s behavior.

Table 1 demonstrates that ESDroid can successfully identify
this failure-inducing event and remove other unrelated occur-
rences. Compared with the state-of-the-art dynamic slicing ap-
proach AndroidSlicer, ESDroid can produce a much smaller but
more precise backward slice (with only six rather than nine
statements) starting from the exception point. Specifically, our
reduction process performs by producing FSoE, simplifying FSoE,
and conducting backward dynamic slicing after instrumenting the
SiliCompressor app.

2.1. Producing FSoE

To produce the event sequence that makes the app crash,
ESDroid exercises the instrumented app by applying Monkey-
style stress testing on it with randomly generated events until
a crash is triggered. We select a scenario where after exercising
three click events, the application failed with an ArithmeticEx-
ception. This error occurs because the program attempted to
divide by zero value. ESDroid records the executed instructions
together with this failure triggering point into the trace file.

2.2. Simplifying FSoE

Our goal is to reduce the size of the event sequence, which
triggers an exception, and to produce a more precise and compact
program slice. ESDroid gradually removes some redundant events
from the event sequence using segment-based delta-debugging.
This is done iteratively by exercising a sub-sequence of events
on the instrumented app to check which runs can produce the
same exception. Table 1 illustrates the iteration process for the
motivating example. The first column describes the number of
iterations, and the second column records the corresponding click
event sequence triggered. The third column presents the value
stored in three integer objects (i.e., width, height , and maxRatio) at
the timestamp once the last click event is triggered. ‘‘Test result’’
holds the outcome of each test.

Iteration 0 is the original FSoE. In Iteration 1, we divide the
FSoE into two sub-sequences. The first sub-sequence contains E1
while the second sub-sequence includes E2, and E3. The testing is
first conducted for the last sub-sequence (E299KE3) because the
sub-sequence which includes the last event of FSoE has a higher
chance of triggering the bug (Jiang et al., 2017). Since the second
sub-sequence makes the app crash (i.e., the app crashes with the
same stack trace of the original FSoE), we start the next iteration
with the second sub-sequence. We take the result as ‘‘fail’’ if the
event sequence triggers the same bug with the same stack trace.
We describe details in Section 3.3. Note that, in our approach,
once we find the event sequence, which causes the app to fail,
we start the next iteration with the last failed event sequence.

https://github.com/hsumyatwin/ESDroid-artifact
https://doi.org/10.5281/zenodo.7074680

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

1
e

Fig. 3. A motivating example (i.e., SiliCompressor app). ArithmeticException has thrown while the program attempted to divide by zero. The reduction process for
event sequences in Table 1.
In Iteration 2, we divide the failed event sequence of Iteration
into two sub-sequences, and each sub-sequence includes one
vent (i.e., the first sub-sequence contains E2, and the second
5

sub-sequence contains E3). Both sub-sequences make the test
pass (i.e., no bug is triggered), and the reduction process also
reaches 1-minimal. The simplified event sequence (i.e., ∆FSoE) is

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

g
c
m
r
i
A
b
f

2

m
i
T
i
(
F
e
2
t
t
a
s
p
n
b
i
t
i
b
c
b
E
m

3

a
t
F
t
i
a
t

i
i
i
c
a
f
(
0
m

3

a
E
S
e
c
S
z
a
v
e
c
c
e
a
t

3

p
t
c
s

enerated with two events at Iteration 1 (i.e., E299KE3). ESDroid
an safely exclude the redundant click event (i.e., widthDecre-
entClick). Formally, we define the property as n-minimality:
emoving up to n events causes the failure to disappear. Suppose s
s |s|-minimal, then s is the minimal number of removed event/s.
failure-inducing event sequence s composed of |s| events would
e 1-minimal if removing any single event would cause the
ailure to disappear.

.3. Backward dynamic slicing

To obtain the executed instructions that affect the value of
axRatio, we perform backward dynamic slicing on both the orig-

nal test case (i.e., FSoE) and the simplified test case (i.e., ∆FSoE).
he criteria we used are (1) the timestamp when the exception
s thrown, (2) the object holding error (maxRatio at Line 15), and
3) the instruction at Line 15 accessing this object. As shown in
ig. 3(b), for the original event sequence with the three click
vents produced by AndroidSlicer, the slice has 9 lines (Lines
, 3, 5, 6, 7, 10, 11, 12, and 15) from the program’s entry to
he program failure point (the point of interest). Fig. 3(c) shows
hat the slice has 6 lines (Lines 2, 3, 10, 11, 12, and 15) with
simplified sequence of events (i.e, ∆FSoE). ESDroid forms the
maller slice with six statements by capturing the bug triggering
oint at Line 15 and the root cause of the error. We observed that
odes on the original PDG (Lines 5, 6, and 7) are not required to
e examined while determining the source of error; thus, they are
rrelevant to the slicing criteria and irrelevant to include them in
he slice. AndroidSlicer includes these counterfeit nodes because
t slices all the executed instructions affecting the failure point
ased on the original sequence of events, provided there are
ontrol dependences and data dependences between these nodes
ased on the static PDG. Therefore, by considering input events,
SDroid successfully reduces redundant statements and yields a
ore compact and precise program slice than AndroidSlicer.

. Approach

Fig. 2 shows the overall workflow of ESDroid. Given an app
nd a slicing criterion, ESDroid generates a reduced dynamic slice
o identify the faulty code block. ESDroid consists of four phases.
irst, we instrument an app with each of its bytecode instruc-
ions shadowed with another instruction for runtime bookkeep-
ng. In the second phase, ESDroid runs the instrumented app
nd extracts the event sequence that triggers a crash (we call
his sequence Failure-inducing Sequence of Events (FSoE)). After
producing the FSoE, we perform delta debugging to obtain a
minimized FSoE. Finally, ESDroid conducts the dynamical slicing
to capture control- and data dependence at both instruction and
event levels by incorporating the reduced FSoE to produce a more
precise dynamic slicing than the state-of-the-art.

3.1. Instrumentation

Before running an Android app, ESDroid performs lightweight
instrumentation on the app to collect information on which
events are triggered and which statements are executed during
runtime. Specifically, ESDroid instruments the app to produce
the trace, which includes the executed instructions, the infor-
mation of intent creation, and callbacks. We use Soot (Vallée-Rai
et al., 2010) to perform instrumentation, and a new Jimple in-
struction is injected for every application instruction to record
the execution trace. The inserted instruction is responsible for
bookkeeping the executed application instruction information,
including its line number, corresponding class name, and method
name. To construct the call graph of an Android app, we use
6

FlowDroid (Arzt et al., 2014) by considering the Android’s event-
based life cycle. For each node (i.e., program method) on the call
graph, we use EventID to differentiate Android events. Note that
though all the dynamically executed instructions, including those
in the framework, are recorded in our execution log, these frame-
work instructions do not manifest in the application’s dex code
when performing our control- and data dependence analysis. Our
dynamic slicing is performed at the application level.

ESDroid instruments and numbers an Android event with its
corresponding eventID. ESDroid records the execution informa-
tion based on the following format.

• Timestamp — time when the particular instruction runs.
• Data — eventID, program line number, class name, event name,

and the instruction including objects if available.

Note that, we use eventID to record the number of events
triggered for Section 5.2 and construct the dependences among
events. The program line number is to map back the Jimple
instruction to the program statement to check the quality of the
slice in Section 5.5.

Example 1. The following shows a part of the execution trace
after running the instrumented SiliCompressor app (i.e., the mo-
tivating example). In this recorded trace, for Line 15 in Fig. 3,
we use a separator _ to denote different types of data. Specif-
cally, 09-21 00:23:51.027 represents the timestamp, ID4
s an auto-incremental unique number for a callback, and 15
s the program line number. We also record the class name
om.i.sc.SiliCompressor, the callback name compressIm-
geClick, and the executed instruction (i.e., Jimple instruction)
or Line 15 including the objects $r4 (i.e., maxRatio) and $r2
i.e., width), $r3 (i.e., height).
9-21 00:23:51.027 System.out:ESDroid_ID4_15_com.i.sc.SiliCo
pressor_compressImageClick_$r4=$r2/$r3;

.2. Producing FSoE

ESDroid generates random events to exercise the instrumented
pps until the program fails. For example, the event sequence
1 99K E2 99K E3 shown in Table 1 triggers an exception. While
implyDroid (Jiang et al., 2017) relies on a modified Monkey for
ach Android version, we implement a Python program to be
ompatible with different device versions using MonkeyRunner.
pecifically, we randomly set the (x, y) coordinate, ranging from
ero to the resolution of the emulator (the maximum height
nd the maximum width), to avoid generating out-of-bound
alues for the coordinate (x, y). Note that this way of generating
vent sequences simulates clicks, rotations, and drags, and we
urrently do not support other complex events like changing the
onfiguration of the phone. The maximum number of random
vents for each run is 5000. We rerun the app ten times using
newly generated event sequence (with different seed values) if
he previous run is unable to trigger a bug.

.3. Simplifying FSoE

The goal is to eliminate redundant events irrelevant to a
rogram failure and retain as few relevant events that trigger
he same exception as possible. An event on an event trace t
an be safely removed by our delta debugging to produce a
implified trace t ′ only if t and t ′ trigger exactly the same bug,
i.e., the same exception error and the same stack trace. For
example, in Fig. 3, although we removed the event which triggers
widthDecrementClick, the remaining two click events still
trigger the same bug because both the original and reduced event

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

s
d
u
e
b
t

i
c

•

•

•

•

A
t
e
s
p
t
t
t
t
d
t
d
n

D
n
t
{

D
s

D
s
s
A

s
a
g
o
p
b
w
d
a
e
t
t
t
s
t
E
t

(
b
t
p
m

o

E
C
s
E
E
i
w
E
l
i
t
f
D

equences feed the invalid values (i.e., zero) in height . The re-
uction process (i.e., segment-based delta-debugging) is repeated
ntil ESDroid produces a minimum failure-inducing sequence of
vents (i.e., ∆FSoE), which is used for the later dynamic slicing
ecause, with a shorter sequence, it is easier to find the error in
erms of debugging process.

To determine whether the current event sequence is failure-
nducing, we use the outcomes of app testing as the selection
riteria. Following are four possible outcomes of app testing.

The app exited normally without any crash.
The app crashed with a different error or exception type.
The app crashed with the same error/exception type but a
different stack trace.
The app crashed with the same error/exception type, and the
same stack trace.

mong the above four possible outcomes, we define the first
hree outcomes as ‘‘pass’’ and the last as ‘‘fail’’. We take the
vent sequence with a ‘‘fail’’ outcome as a failure-inducing event
equence, and bring it to the next iteration. To mitigate the
roblem of flaky tests, (1) we re-run the event sequence under
he same system environment, and (2) instead of only comparing
he test outcome, we compare the test result (i.e., exception /error
ype) and stack trace for each iteration with the stack trace of
he original FSoE. We discarded the cases where the test re-run
id not crash with the same test result and stack trace. Note
hat our current debugging process requires a crash/exception for
elta debugging. In the future, we will enhance ESDroid to handle
on-crashing bugs.

efinition 1 (n-Minimal Sequence). An event sequence s ⊆ s✗ is
-minimal if ∀s'⊂ s· |s| - |s'| ≤n⇒ (test(s') ̸= ✗) holds, where ✗ is
he fail outcome. Consequently, s is 1-minimal if ∀δi ∈ s· test(s -
δi}) ̸= ✗ holds.

efinition 2 (Granularity). Granularity means the number of sub-
equences that ESDroid divides the sequence of events into.

efinition 3 (Complement Logic). The relative complement or
equence difference of sequences A and B, denoted A - B, is the
ub-sequences x in A that are not in B. In notation, A - B = {x ∈
and x /∈ B}.

ESDroid first divides an FSoE into sub-sequences or so-called
egments (sub-sequences of events) based on granularity (i.e., 2
t the beginning of the reduction process). We choose 2 as the
ranularity for the first iteration because there is no fixed value
r obvious formula that could give the best split factor (size or
erformance-wise), and it could provide the worst and best-case
ehavior of the delta debugging process (Kiss, 2020). Moreover,
e intend to reduce the slice, and the fundamental strategy of
elta debugging is already robust and effective enough to obtain
significant reduction rate. In each iteration, ESDroid follows

ither of the two strategies for partitioning FSoE (i.e., the input for
esting) to conduct the testing. One is Divide and Conquer, and
he other is Complement (Zeller and Hildebrandt, 2002) based on
he results after each iteration. ESDroid applies the Complement
trategy once all sub-sequences do not trigger the same bug and
he same stack trace with the original event sequence. Otherwise,
SDroid uses the Divide and Conquer strategy to narrow down
he failure-inducing events.

For every iteration, ESDroid triggers the last sub-sequence
i.e., the event sequence, which includes the last event) first
ecause the last sub-sequence has a higher chance of triggering
he bug (Jiang et al., 2017). In addition, to reduce the iteration
rocess, once ESDroid finds the failed event sequence, it ter-
inates the current iteration and starts the next iteration with
 i

7

Algorithm 1: Simplifying failure-inducing sequence of
events (FSoE). Input: a list of events FSoE, the stack trace e
f FSoE. Output: a list of statements Tf .
1 Tf ←− {};
2 n←−2;
3 isFailed←− false;
4 if FSoE.size() ==1 then
5 (isFailed, Tf)←− test(FSoE, e);
6 end
7 while FSoE.size() >=2 do
8 S ←− divide FSoE into n sub-sequences S1, S2, S3,...,

Sn;// Divide the event sequence into n (i.e.,
granularity) sub-sequences equally. If the
number of events in the sequence could not make
sub-sequences equally, we favor the last
sub-sequence to have one more event.

9 for each sub-sequence Si in S do
10 if test(FSoE\Si, e) != null then
11 (isFailed, Tf)←− test(FSoE\Si, e);
12 end
13 if isFailed then
14 FSoE ←− FSoE\Si;
15 n←− max(n - 1, 2);
16 break;
17 end
18 end
19 if !isFailed then
20 if n == FSoE.size() then
21 break;
22 end
23 n←− min(2n, FSoE.size());// Increase granularity

and start Complement strategy
24 end
25 isFailed←− false;
26 end
27 return Tf ;

Procedure: test(list of events St , stack trace e)
28 if St triggers the app crash then
29 x←− dumpStack();// print stack trace of crash
30 if e == x then
31 Tf ←− logcat();// get all executed program

statements
32 return (true,Tf);
33 end
34 end
35 return null;

granularity 2 for the Divide and Conquer and maximum value
between (current granularity-1) and 2 for the Complement.

xample 2. Table 2 shows the process of the Divide and
onquer. For the first iteration, ESDroid divides an FSoE into two
ub-sequences (i.e., one with E3 99K E4 and the other with E1 99K
2). We first test for the last sub-sequence (i.e., E3 99K E4). Since
3 99K E4 triggers the bug, ESDroid uses it as input for the next
teration. At Iteration 2, ESDroid divides the latest sub-sequence,
hich makes the app fail, into 2 sub-sequences (i.e., one with
4 and the other with E3). ESDroid conducts the testing for the
ast sub-sequence first (E4) and the program fails. Since ESDroid
terates the reduction process until 1-minimal sub-sequence, it
erminates the process and E4 is the event that is responsible
or program failure (i.e., ∆FSoE). Note that the granularity for the
ivide and Conquer is 2 for every iteration.

ESDroid adopts the Complement strategy for the next iteration
f neither sub-sequence produces the bug in the current iteration

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606
Table 2
Iteration process of simplifying FSoE for Example 2 (The Divide and Conquer strategy).
Iteration Sequence of events Test result Remarks

0 E199KE299KE399KE4 Fail Original FSoE.

1 E399KE4 Fail Divide the original event sequence (i.e., FSoE) into 2 sub-sequences, test the second sub-sequence
(E399KE4). The test failed. Bring forward the failed sub-sequence to the next iteration.E199KE2 –

3 E4 Fail Divide the last failed sub-sequence into 2 sub-sequences and test the last sub-sequence (E4). The
test failed. 1-minimal with failed sub-sequence is ∆FSoE.E3 –
Table 3
Iteration process of simplifying FSoE for Example 3 (The Complement strategy).
Iteration Sequence of events Test result Remarks

0 E199KE299KE399KE499K E599KE699KE799KE8 Fail Original FSoE

1 E599KE699KE799KE8 Pass Divide the original event sequence (i.e., FSoE) into 2 sub-sequences and test
both sub-sequences and both passed. Increase the granularity from 2 to 4.E199KE299KE399KE4 Pass

2 E399KE499KE599KE699K E799KE8 Fail Divide the last failed event sequence into 4 sub-sequences and test the
complement of last sub-sequence (E399KE499KE599KE699K E799KE8). The test
failed. Bring the failed complement to the next iteration with granularity 3
(i.e., max(4-1,2)).

E199KE299KE599KE699K E799KE8 –
E199KE299KE399KE499K E799KE8 –
E199KE299KE399KE499K E599KE6 –

3 E599KE699KE799KE8 – Divide the last failed event sequence into 3 sub-sequences and skip the first
complement (i.e., the second sub-sequence of iteration 1) and test the second
complement (E399KE499KE799KE8). The test failed. Bring the failed complement
to the next iteration with granularity 2 (i.e., max(3-1,2)).

E399KE499KE799KE8 Fail
E399KE499KE599KE6 –

4 E799KE8 Pass Divide the last failed event sequence into 2 sub-sequences and test both
complements. Both passed. Increase the granularity from 2 to 4.E399KE4 Pass

5 E499KE799KE8 Pass Divide the last failed event sequence (i.e., second complement of iteration 3)
into 4 sub-sequences and test all complements. All passed. Terminate the
reduction process since 1-minimal sub-sequence is tested. The latest test
which made the app fail is ∆FSoE (E399KE499KE799KE8).

E399KE799KE8 Pass
E399KE499KE8 Pass
E399KE499KE7 Pass
•

•

G
f
a
e
t
a
o
4
d
e
n
t
i
t
t
f

W
i
s
p
p
t
p
t
t

because the smaller sub-sequences and testing the complement
of the smaller sub-sequence gives a higher chance of resulting in
program failure (Zeller and Hildebrandt, 2002).

Example 3. Table 3 shows the process of the Complement. There
are 8 events in FSoE and the current granularity is 2 (i.e., 2 sub-
sequences with 4 events in each sub-sequence). At Iteration 1,
since both sub-sequences are unable to trigger the same bug with
the same stack trace as that of the FSoE, ESDroid increases the
granularity from 2 to 4 (i.e., a minimum value between 8 events
of FSoE and 2 times of current granularity). Therefore, we have 4
sub-sequences with 2 events in each for Iteration 2. We generate
the granularity with two formulas. We use min(2n, FSoE.size())
to increase the granularity if none of sub-sequences in the same
iteration triggers the app to fail. If one or more sub-sequences
trigger the app to fail, we use max(n - 1, 2). Note that we start the
next iteration once one of the sub-sequences in the same iteration
makes the app fail. n is the current granularity. FSoE.size() is
the number of events in the current working event sequence
(i.e., the latest event sequence which makes the app fail). For
example, 8 events in Iteration 1. We describe this in detail in
Algorithm 1. At Iteration 2, ESDroid tests for the last complement
(i.e., E3 99K E4 99K E5 99K E6 99K E7 99K E8). Since the
current complement triggers the bug, ESDroid brings the current
complement to the next iteration which operates with granularity
3 (i.e., the maximum value between (current granularity-1) and
2). At Iteration 3, ESDroid skips the last complement because it is
the same as the second sub-sequence of Iteration 1 and is tested
for the next complement (i.e., E3 99K E4 99K E7 99K E8). ESDroid
terminates the reduction process if the smallest sub-sequence
cannot be further reduced (i.e., 1-minimal sub-sequence is tested
at Iteration 5) and the failure-inducing complement (i.e., ∆FSoE)
is the last event sequence (i.e., E3 99K E4 99K E7 99K E8) which
makes the program fail.

Algorithm 1 describes the process of simplifying FSoE to the

following:

8

• FSoE: A sequence of events which makes the app fail. Initially, it
holds the failure-inducing sequence of events (FSoE) produced
by the second phase.
Tf : A list of executed program statements when the current
FSoE triggers an instrumented APK (i.e., output). Initially empty.
S: A list of sub-sequences after dividing current FSoE into n
(i.e., granularity) sub-sequences (Line 8). Each sub-sequence
includes the same number of events. If the sequence’s number
of events could not equal the sub-sequences, we favor the last
sub-sequence to have one more event.

iven two inputs: (1) an event sequence which makes the app
ail (denoted as FSoE) and (2) the stack trace of FSoE (denoted
s e), ESDroid iterates the reduction process until the count of
vents in the sequence is greater than or equal to 2 (Line 7) or
he granularity n reaches 1-minimal sub-sequences (Lines 20, 21
nd 22). For the case where no simplification is needed (FSoE has
nly one event), our approach collects and returns the log (Lines
–6). If the number of events in FSoE is greater than one, we
ivide the event sequence into n (i.e., granularity) sub-sequences
qually at Line 8. If the number of events in the sequence could
ot make sub-sequences equally, we favor the last sub-sequence
o have one more event because the last sub-sequence which
ncludes the last event of FSoE has a higher chance of triggering
he bug (Jiang et al., 2017). For example, if the event sequence has
hree events and the granularity is 2, we split one event for the
irst sub-sequence and two events for the second sub-sequence.

Note that, for the first iteration, the granularity is 2 (Line 2).
e select 2 as the granularity for the first iteration because there

s no fixed value or obvious formula that could give the best
plit factor in terms of size or performance-wise, and it could
rovide the worst and best-case behavior of the delta debugging
rocess (Kiss, 2020). Moreover, we intend to reduce the slice, and
he basic strategy of delta debugging is already reasonable and
ractical enough to obtain a considerable reduction rate. ESDroid
hen extracts the complement of the current sub-sequence (Note
hat, since there are only two sub-sequences for the Divide

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

a
i
1
f
t

(
(
n
w
a
c
b
c
o
2
H
e

E

t
c
w
g
E
s
a
(
1
s
E
E
a
9
3
1
s
c
s
c
s
i
a
2
s
f
a
a

3

r
n
a
e
b
t

d

l
F

i
(
o
m
s

f
d

1

2

nd Conquer approach, the complement of one sub-sequence
s the other sub-sequence) and conducts the testing (Lines 10–
2) (Lines 28–35). If the current complement makes the program
ail with the same stack trace e, we keep the trace log including
he executed statements as the latest (i.e., the output Tf) (Lines
31, 11) and update FSoE with the current complement (Line 14).
The algorithm stops using the Divide and Conquer strategy
and starts using the Complement strategy once none of the sub-
sequences in the same iteration triggers the bug with the same
stack trace (Line 23). We describe details in Example 4. Adjusting
granularity n is done at Line 15 for the test failed. For example, (1)
For the Divide and Conquer, the granularity is 2 (i.e., 2 = max
2–1,2)). (2) For the Complement, if the current granularity is 4
i.e., 4 sub-sequences in FSoE for current iteration), granularity for
ext iteration is 3 (i.e., 3 = max(4–1,2)) because FSoE is updated
ith the current complement (i.e., 3 sub-sequences). Suppose
ll complements are unable to make the program fail. In that
ase, increasing granularity n is done at Line 23 (i.e., a minimum
etween 2 times of current granularity and count of events in
urrent FSoE). Note that if the null value returned for Tf at the end
f the algorithm, ESDroid stops at the current phase (i.e., Phase
) because there is no input for the next phase (i.e., Phase 3).
owever, according to our experiment, none of the traces for all
xperiment apps is empty.

xample 4. In this example, we demonstrate how Algorithm
1 handles non-adjacent failure-inducing events. Assume that we
have an original sequence of events E1 99K E2 99K E3 99K E4 and
he smallest sub-sequence that triggers a bug is E1 99K E4 (e.g. E1
hanges the state in a way where an exception is raised only
hen E4 executes). In the first iteration, the algorithm starts with
ranularity 2 and we have two sub-sequences (i.e., E3 99K E4, and
1 99K E2). None of them makes the app crash with the same
tack trace. The algorithm then starts using the Complement
nd divides into smaller sub-sequences with the granularity 4
i.e., one event in each sub-sequence) (i.e., Line 23 in Algorithm
). In the second iteration, we test the complements of each sub-
equence (i.e., E2 99K E3 99K E4, E1 99K E3 99K E4, E1 99K E2 99K
4, and E1 99K E2 99K E3). Although all complements that include
1, E4 could make the app crash with the same stack trace, our
lgorithm takes the first failure (i.e., the second complement (E1
9K E3 99K E4)). It starts the next iteration with the granularity
and one event in each sub-sequence (Line 15 in Algorithm

). In the third iteration, we operate the complement of each
ub-sequence (i.e., E3 99K E4, and E1 99K E4) and the second
omplement (E1 99K E4) makes the app crash. The algorithm
tarts the next iteration with the granularity 2 for the latest failed
omplement (E1 99K E4) and one event in each sub-sequence (one
ub-sequence includes E1, and another one includes E4.) (Line 15
n Algorithm 1). In the fourth iteration, none of them makes the
pp crash and the algorithm exits since it reaches 1-minimal (Line
1 in Algorithm 1). Therefore, the latest failure-inducing event
equence (i.e., E1 99K E4 at the third iteration) is the simplified
ailure-inducing event sequence (i.e., ∆ FSoE). In this way, the
lgorithm extracts the minimal failure-inducing events (i.e., E1,
nd E4) for non-adjacent failure-inducing events.

.4. Backward dynamic slicing

This phase conducts the backward dynamic slicing for the
educed event sequence (∆FSoE), which triggers a bug. Our dy-
amic slicing captures two levels of control- and data-dependence
t both the program statement and event levels to leverage the
vent information from the inputs. Our dynamic slicing is done
y producing a subgraph of the static PDG by considering only

he control- and data-dependence of the executed statements

9

and their related activities. The following describes the common
notation:

d
−→ Data dependences.
c
−→ Control dependences.
Sit The instance of instruction Si at time t .
Ei The event triggered while i represents the event’s

ID.
Data-dependence. There are two data-dependence levels, i.e.,

the data-dependence between the program statements and the
data-dependence between events. As shown in Fig. 4, at Line 5, a
statement S2t utilizes the same object o1 which is defined at Line
3 in S1t and S2t is data-dependent on S1t at time t.

Example 5. To illustrate the data dependences in our approach,
let us revisit the example in Fig. 3(c). The slice of maxRatio at Line
15 includes nodes 2, 3, 10, 11, 12, and 15 because maxRatio
is defined with the value of width, and height at Line 15, and
where width is defined with the int value 1 at Line 2. Similarly,
height is defined with the int value height − 1 at Line 10 in
heightDecrementClick. Therefore, node 15 is data dependent
on node 2, and node 10. The same approach applies to nodes 3,
11, and 12.

For data dependence among the events, as shown in Fig. 4,
event E2 (onClick2 at Line 4) is data-dependent on event E1
(onClick1 at Line 2) because instruction S2t in E2 is data-
dependent on S1t in E1. But, only because object o2 used in S2t
(Line 5) depends on object o1 defined in S1t (Line 3) at that t time.

Example 6. In our motivating example in Fig. 3, if widthDecre-
mentClick, and heightDecrementClick are triggered before
triggering compressImageClick, compressImageClick is da-
ta-dependent on both widthDecrem- entClick, and height-
DecrementClick via width, and height respectively. The slice
in Fig. 3(c) contains node 12 because compressImageClick is
ata-dependent on heightDecrementClick via height .

Control-dependence. As with data-dependence, there are two
evels of control dependence at the levels of instruction and event.
or the former, as in Fig. 5, if an instruction S4t at Line 2 is

executed upon only the evaluation result of S3t at Line 1, S4t
s control-dependent on S3t . To clarify, the value of condition
i.e., the predicate) at S3t determines the execution of S4t . In
ther words, if S3t can alter the program’s control and it deter-
ines whether S4t executes (Ferrante et al., 1987). Examples of
tatements that can alter the control are if and while.
Because of Android’s life cycle nature, unlike traditional Java,

or control dependence among events, there are two ways to
etermine the execution of another callback by a callback.

. Direct-control dependence: A component’s event directly de-
termines the execution of another event via an initialized
object. For example, as shown in Fig. 5 (Lines 3–8), onCreate
of Act3 has triggered the activity (i.e., initialized object Act4)
context transitions via startActivity at Line 6 and the
execution of onCreate of Act4 (i.e., E4) is directly controlled
by onCreate of Act3 (i.e., E3). Therefore, E4 is direct-control-
dependent on E3 (i.e., E4

c
−→ E3).

. Lifecycle-control dependence: An event of a component ini-
tiates the execution of another component’s event because
of Android’s component lifecycle. For example, as shown in
Fig. 5 (Lines 9–15), onPause of Act7 (i.e., E7) determines the
execution of onCreate of Act8 (i.e., E8) by completing itself
because E8 will not be invoked until E7 returns. Therefore, E8
is control-dependent on E7 because of the lifecycle (i.e., E8

c
−→
E7);

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

P
f
d
d
r

a
c
a
e
e
a
N
b
t

Fig. 4. Data dependence.
Fig. 5. Control dependence.
Based on the control- and data dependence, ESDroid builds
DG. ESDroid then maps the executed statements in the simpli-
ied trace ∆FSoE to the static PDG by conducting a backward
ynamic slicing. ESDroid finds all the associated control- and
ata-dependence statements on the PDG based on a slicing crite-
ion ⟨t, s, o⟩, where t is a specified timestamp, s is an error node
(an executed instruction) occurring at t , and o is a sequence of
objects holding an error at the node s. Same as AndroidSlicer, the
extracted control- and data- dependence slices are at the appli-
cation level (manifest in the application’s dex code generated by
Soot Vallée-Rai et al., 2010) when reporting to users.

Algorithm 2 illustrates our backward dynamic slicing with the
data structure;

• Tf : A list of executed statements when ∆FSoE is triggered on
an instrumented APK.
• idx: An integer that is the location of the error instruction in

Tf (i.e., the last index of Tf for the app crash because the last
index holds the failure point, which is the point of interest).
• Sl: A list of executed statements affecting the point of interest

(i.e., the output). Initially empty.
• PDGCD: A list of nodes, which is a dynamic control dependence

graph. Initially empty.
• PDGDD: A list of objects which is a dynamic data dependence

graph. Initially empty.

Given three inputs; (1) instrumented apk (denoted as apk), (2)
trace file (denoted as Tf) including the list of statements exe-
uted while ∆FSoE is triggered, and (3) the index of Tf (denoted
s idx) in which an executed statement with the object holding
rror occurs at the particular timestamp, ESDroid slices the ex-
cuted statements (i.e., the output of slicing process), denoted
s Sl, affecting the point of interest until the app entry point.
ote that the pre-conditions of the algorithm are (1) Tf cannot
e the empty set, and (2) idx must be a valid index. We sorted
he executed statements according to the executed order in the
10
execution trace because we use the trace log as input (i.e., Tf)
that includes the execution trace. Constructing PDG (denoted as
PDGDD for data dependence and PDGCD for control dependence)
is done dynamically at Lines 18, 22 and 25 with the help of
static PDG. Specifically, ESDroid collects all the used objects in the
working node (i.e., checking data dependence) at Lines 16–20. To
list the nodes for control dependence, isCD checks whether the
execution of the current working node (i.e., the node located at
the current index idx of Tf) (denoted as Tf [idx]) is determined
by the previous node (denoted as Tf [idx-1]) for instruction-level
control dependence (Lines 21–23). Particularly, isCD examines if
the node located at Tf [idx-1] contains a predicate whose outcome
controls the execution of the node located at Tf [idx]. ESDroid
further checks for event-level control-dependences and, it ap-
pends PDGCD with the last node of the method which initiates
the method of the current working node (Lines 24–26) with the
help of static PDG if the method of the current working node
is the callback. Specifically, getS in the algorithm helps to get
the last node of the method that initiates the method of the
current working node. If ESDroid finds the current working node
in dynamic PDG (i.e., PDGDD and PDGCD) (Lines 4–12), and ESDroid
adds the current working node to the output after checking for
duplicated instructions (Lines 13–15). For example, when the
same instruction occurs in the source code but is executed mul-
tiple times, ESDroid also checks whether the current instruction
is dependent on previous occurrences in the output slice.

4. Implementation

We describe the implementation details of the four phases in
ESDroid as follows:

Instrumentation and Producing FSoE. ESDroid uses Soot
(Vallée-Rai et al., 2010) to conduct the instrumentation to pro-
duce our customized logging information. Regarding producing
FSoE, there are several techniques to generate event sequences

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

a
p

u
h
a
o

S
s
R
h
d
t
t
p

P
a
n
b
a
t
‘
t
s
d
W

C

C
E

C
r

f
S

Algorithm 2: Backward Dynamic Slicing. Input: an Apk
pk, a list of statements Tf , the position idx which is the
oint of interest in Tf . Output: a list of statements Sl.
1 Sl←− ø;
2 isSlice←−true;
3 while idx>=0 do
4 for each Object o defined at Tf [idx] do
5 if PDGDD.contains(o) then
6 isSlice←−true;
7 break;
8 end
9 end

10 if PDGCD.contains(Tf [idx]) then
11 isSlice←− true ;
12 end
13 if isSlice and !Sl.contains(Tf [idx]) then
14 Sl.add(Tf [idx]);
15 end
16 if isSlice then
17 for each Object o used in Tf [idx] do
18 PDGDD.add(o);
19 end
20 end

// check Tf [idx-1] contains a predicate whose
outcome controls the execution of Tf [idx]

21 if isSlice and isCD(Tf [idx],Tf [idx-1]) then
22 PDGCD.add(Tf [idx-1]);
23 end
24 if isSlice and Tf [idx]’s method m is callback then

// add the last statement of callback which
initiates m

25 PDGCD.add(getS(apk,m));
26 end
27 idx←− idx-1;
28 isSlice←−false;
29 end
30 return Sl;

to exercise Android apps. Monkey-style stress testing is consid-
ered the most robust and popular approach to exercise an app
based on previous literature (Patel et al., 2018a; Choudhary et al.,
2015; Zeng et al., 2016). For example, a prior study states that:
‘‘researchers found that Monkey (the most widely used tool of this
category in industrial settings) outperformed all of the research tools
in the study’’ (Choudhary et al., 2015). We choose to implement
a Python program that generates random events using Mon-
keyRunner. Our program loads the main activity at the beginning.
We did not adopt other similar techniques for generating events,
including Android’s built-in Monkey (Patel et al., 2018b) because
log messages originally generated by Monkey were not easily
translatable back to the corresponding adb command. We did not
se RERAN (Gomez et al., 2013) because it generates events from
exadecimal to decimal based on the information obtained from
db getevent, and cannot reliably reproduce the same sequence
f events, especially when the devices’ resolutions are different.

implifying FSoE. To simplify FSoE, we have implemented a
tandalone tool written in Java. Our implementation uses the
untime.exec(String command) method to execute the Pyt-
on script with MonkeyRunner to conduct the testing on An-
roid’s emulator. To compare the testing result of ∆FSoE with
hat of the original FSoE, the testing result includes the exception
ype information, line number, method name, and class name
roduced by adb Logcat.5

5 https://developer.android.com/studio/command-line/logcat.
11
Backward Dynamic Slicing. In this phase, we first built the
static PDG. There are two levels of dependency on the static PDG
as described in Section 3.4, i.e., the event level that acquires the
control- and data-dependence between Android events, and the
method level that captures the dependence between two instruc-
tions. For the instruction level, we used the static PDG generated
by Soot. For the event-level, we leveraged AndroidSlicer’s event-
level PDG to produce the final static PDG. Next, our dynamic PDG
was produced by our dynamic slicing algorithm. This includes
only the executed statements of the static PDG based on the
slicing criteria when running the instrumented app under the test
input ∆FSoE.

5. Evaluation

Existing automated debugging techniques for Android Apps
include (1) MZoltar (Machado et al., 2013) that uses spectrum-
based fault localization, (2) AndroidSlicer that performs dynamic
slicing, (3) Mandoline that evaluates dynamic slicing with alias
analysis. We choose to evaluate our approach on AndroidSlicer
and Mandoline because (1) they are publicly available (we did not
evaluate against MZoltar as it is not publicly available), and (2)
they are state-of-the-art slicing techniques for Android Apps. Our
experiments aim to evaluate the effectiveness of ESDroid by (1)
comparing the size of the slices it produces with those produced
by AndroidSlicer and Mandoline, and (2) analyzing the quality of
those slices for debugging.

5.1. Experiment setup and methodology

5.1.1. Evaluation datasets
We evaluated ESDroid on 41 defects from 38 open-source

Android apps for 17 exception types. These apps cover a wide
range of domains as per listed in Table 4. Ten of these apps, used
in previous literature (Alavi et al., 2019; Jiang et al., 2017), are
available at Google Play (i.e., NPR News, Olam, Addi, Cowsay,
asswordMaker, Tickmate, TripSit, Transistor, Anymemo
nd GnuCash). We evaluated on benchmark apps because we
eed to manually verify whether the resulting slice includes the
ug location. Table 4 lists the information about the evaluated
pps. The ‘‘Exception Type’’ column contains information about
he specific type of exception that causes the crash, whereas the
‘Dataset’’ column represents the dataset or Google Play. Overall,
he evaluated datasets contain a wide variety of apps of various
izes (27–17654 KB of Dex code) with 1 to 27 activities. These
atasets have different types of exceptions that lead to crashes.
e selected these defects based on the following criteria:

1: Apps from different categories

2: Crashes with different types of exceptions to check whether
SDroid can capture the bug for different exception types.

3: Crashes that our random event sequence generation can
eproduce in at least one of the ten runs.

In addition, we ensured that these defects were obtained
rom the prior evaluation of analysis techniques of Android apps.
pecifically, we evaluated:

• seven apps (i.e., WeightChart, DalvikExplorer, Ring-
droid, SyncMyPix, Tippy, WhoHasMyStuff and Yahtzee)
from the previous evaluation of SimplyDroid (Jiang et al.,
2017).
• two apps (i.e., APV PDF Viewer, NPR News) from the previ-

ous evaluation of AndroidSlicer (Alavi et al., 2019).
• four apps (i.e., Fdroid, AnyMemo, GnuCash and Transis-

tor) from Droixbench (Tan et al., 2018).

https://developer.android.com/studio/command-line/logcat

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

T
m
f
B
S
I
s
d
c
l

u
1
a
G
9

Table 4
Information of buggy apps and exceptions for RQ1, RQ2, RQ3, and RQ4.
App Dex code size (KB) # of activities Program version Exception type Dataset

Addi 656.9 4 1.98 ActivityNotFoundException Su et al. (2020)
Anymemo 8887.5 27 10.9.922 NullPointerException Su et al. (2020),

and Tan et al.
(2018)

APV PDF Viewer 63.1 3 0.2.6 NullPointerException Alavi et al. (2019)
Bankdroid 5199.7 12 1.9.10.6 IllegalArgumentException Su et al. (2020)
Birthdroid 431.1 3 0.6.3 NumberFormatException Su et al. (2020)
Bites 49.9 5 1.3 NumberFormatException Su et al. (2020)
Calculator 2149.3 1 1 NumberFormatException GooglePlay (2021)
CampFahrplan 3223.7 7 1.32.2 IllegalArgumentException Su et al. (2020)
Carnet - Notes app 5053 22 0.24.1 NullPointerException GooglePlay (2021)
Cowsay 18.7 1 1.3 CalledFromWrongThreadException Su et al. (2020)
DalvikExplorer 521.6 16 3.4 NullPointerException Jiang et al. (2017)
Fdroid 5860.0 10 0.98 SQLiteException Tan et al. (2018)
FishBun Demo 3293 7 0.6.2 NullPointerException GooglePlay (2021)

fooCam 514.9 1 2.0 NullPointerException,
SecurityException

Liu et al. (2016)

Geometric Weather 4393 14 2.113 ActivityNotFoundException GooglePlay (2021)
GnuCash 7948.0 20 2.1.4 IllegalArgumentException Tan et al. (2018)
LibreNews 3637.7 2 1.4 ArrayIndexOutOfBoundsException Su et al. (2020)
Linux Deploy 2156 8 2.6.0 IllegalArgumentException GooglePlay (2021)
Man Man 3562 2 2.1.0 ActivityNotFoundException GooglePlay (2021)
Mitzuli 3329.7 2 1.0.7 BadTokenException Su et al. (2020)
NPR News 17654.3 14 2.4 NullPointerException Alavi et al. (2019)
OBSSD - OBS Stream Deck 4085 4 1.2.2 IllegalArgumentException GooglePlay (2021)
Official Cambridge Guide to IELTS 42848 2 11.3.0.0 IllegalStateException GooglePlay (2021)

Olam 715.4 1 1.0 SQLiteException,
StringIndexOutOfBoundsException

Alavi et al. (2019),
and Su et al.
(2020)

PasswordMaker 331.68 3 1.1.11 NumberFormatException Su et al. (2020)
Ringdroid 607.0 4 2.6 IllegalStateException Jiang et al. (2017)
Scale Image View Demo 4277 1 4.0 ActivityNotFoundException GooglePlay (2021)
Scribbler 20.4 3 0.1.8 IllegalFormatConversionException Su et al. (2020)
SyncMyPic 231.0 8 0.15 NoClassDefFoundError Jiang et al. (2017)
Tailscale 2008 1 1.8.3 ActivityNotFoundException GooglePlay (2021)
Tickmate 591.9 6 1.2.0 CursorIndexOutOfBoundsException Su et al. (2020)
Tippy 88.0 6 1.1.3 ArithmeticException Jiang et al. (2017)
Transistor 2993.2 3 1.2.3 RuntimeException Su et al. (2020),

and Tan et al.
(2018)

TripSit 2311.7 8 1.0 RuntimeException Su et al. (2020)

Vanilla Music 1408 13 1.1.0 CursorIndexOutOfBoundsExcep-
tion,
ResourcesNotFoundException

GooglePlay (2021)

WeightChart 541.6 6 1.0.4 ActivityNotFoundException Jiang et al. (2017)
WhoHasMyStuff 47.3 4 1.0.7 NullPointerException Jiang et al. (2017)
Yahtzee 27.4 2 1.1 NumberFormatException Jiang et al. (2017)
c
t
g
b
f
f
r
a
m
a
w
a

5

d
(
W
q

• one app (i.e., fooCam) from RelFix (Liu et al., 2016).
• 13 apps (i.e., Addi, Bankdroid, Birthdroid, Bites, Camp-
Fahrplan, Cowsay, LibreNews, Mitzuli, Passw- ord-
Maker, Olam, Scribbler, Tickmate and TripSit) from
DroidDefects (Su et al., 2020).

o evaluate the applicability of our approach beyond these bench-
ark apps, we further evaluated on eleven closed-source apps

rom Google play (i.e., Calculator, Carnet - Notes app, Fish-
un Demo, Geometric Weather, Linux Deploy, Man Man, OB-
SD - OBS Stream Deck, Official Cambridge Guide to
ELTS, Scale Image View Demo, Tailscale and Vanilla Mu-
ic). We selected these closed-source apps because (1) they are
iverse in terms of size and functionalities, and (2) they contain
rashes that can be triggered without requiring any additional
ogin information.

Specifically, we excluded 10 defects from the previous eval-
ation of the fault localization application in AndroidSlicer and
1 apps from RelFix because (1) the dataset was not publicly
vailable, and (2) we failed to find the corresponding apps in
itHub. Moreover, we excluded 10 apps from Droixbench and
apps from DroidDefects in our experiments because (1) these
12
rashes require complex inputs and specific sequences of events
hat cannot be generated automatically by our event sequence
eneration (does not satisfy C3), and (2) instrumentation failed
ecause Soot fails to parse the apk (i.e., Dex file overflow error
or Android API 22).6 We also excluded 4 apps from DroidDe-
ects because the test re-run did not crash with the same test
esult and stack trace. Although ESDroid operates on the apk file
nd supports both open-source apps and closed-source apps, we
anually analyzed 27 out of the 38 apps (i.e., apps from the
vailable datasets) to evaluate ESDroid’s correctness because (1)
e checked the fault location in the source code for verification,
nd (2) the available datasets have open-source apps.

.1.2. Methodology
We ran the event sequence generation for 10 runs to pro-

uce FSoE. Each run was terminated after all random events
5000 events) had been triggered, or when a crash occurred.
e conducted our evaluation to answer the following research
uestions.

6 https://github.com/secure-software-engineering/FlowDroid/issues/61.

https://github.com/secure-software-engineering/FlowDroid/issues/61

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

R
t

R
F
d
p

R
p

R

R
p

o
a
t
a
n
T
o

5

t
c
s
b
s

#

#

n

l
w
L
n
S
h
g
l
a
W
i
k
f
t
s
r

t
s
e
i
d
t
S
t
s
t
c
d
l
d

5

t
t
F

Q1: What is the effectiveness of ESDroid in reducing the size of
he input event sequence?

Q2: Which of our key two phases (i.e., Phase 3 = Simplifying
SoE (Segment-based Delta Debugging), Phase 4 = backward
ynamic slicing) contributes more to improve the debugging
rocess?

Q3: What is the difference in the size of dynamic slices com-
uted by ESDroid and AndroidSlicer?

Q4: Are slices computed by ESDroid and AndroidSlicer correct?

Q5: What is the difference in the size of dynamic slices com-
uted by ESDroid and Mandoline?

Specifically, the objective of RQ1 is to find the effectiveness
f reducing the search space with delta debugging for Android
pps. RQ2 highlights the phase which contributes the most to
he whole process and the phase which contributes the least,
iming for future enhancement. RQ3 and RQ5 show the point of
arrowing the search space compared to the state-of-art tools.
he purpose of RQ4 is to check our contribution is usable in terms
f quality.

.2. RQ1: Size of input event sequence

RQ1 aims to evaluate our tool’s effectiveness in reducing
he input event sequence (failure-inducing event sequence) by
omparing the size of event sequence between the original event
equence and the simplified event sequence. We use segment-
ased delta-debugging to minimize the randomly generated event
equence. Given the input event sequence Seq, we measure its
length using the following metrics:

of events: Number of events triggered in Seq

of callbacks: Number of callback methods invoked in Seq

of method calls: Number of method calls invoked in Seq

of instructions: Number of Jimple instructions executed in Seq

Table 5 shows the comparison in size between the origi-
ally generated event sequence Seqorig and the minimized event

sequence SeqESDroid. Meanwhile, the second and the third col-
umn under the title ‘‘# of events’’ denote the number of events
triggered in Seqorig and SeqESDroid, respectively. The two columns
under the title ‘‘# of callbacks’’ represent the number of callback
methods invoked in Seqorig and SeqESDroid, respectively. The two ‘‘#
of method calls’’ columns denote the number of methods invoked
in Seqorig and SeqESDroid. (note that ‘‘# method calls’’ counts all
method calls, including all callback methods). The two ‘‘# of
Instructions’’ columns denote the number of instructions exe-
cuted in Seqorig and SeqESDroid. The ‘‘Duration (seconds)’’ column in
Table 5 presents the time taken in seconds to perform the mini-
mization using segment-based delta-debugging. This table shows
our segment-based delta-debugging can effectively minimize the
number of events for all evaluated apps (the minimized # of
events ranges from 1–26 compared to the original # of events
that ranges from 3–1097). On average, ESDroid can reduce 87%
for # of events, 42% for # of callbacks, 42% for # of method calls
and 45% for # of instructions with the average execution time in
3354 s.

We observed that two factors affect the reduction rate: (1)
the GUI states, (2) the redundant events. Firstly, the simplicity of
the GUI states is inversely proportioned to the reduction rate for
an app. If the app has many buttons on a single GUI screen, the
probability of triggering the crash that requires specific ordering
13
of event sequences is low, and the reduction rate for an app is
high. In contrast, if an app has fewer buttons on a single GUI
screen, it is easy to trigger the crash and has a lower reduction
rate. In other words, if an app’s GUI is designed in a simple
way (with fewer GUI components), the reduction benefit can be
less than that of a complex GUI design. Secondly, the redundant
events with executed statements that do not affect the point of
interest can also introduce many spurious nodes and edges on
a dynamic PDG. As shown in Table 5, we found that Transis-
tor has the highest reduction rate because the failed test case
for Transistor selects an item from the long options menu
that generates redundant events. Specifically, the original event
sequence for Transistor has 15 callback events, including the
callback event (i.e., onOptionsItemSelected) that is repeated
six times, and five of them are redundant. Moreover, the Cal-
culator app has the second-highest reduction rate because it
has only one GUI screen and 18 buttons are occupying almost
one-fourth of the whole screen. Therefore, it is difficult to get
the event sequence to cause the app to crash and generates
redundant events. Specifically, the original event sequence for
Calculator has 43 callback events consisting of the callback
event (i.e., onClickNumber) that is repeated 23 times, and all
of them are redundant. Similarly, the test case for Cowsay has
64 callback events, including the callback event onTextChanged
that is repeated 18 times, and all of them are redundant. More-
over, none of them has the statements that affect the point of
interest.

In contrast, the reduction rate for APV PDF Viewer is the
owest among all evaluated apps. During our manual analysis,
e found that it has one GUI screen with only seven items in
istView, and it is easy to generate the failing test case with
ine input events, and four of them are failure-inducing events.
pecifically, the original event sequence for APV PDF Viewer
as only five callback events, and two of them are required to
enerate the failing test case. Moreover, Olam has the second
owest reduction rate. Olam is an English–Malayalam dictionary
nd it searches for the definitions of English/Malayalam words.
e found out that it sets focus on EditText and IME keyboard

s up when the app is launched. Therefore, although the IME
eyboard occupies half of the GUI screen, it is easy to generate the
ailed test case because the cursor position is already defined and
he crash can be triggered easily. Specifically, the original event
equence for Olam has four callback events, and all of them are
equired to cause the app to fail.

In terms of processing time, we observe that it takes a longer
ime to minimize (1) if there are many input events in the event
equence in different Activities and (2) if the failure-inducing
vents with corresponding GUI states in the event sequence are
n different sub-sequences while the original event sequence is
ivided. As shown in Table 5, WhoHasMyStuf and GnuCash have
he longest processing time for the reduction in the experiment.
pecifically, for WhoHasMyStuf, the original sequence that makes
he app fail has the 26 failure-inducing events, and its corre-
ponding GUI states are in different sub-sequences. For GnuCash,
he originally generated event sequence that makes the app crash
ontains six different Activities. However, the basic strategy of
elta debugging is already robust and effective enough to obtain a
arge reduction rate. Exercising more strategies (e.g., hierarchical
elta debugging) could be an interesting future topic.

.3. RQ2: Effectiveness of different phases in ESDroid

To evaluate which phases contributed to the overall reduc-
ion of our approach (reducing the search space), we computed
he number of executed instructions for each phase in Fig. 2.
ig. 6 shows the reduction results for 41 defects of 38 apps.

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

b

c

d

e

f

I
t
e
o
D
r
r
F
p
p
2
i

R

Table 5
Comparison of the number (#) and the reduction ratio (%) between the original event sequence and the event sequence minimized by ESDroid to trigger the same
exception.
Apps # of events # of callbacks # of method calls # of instructions Duration

Original ESDroid (%) Original ESDroid (%) Original ESDroid (%) Original ESDroid (%) (s)

Addi 19 3 84 58 15 74 4 087 3 754 8 136 938 79 722 42 727.62
Anymemo 22 5 77 85 58 31 6 602 5 695 13 464 816 428 269 8 5 033.99
APV PDF Viewer 4 2 50 5 2 60 57 21 63 948 347 63 21.57
Bankdroid 236 23 90 23 18 21 45 348 30 926 31 155 151 102 113 34 9 276.45
Birthdroid 1097 14 98 21 21 0 222 220 1 905 893 1 11 462.30
Bites 471 8 98 55 14 74 231 58 74 2 109 389 82 1 439.24
Calculator 59 1 98 43 2 95 117 7 94 34 974 8 983 74 295.06
CampFahrplan 333 7 97 220 139 36 50 618 16 188 68 1 250 075 268 769 78 3 209.03
Carnet - Notes app 58 6 89 237 218 8 4 809 3 149 34 398 939 223 098 44 1 755.83
Cowsay 65 1 98 64 10 84 244 112 54 4 345 1 610 63 366.16
DalvikExplorer 47 6 87 8 3 62 468 159 66 8 502 1 011 88 148.53
Fdroid 91 3 96 1095 1065 3 192 583 125 202 34 2 678 033 1 878 576 30 664.77
FishBun Demo 93 3 96 18 7 61 83 20 75 86 049 19 959 77 1 025.91
fooCama 3 1 66 199 114 42 106 50 52 811 405 50 77.23
fooCamb 148 3 95 153 68 55 131 76 41 909 500 45 563.39
Geometric Weather 66 5 92 197 191 3 48 943 22 144 54 585 048 332 065 43 2 910.27
GnuCash 35 10 71 15 13 13 287 252 12 936 922 1 13 439.05
LibreNews 66 7 89 30 10 66 101 831 37 414 63 636 956 232 652 63 1 644.62
Linux Deploy 105 6 94 128 101 21 3 328 2 657 20 1 294 897 541 846 58 2 743.71
Man Man 62 3 95 105 52 50 2 203 355 83 1 176 582 121 901 90 363.39
Mitzuli 146 5 96 490 167 65 248 861 167 884 32 1 230 777 905 576 26 1 251.34
NPR News 37 2 94 293 38 87 1 798 605 66 25 597 10 107 61 271.44
OBSSD - OBS Stream Deck 94 17 81 55 34 38 851 383 54 4 754 980 1 200 819 75 2 034.56
Official Cambridge Guide to IELTS 41 10 75 188 177 5 2 018 1 991 1 537 874 355 432 34 12 278.07
Olamc 9 4 55 4 4 0 185 185 0 26 597 26 597 0 317.31
Olamd 5 2 60 4 4 0 61 61 0 42 324 42 324 0 120.50
PasswordMaker 26 10 76 21 10 52 896 387 56 30 969 18 225 41 3 016.59
Ringdroid 135 4 97 45 8 82 4 647 188 95 26 263 2 500 90 1 963.55
Scale Image View Demo 238 5 97 203 61 69 2 902 352 87 295 088 52 468 82 464.63
Scribbler 22 2 90 7 4 42 27 19 29 132 83 37 422.98
SyncMyPic 14 1 92 13 6 53 71 53 25 356 275 23 419.29
Tailscale 24 2 91 25 24 4 126 104 17 174 283 120 950 31 231.67
Tickmate 52 3 94 31 12 61 935 857 8 3 491 3 093 11 737.23
Tippy 76 12 84 32 17 46 515 330 35 3 775 2 406 36 12 485.64
Transistor 638 2 99 15 10 33 154 118 23 1 625 1 242 24 1 263.84
TripSit 14 1 92 7 4 42 157 107 32 1 448 1 313 9 178.38
Vanilla Musice 11 2 80 459 453 1 6 258 6 249 1 92 527 83 118 10 789.18
Vanilla Musicf 21 4 80 491 468 4 14 461 7 360 49 153 206 93 073 39 3 776.37
WeightChart 34 3 91 66 12 81 475 115 75 17 432 1 711 90 822.08
WhoHasMyStuf 1025 26 97 139 8 94 1 749 107 93 10 820 604 94 19 399.56
Yahtzee 131 6 83 2 2 0 5 5 0 33 33 0 18 093.75

Mean 143 6 87 130 89 42 18279 10632 42 398720 174780 45 3354

aThe app refers to the defect that throws NullPointerException.
The app refers to the defect that throws SecurityException.
The app refers to the defect that throws SQLiteException.
The app refers to the defect that throws StringIndexOutOfBoundsException.
The app refers to the defect that throws CursorIndexOutOfBoundsException.
The app refers to the defect that throws ResourcesNotFoundException.
G
C
m
f
s
p
i
a
r
f

n Table 6, the second, the third, and the fifth column under
he title ‘‘# of instructions’’ denote the number of instructions
xecuted in phase 2 (i.e., Producing Failure-inducing Sequence
f Events (FSoE)), phase 3 (i.e., Simplifying FSoE (Segment-based
elta Debugging)), and phase 4 (i.e., Backward dynamic slicing)
espectively. The fourth and sixth columns describe the reduction
ate calculated on the count of instructions executed in phase 2.
or instance, for APV PDF Viewer, 63% of trace was lessened in
hase 3 compared to trace in Phase 2, while 95% was decreased in
hase 4 as opposed to tracing in phase 2. The reduction for phase
is 0%–94% with an average reduction of 45%, whereas phase 3

s 36%–99% with an average reduction of 94%.
To evaluate our phases, we use the following two metrics.

eduction rate in Phase 3

=
of instructions executed in Phase 2− # of instructions executed in Phase 3

of instructions executed in Phase 2
(1) o

14
Reduction rate in Phase 4

=
of instructions executed in Phase 2− # of instructions executed in Phase 4

of instructions executed in Phase 2

(2)

The rows of Table 6 and Fig. 6 show that the reduction rate
in phase 4 is higher than in phase 3. At phase 4, the maximum
reduction rate is 99% (i.e., Fdroid, Calculator, FishBun Dem,
eometric Weather, OBSSD - OBS Stream Deck, Official
ambridge Guide to IELS, Scale Image View Demo) and the
inimum is 36% (i.e., Yahtzee). At phase 3, 0% reduction rate

or two apps (i.e., Olam and Yahtzee) because the original event
equences and the simplified event sequences in phase 2 and
hase 3 are identical, and the number of methods and callbacks
nvoked are identical. However, in phase 4, when ESDroid slices
ll the executed instructions affecting the point of interest, the
eduction rate becomes more than 0% (i.e., 99% for Olam and 36%
or Yahtzee). Therefore, phase 4 contributes more to the overall
ptimization than phase 3.

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

S
t

5
D

S
b
e

Fig. 6. The reduction rate (in percentage) for the number of instructions executed in Phase 3 and Phase 4. The app marked by * refers to the defect that throws
NullPointerException, the app marked by ** refers to the defect that throws SecurityException, the app marked by ∼ refers to the defect that throws
QLiteException, the app marked by ∼∼ refers to the defect that throws StringIndexOutOfBoundsException, the app marked by ˆ refers to the defect that
hrows CursorIndexOutOfBoundsException, and the app marked by ˆˆ refers to the defect that throws ResourcesNotFoundException.
S
t

S

F
a

.4. RQ3: Difference in the size of dynamic slices computed by ES-
roid and AndroidSlicer

We compare the effectiveness of ESDroid against Android-
licer by measuring the sizes of the dynamic slices produced
y the two approaches. Employing the following metrics, we
valuated the effectiveness of the two approaches:
15
1: # of executed Jimple lines: The number of Jimple instruc-
ions in the dynamic slice

2: Time: Time taken to perform dynamic slicing

ig. 7(a) shows the number of Jimple instructions in the gener-
ted slice of both approaches (i.e., AndroidSlicer, and ESDroid),

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

b

c

d

e

f

w
g
i
t
s
D
f
Y
t
e
a
s
s
r
t
t
W

Table 6
Output comparison (#) between three phases in ESDroid (i.e., Phase 2 = Producing Failure-inducing Sequence of Events (FSoE), Phase 3 = Simplifying FSoE (Segment-
based Delta Debugging), Phase 4 = Backward dynamic slicing). The values in the fourth column with the title (i.e., (%) (1)) and the sixth column (i.e., (%) (2)) are
calculated by using the matrix (1) and matrix (2), respectively.
Apps # of instructions

Phase 2 Phase 3 (%) (1) Phase 4 (%) (2)

Addi 136 938 79 722 42 721 99
Anymemo 464 816 428 269 8 2222 99
APV PDF Viewer 948 347 63 49 95
Bankdroid 155 151 102 113 34 522 99
Birthdroid 905 893 1 100 89
Bites 2 109 389 82 91 96
Calculator 34 974 8 983 74 15 99
CampFahrplan 1 250 075 268 769 78 1010 99
Carnet - Notes app 398 939 223 098 44 6697 98
Cowsay 4 345 1 610 63 86 98
DalvikExplorer 8 502 1 011 88 184 98
Fdroid 2 678 033 1 878 576 30 1731 99
FishBun Dem 86 049 19 959 77 262 99
fooCama 811 405 50 31 96
fooCamb 909 500 45 132 85
Geometric Weather 585 048 332 065 43 2036 99
GnuCash 936 922 1 60 94
LibreNews 636 956 232 652 63 163 99
Linux Deploy 1 294 897 541 846 58 8591 99
Man Man 1 176 582 121 901 90 5980 99
Mitzuli 1 230 777 905 576 26 1203 99
NPR News 25 597 10 107 61 412 98
OBSSD - OBS Stream Deck 4 754 980 1 200 819 75 9821 99
Official Cambridge Guide to IELS 537 874 355 432 34 1275 99
Olamc 26 597 26 597 0 295 99
Olamd 42 324 42 324 0 148 99
PasswordMaker 30 969 18 225 41 839 97
Ringdroid 26 263 2 500 90 390 99
Scale Image View Demo 295 088 52 468 82 182 99
Scribbler 132 83 37 38 71
SyncMyPic 356 275 23 91 74
Tailscale 174 283 120 950 31 1842 99
Tickmate 3 491 3 093 11 152 96
Tippy 3 775 2 406 36 317 92
Transistor 1 625 1 242 24 104 94
TripSit 1 448 1 313 9 51 96
Vanilla Musice 92 527 83 118 10 3171 97
WeightChart 17 432 1 711 90 292 98
WhoHasMyStuff 10 820 604 94 159 99
Yahtzee 33 33 0 21 36
Vanilla Musicf 153 206 93 073 39 3300 98

Mean 392780 174779 45 1336 94

aThe app refers to the defect that throws NullPointerException.
The app refers to the defect that throws SecurityException.
The app refers to the defect that throws SQLiteException.
The app refers to the defect that throws StringIndexOutOfBoundsException.
The app refers to the defect that throws CursorIndexOutOfBoundsException.
The app refers to the defect that throws ResourcesNotFoundException.
i
E
s
s
t
T
A

S
b
(
o
t

hereas Fig. 7(b) compares the time taken by each approach in
enerating the dynamic slice. The numbers given beside the bars
n Figs. 7(a) and 7(b) show the reduction rate (in percentage) for
he size of the slices and the time taken in generating the dynamic
lice, respectively. Overall, our results in Fig. 7(a) show that ES-
roid is able to produce a thinner slice compared to AndroidSlicer
or all the evaluated apps, except for APV PDF Viewer, Olam and
ahtzee. For these apps, ESDroid fails to reduce the slice because
he event sequence leading to the exception has fewer than five
xtra events, and there is no data or control-dependence found
mong these extra event sequences. ESDroid and AndroidSlicer
hared common instrumentation performance by employing the
ame instrumentation using Soot. We further analyzed the results
eported in Fig. 7a using statistical and effect size tests. In par-
icular, we used the Wilcoxon rank sum test (Conover, 1999) and
he Vargha–Delaney’s Â12 effect size (Vargha and Delaney, 2000).
e used the Wilcoxon test to assess whether the differences
16
n the number of Jimple instructions between AndroidSlicer and
SDroid are statistically significant. We considered the level of
ignificance to be α = 0.05. According to the Wilcoxon tests, the
lices generated by ESDroid are statistically significant smaller
han the slices generated by AndroidSlicer (p-value < 0.00001).
he Vargha–Delaney’s Â12 measure reports a medium effect size
ˆ12 = 0.56.

Although ESDroid can produce a thinner slice than Android-
licer, the results in Fig. 7(b) show that the overall time taken
y both approaches to perform the dynamic slicing is similar
i.e., from 0% to 29%). These results illustrate the efficiency of
ur algorithm in performing dynamic slicing without incurring
oo much additional overhead. In fact, for the Fdroid, ESDroid
can generate the dynamic slice faster than AndroidSlicer because
the size of the trace log (i.e., executed instructions) for Fdroid
is the largest of all the apps used in our experiment and the
analysis time (i.e., checking against static PDG) shows longer

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

a

Fig. 7. The reduction rate (in percentage) for the size of the slices and the time taken in generating the dynamic slice by ESDroid compared with AndroidSlicer. The
pp marked by * refers to the defect that throws NullPointerException, the app marked by ** refers to the defect that throws SecurityException, the app

marked by ∼ refers to the defect that throws SQLiteException, the app marked by ∼∼ refers to the defect that throws StringIndexOutOfBoundsException,
the app marked by ˆ refers to the defect that throws CursorIndexOutOfBoundsException, and the app marked by ˆˆ refers to the defect that throws
ResourcesNotFoundException.
duration. In general, the test case with more redundant events
with statements that do not affect the failure point is more likely
to include spurious slices (e.g., Calculator, DalvikExplorer
and fooCam). Moreover, even with a smaller number of callbacks
and events in our experiments, ESDroid still reduced a substantial
portion of the redundant PDG nodes. We believe increasing the
events will favor ESDroid even further.

5.5. RQ4: Correctness of slices computed by ESDroid and Android-
Slicer

In this section, we aim to ensure the output of our approach is
useful in locating the bug. Since our approach does not require the
source code, we manually examined the apps to assess precision
using bytecode. We decompiled each app to get the Java bytecode
and mapped the Jimple instruction to the program statement via
the program line number. We then manually checked the slices
related to the slicing criterion with the following three steps:

1. Instruction — We checked which instructions were related to
the failure point (the point of interest).
17
2. Method — We investigated which particular call paths quali-
fied for the above instructions. Specifically, we examined what
corresponding methods were required.

3. Segment — As we recorded the execution history using the
segment, we also analyzed the program by checking which
segments enabled the methods mentioned above to ensure
each segment reflected the required state and events for the
app’s crashes.

Then, we compared the extracted information with the slice
generated by ESDroid. We checked all generated slices manually
to ensure that our slice computation was correct. In addition,
to make sure that the slices produced by ESDroid included the
instructions related to the failure point, we manually analyzed
the differences between the output of ESDroid and the output of
AndroidSlicer. Our analysis confirmed that the slices generated by
both ESDroid and AndroidSlicer included the statements affecting
the failure point. Since both ESDroid and AndroidSlicer include
the instructions related to the failure point, a thinner slice gener-
ated by ESDroid is a better outcome because it reduces the time

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

l
f
d
e
c
n
(
T
s
t
s
T
m
b
a
t
o
d
(
o
r

s
f
c
s
(
s
5

Table 7
Information of buggy apps and exceptions for RQ5.
App Dex code size (KB) # of activities Program version Exception type

Anki 4490 21 1 FileUriExposedException
Birthdroid 431.1 3 0.6.3 NumberFormatException
Fastadapter 6376 23 2.5.1 NullPointerException
Fdroid 5860.0 10 0.98 SQLiteException
GnuCash 7948.0 20 2.1.4 IllegalArgumentException
K9 4684 29 1 ActivityNotFoundException
Micromath 4927 2 1 NumberFormatException
Newsblur 3828 36 1 NullPointerException
SiliCompressor 2153 1 1.1.0 ArithmeticException
Specialdates 2149 11 1 IllegalFieldValueException
Table 8
Comparison of the number (#) of Jimple instructions (JS) on the slice between
Mandoline and ESDroid.
Apps #JS

Mandoline Mandoline++ ESDroid (%)

Anki NoSuchElementException 3 3 0
Birthdroid NullPointerException 14 7 50
Fastadapter NoSuchElementException 85 85 0
Fdroid NoSuchElementException 447 280 37
Gnucash NoSuchElementException 270 221 18
SiliCompressor 39 39 26 33
K9 NoSuchElementException 120 87 25
Micromath NoSuchElementException 263 263 0
Newsblur NoSuchElementException 138 138 0
Specialdates NoSuchElementException 404 361 10

Mean – 175 145 18

taken by the developers to inspect the slice during debugging to
state one enhancement.

5.6. RQ5: Difference in the size of dynamic slices computed by ES-
Droid and Mandoline

To compare the effectiveness of our approach versus Mando-
ine, we additionally evaluated our approach against Mandoline
or 10 apps (9 apps used in the original experiments in Man-
oline Ahmed et al., 2021, and the motivating example). We
xclude one of Mandoline defects (i.e., Habdroid) because we
annot reliably reproduce the exception in the app after run-
ing the test generation 10 times with different seed values
does not satisfy C3). Table 7 shows the apps we evaluated.
he ‘‘Exception Type’’ column contains information about the
pecific type of exception that causes the crash. We compare
he effectiveness of ESDroid against Mandoline by measuring the
izes of the dynamic slices produced by the two approaches.
he available implementation of Mandoline throws NoSuchEle-
entException, and NullPointerException for some apps
ecause Mandoline does not consider the control dependence
mong the lifecycle callbacks. It leads to the unfeasible paths in
he dependence graph. We thus contribute an enhanced version
f Mandoline, called Mandoline++, which addresses the Man-
oline implementation issue. Table 8 shows the slice size (#JS)
number of Jimple instructions) for the slice produced by each
f the tools (columns 2, 3, and 4). The column with (%) is the
eduction rate from Mandoline++ to ESDroid.

ESDroid outperforms Mandoline++ in terms of reducing the
lices in six apps and performs equivalently in the remaining
our: Anki, Fastadapter, Micromath and Newsblur. ESDroid
annot achieve a higher reduction rate for four apps; we ob-
erved that the events in the randomly generated event sequence
i.e., failure-inducing sequence of events) are the same as the
implified event sequence. Overall, ESDroid can produce up to
0% thinner slices than Mandoline. We also observed a similar
18
finding with RQ3 that the test case with more redundant events
with statements that do not impact the failure point is more
likely to include spurious slices. On average, ESDroid can reduce
18% for # of Jimple instructions in the slice. We further analyzed
the results using statistical and effect size tests. We used the
Wilcoxon test to assess whether the differences in the number
of Jimple instructions between Mandoline++ and ESDroid are
statistically significant. Based on the Wilcoxon test, we found
that the result is statistically significant (p-value < 0.05). The
Vargha–Delaney’s Â12 measure reports a medium effect size Â12
= 0.55.

5.7. Threats to validity

We identify the following threats to the validity of our evalu-
ation:
Internal validity: For random test case generation, ESDroid sup-
ports events that simulate clicks, rotations, and drags but does not
support complex events like GUI text input and system events.
This limitation may affect the internal validity of this work and
impact the results. In future, we plan to improve our tool to
support complex events. this is not a limitation of our slicer but
rather on our random test generation. Despite the removal of
the majority of spurious slices, the precision of ESDroid depends
on the precision of its underlying static analysis. Specifically,
we implemented our instrumentation on top of Soot and Flow-
Droid (Arzt et al., 2014) so it inherits the current limitations of
these approaches. For example, ESDroid does not support debug-
ging for multi-threading in Android apps due to the lack of sound
support in FlowDroid. Moreover, while there are several slicing
approaches, we only compare our approach against AndroidSlicer,
and Mandoline because, to the best of our knowledge, they are
the only dynamic slicing techniques for Android and their tools
are publicly available. Moreover, as the available implementation
of Mandoline throws NoSuchElementException, and Null-
PointerException for some apps, we modified Mandoline (in
Mandoline++) to address the Mandoline implementation issue.
The modification could have introduced defects. We mitigate this
threat by making minimal modifications to Mandoline. Further-
more, we manually evaluate the quality of the generated program
slices to ensure that our generated reduced slices include the
program statement triggering the crash. As our delta-debugging
step uses stack trace information to simplify the failure-inducing
sequence of events, our reduced slice is guaranteed to include
the statement triggering the crash by construction. Hence, the
manual analysis is a relatively straightforward check. In addition,
our focus is not to tune different delta-debugging strategies but
to make dynamic slicing input-aware. The basic strategy of delta-
debugging is already good enough and exercising more strategies
(e.g., hierarchical delta-debugging) is an interesting future topic.
External validity: Since finding the exception is the prerequisite
for dynamic slicing, we believe that one challenge lies in finding
the exception in the first place for an evaluated app. Moreover,

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

o
t
t
s
A
b
s
f
A

6

D
g
a
e
W
t
d
d
s
d
f
f
g
o
s
d
S
p
o
d
a
b
s
s
S
p
a
b
i
a
u
a
i
a
S
R
J
c
t
G
E
p
F
f
g
s
o
W
t
e
m
f
e
a

ur approach is unable to handle non-crash bugs and also unable
o conduct slicing for obfuscated apps (e.g., whose bytecode is
ransformed using reflection), which might lead to imprecise
licing results. In addition, our study is limited to the evaluated
ndroid apps and our results may not be able to be generalized
eyond them. We mitigate this threat by (1) including closed-
ource Android apps with bugs, and (2) obtaining Android apps
rom five different data sets (Tan et al., 2018; Jiang et al., 2017;
lavi et al., 2019; Liu et al., 2016; Su et al., 2020).

. Related work

elta-Debugging: Several approaches have applied delta-debu-
ging to identify the failure-inducing deltas in traditional desktop
pplications (Yu et al., 2012; Gupta et al., 2005), compilers (Mish-
rghi and Su, 2006), browsers (Zeller and Hildebrandt, 2002),
eb applications (Hammoudi et al., 2015), and microservice sys-

ems (Zhou et al., 2018). However, these approaches are not
esigned for handling the asynchronous event nature of An-
roid apps, where they become ineffective in detecting event
equences. For Android apps, several algorithms based on delta-
ebugging have been proposed to minimize GUI event sequences
or reaching a particular target activity (Clapp et al., 2016), and
or reproducing a crash SimplyDroid (Jiang et al., 2017). The end
oal of this work is completely different from SimplyDroid. The
bjective of our approach is to conduct more precise dynamic
licing to produce a more compact and precise program depen-
ence graph, while SimplyDroid aims to simplify crash traces.
econd, SimplyDroid treats an app as a black box and does not
erform code analysis on Android bytecode or source code, while
ur slicing approach does. Though both approaches used delta-
ebugging, we use delta-debugging as a means to an end, but not
n end. This paper makes a step forward by introducing segment-
ased delta debugging in backward dynamic slicing to reduce
earch space, yielding a thinner slice that includes the effective
tatements on the failure point at the bytecode level.
licing for Web applications: Several techniques have been pro-
osed for slicing in Web applications (Maras et al., 2011; Tonella
nd Ricca, 2005). Although Web applications share similar event-
ased execution paradigms with Android apps, the event’s nature
n the Web application and the nature of the event of Android
pps are different. Unlike Web applications, Android apps pose
nique challenges to slicing with (1) life cycle management rules
mong components (for example, Fragment and Activity), and (2)
ntercomponent communication employed not only in the same
pplication but also across different applications.
licing for Java: Slicing for traditional Java programs (Wang and
oychoudhury, 2008) has been investigated. Unlike traditional
ava, Android has several entry points via various channels, and
alls to other processes within applications or external applica-
ions. It can be undertaken in both an explicit and implicit way.
iven an automatic test case (in the form of event sequences),
SDroid takes account of the characteristics of Android apps to
roduce a reduced program slice.
ault Localization for Android Apps: Traditional spectrum-based
ault localization techniques perform statistical analysis on pro-
ram execution traces to produce a ranked list of suspicious
tatements (i.e., statements that are relevant to the root cause
f a defect) (Parnin and Orso, 2011; Jones and Harrold, 2005;
ong et al., 2016; Pearson et al., 2017; Li et al., 2019). To handle

he unique characteristics of Android apps, MZoltar (Machado
t al., 2013) performs spectrum-based fault localization on instru-
ented apps. Different from MZoltar and other spectrum-based

ault localization approaches, ESDroid (1) does not rely on the
xistence of passing tests (which may not be available for Android
pps) to pinpoint the faulty location, and (2) produces a program
19
slice where each statement within the same slice shared the same
rank rather than a ranked list of suspicious statements.
Slicing for Android Apps: Several slicing approaches have been
designed for Android Apps (Hoffmann et al., 2013; Alavi et al.,
2019; Ahmed et al., 2021). SAAF (Hoffmann et al., 2013) performs
static slicing to detect suspicious behavior patterns for malicious
Android apps. Meanwhile, AndroidSlicer performs dynamic slic-
ing by modeling asynchronous data and the control dependences
of Android apps. Mandoline presents dynamic slicing via alias
analysis. In much the same way as AndroidSlicer, ESDroid uses
dynamic slicing to produce the program slices that aid debugging
for Android apps. ESDroid differs from AndroidSlicer, and Mando-
line in that (1) it offers a fully automated approach for minimizing
the event sequences to produce the final program slices, (2) it
considers the control dependences among the lifecycle callbacks,
(3) our experiments show that ESDroid can produce a thinner
slice than AndroidSlicer, and Mandoline.
Automated program repair for Android Apps: Many automated
techniques have been proposed to generate patches to fix bugs
in Android apps (Dilhara et al., 2018; Kong et al., 2019; Liu
et al., 2016; Marginean et al., 2019; Xu, 2019; Tan et al., 2018).
Our dynamic slicing approach is orthogonal to these automated
bug-fixing approaches and can be combined with them to im-
prove debugging process and subsequently generate high-quality
patches.

7. Conclusion and future work

We, for the first time, introduce delta-debugging into dy-
namic slicing for Android to significantly boost its precision,
as confirmed in our experiments. Our dynamic slicing supports
control- and data-dependence at both the instruction-level and
event-level by leveraging the simplified input event sequence
that triggers the same bug using segment-based delta-debugging.
ESDroid is able to produce a more precise but smaller dynamic
PDG with up to 72% (27% on average) fewer false executed in-
structions than the state-of-the-art AndroidSlicer, and up to 50%
(18% on average) fewer than Mandoline, while maintaining only
the relevant buggy statements to capture precisely the same bugs
as AndroidSlicer and Mandoline. In the future, we plan to enhance
ESDroid to handle non-crashing bugs with oracle by exercising
more strategies (e.g., hierarchical delta debugging), and including
test cases with complex interactions such as GUI text input and
system events.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: This work was supported by the Southern Univer-
sity of Science and Technology, China (SUSTech) - University of
Technology, Sydney, Australia (UTS) Joint Ph.D. Program.

Acknowledgments

The authors would like to thank the reviewers for their in-
sightful feedback. This work was supported by the National Nat-
ural Science Foundation of China, China (Grant No. 61902170)
and Australian Research, Australia Grants (DP200101328 and
DP210101348).

References

Weiser, M., 1984. Program slicing. IEEE Trans. Softw. Eng. (4), 352–357.
Agrawal, H., Horgan, J.R., 1990. Dynamic program slicing. ACM SIGPlan Not. 25

(6), 246–256.

http://refhub.elsevier.com/S0164-1212(23)00001-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb2

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

H

F

A

K

W

A

G

A

A

A

Z

G

C

J

V

A

K

P

C

Z

P

G

M

S

T

2
L

orwitz, S., Reps, T., Binkley, D., 1988. Interprocedural slicing using depen-
dence graphs. In: Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation. pp. 35–46.

errante, J., Ottenstein, K.J., Warren, J.D., 1987. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst. (TOPLAS) 9 (3),
319–349.

grawal, H., DeMillo, R.A., Spafford, E.H., 1991. Dynamic slicing in the presence
of unconstrained pointers. In: Proceedings of the Symposium on Testing,
Analysis, and Verification. pp. 60–73.

orel, B., Laski, J., 1988. Dynamic program slicing. Inform. Process. Lett. 29 (3),
155–163.

ang, T., Roychoudhury, A., 2008. Dynamic slicing on Java bytecode traces. ACM
Trans. Program. Lang. Syst. 30 (2), 1–49.

lves, E., Gligoric, M., Jagannath, V., d’Amorim, M., 2011. Fault-localization
using dynamic slicing and change impact analysis. In: 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011).
IEEE, pp. 520–523.

upta, R., Harrold, M.J., Soffa, M.L., 1992. An approach to regression testing using
slicing. In: ICSM, Vol. 92. Citeseer, pp. 299–308.

grawal, H., Horgan, J.R., London, S., Wong, W.E., 1995. Fault localization using
execution slices and dataflow tests. In: Proceedings of Sixth International
Symposium on Software Reliability Engineering. ISSRE’95. IEEE, pp. 143–151.

lavi, A., Neamtiu, I., Gupta, R., 2019. Dynamic slicing for android. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). pp.
1154–1164.

hmed, K., Lis, M., Rubin, J., 2021. Mandoline: Dynamic slicing of android
applications with trace-based alias analysis. In: 2021 14th IEEE Conference
on Software Testing, Verification and Validation. ICST, IEEE, pp. 105–115.

eller, A., Hildebrandt, R., 2002. Simplifying and isolating failure-inducing input.
IEEE Trans. Softw. Eng. 28 (2), 183–200.

upta, N., He, H., Zhang, X., Gupta, R., 2005. Locating faulty code using
failure-inducing chops. In: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering. pp. 263–272.

lapp, L., Bastani, O., Anand, S., Aiken, A., 2016. Minimizing GUI event traces.
In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. pp. 422–434.

iang, B., Wu, Y., Li, T., Chan, W.K., 2017. SimplyDroid: Efficient event sequence
simplification for android application. In: 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering. ASE, IEEE, pp. 297–307.

allée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V., 2010.
Soot: A Java bytecode optimization framework. In: CASCON First Decade High
Impact Papers. pp. 214–224.

rzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P., 2014. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan
Not. 49 (6), 259–269.

iss, A., 2020. Generalizing the split factor of the minimizing delta debugging
algorithm. IEEE Access 8, 219837–219846.

atel, P., Srinivasan, G., Rahaman, S., Neamtiu, I., 2018a. On the effectiveness of
random testing for Android: or how i learned to stop worrying and love the
monkey. In: Proceedings of the 13th International Workshop on Automation
of Software Test. pp. 34–37.

houdhary, S.R., Gorla, A., Orso, A., 2015. Automated test input generation
for android: Are we there yet?(e). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering. ASE, IEEE, pp. 429–440.

eng, X., Li, D., Zheng, W., Xia, F., Deng, Y., Lam, W., Yang, W., Xie, T., 2016.
Automated test input generation for android: Are we really there yet in an
industrial case? In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 987–992.

atel, P., Srinivasan, G., Rahaman, S., Neamtiu, I., 2018b. On the effectiveness of
random testing for Android: or how i learned to stop worrying and love the
monkey. In: Proceedings of the 13th International Workshop on Automation
of Software Test. ACM, pp. 34–37.

omez, L., Neamtiu, I., Azim, T., Millstein, T., 2013. Reran: Timing-and touch-
sensitive record and replay for android. In: 2013 35th International
Conference on Software Engineering. ICSE, IEEE, pp. 72–81.

achado, P., Campos, J., Abreu, R., 2013. MZoltar: automatic debugging of
Android applications. In: Proceedings of the 2013 International Workshop
on Software Development Lifecycle for Mobile. ACM, pp. 9–16.

u, T., Fan, L., Chen, S., Liu, Y., Xu, L., Pu, G., Su, Z., 2020. Why my app crashes
understanding and benchmarking framework-specific exceptions of android
apps. IEEE Trans. Softw. Eng..

an, S.H., Dong, Z., Gao, X., Roychoudhury, A., 2018. Repairing crashes in android
apps. In: Proceedings of the 40th International Conference on Software
Engineering. pp. 187–198.

021. [link]. URL https://play.google.com/store/apps.
iu, J., Wu, T., Yan, J., Zhang, J., 2016. Fixing resource leaks in Android apps with

light-weight static analysis and low-overhead instrumentation. In: 2016 IEEE
27th International Symposium on Software Reliability Engineering. ISSRE,
IEEE, pp. 342–352.
20
Conover, W.J., 1999. Practical Nonparametric Statistics, Vol. 350. john wiley &
sons.

Vargha, A., Delaney, H.D., 2000. A critique and improvement of the CL common
language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25
(2), 101–132.

Yu, K., Lin, M., Chen, J., Zhang, X., 2012. Practical isolation of failure-inducing
changes for debugging regression faults. In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering. pp.
20–29.

Misherghi, G., Su, Z., 2006. HDD: hierarchical delta debugging. In: Proceedings
of the 28th International Conference on Software Engineering. pp. 142–151.

Hammoudi, M., Burg, B., Bae, G., Rothermel, G., 2015. On the use of delta
debugging to reduce recordings and facilitate debugging of web applications.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. pp. 333–344.

Zhou, X., Peng, X., Xie, T., Sun, J., Li, W., Ji, C., Ding, D., 2018. Delta debugging
microservice systems. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. pp. 802–807.

Maras, J., Carlson, J., Crnković, I., 2011. Client-side web application slicing.
In: 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). IEEE, pp. 504–507.

Tonella, P., Ricca, F., 2005. Web application slicing in presence of dynamic code
generation. Autom. Softw. Eng. 12 (2), 259–288.

Parnin, C., Orso, A., 2011. Are automated debugging techniques actually helping
programmers? In: Proceedings of the 2011 International Symposium on
Software Testing and Analysis. pp. 199–209.

Jones, J.A., Harrold, M.J., 2005. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. pp. 273–282.

Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F., 2016. A survey on software
fault localization. IEEE Trans. Softw. Eng. 42 (8), 707–740.

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D., Pang, D.,
Keller, B., 2017. Evaluating and improving fault localization. In: 2017
IEEE/ACM 39th International Conference on Software Engineering. ICSE, IEEE,
pp. 609–620.

Li, X., Li, W., Zhang, Y., Zhang, L., 2019. Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization. In: Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis.
pp. 169–180.

Hoffmann, J., Ussath, M., Holz, T., Spreitzenbarth, M., 2013. Slicing droids:
program slicing for smali code. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing. pp. 1844–1851.

Dilhara, M., Cai, H., Jenkins, J., 2018. Automated detection and repair of incom-
patible uses of runtime permissions in Android apps. In: Proceedings of the
5th International Conference on Mobile Software Engineering and Systems.
ACM, pp. 67–71.

Kong, P., Li, L., Gao, J., Bissyandé, T.F., Klein, J., 2019. Mining Android crash
fixes in the absence of issue-and change-tracking systems. In: Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, pp. 78–89.

Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols, A.,
Scott, A., 2019. Sapfix: Automated end-to-end repair at scale. In: Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Practice. IEEE Press, pp. 269–278.

Xu, T., 2019. Improving automated program repair with retrospective fault
localization. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). IEEE, pp. 159–161.

Hsu Myat Win is currently a Ph.D. student enrolled in the SUSTech-UTS Joint-
PhD program. She is supervised by Dr. Yulei Sui from UTS and Dr. Shin Hwei
Tan from Southern University of Science and Technology, China (SUSTech). She
received her M.Tech (Software Engineering) degree from the National University
of Singapore (NUS) and her B.C.Tech. degree from the University of Computer
Studies, Yangon, Myanmar (UCSY). Her main research interest is android testing
and program analysis.

Shin Hwei Tan is a tenure-track Assistant Professor at Southern University of
Science and Technology in Shenzhen, China. She obtained her Ph.D. degree from
National University of Singapore and her B.S (Hons) and M.Sc. degree from UIUC.
Her main research interest includes automated program repair, software testing
and search-based software engineering. She received several prestigious awards,
including Distinguished Program Committee Members of ASE 2020, David J.
Kuck Outstanding M.Sc. Thesis Award, Google Anita Borg Memorial Scholarship.
She has served as PCs for several top-ranked conferences (ICSE, FSE, ASE) and
reviewers for several journals (TOSEM, TSE and EMSE). She also coorganized
the 6th International Workshop on Genetic Improvement (co-located with ICSE
2019) and founded the first International Workshop on Automated Program
Repair (APR 2020).

http://refhub.elsevier.com/S0164-1212(23)00001-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb27
https://play.google.com/store/apps
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb33
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb33
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb33
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00001-8/sb47

H.M. Win, S.H. Tan and Y. Sui The Journal of Systems & Software 198 (2023) 111606

Y
p
T
S
o
i
i
a

ulei Sui is a Senior Lecturer a.k.a an Associate Professor at the School of Com-
uter Science, Faculty of Engineering and Information Technology, University of
echnology Sydney (UTS). He is broadly interested in Program Analysis, Secure
oftware Engineering, and Machine Learning. In particular, his research focuses
n building fundamental static and dynamic analysis techniques and tools to
mprove the reliability and security of modern software systems. His recent
nterest lies at the intersection of programming languages, natural languages,
nd machine learning. Specifically, his current research projects include secure
21
machine learning, program analysis for bug detection and repair through data
mining and deep learning.

His papers have been published in the top-tier conferences and journals in
the field of software engineering and program analysis such as TSE, TOSEM,
ICSE, FSE, OOPSLA, ECOOP, ISSTA, ASE, SAS, CGO, and CC. He was a plenary talk
speaker at EuroLLVM 2016 and has been awarded a 2021 ICSE Distinguished
Reviewer, 2020 OOPSLA Distinguished Paper, a 2019 SAS Best Paper, a 2018
ICSE Distinguished Paper, a 2013 CGO Best Paper, and an ARC Discovery Early
Career Researcher Award (2017–2019).

	Event-aware precise dynamic slicing for automatic debugging of Android applications
	Introduction
	A Motivating Example
	Producing FSoE
	Simplifying FSoE
	Backward Dynamic Slicing

	Approach
	Instrumentation
	Producing FSoE
	Simplifying FSoE
	Backward Dynamic Slicing

	Implementation
	Evaluation
	Experiment Setup and Methodology
	Evaluation datasets
	Methodology

	RQ1: Size of input event sequence
	RQ2: Effectiveness of different phases in ESDroid
	RQ3: Difference in the size of dynamic slices computed by ESDroid and AndroidSlicer
	RQ4: Correctness of slices computed by ESDroid and AndroidSlicer
	RQ5: Difference in the size of dynamic slices computed by ESDroid and Mandoline
	Threats to validity

	Related Work
	Conclusion and Future Work
	Declaration of Competing Interest
	Acknowledgments
	References

