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a b s t r a c t

Assigning developers and allocating issue types are two important tasks in the bug triage process.
Existing approaches tackle these two tasks separately, which is time-consuming due to repetition
of effort and negating the values of correlated information between tasks. In this paper, a multi-
triage model is proposed that resolves both tasks simultaneously via multi-task learning (MTL). First,
both tasks can be regarded as a classification problem, based on historical issue reports. Second,
performances on both tasks can be improved by jointly interpreting the representations of the issue
report information. To do so, a text encoder and abstract syntax tree (AST) encoder are used to
extract the feature representation of bug descriptions and code snippets accordingly. Finally, due
to the disproportionate ratio of class labels in training datasets, the contextual data augmentation
approach is introduced to generate syntactic issue reports to balance the class labels. Experiments were
conducted on eleven open-source projects to demonstrate the effectiveness of this model compared
with state-of-the-art methods.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Software issue reports—i.e. feature enhancement requests and
ugs that appear during software maintenance—are typically
tored in bug repositories or issue tracking systems (Hassan and
ie, 2010). Many open-source software projects predominately
se cloud-based issue tracking systems (e.g. Bugzilla, GitHub) to
anage requests systematically (Yadav et al., 2019). The pro-
ess of managing an issue tracking system involves reviewing
ew issue reports to ensure they are valid (thus eliminating
uplicate reports), finding appropriate developers for assignment,
nd classifying each issue into the relevant issue type (e.g. bug,
eature, and product component). The process is also known as
ug triaging, and a person who performs these tasks is called
triager or issue tracker (Banerjee et al., 2017). In practice, an

ssue tracker manually performs this process repeatedly. Bug
riaging is thus time-consuming and tedious, since many software
rojects are maintained by multiple developers and composed of
arious product components. In some scenarios, if the assigned
evelopers cannot fix the issue, the issue report is reassigned to
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another developer; this reassignment process is widely known as
bug tossing. This tossing process can add to the overall bug fixing
time.

Problem. As large numbers of bugs are reported daily in the issue
tracking system, manually managing these issue reports on time
becomes challenging. For instance, in the aspnetcore1 project,
ver the course of six months (from Jan 1, 2020 to Jun 30, 2020),
339 issue reports were reported, with an average of 223 reports
er month. The project is maintained by 84 developers, and with
ach report being classified as one of 197 issue types, an issue
racker needs to spend a lot of time and effort on triaging. As a
onsequence, this might delay resolving these issue reports. Sev-
ral automatic triage approaches have been proposed to leverage
he candidate developers’ prediction process (Anvik et al., 2006;
agdi et al., 2012; Lee et al., 2017; Xia et al., 2016a; Xi et al., 2018;
ani et al., 2019; Xi et al., 2019) and issue type (Runeson et al.,
007; Wang et al., 2008; Banerjee et al., 2017) labelling process.
In general, existing bug triage approaches mainly fall into two

ategories: the algebraic model-based approach and the statisti-
al language model-based approach. Both approaches train both
evelopers and issue types prediction tasks with a single task
earning model. Studies have used terms frequency (TF) and in-
erse document frequency (IDF) as the term's weighting factor in

1 https://github.com/dotnet/aspnetcore/.
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lgebraic models. Various distance calculation algorithms (e.g. Eu-
lidean distance) are used to calculate the distance between
wo issue reports and to construct links between a new issue
eport and potential developers or issue types via matching with
xisting issue reports (Runeson et al., 2007; Xia et al., 2016a).
The most commonly used algebraic models in these studies

re: the vector space model (VSM), latent semantic indexing (LSI),
nd latent dirichlet allocation (LDA) (Xia et al., 2016b,a; Yadav
t al., 2019; Xi et al., 2019; Anvik et al., 2006; Mani et al., 2019;
ee et al., 2017). More recent studies have explored statistical
achine learning representation models, such as support vector
achine (SVM) (Anvik et al., 2006) and, neural language models,
uch as convolutional neural networks (CNNs) (Lee et al., 2017),
ecurrent neural networks (RNNs) to leverage accurate learning
epresentations. However, the existing approaches capture both
n issue report's description and code snippet information as
ontinuous distributed vector representations, as code snippets’
roperties are not captured precisely. In addition, the perfor-
ance of these learning models can be degraded due to data

mbalances in the training data (Lee et al., 2017).

imitations. To leverage the existing bug triage approaches, the
ollowing limitations are addressed in the present study.

Limitation 1: It is time consuming to train multiple single-
ask learning models individually. Recommending developers
nd issue types are two important tasks of the bug triage pro-
ess. Existing methods solve these two tasks separately, which
eads to task repetition and ignores the correlating information
etween tasks. In a software development project, some devel-
pers normally work on certain components (e.g. user interface
odule, API components). Thus, developers and issue types are

wo closely related attributes. However, this correlation is not
dequately considered in existing bug triage models. First, both
evelopers and issue types labelling can be regarded as a classifi-
ation problem: both rely on historical bug descriptions and code
nippet information. Second, these two tasks can benefit each
ther: developer selection can incorporate additional knowledge
rom issue types labelling, while learning these two tasks together
an be improved by learning textual information and abstract
yntax tree (AST) information from the issue reports.
Limitation 2: There is a lack of structural information of code

nippets in feature representation. Most issue reports contain
ode snippets written in the structural language. Code snippets
re error-prone, as they cannot parse into AST structure directly
ithout pre-processing. Neither learning the code snippets to-
ether with the bug description nor negating them can perform
he issue report representation learning effectively.

Limitation 3: There is class imbalance. Each issue report can
e linked to multiple developers and issue types. The dispropor-
ionate ratio of observations in each label, leads to classification
redictive modelling problems. Most studies have addressed the
mbalanced labels challenge by using a minimum threshold ap-
roach to filter out the inactive labels. However, this approach
onstrains model prediction to these labels.

ontributions. The main contributions of this papers are sum-
arised as follows:

• A multi-tasking bug triage model is proposed to recommend
a list of developers and issue types most relevant to a new
issue report.

• A precise issue report feature representation approach is
proposed. In this approach, the text description and code
snippets context are split into two separate tokens to reduce
noise when learning the representations.

• A contextual data augmentation approach is used to gen-
erate synthetic issue reports to over-sampled imbalanced

datasets, thereby increasing model accuracy.

2

• Open-source projects from eleven different domains were
extensively evaluated. The present multi-triage model is
compared with baseline approaches and two single-task
learning models (i.e. developers and issue types) to measure
this model’s benefits in terms of training time and accuracy.

esearch questions. This paper focuses on answering the follow-
ing three research questions to address the significance of the
study.

RQ1: Does the multi-triage model outperform two existing
approaches in terms of accuracy? First, whether the proposed
multi-triage model outperforms the existing approaches is stud-
ied.

RQ2: Which component contributes more to the multi-triage
model? This question focuses on performing ablation analysis on
the multi-triage model to identify which of its components are
essential to optimise model performance. Next, the multi-triage
model is compared with the conventional single task learning
model in terms of time and accuracy.

RQ3: Does increasing the size of training datasets based
on the contextual data augmentation approach improve our
model’s accuracy? In this paper, a contextual data augmentation
approach is introduced to increase the size of the training sets to
leverage the multi-triage model’s accuracy. To evaluate the effective-
ness of the augmentation approach, the multi-triage model is trained
with two sets of training data (i.e. with and without augmented
data) and the accuracy of the outputs is compared.

Organisation. The remainder of the paper is organised as fol-
lows. Section 2 introduces background information on the bug
triage process, and the motivating example. Section 3 presents
the overall framework of this study’ approach. Section 4 describes
the research questions and implementation. Section 5 provides
the evaluation results. Section 6 discusses validity threats. Sec-
tion 7 describes the significance of our findings. Section 8 reports
the related work while Section 9 provides conclusions.

2. Background and definitions

This section discusses background information about the cor-
relation between developers and issue types recommendation
tasks as well as their usages in the issue report and pull-based
development projects. Then, we present our motivating example.

2.1. Developers and issue types recommendation tasks in bug triage

Assigning developers and allocating issue types are two essen-
tial tasks in the bug triage process. In the issue tracking system,
an issue tracker normally performs these two tasks as the first
step in the bug triage process. Our multi-triage recommendation
model predicts relevant developers and issue types for a new
issue report to leverage the bug triage process. In this context,
issue reports include both bug and enhancement-related issues.
Our recommendation model performs two tasks, as below.

Developer recommendation task. This task involves predicting
the list of potential developers to fix a new issue report. Some-
times, the issue report is fixed by more than one developer, due
to its complexity.

Issue type recommendation task. This task involves predicting
the list of issue types to categorise a new issue report. For ex-
ample, GitHub’s issue tracking system provides seven generic
labels (i.e. bug, duplicate, enhancement, help wanted, invalid,
question, and won't fix), but can add a new custom label as
needed (Cabot et al., 2015a). Interestingly, most projects create
custom labels to track issue priority (e.g. high, low), product
version (e.g. 2.1), workflow (e.g. backlog, review), and product

components (e.g. area-identity, area-mvc, area-blazer).
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Fig. 1. An example of an issue report and the corresponding pull request.
Fig. 2. Developers and issue types correlation example.
ssue report and corresponding pull request. Fig. 1 presents an
xample of the GitHub issue report 1(a) and its corresponding
ull request 1(b). Recent years have seen a growing interest in
ull-based development in open-source software projects (Yu
t al., 2016; Gousios et al., 2014; Jiang et al., 2020). In a pull-based
odel, a developer uses a pull request form to submit code for

equest code review. The reviewers are usually project owners
r contributors who make the final decisions on the requested
hanges (i.e. reject, merge, or reopen). In the GitHub project, the
ields contained in the pull request form are similar to those in
he issue request form but also include additional sections, such
s reviewers, a commits tab, a checks tab, and a files changed tab.
n the description field, most projects reference the fixed issue IDs
or traceability. The reviewers field contains the list of reviewers
ho review the changes, while the commits tab contains the
ommits hierarchy, and the checks tab presents the detailed build
utputs. Lastly, the files changed tab displays the list of changed

iles from all the commits. During initial observations, it was

3

learned that a developer allocated on the issue report may be
different from a developer who created the pull request to fix
the issue. Therefore, this study considered that the developer
information from the pull request is non-trivial in the labels
construction process.

Developer and issue type correlation. In existing projects, both
developers and issue types recommendation tasks use historical
issue reports to train the prediction model. Therefore, there is a
common learning representation layer between these two tasks,
which can learn together. Also, as a software project involves
various components (e.g. user interface, database, application
programming interface), an issue report can relate to any part of
the system. Consequently, certain issue types are usually assigned
to a group of developers with expertise in certain system areas.
The recent work of Catolino et al. (2019) highlighted that not all
bugs are the same, and the structure of project teams is based on

the components of a system. Fig. 2 presents a simple example
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able 1
AST nodes terms and abbreviation.
Terms Abbreviation

Method Declaration Md
Parameter Para
Block statement Bst
For statement Fst
Expression statement Est
Method call expression Mce

in which developers focus on fixing particular system areas. This
example was extracted from the aspnetcore.2

.2. Motivation

As mentioned earlier, the previous bug triage approaches have
onsidered developers and issue types prediction tasks as in-
ependent tasks and trained separately for each. Therefore, it
s time-consuming to train the model. In addition, in existing
pproaches, code snippets are either excluded (Mani et al., 2019;
i et al., 2018) to reduce noise, or treated as natural language
equence tokens (Lee et al., 2017; Xia et al., 2016a). Thus, these
pproaches cannot learn the code snippets or representations
recisely. In initial observations, the issue reports characteristics
f eleven open-source projects from various domains were inves-
igated, including a web application, unit testing, entity develop-
ent, programming interface, compiler, mobile app, augmented

eality, gaming, and search engine to configuration. Further the
nformation is presented in Table 2.

These GitHub projects were selected based on popularity
i.e. rating) and active activity (i.e. recent commits). Projects with
high number of contributors and issue types labels were also
onsidered in order to identify the gap in the existing approaches
o leverage the bug triage process. Eclipse issue reports, which
re used in baseline studies to compare this study’s approach
nd the-state-of-the-art-approach, were also included. Eclipse
ssue reports were extracted from the Bugzilla issue management
ystem. However, Bugzilla3 does not keep developers’ tossing
sequences as this study did not present the average tossing
sequence, value for the eclipse project in Table 2.

Code snippet. The percentage of issue reports include method-
level code snippets were analysed to reproduce the problem.
Interestingly, as presented in Table 2, 12 to 20 per cent of issue
reports contain code snippets. Recent studies (Alon et al., 2019;
Kim et al., 2021) have found that learning representations of AST
tokens are more effective than simple code-based tokens in var-
ious code prediction tasks (i.e. code translation, code captioning,
code documentation). Inspired by previous studies, these code
snippets are transformed into AST paths and a separate token is
created according to this approach. Fig. 3 shows an example of
a java code snippet 3(a) and its corresponding AST 3(b), where
a node (i.e. Para, Bst, Fst, Est, and Mce) is a terminal node,
and the rest are non-terminal nodes. In this approach, the code
snippets are complied using Eclipse IDE4 for java code snippets

2 https://github.com/dotnet/aspnetcore the GitHub project. The x-axis repre-
ents the developers, whereas the y-axis represents the system areas. The size
of the bubble indicates the total issues fixed by developers in the corresponding
areas. Referring to the example, a handful of potential developers can fix area-
blaze and areas-mvc issues. However, there is one developer (Haok) who is
capable of resolving area-identity issues. Based on this observation, we are
motivated to seek the effect of the learning developer and issue types jointly in
the multi-task learning model.
3 https://bugs.eclipse.org/bugs/.
4 https://projects.eclipse.org/projects/eclipse.platform/.
4

and Microsoft visual studio IDE5 for C# code snippets. Table 1
presents the abbreviation for each of the AST node terms. Then,
the code snippets are parsed into AST using Java and C# extractor
from the code to sequence the representation approach (Alon
et al., 2019). Implementation details are presented in Section 4.

Issue reassignment. In the GitHub project, it is noted that a
single pull request can include fixes for multiple issue reports,
and a developer who fixes the issue may be different from the as-
signed developers recorded in these issue reports. In the context
of bug triage, this process is normally referred to as tossing (Xi
et al., 2018). On average, 368 cases in within the training projects
are classified into reassigned issue reports. These pull request
developers’ details are included in the labels construction process,
in order to include the issue report’s tossing sequence.

2.3. Multi-task learning

In recent years, MTL has been successfully applied in many
areas, including computer vision (Kokkinos, 2017; Dvornik et al.,
2017; Bilen and Vedaldi, 2016; Zhou et al., 2017), natural lan-
guage processing (Liu et al., 2015), and facial recognition (Zhang
et al., 2014). It seems, however, that MTL has not been applied to
modelling the bug triage process. In this paper, the MTL model is
adopted to improve the performance of the bug triage process.
MTL tackles developer and issue type recommendation tasks
simultaneously by sharing learning parameters to enable these
tasks to interact with each other. Joint learning of these two tasks
significantly improves the performance of each task, compared
to learning independently. The multi-task learning model can
share parameters between multiple tasks with either hard or soft
parameter sharing of hidden layers. The hard parameter sharing
model explicitly shares the common learning layers between all
tasks while branching the task-specific output layers (Caruana,
1993). The soft parameter sharing model, meanwhile, implicitly
shares the parameters by regularising the distance between the
parameters of each task. Although both approaches can be viewed
as the underlying architecture of the multi-task learning model,
hard-parameter sharing is commonly applied in the context of the
neural network.

This multi-task learning model uses the hard-parameter shar-
ing approach to learn the issue report representation in the
common layer and then branch the two task-specific output
layers to predict developers and issue types. In the common
layer, the individual issue report are further subdivided into
two categories, namely (1) natural language and (2) structural
language, to learn the representation effectively. An issue title and
description, excluding code snippets are grouped under natural
language, whereas code snippets are placed under structural lan-
guage. Then, two encoders are used, namely (1) context encoder
and (2) AST encoder, to extract the essential features of these
two contexts. Next, these two features are combined and fed
into the task-specific output layers to perform co-responding
classification tasks. The detailed implementation of this approach
is explained in Section 3.

3. Proposed approach

This section first explains the high-level structure of the multi-
triage framework. Next, it presents the integral components of
the multi-triage model.

5 https://visualstudio.microsoft.com/.

https://github.com/dotnet/aspnetcore
https://bugs.eclipse.org/bugs/
https://projects.eclipse.org/projects/eclipse.platform/
https://visualstudio.microsoft.com/
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Fig. 3. A code snippet and corresponding AST example.
Table 2
Raw datasets information.
Name Period #No #Code #Dev #Types #Tossing #Days

aspnetcore 10/2014
–10/2020

7151 2520 60 131 62 45

azure-powershell 01/2015
09/2020

2540 312 386 204 128 82

eclipse 10/2001
05/2021

50806 6320 21 621 – 60

efcore 01/2015
- 09/2020

6612 1650 24 57 2293 76

elasticsearch 01/2015
- 10/2020

5190 1504 104 238 178 92

mixedrealitytoolkit-unity 03/2016
- 09/2020

2294 70 55 124 53 71

monogame 01/2015
- 09/2020

1008 110 4 28 22 21

nunit 10/2013
- 09/2020

656 70 27 24 130 63

realm-java 05/2012
-10/2020

1160 340 15 23 400 69

roslyn 02/2015
- -09/2020

5093 1300 79 123 300 100

rxjava 01/2013
- -09/2020

2076 610 5 32 121 44

Avg (368) Avg (67)
3.1. Overview

Fig. 4 presents the overall structure of the multi-triage frame-
ork. This framework includes three main components: (1) data
xtraction, (2) a contextual data augmenter, and (3) the multi-
riage model. In the data extraction component, ground truth links
are constructed between issue reports and multi-labels (i.e. de-
velopers and issue types).

3.2. Data extraction

The data extraction component includes two sub-components:
the text extractor and the AST extractor. The text extractor com-
ponent concatenates each issue report’s title and description into
one text token, excluding the code snippet information. The AST
extractor parses each code snippet and constructs the AST paths.
An AST or syntax tree has two types of nodes: terminal and
non-terminal. The terminal node represents user-defined val-
ues (e.g. identifiers), whereas the non-terminal node represents
syntactic structures (e.g. variable declarations, a for loop) (Alon
et al., 2019). An AST path is the sequences of the terminal and
non-terminal nodes.

In this paper, Eclipse and Microsoft visual studio IDE were
used to compile the code snippet before passing it to the AST
5

extractor. The AST generator tool from Alon et al. (2019) is used to
construct AST paths, using the default parameters settings (max
child node = 10, max path length = 1000, and max code length
= 1000). In any issue report, a single code snippet can contain
multiple methods as the generator is modified (Alon et al., 2019)
by adding ‘⟨BM⟩’ and ‘⟨EM⟩’ separator tags between each method
for model learning purposes.

Fig. 5 presents the data extraction steps for a single issue re-
port seen in Fig. 1(a). First, the issue report's title and description
are concatenated. Next, the code snippet is compiled and parsed
into AST paths. The AST paths are generated by pairing all the
dependent nodes and using the ‘;’ separator between a pair to in-
dicate a path. Next, multiple developer labels are created by using
the ‘|’ separator. In the developer labelling process, a pull request
creator account is included if the developers allocated in the issue
report do not include a pull request creator account. Finally, the
issue type label is constructed by using bug or enhancement and
system components format using the same ‘|’ separator.

3.3. Contextual data augmenter

In the contextual data augmenter, synthetic issue reports are
created for each project using the approach presented in algo-
rithm 1. The algorithm’s input is the list of training issue reports
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Fig. 4. The multi-triage framework.
Fig. 5. An example data extraction steps for an issue report.
Fig. 6. A synthetic issue report example.

nd the Threshold to generate synthetic records. In this approach,
a new record is created based on the training datasets and the
generation of synthetic records is limited by using the Threshold
parameter. In this experiment, a Threshold value of 30,000 is used
o control the total number of data augmentation records. The
hreshold is calculated based on the approximate total number
f issue reports from target projects. However, it is a hyper-
arameter value and can change as needed. First, it initialises the
6

values with the majority and minority class details (lines 1 to 3).
It creates the clusters by grouping with developer and issue type
labels. After initialisation, MinC ∗MajC are multiplied to calculate
the estimated number of synthetic records to compare with the
Threshold amount (line 4). If the estimated value is larger than the
Threshold, then it calculates the new majority class count value
for an adjustment (lines 5 to 7). Next, it iterates through each
minority class to generate a synthetic record (lines 8 to 16).

In each iteration, it randomly retrieves an issue report de-
scription (excluding code snippet) of the current minority class.
Then, it substitutes 15% of the words in the description with
the new words using the contextual data augmentation approach
proposed by Kafle et al. (2017) and creates a new issue report. In
this experiment, the BERT-base-uncased pre-trained model6 was
used, which trained with a large corpus of English data to predict
the substitute words. However, this approach can be generalised
to other pre-trained models as well. Lastly, the output of the
algorithm is the training datasets, including syntactic records.

Fig. 6 presents an example of synthetic issue reports generated
with the contextual data augmenter via comparison with the

6 https://huggingface.co/bert-base-uncased/.

https://huggingface.co/bert-base-uncased/
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Algorithm 1: An algorithm with which to generate a syn-
hetic issue report with the contextual data augmentation
pproach
input : list of training issue reports TB, augmentation

threshold Threshold
output: list of synthetic issue reports TS

1 MajC ← a majority class samples count;
2 MinC ← total no of minority classes;
3 MinClist ← list of minority classes;
4 EstimateDataAugAmount ← MinC ∗ MajC;
5 if EstimateDataAugAmount < Threshold then
6 MajC ←(Threshold / EstimateDataAugAmount) ∗ MajC
7 end
8 for minclass ∈ MinClist do
9 BC ←retrieve total no of issue reports fixed by minclass

from TB;
10 while BC < MajC do
11 RC ←retrieve one random record of minclass from

TB;
12 NC ←generate a new synthetic record based on RC

with contextual data augmentation approach;
13 Append NC to TS;
14 BC ←BC + 1;
15 end
16 end
1818 return TS

original issue report. As shown in Fig. 6, all the syntactic context
generated by the data augmenter is underlined. In general, the
data augmenter generates the synthetic reports by substituting
the main keywords from original issue reports while maintaining
the original context. In the next section, the final component of
the framework, the multi-triage model, is explained in detail.

3.4. Multi-triage model

As shown in Fig. 7, the multi-triage model has three main com-
onents: the context encoder, the AST encoder, and classifiers.
he two encoders are used to generate the natural language and
tructural (code) representation based on the input issue reports.
he share layer between the encoders concatenates the outputs
f the encoders to construct the overall feature representations
f issue reports. Finally, the classifiers analyse these feature rep-
esentations and recommend the potential developers and issue
ypes as outputs. The main hyper-parameters of the model are
atch = 32, max_seq_length = 300, embedding_dim = 100, and
um_filters = 100. The batch size can set between 1 and a few
undred; however, a standard batch size (32) was selected to
rain this model (Bengio, 2012).

.5. Code representation

ontext encoder. As mentioned in Section 1, extracting the rep-
esentation features of issue reports is non-trivial in the bug-
riage process. In this model, a context encoder is used to extract
he natural language representations of the issue report. Convo-
utional neural networks (CNN) are used to generate these rep-
esentations. In recent years, CNN have been successfully applied
n various modelling tasks, including textural classification (Lee
t al., 2017; Banerjee et al., 2019; Kim, 2014) and image classi-
ication (Mustafa et al., 2019; Lee and Kwon, 2017). The input
f this encoder is the concatenated values of issue title and

escription. The raw input is normalised by removing stop words,

7

stemming, lower-casing, and padding equally to the right with
max_seq_length range. First, each issue report is transformed into
a vector by turning each issue report into a sequence of integers
(each integer value being the index of a token in a dictionary).
Second, these inputs are fed into a word embedding layer with
input dimension (vocab_size + 1). A dynamic vocab_size value
qual to the size of the vocabulary of each project is used. The
ext layer is filters, which are the core of CNN’s architecture. 1D
onvolution is applied via filters. The standard kernel size of 4× 4
s used to extract the important features (Collobert et al., 2011).
hen, the max-over-time pooling operation is applied to extract
he most relevant information from each feature map. Finally, the
ooling output is passed into the joining layer for concatenation.
For example, given an issue report with nwords [b1, b2, . . . , bn]

he word vectors corresponding to each word are presented as
x1, x2, . . . , xn] (i.e. xi is the word vector representation of word
i). Let xiϵR be k-dimensional (k=1). The inputs of a convolution
ayer are the concatenation of each word vectors, represented as:

1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn, (1)

where ⊕ denotes the concatenation operator. In a convolution
layer, a filter w ϵ R, slides across inputs by applying a window of
h=4 (words) to capture the relevant features. In general, a feature
ci is processed by sliding a window of words xi:i+h−1 by

ci = f (w · xi:i+h−1 + b), (2)

where b denotes bias and f is a non-linear function (i.e. the
hyperbolic tangent function)

c = [c1, c2, . . . , cn−h+1]. (3)

Finally, a max-over-time pooling operation (Alaeddine and
Jihene, 2021) is applied to extract the maximum value ĉ = max{c}
to capture the most important feature for each feature map. In
general, one feature is extracted from one filter. In this model, 100
filters are used to obtain multiple features from the issue report.
Next, the output is flattened to one dimension and fed into the
joining layer.

AST encoder. In this approach, each code snippet in an issue
report is parsed to construct an AST path using the AST extractor
and which is used as input to the AST encoder. In the pre-
processing phase, all inputs are first prepared to the same size by
padding equally to the right with max_seq_length range. Second,
an AST path is transformed into a vector by turning each word
into a sequence of integers. Next, these inputs are fed into the
word-embedding layer with input dimension (vocab_size + 1).

To learn AST representations, bidirectional recurrent neural
networks with long short-termmemory (BiLSTM) neurons (Graves
and Schmidhuber, 2005; Cai et al., 2019) are used. In general,
BiLSTM models combine two separate LSTM layers which oper-
ate in opposite directions (i.e. forward and backward) to utilise
information from both preceding and succeeding states. In LSTM
networks, each memory cell c contains three gates: input gate i,
forget gate f , and output gate o. Formally, an input AST sequence
vector [a1, a2, . . . , an] is given, where n denotes the length of
the sequence. The input gate i controls how much of the input
at is saved to the current cell state ct . Next, the forget gate f
controls how much of the previous cell state ct−1 is retrained in
the current cell state ct . Lastly, the output gate controls howmuch
of the current cell state ct is submitted to the current output ht .
The formal representation of the LSTM network is as follows:

it = σ (Wiaat +Wihht−1 + bi),
ft = σ (Wfaat +Wfhht−1 + bf ),

ot = σ (Woaat +Wohht−1 + bo),
ct = ft ∗ ct−1 + it ∗ tanh .(Wcaat +Wchht−1 + bc),

(4)
ht = ot ∗ tanh(ct ).
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Fig. 7. The multi-triage model.
n Eq. (4), at indicates the input word vector of the AST path,
ht indicates the hidden state, W indicates the weight matrix, b
ndicates the bias vector, and σ indicates the logistic sigmoid
unction. A BiLSTM network calculates the input AST sequence
ector a in a forward direction sequence h⃗t = [h⃗1, h⃗2, . . . , h⃗n]

nd a backward direction sequence ⃗ht = [ ⃗h1, ⃗h2, . . . , ⃗hn], then
oncatenates the outputs yt = [h⃗t , ⃗ht ]. The formal representation
f the BiLSTM network is as follows:

h⃗t = σ (Wh⃗aat +Wh⃗h⃗t−1 + bh⃗),
⃗ht = σ (W ⃗ha

at +W ⃗h
⃗ht+1 + b ⃗h),

yt = Wyh⃗h⃗t +W
y ⃗h
⃗ht + by

(5)

In Eq. (5), yt is the output sequence of the hidden layer ht at a
ime step t . Next, a max-over-time pooling operation (Alaeddine
nd Jihene, 2021) is applied over BiLSTM outputs to extract the
mportant information. Finally, the output is flattened and fed
nto the joining layer. In the joining layer, the two encoders are
oncatenated, output, and fed into the classification layer.

.6. Task-specific classifiers

The sigmoid function was used to classify the relevant de-
elopers and issue types for a new issue report. As illustrated
n Fig. 7, both developer and issue type classifiers share the
ame structure but differ in their input labels (i.e. developer and
ssue type). Therefore, only illustrate one classification layer is
llustrated in this section. The classification layer is composed of
wo layers: a fully-connected FFN with ReLUs as well as a sigmoid
ayer.

abel classifier. In the FFN layer, the ReLU is an activation func-
ion that outputs the input directly if the input is positive; oth-
rwise, it will output zero (Nair and Hinton, 2010). In Eq. (6),
denotes the concatenated embedding vector with 150 dimen-
ions, W denotes weights, and b denotes bias. Next, the output
vectors are fed into the sigmoid layer to predict the appropriate
developers or issue types for the input issue report.

FFN(x) = max(0, xW + b ). (6)
i i

8

The sigmoid exponential activation function is then used to cal-
culate the probability distribution of the output vectors from the
FFN layer for each possible class (i.e. developers or issue types):

P(cj|xi) =
1

1+ exp(−zj)
. (7)

Eq. (7) presents the formal representation of the sigmoid activa-
tion function at the final neural network layer to calculate the
probability of a class cj, where xi is an input issue report and zj is
the output of the FFN layer.

4. Data and evaluation

In this section, the research questions and detailed infor-
mation on the experimental implementation are presented. The
code, data and trained models are available at (Aung, 2021).

Datasets. The issue reports of ten GitHub projects were collected
as described in Table 2. In addition, eclipse issue reports were
also collected effectively compare the present approach against
baseline studies. Following previous studies, only retrieve the
issue reports with ‘closed’ status (Anvik et al., 2006; Mani et al.,
2019; Lee et al., 2017; Xi et al., 2018) are retrieved. The is-
sue reports with unassigned developers or issue types are also
removed, as the model cannot be trained and validated with un-
labelled records. Furthermore, issue reports assigned to ‘software
bots’, which are frequently used in automatic issue assignment
processes (Golzadeh et al., 2020), are excluded. As no actual
developer is used, these reports are not applicable to use in the
developer prediction process. The statistics of datasets such as la-
bels (i.e. developers, issue types) and code snippets are presented
Table 2. In terms of issue reports metadata, an issue report title,
description, creation date, assignee, and labels are presented, as
well as the corresponding pull request’s assignee information, to
create a tossing sequence.

Single task learning model. The two single-task learning models
shown, below are constructed to evaluate the effectiveness of this
multi-task learning model.
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• BiLSTM-based triage model - Two single-task BiLSTM net-
works are constructed: one for the developers’ prediction
task and the other one for the issue types prediction task.
In these models, architecture similar to the multi-triage
model is replicated and used to create the two-word embed-
ding layers to contract textual information and AST paths
embedding tokens. Next, these two embedding tokens are
concatenated and fed into the BiLSTM network to learn the
issue report’s representation. Finally, these learned vectors
are passed into the classifier to predict labels (i.e. developers
or issue types).

• CNN-based triage model - Similar to the BiLSTM model,
the two single-task networks are constructed using CNN
networks to learn the representations of issue reports.

As noted in Section 3, the multi-triage model combines BiLSTM
and CNN networks to learn the representations of issue reports.
Therefore, single networks are built using these two networks
to effectively compare the time and accuracy trade-offs of the
model.

Baselines. The below two baselines approaches were used to
evaluate the effective of the present approach.

• SVM+BOW (Anvik et al., 2006): This uses a Tf–IDF weighting
matrix to transform textual features of issue reports into
vector representations, and applies a support vector ma-
chine (SVM) machine learning classifier to automate the bug
triage process.

• DeepTriage (Mani et al., 2019) - This uses a recurrent neural
network (RNN) to learn the representations of issue reports
and a softmax layer to recommend the potential developers
and issue types as outputs.

Both of these approaches focus on predicting labels for a new
issue report by learning the representation of existing issue re-
ports. The first approach uses a support vector machine, whereas
the second utilises a recurrent neural network to automate the
bug triage process. As the present approach uses BiLSTM and CNN
to learn the representations of issue reports, these approaches
have been selected for evaluation. For SVM+BOW, scikit-learn
libraries are used to set up SVM+BOW because the source code
is not accessible. In addition, the scikit-learn is widely used in
various studies [50, 2] to set up machine learning algorithms,
including SVM.

Ablation analysis. Parameter analysis plays a crucial role in
the supervised learning model since tuning a single parame-
ter can affect the model performance. Ablation analysis is a
procedure investigating configuration paths to ascertain which
model’s parameters contribute most in optimising model per-
formance (Fawcett and Hoos, 2016; Biedenkapp et al., 2017). An
ablation analysis procedure is adopted to determine which com-
ponents of the multi-triage model contribute most in leveraging
model performance. In the ablation analysis approach, developers
identify a set of candidate parameters, evaluate the training
data by running with these parameters, and take the candidate
parameter which outperforms at least one other configuration.
In this study’s ablation analysis experiments, encoder decou-
pling and parameters tuning are performed to determine which
encoder and parameters contribute most to improving model
performance.

Evaluation settings. The time-series-based 5-fold cross-validation
procedure is followed to split the training (train), development
(dev), and test sets (Bhattacharya and Neamtiu, 2010; Tamrawi
et al., 2011; Jiang and Wang, 2017; Xia et al., 2016b; Bergmeir and
Benítez, 2012). This is a commonly used validation approach to
9

measure the generalisability of a learning model. Fig. 8 presents
the validation approach used in the data evaluation process. In
this approach, the dev set makes up 10 per cent of the train set,
and the test set assigns 20 per cent of the subset of the allocated
data sample. The dataset is folded on a rolling basis, based on the
issue report creation date in ascending order.

All experiments are run in the google-colab7 cloud-based plat-
form on tesla v100-sxm2 GPU with 32 GB RAM. Python source
code provided by the authors is used to set up the baseline
models (i.e. SVM+BOW (Anvik et al., 2006) and DeepTriage (Mani
et al., 2019)). Also, the deep learning model is implemented using
the TensorFlow Keras8 deep learning library. In the multi-triage
pproach, both text input and AST path input are truncated to
he length of 300. Each word is embedded into 100 dimensions.
he output sizes of the text encoder and the AST encoder are
00 and 50, respectively. After joining the two encoder outputs,
atch normalisation is performed on the concatenated output
nd the drop (rate 0.5) is employed to reduce overfitting (Achille
nd Soatto, 2018). For the classifier, binary-crossentropy and the
dam optimiser from the Keras library are used with a learning
ate of 0.001. The model is tuned with different dimension sizes
nd learning rates, and results are presented in Section 5. Finally,
he vocabulary size is set based on individual project vocab size
nd the default batch size (32) is used to train the model.

valuation metrics. In these experiments, F-scores are used to
easure the model’s accuracy. In the following equations, TP
enotes true positives, TN denotes true negatives, FP denotes
alse positives, and FN denotes false negatives.

• Precision — This is the ratio of the predicted correct labels to
the total number of actual labels averaged over all instances.
Eq. (8) presents the precision formula:

Precision =
TP

TP + FP
(8)

• Recall — This is the ratio of the predicted correct labels
to the total number of predicated labels averaged over all
instances. Eq. (9) presents the recall formula:

Recall =
TP

TP + FN
(9)

• F-scores — This is a commonly used metric for the bug
triage process. It is calculated from the precision and re-
call scores. The F1 score is calculated by assigning equal
weights to precision and recall, while the F2 score adds more
weight to recall. Even though both precision and recall are
important, the F2 score is usually preferred in bug triage
studies, where measuring the recall is more non-trivial than
precision. Eq. (10) presents the F2 score formula:

Fβ =
(1+ β2)× precision× recall

β2 × precision× recall
(10)

• Accuracy —Calculated by the average across all instances,
where the accuracy of each instance is the ratio of the
predicated correct labels to the total number of (predicated
and actual) labels for that instance. Eq. (11) presents the
accuracy formula:

Accuracy =
TN + TP

TN + TP + FN + FP
(11)

7 https://github.com/dotnet/aspnetcore/.
8 https://www.tensorflow.org/.

https://github.com/dotnet/aspnetcore/
https://www.tensorflow.org/
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Fig. 8. Time-series-based 5-fold cross-validation.
. Results

In this section, evaluation results are presented for the three
esearch questions.

.1. RQ1: How does the multi-triage model compare to other ap-
roaches?

The performance of the multi-triage model is compared to that
f (SVM + BOW) (Anvik et al., 2006) and DeepTriage (Mani et al.,
019) in the eleven open-source projects. The comparison results
re presented in Table 3. The time-series-based 5-fold validation
s performed on all approaches, and the average accuracy is
resented for both developers and issue types prediction results.
ince the Deeptriage (Mani et al., 2019) source code is publicly
vailable, its environment can be replicated. However, the source
ode of (SVM + BOW) (Anvik et al., 2006) is not accessible,
nd thus it was manually implemented using sklearn9 libraries.
oth approaches filter out code snippets and stack trace as these
eatures are excluded in these models. Conversely, this approach
enerates a separate token for each code snippet by parsing it to
ST paths and including it in the model’s training.
As shown in Table 3, this approach outperforms (SVM + BOW)

Anvik et al., 2006) and DeepTriage (Mani et al., 2019) by an
verage increase of 10 and 7 percentage points for developers,
nd 15 and 11 percentage points for issue types, respectively.
t its highest, this approach achieves 69% and 57% for develop-
rs and issue types, respectively. It was observed that, in both
rediction tasks, an accuracy lower than 40% on the projects
i.e. eclipse, elasticsearch, nunit, and Roslyn) has either the higher
umber of potential issue types or developers’ labels, or low sam-
le data compared to the rest of the projects. In summary, this
pproach achieves the best performance, with DeepTriage (Mani
t al., 2019) second by comparison. In the following section, the
ualitative analysis test is performed to determine how many
ug and enhancement records were correctly predicted with this
pproach compared to the state-of-the-art approaches.
In the qualitative analysis evaluation, sample data is subdi-

ided into two issue types, namely (1) bug and (2) enhancements
roup, and the performance is analysed on the prediction results.
able 4 presents the statistics of the prediction results in terms
f numbers, whereas the Venn diagram in Fig. 9 illustrates the
otal numbers of bugs and enhancements found by base1, base2,
nd the present approach. Notably, the present approach can
redict all issue types which are predicated correctly in base1
nd base2. In addition, this approach predicts 546 bugs and 46
nhancement records missed by baseline approaches. After in-
pecting these records, it became clear that these reports provide
rivial descriptive text with code snippets to reproduce the issue.
revious studies neglected the code snippets in their approach,

9 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.
10
as the feature representation of these records cannot provide
valuable features for the model to perform the prediction. It was
also observed that most of the descriptive information provided
in the bug and enhancement reports used similar terms. For
example, terms such as ‘add’, ‘improve’, ‘enhance’, ‘upgrade’
and ‘include’ are frequently used in both bug and enhancement
reports. Thus, the baseline approaches that relied on the issue
reports’ textual features might wrongly mislabel as enhancement
in some scenarios. The present approach uses textual and AST
representation of the issue reports to eliminate the mislabelling
case by using the additional context from code snippet metadata.

In addition, it was further observed that the reports failed
to predict from all three approaches. Interestingly, these records
do not include either non-trivial descriptive text or code snip-
pets. These issue reports include either screenshot images, stack
trace information, hyperlinks, which are ignored in all three ap-
proaches. Stack trace information was neglected by this approach
in order to reduce noises in the model training. Screenshots were
not covered due to limitations of the model, which supports
either natural language or structural context.

5.2. RQ2: Which component contributes more to the multi-triage
model?

Ablation analysis is performed on the multi-triage model to
ascertain which component contributes more to model perfor-
mance. To answer this question, the ablation analysis is divided
into two sections: (1) system component level ablation analysis,
and (2) embedding parameter level ablation analysis.

5.2.1. System component level ablation analysis
This section compares the multi-task learning model with the

conventional single task learning model to analyse which model
performs better. The two single-task learning models, one with
CNN and the other with BiLSTM networks, are implemented by
referring to the present approach’s encoder architecture. In a
single model, the text and the AST path's are concatenated into
one token and fed into the CNN, or BiLSTMs layer, respectively.
The same classifier components are used in a single model. The
outputs of the single task learning model are either developers or
issue labels. The comparison results are presented in Table 5 for
developers and Table 6 for issue types predictions. Table 5(a) and
Table 6(a) present the precision and recall, whereas Table 5(b)
and Table 6(b) describe the accuracy and F2 scores. Out of the
three models, the present model achieves the best performance
in precision, recall, accuracy and F2 score.

In terms of developer precision and recall, the present model
outperforms the others by an average increase of 8 percentage
points compared to single CNN, and 7 percentage points com-
pared to single BiLSTM. In recall, it improves on both single CNN
and single BiLTSM by an average increase of 8 percentage points.
In accuracy, on average, it exceeds the others by 10 percent-
age points compared to single CNN, and by 8 percentage points

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Table 3
Multi-triage v.s. baselines (Base1 - SVM + BOW Anvik et al. (2006), Base2 - DeepTriage Mani et al. (2019)) Accuracy (%).
Project Developer Issue type

Base1 Base 2 Multi-triage Base1 Base 2 Multi-triage

aspnetcore 58% 51% 63% 25% 27% 47%
azure-powershell 35% 39% 48% 24% 29% 44%
ecplise 31% 35% 54% 23% 24% 26%
efcore 52% 55% 59% 30% 34% 40%
elasticsearch 46% 53% 58% 13% 21% 31%
mixedrealitytoolkitunity 41% 50% 62% 30% 33% 47%
monogame 62% 65% 69% 53% 55% 57%
nunit 36% 38% 41% 19% 23% 27%
realmjava 59% 60% 62% 24% 25% 50%
roslyn 33% 35% 39% 22% 25% 27%
rxjava 64% 66% 68% 31% 40% 49%

AVG 47% 50% 57% 27% 31% 42%
MAX 64% 66% 69% 53% 55% 57%
Fig. 9. Qualitative analysis venn diagram.
able 4
ualitative analysis (bug and enhancement).
Project Bug Enhancement Total Bug/

EnhancementBase1 Base2 Our approach Base 1 Base 2 Our approach

aspnetcore 1124 1148 1382 21 25 29 1391/39
azurepowershell 434 448 455 3 4 5 499/8
ecplise 9670 9950 9980 78 91 96 10035/126
efcore 1038 1069 1216 51 65 68 1245/77
elasticsearch 811 820 857 45 66 69 939/99
mixedrealitytoolkitunity 386 413 435 9 13 14 435/23
monogame 122 144 151 10 14 16 180/21
nunit 65 79 97 8 13 16 109/22
realmjava 148 171 190 4 6 7 220/12
roslyn 291 299 303 360 370 390 458/560
rxjava 311 332 353 22 31 34 373/42

AVG 1309 1352 1406 56 63 68
MAX 9670 9950 9980 360 370 390
Total 14402 14873 15419 611 698 744 15884/744
compared to single BiLSTM. In F2 scores, this model performs
better than the single CNN by 9 percentage points, and the single
BiLSTM by 8 percentage points. Therefore, it can be concluded
that developers and issue types prediction tasks are compatible
with learning in one large network.

Interestingly, similar improvements were found for issue types
rediction results. In issue types precision, the present model out-
erforms the others on average by 6 percentage points compared
o single CNN, and by 5 percentage points compared to single BiL-
TM. In recall, it improves on single CNN by 6 percentage points
nd on single BiLTSM by 2 percentage points, on average. In
11
accuracy, on average, it exceeds the others by 8 percentage points
compared to single CNN and by 5 percentage points compared to
single BiLSTM. In F2 scores, the model performs slightly better
than single CNN by 1 percentage point, and the same for single
BiLSTM. Therefore, it is possible to conclude that developers and
issue types prediction tasks are compatible with learning in one
large network.

Training times for each model are also presented in Fig. 10. On
average, the multi-triage model accelerates the training process
with the drop of 476 s and 1175 s compared to the single CNN

and single BiLSTM models, respectively. Although the accelerated
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able 5
ingle task prediction model v.s. our approach for developer predictions
precision(P), recall(R), and accuracy(Acc)).
(a) Developers precision and recall results

Project Single CNN Single BiLSTM Multi-triage

P R P R P R

aspnetcore 57% 52% 57% 51% 66% 61%
azure-powershell 52% 40% 52% 40% 55% 42%
ecplise 43% 24% 50% 30% 52% 38%
efcore 53% 47% 53% 47% 62% 56%
elasticsearch 54% 44% 54% 44% 62% 53%
mixedrealitytoolkitunity 56% 51% 55% 51% 64% 60%
monogame 59% 59% 59% 59% 69% 69%
nunit 49% 42% 51% 45% 59% 52%
realmjava 55% 52% 55% 52% 64% 61%
roslyn 49% 33% 49% 33% 52% 35%
rxjava 58% 58% 58% 58% 68% 68%

AVG 53% 46% 54% 46% 61% 54%
MAX 59% 59% 59% 59% 69% 69%

(b) Developers accuracy and F2 results

Project Single CNN Single BiLSTM Multi-triage

Acc F2 Acc F2 Acc F2

aspnetcore 54% 52% 53% 51% 63% 61%
azure-powershell 44% 41% 44% 41% 48% 42%
ecplise 32% 24% 46% 33% 54% 38%
efcore 50% 48% 50% 47% 59% 56%
elasticsearch 47% 44% 48% 45% 58% 53%
mixedrealitytoolkitunity 53% 51% 53% 52% 62% 60%
monogame 59% 59% 59% 59% 69% 69%
nunit 34% 43% 37% 46% 41% 52%
realmjava 53% 52% 53% 53% 62% 61%
roslyn 35% 37% 34% 37% 39% 38%
rxjava 58% 58% 58% 58% 68% 68%

AVG 47% 46% 49% 47% 57% 55%
MAX 59% 59% 59% 59% 69% 69%

training times are not obvious in the present scenario, imagine
a project with N issue reports; the training time complexity of
the single model is (N2

∗ t), where t is the time consumed by
the model to learn feature representations of each issue report.
However, the multi-triage model only needs (N ∗ t) times to
learn the feature representation; therefore, the present model is
more capable of scaling to train to projects with large amounts
of training data. In summary, the multi-triage model outperforms
the single task learning model in terms of accuracy and training
time.
 i

12
Table 6
Single task prediction model v.s. our approach for issue type predictions
(precision(P), recall(R), and accuracy(Acc)).
(a) Issue types precision and recall results

Project Single CNN Single BiLSTM Multi-triage

P R P R P R

aspnetcore 52% 38% 52% 37% 58% 39%
azure-powershell 49% 38% 51% 42% 59% 47%
ecplise 28% 22% 48% 34% 52% 33%
efcore 48% 36% 48% 34% 52% 33%
elasticsearch 44% 21% 43% 20% 48% 25%
mixedrealitytoolkitunity 49% 34% 50% 40% 55% 41%
monogame 53% 46% 55% 49% 60% 53%
nunit 48% 38% 51% 44% 58% 49%
realmjava 46% 35% 50% 43% 56% 45%
roslyn 46% 30% 47% 33% 54% 38%
rxjava 49% 41% 50% 43% 53% 44%

AVG 47% 34% 48% 38% 53% 40%
MAX 53% 46% 55% 49% 60% 53%

(b) Issue types accuracy and F2 results

Project Single CNN Single BiLSTM Multi-triage

Acc F2 Acc F2 Acc F2

aspnetcore 43% 43% 43% 43% 47% 43%
azure-powershell 39% 40% 39% 40% 44% 49%
ecplise 21% 20% 38% 37% 26% 39%
efcore 38% 38% 38% 37% 40% 38%
elasticsearch 29% 27% 29% 26% 31% 27%
mixedrealitytoolkitunity 40% 38% 45% 43% 47% 38%
monogame 49% 49% 51% 51% 57% 49%
nunit 28% 38% 24% 43% 27% 38%
realmjava 40% 37% 46% 45% 50% 37%
roslyn 22% 32% 25% 34% 27% 32%
rxjava 43% 43% 45% 45% 49% 43%

AVG 36% 37% 37% 39% 42% 39%
MAX 49% 49% 51% 51% 57% 49%

5.2.2. Embedding parameter level ablation analysis
Two types of ablation analysis are performed to evaluate the

embedding parameters: encoder decoupling and parameters tun-
ing.

In the encoder decoupling experiment, the two encoders, text
nd AST, are decoupled, and the model’s performance is evaluated
ith three experimental settings: (1) no text encoder, (2) no AST
ncoder, and (3) both. In the no text encoder experiment, the
egation effect of the textual input is studied. Similarly, AST paths
nput is excluded in the no AST encoder experiment. The compar-
son results for prediction accuracy of developers and issue types
n Figs. 11(a) and 11(b), respectively. In both predictions, the



T.W.W. Aung, Y. Wan, H. Huo et al. The Journal of Systems & Software 184 (2022) 111133
Fig. 11. Multi-triage: ablation analysis.
Table 7
Unique word count for Text and AST.
Project Text AST

aspnetcore 32959 29559
azure-powershell 20005 5200
ecplise 342103 1234
efcore 24627 51115
elasticsearch 28116 223942
mixedrealitytoolkitunity 11749 3570
monogame 8839 6351
nunit 5231 3197
realmjava 10950 40145
roslyn 21265 25372
rxjava 11225 93517

AVG 47006 43927
MAX 342103 223942

combination of textual and AST path inputs achieves the highest
results in all eleven projects, with an average increase of 35 and 3
percentage points for developers and 23 and 6 percentage points
for issue types in comparison with no text encoder and no AST
encoder, respectively. Therefore, it can be concluded that both
the textual encoder and AST encoder are important components
of the multi-triage model.
13
In the parameters tuning experiment, the effects of embedding
dimension and learning rate on the accuracy of our model were
analysed. The model was tuned with embedding dimensions (100
and 200) and learning rates (0.1, 0.01, and 0.001), which are the
most commonly used hyper-parameters in deep learning models.
As previously mentioned, a time-series-based cross-validation
approach was adopted, and the model was trained with vari-
ous learning rates and embedding dimension size incrementally.
Fig. 12 presents the accuracy results for the six experiments with
developer prediction accuracy in Fig. 12(a) and issue types pre-
diction accuracy in Fig. 12(b).In both prediction tasks, embedding
dimension 100 with a learning rate of 0.01 provides the highest
average, with an accuracy of 55 percentage points for developers
and 41 percentage points for issue types. The embedding dimen-
sion 200 with a learning rate of 0.01 follows at second, with an
average accuracy of 53 percentage points for developer and 40
percentage points for issue types.

The internal validity of the embedding parameter results are
further analysed by validating the total number of unique word
counts for both text encoder and AST encoder input for each
project. Table 7 presents the word count results for all projects.
Stop words and special characters were filtered out before the
number of unique words was counted. As shown in Table 7, the
average word counts for text encoder input is 47006, whereas the
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Fig. 12. Multi-triage parameter analysis.
AST encoder input is 43927. The highest word count is 342103 for
text encoder and 223942 for AST encoder, respectively. By follow-
ing previous studies, a word corpus of around 2 million is trained
with embedding size 300 or higher (Pennington et al., 2014;
Radford et al., 2019; Kenton and Toutanova, 2019). The maximum
corpus size of the projects’ is lower than 35k, as it is reasonable
that both 100 and 200 embeddings provide comparable results in
these experiments. However, 100 embedding size was selected as
the optimal hyper-parameter to eliminate complex processing. In
summary, a learning rate of 0.01 with embedding dimension 100
hyper-parameters were used as optimal parameters to train the
model.

5.3. RQ3: Does increasing the size of training datasets (based on
the contextual data augmentation approach) improve our model’s
accuracy?

In this section, the data-imbalanced problem is addressed
with the contextual data augmentation approach presented in
algorithm 1. First, an Area under the ROC Curve (AUC) analysis is

performed to measure classifier performance. Fig. 13 presents the

14
Table 8
No data augmentation v.s. data augmentation (accuracy(%)).
Project Multi-triage Multi-triage A+

Dev Issue Type Dev Issue Type

aspnetcore 63% 47% 64% 48%
azure-powershell 48% 44% 50% 48%
ecplise 38% 26% 40% 30%
efcore 59% 40% 61% 42%
elasticsearch 58% 31% 60% 33%
mixedrealitytoolkitunity 62% 47% 63% 49%
monogame 69% 57% 70% 58%
nunit 41% 27% 46% 29%
realmjava 62% 50% 63% 51%
roslyn 39% 27% 40% 28%
rxjava 68% 49% 69% 53%

AVG 55% 41% 57% 43%
MAX 69% 57% 70% 58%

average AUC and accuracy results for the multi-triage model. The
line graph in 13(a) illustrates the developers’ AUC and accuracy
results, whereas the line graph in 13(b) shows the issue types
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Fig. 13. Multi-triage: AUC v.s. Accuracy.
UC and accuracy results. In both tasks, AUC fluctuates around
2% and 69%, which indicates that the classifiers perform fairly
ell.
Therefore, further analysis was performed on the impact of the

ize of the training data on model accuracy. The training data
ize was increased by using algorithm 1. Table 8 presents the
omparison results. For ease of reference, the model that uses
ugmented data was named as multi-triage (A). As mentioned
arlier, the training data augmentation size was incrementally
ncreased in each cross-fold validation as the average accuracy
rom the 5-fold validation result was reported. As shown in Ta-
le 8, the model accuracy slightly improved in the multi-triage (A)
odel, with an average increase of 2 percentage points on both
evelopers and issue types. The performance of the prediction
odel was further analysed using the AUC test. Fig. 14 presents

he AUC represented for the multi-triage (A) model. The line
raphs in 14(a) and 14(b) illustrate the developers and issue types
f AUC and accuracy results. Notably, AUC performance increased
n average of 4 percentage points for developers and 3 percentage
oints for issue types in comparison to the multi-triage model
UC performance, as shown in Fig. 13. The data augmentation
pproach leveraged the base multi-triage model in both accuracy

nd AUC performance measure. Therefore, it is concluded that the
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contextual data augmentation approach effectively increases the
issue reports training data.

6. Threats to validity

Threats to external validity. This relates to the quality of the
datasets we used to evaluate our model. We used issue reports
from eleven open-source projects written in C# and Java lan-
guages to generalise our works. All the datasets’ programs were
collected from GitHub repositories; each dataset contains over
600 training issue reports. However, further studies are needed
to validate and generalise our findings to other structural lan-
guages. Furthermore, more case studies are needed to confirm
and improve the usefulness of our multi-triage recommendation
model.

Threats to internal validity. This includes the influence of hyper-
parameters settings. Our model’s performance would be affected
by different learning rates and embedding dimensions, which
were set manually in our experiments. Another threat to internal
validity relates to the errors in the implementation of the bench-
mark methods. For DeepTriage (Mani et al., 2019), we directly
used their published GitHub repository. For SVM+BOW (Anvik
et al., 2006), we implemented it ourselves using scikit-learn
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Fig. 14. Multi-triage with Data Augmentation: AUC v.s. Accuracy.
libraries, because the source code is not accessible. Nonetheless,
the scikit-learn is widely used in various studies (Liang et al.,
2020; Yadav et al., 2019) to set up machine learning algorithms,
including SVM. Thus, there is little threat to baselines implemen-
tation. In terms of the contextual data augmentation approach,
we calculated the threshold amount (30,000) using the approxi-
mate total number of issue reports from targeted projects, based
on the assumption that synthetic records should not be larger
than the total. Thus, the threshold value can change based on the
targeted project.

Threats to construct validity. This relates to the applicability of
our evaluation measurement. We use accuracy and the F2 score
as the evaluation metrics that evaluate the performance of the
model. They represent standard evaluation metrics for bug triage
models used in previous studies (Anvik et al., 2006; Mani et al.,
2019).

7. Discussion

This section discusses implications of the accuracy, precision,
and recall rates we achieved on our eleven experimental projects.
We also report various alternatives we have considered in imple-
menting our model and in choosing a time-series-based cross-
validation approach. Then, we further discuss the decision to
use the contextual data augmentation approach in generating
16
synthetic issue reports. Lastly, we also review the lessons we have
learned in applying a deep learning approach to an issue report
contextual and structural information.

7.1. Accessing the significance of our approach

Our approach achieves an average accuracy of 57% and 47%
for developers and issue types, respectively. Also, our approach
compromises precision and recall for both developers and issue
types prediction results, with an average of 61—54% and 53—40%
respectively. The only way to ensure these prediction rates are
good enough for the bug triage process is by either performing a
direct observation with human triagers, or by statistical analysis
of the qualitative data. Our study performs qualitative analysis
by categorising the results into two generic issue report types
(i.e. bug and enhancements) and observing the prediction results
in terms of numbers. However, we envision our approach will be
evaluated with human triagers in the future. Notably, all the issue
reports predicted correctly in baseline approaches are covered
by our approach. In addition, our approach can correctly predict
issue reports, which are missed by state-of-the-art approaches,
due to our model capability to comprehend the structural context
of code snippets. Therefore, we believe that the prediction rates
we report in this paper for the eleven open-source projects are

sufficient to assist human triagers in assigning a developer and
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n issue type for a new issue report. As previously mentioned,
here is an average of 67 days to fix a new issue report in these
rojects, due to the delay in triagers becoming acquainted with
he problem and finding the relevant developers. Our approach
an reduce the time spent on issue report allocation tasks and
egaining the time to resolve the issues.

Furthermore, our multi-triage learning model takes advan-
age of the multi-task learning approach to train the developers
nd issue types classification tasks in one model. It reduces the
raining time substantially, compared to a single-task learning
odel. However, the multi-task learning model is pruned to
ncounter a negative transfer learning problem if prediction tasks
re not compatible for learning together. We eliminate the prob-
em by comparing our approach with two single-task learning
odels. To evaluate the two single models effectively, we de-
igned these models in the same manner as the two neural
etworks used in our encoder layers (i.e. BiLSTM and CNN).
otably, our model outperforms the single models in both devel-
pers and issue types prediction in precision, recall, and accuracy.
herefore, we considered a relatedness between developers and
ssuer types prediction tasks, as it is compatible to learn in one
ingle prediction network.

.2. Evaluation using time-series based cross validation

The standard method for evaluating the machine learning
odel is the K-fold validation approach. In the K-fold valida-

ion approach, the original sample is randomly partitioned into
equal sized sub-samples and trains the model k times re-

eatably. However, the standard K-fold validation approach is
nappropriate in a time-ordered dataset, where the future issue
eports will be used to predict past bug reports. Therefore, we
ollowed a time-series 5-fold validation approach and trained all
ur models, including the baselines approach. When we used the
ime-series approach, we noticed that the first one-or two-fold
ccuracy results are relatively lower than the later folds, due to
maller data size. The neural networks-based approach generally
roduces better results when there is more data available to
earn. However, our time-series approach statically generalised
he results based on how the issue report information flows and
lters an issue tracking system.

.3. Alternative considerations on model building

We choose to use CNN in-text encoder and BiLSTM for AST
ncoder by referring to previous studies in similar areas (Liu
nd Guo, 2019; Alon et al., 2019; Mani et al., 2019). Both of the
etworks are commonly used in natural language and structural
anguage processing. Alternatively, we could incorporate the BiL-
TM model for text encoder or CNN for AST encoder. However, in
ur preliminary test, the CNN model performs better than does
he BiLSTM in the text encoder layer, whereas the BiLSTM model
erforms better than does the CNN in the AST encoder. Therefore,
e choose the combination, which produces the best results.

.4. Applicability of contextual data augmentation approach

We adopted a supervised machine-learning approach, as our
riage model required a ground truth label for each report to
rain the model. Therefore, we faced an imbalanced class problem
n our model training. When we evaluated our model with the
UC test, we observed that our model performance is slightly
ow, with an average of 65% for developers and 64% for issue
ypes. Thus, we adopted the contextual augmentation approach to
enerate synthetic issue reports to balance developers and issue
ypes label distribution on training samples. In general, there
17
are two ways to develop the synthetic reports with the contex-
tual augmentation approach: (1) random word substitution, and
(2) random word removal (Kafle et al., 2017). We selected the
substitution approach, as we do not want to lose the important
information of the issue report. We incrementally generated the
synthetic reports using a time-series cross-validation approach
and trained the model. Since we are interested in the perfor-
mance of our model, we statistically evaluated the improvement
of the data augmentation approach using the AUC test. Notably,
our model performance rose on average 69% for developers and
67% for issue types. Therefore, we considered that the contex-
tual augmentation approach is reasonable for smoothing label
distributions in the supervised learning approach.

7.5. Lessons learned

Our approach uses textual and code snippets information from
issue reports. The accuracy of our approach might be improved by
incorporating additional information.

The screenshot image is a valuable asset of issue reports,
providing additional information about user requirements. Also,
the execution stack trace from issue reports can be used as the
pointer to identify the code area in recommending issue types.
As mentioned in Section 2, the GitHub projects issue types label
includes project areas or components information. Identifying
the project areas or components can assist in finding potential
developers by looking into the list of developers who are ac-
tively working on these areas, either using the code ownership
information or previous issue assignments history. However, as
explained in Section 3, stack trace introduces noise into the model
training, as we neglected this information. Also, correlating code
ownership information to issue reports is challenging, especially
for large projects evolving throughout time.

8. Related work

This section introduces previous studies related to the semi-
automatic bug triage process and multi-task learning model.
Moreover, other studies related to bug resolution (e.g. bug local-
isation) are discussed.

8.1. Semi-automatic bug triage

In an early work of Murphy and Cubranic (2004), the authors
proposed an automatic bug triage approach that used a native
Bayes (NB) classifier to recommend candidate developers to fix a
new bug. Later, (Anvik et al., 2006) extended this by comparing
the work of Murphy and Cubranic (2004) with three machine
learning classifiers: NB, SVM, and C4.5. Their preliminary results
found that SVM outperforms the other classifiers. In Matter et al.
(2009), the authors proposed an approach to modelling devel-
opers’ profiles using the vocabularies from their changed source
code files, compared with terms from issue reports to rank the
relevant developers.

A comparison of different machine learning algorithms (i.e. NB,
SVM, EM, conjunction rules, and nearest neighbours) to recom-
mend potential developers can be found in Anvik and Murphy
(2011). In general, the authors used project-specific heuristics
to construct a label for each issue report rather than using the
assigned-to field, in order to eliminate default assignee assign-
ment and duplicate reports with unchanged assigned-to field
problems. In our approach, we alternatively address these prob-
lems by filtering out issues assigned to software bots and including
the corresponding pull request’s developer information as the
tossing sequence in our labelling process.
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Similarly, Zhang and Lee (2012) proposed a concept profile and
ocial network-based bug triage model to rank expert developers
o fix a bug. In their work, a concept profiling first defines the
opic terms to cluster the issue reports. Then, the social network
eature captures a set of developers’ collaborative relationships,
xtracted from the concept profiles, to rank the candidate de-
elopers based on the level of expertise (i.e. a fixer of a bug, a
ontributor of a bug). In Park et al. (2016), the authors proposed
osTriage to assist triagers in finding the candidate developers
ho can fix the bug in the shortest time frame. CosTriage adopts
ontent-boosted collaborative filtering (CBCF), which combines
ssue report similarity scores with each developer’s bug fixing
ime to recommend relevant developers for a new issue report.

Aside from developer recommendation studies, other stud-
es have focused on automating issue type prediction in the
ug triage process. In Xia et al. (2013), the authors proposed
agCombine, an automatic tag recommendation method, which
s based on a composite ranking approach to analysing infor-
ation in software forum sites (i.e. Stack Overflow, free-code).
agCombine consists of three ranking components: multi-label
anking, similarity-based ranking, and tag-terms-based ranking.
n their approach, multi-nominal NB classifier, Euclidean distance
lgorithm, and latent semantic indexing (LSI) are used to calculate
hree component scores separately. The linear combination score
f these three components is then used to recommend the list
f relevant tags for a new issue report. In Xia et al. (2014), the
uthors proposed MLL-GA, a composite method to classify crash
eports and failures. MLL-GA adopts various multi-label learning
lgorithms and generic algorithms to identify faults from crash
eports automatically.

In the work of Zhang et al. (2016), the author adopted a BM25-
ased textual similarity algorithm and KNN to predict severity
evels and developers for a new issue report. In Alonso-Abad et al.
2019), the authors adopted machine learning classifiers, such as
B and SVM, to predict an issue label (e.g. bug, enhancement)
or a new issue report. Their approach uses the bag-of-words
odel to represent issue reports in text classification. In this

epresentation, every word in the training corpus is considered
feature; therefore, each issue report presents as a sparse rep-

esentation with a high number of features. These features are
sed by machine learning classifiers to predict issue labels for
ew issue reports. Recently, in Mani et al. (2019), the author used
he BiLSTM model to recommend potential developers.

Our work is closely related to that of Mani et al. (2019).
owever, our multi-triage model adopts a multi-task learning
pproach and recommends both developers and issue types from
ne learning model. As such, it reduces a considerable amount of
raining time in comparison to the single task learning model. In
ddition, our model uses both textual and structural information
i.e. code snippets) to learn the representation of issue reports, as
oing so provides a more accurate representation. In comparison,
revious studies have neglected the code snippet information in
rder to reduce noises in the model training. In our approach,
e transform the code snippet to AST paths and learn the rep-
esentation in a separate encoder, which eliminates the risk of
ntroducing noises in the model.

There are several techniques to parse AST from partial pro-
rams. Some of the well known approaches are fuzzy parsers (Kop-
ler, 1997), island grammars (Moonen, 2001), partial program
nalysis (PPA) (Dagenais and Hendren, 2008) and pairwise paths
Alon et al., 2019). Fuzzy parsers scan the code keywords and
xtract the coarse-grained structure out of code snippets (Kop-
ler, 1997). Similarly, island grammars extract part of the code
nippets that describes some details of the function (island) and
gnores the rest of the trivial lexical information (water). In

ontrast, PPA parsers trace the defined type of a class or method
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and extract a typed AST (Dagenais and Hendren, 2008). PPA
recovers the declared type of expressions by resolving declaration
ambiguities in partial java programs. Declaration ambiguity refers
to the fields whose declarations are undeclared, or to the un-
qualified external references. These approaches are more suitable
for situations where a sound analysis is required, such as code
cloning, code representation and code summarisation.

Lastly, in the pairwise paths parser (Alon et al., 2019), the AST
paths are extracted using modern integrated development envi-
ronments (IDE) (e.g., Eclipse), which generate the pairwise paths
between terminal nodes (e.g. variable declaration) by neglecting
the non-terminal nodes (e.g. do-while loop). In the pairwise paths
approach, two programs that have similar terminal nodes are
likely to parse as similar format. As it is our intention to compare
similar code snippet between issue reports, we have adopted this
pairwise paths approach in our study. Next, we discuss the related
work of the multi-task learning model.

8.2. Multi-task learning

The multi-task learning model has been successfully applied in
computer vision applications as well as in many natural language
problems which require solving multiple tasks simultaneously (Lu
et al., 2017; Shinohara, 2016). In the recent work of Kokkinos
(2017), the authors used hard parameter sharing to address seven
computer vision tasks. Similar works are presented in Dvornik
et al. (2017), Bilen and Vedaldi (2016), Zhou et al. (2017). In the
work of Standley et al. (2020), the authors proposed a framework
by which to evaluate which tasks are compatible with learn-
ing jointly in the multi-task learning network. Their preliminary
results revealed that multi-task learning networks’ prediction
quality depends on the relationship between the jointly trained
tasks. Their framework incrementally increases the number of
tasks assigning to the model by starting with three or fewer
networks. They used predefined inference time, and the lowest
total lost value to identify the compatible pairing tasks.

In Deng et al. (2019), the authors used a multi-task learning
approach to tackle two types of question-answering tasks: an-
swer selection and knowledge-based question answering. In their
approach, the CNN network is used to model the shared learning
layer in order to learn the contextual information of historical
question and answer data to predict answers to a new question
automatically. In a similar line of work, the authors of Zhang et al.
(2014) used the CNN network to identify facial landmarks and
attributes (i.e. emotions). In Liu et al. (2015), the authors adopted
a multi-task learning network to learn query classification tasks
and ranking of web search tasks together. Our work is similar to
that of Deng et al. (2019), but we tackle a problem in a different
domain. We adopted multi-task learning with a hard-parameter
sharing approach to recommend potential developers and issue
types for a new issue report.

8.3. Other tasks in the bug resolution process

In Cabot et al. (2015b), the authors reported the usage of
GitHub’s label in over 3 million GitHub projects. Their preliminary
results revealed that most projects use four generic types of
labelling strategies: priority labels, versioning labels, workflow
labels, and architecture labels to categorise the issue reports.
In Polisetty et al. (2019), the authors proposed a CNN-based bug
localisation model to assist developers in identifying code smell
areas. In the work of Deshmukh et al. (2017), the researchers
leverage deep neural networks to detect duplicate issue reports
automatically.

Likewise, Tufano et al. (2018) relied on recurrent neural net-

works (RNN) and graph embedding to detect similarities in source
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ode components. The work proposed in White et al. (2019)
sed deep learning neural networks to identify similar code com-
onents in generating bug-fixing patches for program repair.
n Wan et al. (2018), an LSTM encoder–decoder was used to
enerate a code summary that provided a high-level description
f code functionality changes. Despite different strategies, these
pproaches use AST tokens as embedding input to learn the
epresentation of source code components. Instead, the work
n Sui et al. (2020) and Cheng et al. used the control flow graph
CFG) representation of a program to embed the code to support
variety of program analysis tasks (e.g. code summarisation and
emantic labelling).

. Conclusion

In this paper, we have presented an approach to recommend
otential developers and issue types of an issue report to resolve
he issue. Our approach uses the multi-task learning approach
o simultaneously resolve the developer’s assignment and issue
ypes allocation tasks.

We use a text encoder and AST encoder to learn the precise
epresentation of issue reports. The experiments are conducted
n eleven widely-used open-source projects and achieve accu-
acy on average of 57% for developer and 42% for issue types,
espectively. Furthermore, we present the effectiveness of the
ontextual data augmentation approach in balancing the dis-
roportional ratio of class labels. In addition, we introduced a
ualitative analysis of our machine learning model against state-
f-the-art approaches. We have reported on lessons learned in
rocessing the issue report data from the issue tracking system.
We believe that our approach is promising for the leveraging

ug assignment and the tossing process for open-source software
evelopments. An interesting future direction includes experi-
ents using our approach with human bug triagers and inves-

igating the additional information of issue reports (e.g. screen-
hots and comments).

RediT authorship contribution statement

Yulei Sui: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

We thank the anonymous reviewers for their reviews and
uggestions. This research is partially supported by Australian
esearch Grants DP200101328 and DP210101348.

eferences

chille, A., Soatto, S., 2018. Information dropout: Learning optimal representa-
tions through noisy computation. IEEE Trans. Pattern Anal. Mach. Intell. 40
(12), 2897–2905.

laeddine, H., Jihene, M., 2021. Deep network in network. Neural Comput. Appl.
33 (5), 1453–1465. http://dx.doi.org/10.1007/s00521-020-05008-0.

lon, U., Zilberstein, M., Levy, O., Yahav, E., 2019. Code2vec: Learning distributed
representations of code. Proc. ACM Program. Lang. 3 (POPL), http://dx.doi.
org/10.1145/3290353.

lonso-Abad, J.M., López-Nozal, C., Maudes-Raedo, J.M., Marticorena-Sánchez, R.,
2019. Label prediction on issue tracking systems using text mining. Prog.
Artif. Intell. 8 (3), 325–342.

nvik, J., Hiew, L., Murphy, G.C., 2006. Who should fix this bug? In: Proceedings

of the 28th International Conference on Software Engineering, pp. 361–370.

19
Anvik, J., Murphy, G.C., 2011. Reducing the effort of bug report triage: Rec-
ommenders for development-oriented decisions. ACM Trans. Softw. Eng.
Methodol. 20 (3), 1–35.

Aung, T.W.W.A., 2021. MultiTriage. http://dx.doi.org/10.5281/zenodo.5532458,
URL https://github.com/thazin31086/MultiTriage.

Banerjee, I., Ling, Y., Chen, M.C., Hasan, S.A., Langlotz, C.P., Moradzadeh, N.,
Chapman, B., Amrhein, T., Mong, D., Rubin, D.L., Farri, O., Lungren, M.P.,
2019. Comparative effectiveness of convolutional neural network (CNN)
and recurrent neural network (RNN) architectures for radiology text re-
port classification. Artif. Intell. Med. 97, 79–88. http://dx.doi.org/10.1016/
j.artmed.2018.11.004, URL http://www.sciencedirect.com/science/article/pii/
S0933365717306255.

Banerjee, S., Syed, Z., Helmick, J., Culp, M., Ryan, K., Cukic, B., 2017. Automated
triaging of very large bug repositories. Inf. Softw. Technol. 89, 1–13.

Bengio, Y., 2012. Practical recommendations for gradient-based training of deep
architectures. Arxiv.

Bergmeir, C., Benítez, J.M., 2012. On the use of cross-validation for time series
predictor evaluation. Inform. Sci. 191, 192–213. http://dx.doi.org/10.1016/
j.ins.2011.12.028, Data Mining for Software Trustworthiness. URL https://
www.sciencedirect.com/science/article/pii/S0020025511006773.

Bhattacharya, P., Neamtiu, I., 2010. Fine-grained incremental learning and multi-
feature tossing graphs to improve bug triaging. In: 2010 IEEE International
Conference on Software Maintenance. IEEE, pp. 1–10.

Biedenkapp, A., Lindauer, M., Eggensperger, K., Hutter, F., Fawcett, C., Hoos, H.,
2017. Efficient parameter importance analysis via ablation with surrogates.
In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.

Bilen, H., Vedaldi, A., 2016. Integrated perception with recurrent multi-task
neural networks. In: Advances in Neural Information Processing Systems.
pp. 235–243.

Cabot, J., Izquierdo, J.L.C., Cosentino, V., Rolandi, B., 2015a. Exploring the use
of labels to categorize issues in open-source software projects. In: 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering. SANER, IEEE, pp. 550–554.

Cabot, J., Izquierdo, J.L.C., Cosentino, V., Rolandi, B., 2015b. Exploring the use
of labels to categorize issues in open-source software projects. In: 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering. SANER, IEEE, pp. 550–554.

Cai, L., Zhou, S., Yan, X., Yuan, R., 2019. A stacked BiLSTM neural network based
on coattention mechanism for question answering. Comput. Intell. Neurosci.
2019.

Caruana, R., 1993. Multitask learning: A knowledge-based source of inductive
bias. In: Proceedings of the Tenth International Conference on Machine
Learning. Morgan Kaufmann, pp. 41–48.

Catolino, G., Palomba, F., Zaidman, A., Ferrucci, F., 2019. Not all bugs are the
same: Understanding, characterizing, and classifying bug types. J. Syst. Softw.
152, 165–181. http://dx.doi.org/10.1016/j.jss.2019.03.002, URL https://www.
sciencedirect.com/science/article/pii/S0164121219300536.

Cheng, X., Wang, H., Hua, J., Xu, G., Sui, Y., 2021. DeepWukong: Statically
Detecting Software Vulnerabilities Using Deep Graph Neural Network, 30,
3, Association for Computing, New York, NY, USA Machinery, 38, https:
//doi.org/10.1145/3436877.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P., 2011.
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12
(ARTICLE), 2493–2537.

Dagenais, B., Hendren, L., 2008. Enabling static analysis for partial java programs.
SIGPLAN Not. 43 (10), 313–328. http://dx.doi.org/10.1145/1449955.1449790,
URL https://doi-org.ezproxy.lib.uts.edu.au/10.1145/1449955.1449790.

Deng, Y., Xie, Y., Li, Y., Yang, M., Du, N., Fan, W., Lei, K., Shen, Y., 2019. Multi-
task learning with multi-view attention for answer selection and knowledge
base question answering. In: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33, pp. 6318–6325.

Deshmukh, J., Podder, S., Sengupta, S., Dubash, N., et al., 2017. Towards accurate
duplicate bug retrieval using deep learning techniques. In: 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution. ICSME, IEEE,
pp. 115–124.

Dvornik, N., Shmelkov, K., Mairal, J., Schmid, C., 2017. Blitznet: A real-time deep
network for scene understanding. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 4154–4162.

Fawcett, C., Hoos, H.H., 2016. Analysing differences between algorithm
configurations through ablation. J. Heuristics 22 (4), 431–458.

Golzadeh, M., Legay, D., Decan, A., Mens, T., 2020. Bot or not? Detecting bots in
GitHub pull request activity based on comment similarity. In: Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, pp. 31–35.

Gousios, G., Pinzger, M., Deursen, A.v., 2014. An exploratory study of the pull-
based software development model. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 345–355.

Graves, A., Schmidhuber, J., 2005. Framewise phoneme classification with bidi-
rectional LSTM and other neural network architectures. Neural Netw. 18 (5),
602–610. http://dx.doi.org/10.1016/j.neunet.2005.06.042, IJCNN 2005. URL
http://www.sciencedirect.com/science/article/pii/S0893608005001206.

http://refhub.elsevier.com/S0164-1212(21)00230-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb1
http://dx.doi.org/10.1007/s00521-020-05008-0
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.1145/3290353
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb6
http://dx.doi.org/10.5281/zenodo.5532458
https://github.com/thazin31086/MultiTriage
http://dx.doi.org/10.1016/j.artmed.2018.11.004
http://dx.doi.org/10.1016/j.artmed.2018.11.004
http://dx.doi.org/10.1016/j.artmed.2018.11.004
http://www.sciencedirect.com/science/article/pii/S0933365717306255
http://www.sciencedirect.com/science/article/pii/S0933365717306255
http://www.sciencedirect.com/science/article/pii/S0933365717306255
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb10
http://dx.doi.org/10.1016/j.ins.2011.12.028
http://dx.doi.org/10.1016/j.ins.2011.12.028
http://dx.doi.org/10.1016/j.ins.2011.12.028
https://www.sciencedirect.com/science/article/pii/S0020025511006773
https://www.sciencedirect.com/science/article/pii/S0020025511006773
https://www.sciencedirect.com/science/article/pii/S0020025511006773
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb18
http://dx.doi.org/10.1016/j.jss.2019.03.002
https://www.sciencedirect.com/science/article/pii/S0164121219300536
https://www.sciencedirect.com/science/article/pii/S0164121219300536
https://www.sciencedirect.com/science/article/pii/S0164121219300536
https://doi.org/10.1145/3436877
https://doi.org/10.1145/3436877
https://doi.org/10.1145/3436877
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb21
http://dx.doi.org/10.1145/1449955.1449790
https://doi-org.ezproxy.lib.uts.edu.au/10.1145/1449955.1449790
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb26
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb26
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb26
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.sciencedirect.com/science/article/pii/S0893608005001206


T.W.W. Aung, Y. Wan, H. Huo et al. The Journal of Systems & Software 184 (2022) 111133

H

J

J

K

K

K

K

K

K

K

L

L

L

L

L

L

M

M

M

M

M

N

P

P

P

assan, A.E., Xie, T., 2010. Software intelligence: the future of mining software
engineering data. In: Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research, pp. 161–166.

iang, G., Wang, W., 2017. Error estimation based on variance analysis of k-fold
cross-validation. Pattern Recognit. 69, 94–106.

iang, J., Wu, Q., Cao, J., Xia, X., Zhang, L., 2020. Recommending tags for pull
requests in GitHub. Inf. Softw. Technol. 106394.

afle, K., Yousefhussien, M., Kanan, C., 2017. Data augmentation for visual
question answering. In: Proceedings of the 10th International Conference
on Natural Language Generation, pp. 198–202.

agdi, H., Gethers, M., Poshyvanyk, D., Hammad, M., 2012. Assigning change
requests to software developers. J. Softw. Evol. Process 24 (1), 3–33.

enton, J.D.M.-W.C., Toutanova, L.K., 2019. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of
NAACL-HLT, pp. 4171–4186.

im, Y., 2014. Convolutional neural networks for sentence classification. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing. EMNLP, Association for Computational Linguistics, Doha,
Qatar, pp. 1746–1751. http://dx.doi.org/10.3115/v1/D14-1181, URL https://
www.aclweb.org/anthology/D14-1181.

im, S., Zhao, J., Tian, Y., Chandra, S., 2021. Code prediction by feeding trees to
transformers. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering. ICSE, pp. 150–162. http://dx.doi.org/10.1109/ICSE43902.2021.
00026.

okkinos, I., 2017. Ubernet: Training a universal convolutional neural network
for low-, mid-, and high-level vision using diverse datasets and limited
memory. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6129–6138.

oppler, R., 1997. A systematic approach to fuzzy parsing. Softw. - Pract. Exp.
27 (6), 637–649.

ee, S.-R., Heo, M.-J., Lee, C.-G., Kim, M., Jeong, G., 2017. Applying deep
learning based automatic bug triager to industrial projects. In: Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, pp.
926–931.

ee, H., Kwon, H., 2017. Going deeper with contextual CNN for hyperspectral
image classification. IEEE Trans. Image Process. 26 (10), 4843–4855. http:
//dx.doi.org/10.1109/TIP.2017.2725580.

iang, X., Jiang, A., Li, T., Xue, Y., Wang, G., 2020. LR-SMOTE–An improved
unbalanced data set oversampling based on K-means and SVM. Knowl.-Based
Syst. 105845.

iu, X., Gao, J., He, X., Deng, L., Duh, K., Wang, Y.-Y., 2015. Representation
learning using multi-task deep neural networks for semantic classification
and information retrieval.

iu, G., Guo, J., 2019. Bidirectional LSTM with attention mechanism and
convolutional layer for text classification. Neurocomputing 337, 325–338.

u, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., Feris, R., 2017. Fully-adaptive
feature sharing in multi-task networks with applications in person attribute
classification. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5334–5343.

ani, S., Sankaran, A., Aralikatte, R., 2019. Deeptriage: Exploring the effectiveness
of deep learning for bug triaging. In: Proceedings of the ACM India Joint
International Conference on Data Science and Management of Data, pp.
171–179.

atter, D., Kuhn, A., Nierstrasz, O., 2009. Assigning bug reports using a
vocabulary-based expertise model of developers. In: 2009 6th IEEE Inter-
national Working Conference on Mining Software Repositories. IEEE, pp.
131–140.

oonen, L., 2001. Generating robust parsers using island grammars. In: Pro-
ceedings Eighth Working Conference on Reverse Engineering. IEEE, pp.
13–22.

urphy, G., Cubranic, D., 2004. Automatic bug triage using text categorization.
In: Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering. Citeseer, pp. 1–6.

ustafa, H.T., Yang, J., Zareapoor, M., 2019. Multi-scale convolutional neural
network for multi-focus image fusion. Image Vis. Comput. 85, 26–35. http://
dx.doi.org/10.1016/j.imavis.2019.03.001, URL http://www.sciencedirect.com/
science/article/pii/S026288561930023X.

air, V., Hinton, G.E., 2010. Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Inter-
national Conference on Machine Learning. ICML’10, Omni Press, USA, pp.
807–814, URL http://dl.acm.org/citation.cfm?id=3104322.3104425.

ark, J.-w., Lee, M.-W., Kim, J., Hwang, S.-w., Kim, S., 2016. Cost-aware triage
ranking algorithms for bug reporting systems. Knowl. Inf. Syst. 48 (3),
679–705.

ennington, J., Socher, R., Manning, C.D., 2014. Glove: Global vectors for word
representation. In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP, pp. 1532–1543.

olisetty, S., Miranskyy, A., Başar, A., 2019. On usefulness of the deep-learning-
based bug localization models to practitioners. In: Proceedings of the
Fifteenth International Conference on Predictive Models and Data Analytics
in Software Engineering. ACM, pp. 16–25.
20
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., 2019. Language
models are unsupervised multitask learners. OpenAI Blog 1 (8), 9.

Runeson, P., Alexandersson, M., Nyholm, O., 2007. Detection of duplicate defect
reports using natural language processing. In: 29th International Conference
on Software Engineering. ICSE’07, IEEE, pp. 499–510.

Shinohara, Y., 2016. Adversarial multi-task learning of deep neural networks
for robust speech recognition. In: Interspeech. San Francisco, CA, USA, pp.
2369–2372.

Standley, T., Zamir, A.R., Chen, D., Guibas, L., Malik, J., Savarese, S., 2020.
Which tasks should be learned together in multi-task learning? URL https:
//openreview.net/forum?id=HJlTpCEKvS.

Sui, Y., Cheng, X., Zhang, G., Wang, H., 2020. Flow2Vec: Value-flow-based precise
code embedding. Proc. ACM Program. Lang. 4 (OOPSLA), http://dx.doi.org/10.
1145/3428301.

Tamrawi, A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N., 2011. Fuzzy set and
cache-based approach for bug triaging. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering. ESEC/FSE ’11, Association for Computing Machin-
ery, New York, NY, USA, pp. 365–375. http://dx.doi.org/10.1145/2025113.
2025163.

Tufano, M., Watson, C., Bavota, G., Di Penta, M., White, M., Poshyvanyk, D., 2018.
Deep learning similarities from different representations of source code.
In: Proceedings of the 15th International Conference on Mining Software
Repositories. MSR ’18, ACM, New York, NY, USA, pp. 542–553. http://dx.
doi.org/10.1145/3196398.3196431, URL http://doi.acm.org/10.1145/3196398.
3196431.

Wan, Y., Zhao, Z., Yang, M., Xu, G., Ying, H., Wu, J., Yu, P.S., 2018. Improving
automatic source code summarization via deep reinforcement learning. In:
Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, pp. 397–407.

Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J., 2008. An approach to detecting
duplicate bug reports using natural language and execution information. In:
Proceedings of the 30th International Conference on Software Engineering,
pp. 461–470.

White, M., Tufano, M., Martinez, M., Monperrus, M., Poshyvanyk, D., 2019.
Sorting and transforming program repair ingredients via deep learning
code similarities. In: 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering. SANER, IEEE, pp. 479–490.

Xi, S., Yao, Y., Xiao, X., Xu, F., Lu, J., 2018. An effective approach for routing
the bug reports to the right fixers. In: Proceedings of the Tenth Asia-Pacific
Symposium on Internetware, pp. 1–10.

Xi, S.-Q., Yao, Y., Xiao, X.-S., Xu, F., Lv, J., 2019. Bug triaging based on tossing
sequence modeling. J. Comput. Sci. Tech. 34 (5), 942–956.

Xia, X., Feng, Y., Lo, D., Chen, Z., Wang, X., 2014. Towards more accurate
multi-label software behavior learning. In: 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering. CSMR-WCRE, IEEE, pp. 134–143.

Xia, X., Lo, D., Ding, Y., Al-Kofahi, J.M., Nguyen, T.N., Wang, X., 2016a. Improving
automated bug triaging with specialized topic model. IEEE Trans. Softw. Eng.
43 (3), 272–297.

Xia, X., Lo, D., Ding, Y., Al-Kofahi, J.M., Nguyen, T.N., Wang, X., 2016b. Improving
automated bug triaging with specialized topic model. IEEE Trans. Softw. Eng.
43 (3), 272–297.

Xia, X., Lo, D., Wang, X., Zhou, B., 2013. Tag recommendation in software
information sites. In: 2013 10th Working Conference on Mining Software
Repositories. MSR, IEEE, pp. 287–296.

Yadav, A., Singh, S.K., Suri, J.S., 2019. Ranking of software developers based on
expertise score for bug triaging. Inf. Softw. Technol. 112, 1–17.

Yu, Y., Wang, H., Yin, G., Wang, T., 2016. Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and
bug assignment? Inf. Softw. Technol. 74, 204–218. http://dx.doi.org/10.
1016/j.infsof.2016.01.004, URL http://www.sciencedirect.com/science/article/
pii/S0950584916000069.

Zhang, T., Chen, J., Yang, G., Lee, B., Luo, X., 2016. Towards more accurate severity
prediction and fixer recommendation of software bugs. J. Syst. Softw. 117,
166–184.

Zhang, T., Lee, B., 2012. An automated bug triage approach: A concept profile
and social network based developer recommendation. In: International
Conference on Intelligent Computing. Springer, pp. 505–512.

Zhang, Z., Luo, P., Loy, C.C., Tang, X., 2014. Facial landmark detection by deep
multi-task learning. In: European Conference on Computer Vision. Springer,
pp. 94–108.

Zhou, D., Wang, J., Jiang, B., Guo, H., Li, Y., 2017. Multi-task multi-view
learning based on cooperative multi-objective optimization. IEEE Access 6,
19465–19477.

http://refhub.elsevier.com/S0164-1212(21)00230-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb34
http://dx.doi.org/10.3115/v1/D14-1181
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/D14-1181
http://dx.doi.org/10.1109/ICSE43902.2021.00026
http://dx.doi.org/10.1109/ICSE43902.2021.00026
http://dx.doi.org/10.1109/ICSE43902.2021.00026
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb39
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb39
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb39
http://dx.doi.org/10.1109/TIP.2017.2725580
http://dx.doi.org/10.1109/TIP.2017.2725580
http://dx.doi.org/10.1109/TIP.2017.2725580
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb49
http://dx.doi.org/10.1016/j.imavis.2019.03.001
http://dx.doi.org/10.1016/j.imavis.2019.03.001
http://dx.doi.org/10.1016/j.imavis.2019.03.001
http://www.sciencedirect.com/science/article/pii/S026288561930023X
http://www.sciencedirect.com/science/article/pii/S026288561930023X
http://www.sciencedirect.com/science/article/pii/S026288561930023X
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb56
https://openreview.net/forum?id=HJlTpCEKvS
https://openreview.net/forum?id=HJlTpCEKvS
https://openreview.net/forum?id=HJlTpCEKvS
http://dx.doi.org/10.1145/3428301
http://dx.doi.org/10.1145/3428301
http://dx.doi.org/10.1145/3428301
http://dx.doi.org/10.1145/2025113.2025163
http://dx.doi.org/10.1145/2025113.2025163
http://dx.doi.org/10.1145/2025113.2025163
http://dx.doi.org/10.1145/3196398.3196431
http://dx.doi.org/10.1145/3196398.3196431
http://dx.doi.org/10.1145/3196398.3196431
http://doi.acm.org/10.1145/3196398.3196431
http://doi.acm.org/10.1145/3196398.3196431
http://doi.acm.org/10.1145/3196398.3196431
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb62
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb62
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb62
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb62
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb62
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb62
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb62
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb64
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb64
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb64
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb64
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb64
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb64
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb64
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb66
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb66
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb66
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb67
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb67
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb67
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb67
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb67
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb67
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb67
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb68
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb68
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb68
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb68
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb68
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb69
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb69
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb69
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb69
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb69
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb70
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb70
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb70
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb70
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb70
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb71
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb71
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb71
http://dx.doi.org/10.1016/j.infsof.2016.01.004
http://dx.doi.org/10.1016/j.infsof.2016.01.004
http://dx.doi.org/10.1016/j.infsof.2016.01.004
http://www.sciencedirect.com/science/article/pii/S0950584916000069
http://www.sciencedirect.com/science/article/pii/S0950584916000069
http://www.sciencedirect.com/science/article/pii/S0950584916000069
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb73
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb73
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb73
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb73
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb73
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb74
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb74
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb74
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb74
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb74
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb75
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb75
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb75
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb75
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb75
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb76
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb76
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb76
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb76
http://refhub.elsevier.com/S0164-1212(21)00230-2/sb76

	Multi-triage: A multi-task learning framework for bug triage
	Introduction
	Background and definitions
	Developers and issue types recommendation tasks in bug triage
	Motivation
	Multi-task learning

	Proposed approach
	Overview
	Data extraction
	Contextual data augmenter
	Multi-triage model
	Code representation
	Task-specific classifiers

	Data and evaluation
	Results
	RQ1: How does the multi-triage model compare to other approaches?
	RQ2: Which component contributes more to the multi-triage model?
	System component level ablation analysis
	Embedding parameter level ablation analysis

	RQ3: Does increasing the size of training datasets (based on the contextual data augmentation approach) improve our model's accuracy?

	Threats to validity
	Discussion
	Accessing the significance of our approach
	Evaluation using time-series based cross validation
	Alternative considerations on model building
	Applicability of contextual data augmentation approach
	Lessons learned

	Related work
	Semi-automatic bug triage
	Multi-task learning
	Other tasks in the bug resolution process

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


