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a b s t r a c t 

Interprocedural memory SSA form, which provides a sparse data-flow representation for indirect memory 

operations, paves the way for many advanced program analyses. Any performance improvement for mem- 

ory SSA construction benefits for a wide range of clients (e.g., bug detection and compiler optimisations). 

However, its construction is much more expensive than that for scalar-based SSA form. The memory ob- 

jects distinguished at a pointer dereference significantly increases the number of variables that need to 

be put on SSA form, resulting in considerable analysis overhead when analyzing large programs (e.g., 

millions of lines of code). 

This paper presents ParSSA , a fully parameterised approach for parallel construction of interprocedural 

memory SSA form by utilising multi-core computing resources. ParSSA partitions whole-program mem- 

ory objects into uniquely identified memory regions. The indirect memory accesses in a function are 

fully parameterised using partitioned memory regions, so that the memory SSA construction of a param- 

eterised function is readily parallelised. We implemented ParSSA in LLVM using Intel Threading Building 

Block (TBB) for creating parallel tasks. We evaluated ParSSA using 15 large applications. ParSSA achieves 

up to 6.9 × speedup against the sequential version on an 8-core machine. 

© 2018 Elsevier Inc. All rights reserved. 
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1. Introduction 

Static Single Assignment (SSA) form ( Rosen et al., 1988 ) is the

mainstream intermediate representation used to perform analy-

ses and optimizations of scalars in modern compilers (e.g., LLVM

( Lattner and Adve, 2014 ), GCC ( Novillo and Canada, 2007 ), and Java

Hotspot ( Kotzmann et al., 2008 )). It provides a sparse data-flow

representation in which every variable can only be defined once.

To enable the sparsity of both scalars and indirect memory oper-

ations, various memory SSA forms (e.g., factored SSA ( Choi et al.,

1994 ), HSSA ( Chow et al., 1996 ), and Tree SSA ( Novillo and

Canada, 2007 )) have been proposed to support aggressive compiler

optimizations. To reduce compile-time overhead, majority of their

construction algorithms are intraprocedural , i.e, a pair of pointer

dereferences in a function f are conservatively treated as aliases

if both may access memory objects defined outside f . 

Compared to light-weight intraprocedural memory SSA form, its

interprocedural counterpart provides fine-grained memory depen-

dence by considering global alias information across functions. Due
∗ Corresponding author. 
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o improved precision, the resulting SSA representation is useful

or many client applications, such as flow-sensitive pointer analysis

 Hardekopf and Lin, 2011; Sui and Xue, 2016a ), static memory er-

or detection ( Livshits and Lam, 2003; Sui et al., 2012 ), change im-

act analysis ( Guo et al., 2016; Cai et al., 2016 ) and identifying re-

undant instrumentations to accelerate dynamic analysis ( Ye et al.,

014 ). 

Constructing interprocedural memory SSA form is expensive.

ecause of the undecidability of aliases ( Landi, 1992 ), a memory

peration (load or store) may access many different memory ob-

ects at a pointer dereference due to over-approximation. Unlike

ntraprocedural memory SSA forms in Open64 ( Chow et al., 1996 )

nd GCC ( Novillo and Canada, 2007 ), which use a single virtual

ymbol ( Chow et al., 1996 ) to represent all memory objects defined

utside a function, an interprocedural SSA form distinguishes ev-

ry object at a memory access with a unique name for SSA renam-

ng, resulting in precise dependences between two memory oper-

tions. However, distinguishing objects accessed at pointer deref-

rences significantly increases the number of variables that need

o be put in SSA. A memory SSA construction algorithm which in-

olves a non-trivial data flow analysis ( Novillo and Canada, 2007 )

akes substantial time for analysing large programs. 

https://doi.org/10.1016/j.jss.2018.09.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.09.038&domain=pdf
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Fig. 1. ParSSA workflow. 
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Nowadays, multi-core platforms are ubiquitous. It becomes im-

erative to exploit parallelism to accelerate memory SSA con-

truction algorithms. However, such algorithms are often not di-

ectly amenable to parallelisation. For example, the algorithm in

ardekopf and Lin (2011) works on the interprocedural control-

ow graph (ICFG ( Landi and Ryder, 1992 )) of a program. The ap-

roach is designed to be entirely sequential, by treating the whole

rogram as a single graph, thereby hindering its parallelisation. 

In this paper, we present ParSSA , a simple yet effective Par allel

pproach to accelerating the construction of interprocedural mem-

ry SSA . ParSSA enables pre-analysis to partition the whole-

rogram abstract memory objects into memory regions. Every re-

ion is uniquely identified in a program to represent a set of ob-

ects that are accessed equivalently using the results from an exist-

ng pointer analysis. The interprocedural memory dependences of

 function are then fully parameterised using memory regions, so

hat the memory SSA construction of individual functions can be

eadily parallelised. The key contributions of this paper are: 

• We propose ParSSA , the first parallel approach to construct-

ing interprocedural memory SSA form for large-scale programs

with millions of lines of code. 
• We present a new approach to constructing fully parameterised

interprocedural memory SSA form using memory region parti-

tioning. The source code is available at https://github.com/SVF-

tools/SVF/tree/master/lib/MSSA. 
• We have evaluated ParSSA using a set of 15 large applications.

ParSSA achieves up to 6.9 × speedup against the sequential

version on an 8-core machine. 

The rest of this paper is organised as follows. Section 2 presents

ur ParSSA approach including the overview of ParSSA frame-

ork ( Section 2.1 ), the examples of intraprocedural and interpro-

edural memory SSA forms ( Section 2.2.1 ), the side-effect analy-

is ( Section 2.2.2 ) and memory region generation and parallel con-

truction ( Section 2.2.3 ). Section 3 evaluates ParSSA including im-

lementation ( Section 3.3 ), methodology ( Section 3.2 ), results and

nalysis ( Section 3.3 ). Section 4 describes the related work. Finally,

ection 5 concludes the paper and discusses some future work. 

. PARSSA approach 

The key idea of our ParSSA approach is to parameterise ev-

ry function of a program through partitioned memory regions, so

hat the indirect memory accesses in a function are fully param-

terised through the side-effect analysis using these memory re-

ions. Therefore, memory dependences across functions are decou-

led, making memory SSA form construction readily parallelised. 

.1. Overview of PARSSA 

The workflow of ParSSA is depicted in Fig. 1 . The source code of

 program is first compiled by the clang compiler front-end (FE)
nto bit-code files, which are merged by LLVM Gold Plugin ( llv )

t link time stage to produce a whole-program bit-code file. Then

he “Pointer Analysis ” module is invoked. Based on the points-

o information obtained, we first perform a lightweight side-effect

nalysis to capture interprocedural reference and modification of

ach abstract memory object. Thus, the (alias) set of indirect defs

uses) at a statement � (i.e., a store, load or callsite) in each func-

ion is obtained and denoted as D � ( U � ). 

The “Mem Region Partitioning ” module partitions all the ab-

tract memory objects of a program into a set of disjointed regions

 1 , . . . , R n . Then every statement � is annotated with each R i , where

 � ∩ R i � = ∅ ( U � ∩ R i � = ∅ ), to make explicit the memory objects that

ay be defined (used) indirectly at � . Once indirect uses and defs

re identified, the interprocedural dependences are fully param-

terised for every function by using uniquely named regions, so

hat we can achieve function level parallelism to produce a whole-

rogram memory SSA form that has the same precision as the

ne built by a sequential algorithm. Our algorithm for constructing

ully parameterised SSA form has been implemented in the open-

ource tool SVF ( Sui and Xue, 2016b ) (https://github.com/SVF-

ools/SVF) based on the LLVM compiler. 

ParSSA uses Intel Threading Building Block (TBB) to fork multi-

le threads for building SSA form for each parameterised functions.

he concurrent queue data structure is used to store all the param-

terised functions of a program after memory region partitioning.

arSSA performs parallel construction of memory SSA for every

rogram function by allocating parallel tasks (“MSSA construc-

or ”) using task groups in TBB, so that every allocated task con-

tructs memory SSA modularly by choosing the next available pa-

ameterised function from the concurrent queue. Finally, the whole

rogram memory SSA form is available when all the parallel tasks

nish. 

.2. Parameterised memory SSA form 

This section details our ParSSA approach. Section 2.2.1 de-

cribes the background knowledge and examples of memory SSA

orms. Section 2.2.2 introduces whole-program side-effect analy-

is to discover interprocedural dependences across functions using

esults from a pointer analysis. Based on the side-effect analysis,

ection 2.2.3 discusses memory region generation to parameterise

rogram functions to enable parallel memory SSA construction. 

.2.1. Intraprocedural and interprocedural Memory SSA Form 

xamples 

Without loss of generality, we follow the LLVM convention

 Hardekopf and Lin, 2011; Sui and Xue, 2016a; Lhoták and Chung,

011 ) of separating all variables in a program into two disjoint

ets: A containing all possible targets, i.e., address-taken variables

f a pointer and T containing all top-level variables . 

A program is represented by five types of statements: p=& a

 AddrOf ), p=q ( Copy ), p= ∗q ( Load ), ∗p= q ( Store ), and p= φ(q, r)
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Fig. 2. Intraprocedural memory SSA with μ/ χ at stores/loads. 

Fig. 3. Interprocedural memory SSA with μ/ χ at callsite and function entry/exit. 
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( Phi ), where p, q, r ∈ T and a ∈ A . For an AddrOf statement p=& a,

known as an allocation site, a is a stack or global variable with its

address taken or a dynamically created abstract heap object (at,

e.g., a malloc() site). Interprocedural parameter assignments and

function returns are modeled using Copy . 

Top-level variables can be put directly in SSA form using stan-

dard SSA construction algorithm (e.g., Cytron et al., 1991 ) without

requiring any pointer analysis. Address-taken variables are only ac-

cessed indirectly via Load or Store . Each of them can be indirectly

defined multiple times which requires pointer analysis to discover

their defs and uses, thus they are more complicated for SSA con-

version. 

In order to explicitly put address-taken variables on SSA, we

adopt the approach in Chow et al. (1996) by introducing μ and χ
operators to represent these possible uses and defs. As illustrated

in Fig. 2 (a), each indirect store (e.g., ∗p = q ) in the original program

is annotated with an operator a = χ(a ) to represent a potential def

and use of a at the store based on its pre-computed points-to in-

formation. If a can be strongly updated, then a receives whatever

q points to and the old contents in a are killed. Otherwise, a must

also incorporate its old contents, resulting in a weak update to a .

Similarly, each indirect load (e.g., v = ∗w ) in the original program

is annotated with an operator μ( b ) for each variable b that may

be accessed by the load. Finally, each address-taken variable, e.g.,

b is converted into SSA form ( Fig. 2 (b)), with each μ( b ) treated as

a use of b , and each b = χ(b) as both a def and use of b . 

When considering function calls, the memory SSA is more com-

plicated to construct. To build per-function SSA, the previous in-

traprocedural approaches ( Chow et al., 1996; Novillo and Canada,

2007 ) does not analyse the side-effect of a function call. Instead, it

conservatively uses a single virtual variable v in every function f to

represent all the non-local objects in f . An object represented by v

is assumed to be modified (read) at any store and callsite (load and

callsite) in f . As illustrated in Fig. 3 (a), both store � 1 and callsite � 2 
are annotated with v = χ(v ) to capture defs of all non-local objects

in foo . Likewise, v = χ(v ) ( μ( v )) is annotated at the entry (exit) of

foo to mimic the parameter passing (return). However, using v to

represent all non-local objects are overly conservative, which may

produce overwhelming spurious dependences, e.g., an object de-

fined at � 1 is always assumed to be modified via callsite at � 2 , even

if there is no store statement via dereference ∗p in callee bar . 

A fine-grained solution is to build a single SSA form over the

whole-program ICFG ( Landi and Ryder, 1992 ) using points-to re-

sults. However, such approach makes SSA construction inefficient

when the size of a program grows. Moreover, it makes parallel con-

struction impossible due to densely coupled dependences across

the functions. 
.2.2. Whole-program side-effect analysis 

This section introduces our side-effect analysis to discover in-

erprocedural program dependences of a function using the results

f Andersen’s pointer analysis ( Andersen, 1994 ). Given a function

 , the side-effect analysis determines the set U ( D ) of the nonlo-

al memory objects ( Definition 1 ) in f that may be indirectly read

modified) when f is executed, denoted as f : U , D . The side-effect

f each statement � ∈ L f in a function f , denoted as � : U , D , is anal-

sed individually. 

Fig. 4 gives the rules of our side-effect analysis. The root causes

or the interprocedural side-effect are loads and stores. For a load

p = ∗q, the points-to set pt (q ) of q may contain nonlocal objects

ead in f ( [LOAD] ). Similarly, [STORE] collects nonlocal objects

n pt (q ) that may be modified at a store. In contrast, address

nd copy statements do not contribute any side-effect according

o [ALLOC] and [COPY] . Rule [PROC] simply collects the side-

ffect of a function f by accumulating the computed side-effect of

ts statements. 

For a callsite � : _ = f ( _ ) with its callee function f , the most

onservative side-effect analysis is to assume that the set of all

ariables passed into this callsite may be read and modified by

ts callees invoked directly/indirectly. This naive approach is inac-

urate due to a large number of unrealisable def-use chains cre-

ted across the functions. Therefore, we only collect objects E � → f 

 Definition 2 ), which are escaped from callsite � to its callee f as

omputed based on lines 6-10 in Algorithm 1 . In the presence

f recursion, [CALL] and [PROC] are recursively applied until a

xed point is reached. 

efinition 1 (Nonlocal Objects) . Consider a memory object o ∈ A
hat is not a global object but accessed in a function f . We say

hat o represents a local object if (1) o is locally declared in f and

2) f does not appear in any recursion cycle, and a nonlocal object

therwise. We write Local f ( NonLocal f ) to represent the set of all

ocal (nonlocal) objects accessed in f . 

efinition 2 (Callsite Escaped Objects) . For a callsite � : _ = f ( _ )

ith its callee function f , a set of escaped objects E � → f represents

ll nonlocal objects passed into callsite � that may be used or mod-

fied inside callee function f. E � → f is pre-computed using Ander-

en’s points-to results according to Algorithm 1 . 

heorem 1. (Soundness). Proof Sketch: Our side-effect analysis is

ound because (1) the side-effect of a statement � : U , D ( [LOAD] ,
STORE] and [CALL] ) is over-approximated due to the underly-

ng sound pointer analysis, and (2) f : U , D records all the nonlocal

ocations in NonLocal f read and modified by f ( [PROC] ). 

.2.3. Memory region generation 

After side-effect analysis, we generate a set of memory re-

ions, denoted ϒ. Every memory region represents a set of mem-

ry objects. Any two memory regions R, R ′ ∈ ϒ are disjointed, i.e.,

 ∩ R ′ = ϒ . Algorithm 2 describes the region generation for func-

ion f . Initially, memory regions are collected from pointer deref-

rences based on points-to information (lines 2-3) and callsites

ased on side-effect analysis (lines 4-5). Then the regions are grad-

ally refined by making all regions disjointed (lines 7-10) using a

tandard worklist algorithm. 

Note that memory region generation is not limited to the re-

ults of a particular pointer analysis. More precise points-to infor-

ation can help generate regions that have more precise depen-

ence relations for memory SSA construction. 

.2.4. Parallel construction 

Algorithm 3 describes the sequential version of constructing the

emory SSA form for a parameterised function. There are three
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Fig. 4. Rules to determine side-effect of a function including loads/stores and callsites. 

Algorithm 1. Computing escaped objects 

Algorithm 2. Memory region generation 
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hases (lines 1–3): (1) creating μ and χ annotations for mem-

ry regions (lines 4–9); (2) adding φ functions for multiple defi-

itions of the same region that are live at join points of control

ows (lines 10–18), and (3) performing SSA conversion to rename

ll instances of regions (lines 19–36). 

Algorithm 4 performs parallel construction for each function

sing the allocated TBB task. Each task forks a thread execut-

ng Algorithm 3 . The algorithm starts with the ParallelConstruct

ethod with N threads (lines 1-3). Each task selects a parame-

erised function f from the shared concurrent queue for building

 ’s memory SSA form. Note that there is no need for synchronisa-

ion among the three phases of Algorithm 3 since every function

s parameterised using globally partitioned memory regions. 

heorem 2. (Precision). Proof Sketch: For a program, parallel con-

truction produces the same memory SSA as the sequential ver-

ion, because (1) the dependences between functions are decoupled

y full parameterisation using uniquely identified regions, whose

lias sets are disjoint, and (2) all functions assigned to threads
re handled using the same memory SSA construction algorithm. a
. Evaluation 

The objective is to show that our parallel memory SSA con-

truction algorithm is significantly faster than the sequential one in

nalysing large-scale real-world applications with millions of lines

f code. 

.1. Implementation 

We have fully implemented ParSSA in LLVM-4.0.0. The source

les of each benchmark are compiled into bit-code files using

lang and then merged together using LLVM Gold Plugin ( llv ) at

ink time stage to produce a whole program bitcode file. The com-

iler flag mem2reg is applied to promote memory into registers. 

We use flow-insensitive and field-sensitive Andersen’s analy-

is ( Sui and Xue, 2016b ) as pre-analysis to generate memory re-

ions. The call graph of a program is constructed on-the-fly dur-

ng points-to resolution. Our handling of field-sensitivity is ANSI-

ompliant ( ISO90, 1990 ). The fields of an struct object are distin-

uish by their unique indices. ParSSA adopts a field-index-based

pproach to field-sensitivity similar as Pearce et al. (2007) . 
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Algorithm 3. Memory SSA construction based for a parameterised function with μ/ χ annotations Cooper and Torczon (2011) 

Algorithm 4. Parallel memory SSA construction 
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Fig. 5. A scenario adapted from a2ps with four threads launched for memory SSA construction, where each rectangle represents a task and the length of the rectangle 

denotes the size of the task. An uneven workload assignment is shown in (a), while an optimised scheduling is illustrated in (b). 

Table 1 

Program characteristics (#Call and #Fun denote the numbers of callsites and functions respectively). 

Program KLOC #AddrOf #Load #Store #Copy #Call #Fun #Pointer 

make 40.4 2297 2344 1244 13246 2243 765 36707 

a2ps 64.6 3746 6713 1965 29909 3760 917 116129 

bison 113.3 3024 8363 3453 42411 4538 566 90049 

tar 132.0 4055 4095 2522 24 4 40 2962 815 85727 

bash 155.9 8069 10456 4500 43868 10831 3422 191413 

sendmail 259.9 7044 6805 3310 46269 14957 1513 256074 

python 431.9 16235 34068 14997 119693 33379 9585 412764 

vim 330.1 13450 27764 15849 129336 22072 4794 466493 

emacs 413.1 15010 29712 20932 160475 16180 1058 754746 

gdb 1818.1 54863 66580 45563 406052 104224 21597 191413 

dealII 199.0 59305 72373 59305 61272 109085 19477 808614 

omnetpp 48.0 14346 13797 10923 13363 19686 2874 151024 

povray 155.0 17066 33755 10441 4795 17872 2123 269772 

soplex 41.0 7978 10338 4142 5965 9519 1597 102025 

xalan 553.0 132258 145409 94483 86073 131196 29973 1080028 

Total 4755.3 358746 472572 293629 1187167 502504 101076 5012978 

Table 2 

Memory SSA statistics. LoadMu , RetMu and CSMu denote μ functions at loads, function exits and call- 

sites, respectively. StoreChi , EntryChi and CSChi denote χ functions annotated at stores, function en- 

tries and callsites, respectively. 

Program Number of μ Number of χ #Phi 

# LoadMu # RetMu # CSMu # StoreChi # EntryChi # CSChi 

make 6756 1729 11467 1455 1809 6732 5542 

a2ps 10491 3124 8072 1941 3133 4336 3616 

bison 15265 4553 29220 4526 4570 17712 19089 

tar 6378 4557 27792 2381 4644 13446 13267 

bash 21761 12098 63883 5174 12172 4 4 453 32590 

sendmail 16864 4206 115449 5146 4266 60950 34529 

python 70621 20327 153771 17066 20348 85892 58992 

vim 48622 16784 175470 18368 16792 142099 109803 

emacs 43206 21943 200895 18587 22077 149505 140367 

gdb 115828 48354 421505 41901 48764 325962 148924 

dealII 74574 94255 220773 56700 94606 79913 137856 

omnetpp 16369 12901 68962 10516 13067 46757 33700 

povray 39812 11789 4 4 484 10311 11799 27748 18951 

soplex 13759 5605 11731 4172 5605 3622 4453 

xalan 138912 131668 232589 88029 133530 101087 134386 

Total 639218 393893 1786063 286273 397182 960709 755698 
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For a struct allocation p=& o, a field-insensitive object o is cre-

ted to represent the entire struct object. A field object o fld is de-

ived from o when analyzing a field access q=& p→ f ld, where fld is

 constant. Thus, different fields (including index 0) are modeled

sing distinct (sub) objects. Two pointer dereferences are aliased if

ne refers to o and another one refers to one of its fields e.g., o fld 

ince it is the sub component of o . However, dereferences refer to

ifferent fields of o are distinguished and not aliased. 
p  
For a pointer arithmetic q=p + i, if p points to a struct object,

e conservatively treat that q can point any field of this struct ob-

ect. This is based on the ANSI-compliant assumption that i is not

cross the boundary of the object. A pointer arithmetic used for

ccessing an aggregate object out of the boundary may cause un-

oundness. Arrays are treated monolithically, i.e., accessing any el-

ment of an array is treated as accessing the entire array object. 

The parallelisation scheme can be summarised as a thread pool

attern ( Pool, 2018 ). We use Intel’s Threading Building Blocks li-
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Fig. 6. Memory SSA construction time under different thread configurations. 
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brary (TBB) to allocate multiple threads for parallel construction of

memory SSA as in Algorithm 3 . The concurrent_queue data struc-

ture is used to store all parameterised functions. We use task_group

to allocate parallel threads for constructing per-function memory

SSA from a concurrent_queue data structure. 
p  
.2. Methodolgy 

We evaluate ParSSA using 15 real-world applications includ-

ng 10 large open-source C programs and 5 large C ++ programs

s listed in Table 1 : make (a build automation tool), a2ps (a

ostScript filter), bison (a parser), tar (tar archiving), bash (a



Y. Sui et al. / The Journal of Systems and Software 146 (2018) 186–195 193 

Fig. 7. Speedups achieved with two, four and eight threads. 
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nix shell and command language), sendmail (an email server

nd client), python (a scripting language), vim (a text editor),

macs (a text editor), gdb (linux debugger), dealII (finite el-

ment analysis), omnetpp (discrete event simulation), povray
image ray-tracing), soplex (linear programming) and xalan
XML process). 

There are altogether over 4.7 million lines with the largest one,

db , comprising over 1.8 million LOC. Experiments are conducted

n a computer with 3.7G Hz Intel Xeon 8-core CPU and 16 GB

emory, running Ubuntu Linux (kernel version 3.11.0). For each

enchmark, we evaluate the performance advantages of our par-

llel implementation with two, four and eight threads (TBB tasks)

nabled over the sequential one for constructing memory SSA of

he same program in Table 1 . 

A scheduling strategy is implemented to optimise parallel task

llocation. In order to avoid idle threads and workload imbal-

nce, the goal of our strategy is to evenly assign workload to

ach thread, so that a better performance can be achieved. How-

ver, optimal scheduling as a classic partition problem ( Gent and

alsh, 1998 ) is NP-complete. We have implemented a greedy algo-

ithm introduced in Korf (2009) to produce results close to optimal

n polynomial time ( O ( n log n )). Fig. 5 shows an example adapted

rom a2ps , which illustrates how the optimised scheduling can

educe the execution time. In ParSSA , each task (workload) cor-

esponds to a function in the program. The size of each workload

or a function f is estimated by the total number of the annotated

, χ and φ functions in f . 

.3. Results and analysis 

Table 2 shows the numbers of annotated μ, χ and φ func-

ions for memory regions in each program. For the 15 programs

valuated, 5,219,036 annotations are added in total, with 1,151,238

dded in the largest program gdb . 
Fig. 6 gives memory SSA construction times under three differ-

nt configurations (with thread counts being 1, 2, 4 and 8). For

ach program, we run every configuration five times and report

he average time. 

The blue lines in Fig. 6 represent the SSA construction time

seconds) using the optimised scheduling strategy (described in

ection 3.2 ). The average speedups gained with two, four and eight

hreads are 1.79X, 3.15X and 4.71X respectively. The grey lines

epresent the construction time without the scheduling scheme.

he performance results are worse when disabling the schedul-

ng strategy, resulting in the speedups of 1.60x, 3.01x, 4.57x under

he three configurations. This is caused by the imbalanced work-

oads for different parallel tasks, especially for some programs,

.g., emacs , a2ps , vim and gdb whose function sizes vary sig-

ificantly. The function sizes of most C++ programs (e.g., soplex ,
ealII , povary and xalan ) tends to be more balanced due to

he object-oriented design patterns. 

The total construction time of all the benchmarks by a sequen-

ial algorithm is significantly reduced from 3486.16 to 561.34 sec-
nds using 8 threads under the scheduling strategy. The average

peedup for eight threads is 4.7 × . The maximum speedup ob-

erved is 6.9 × ( gdb ). These results are promising, showing that

ur approach has the potential to be deployed in optimising com-

ilers. 

For the four small-size programs, a2ps , bash , bison , make ,
ar and soplex , the maximum speedups achieved are under 4 ×

even with 8 threads). For the medium-size programs, dealII ,
macs , omnetpp , povray , python and sendmail , which have

 relatively large number of pointers and annotations, greater

peedups are observed, ranging from 4 × to 5.6 × , as shown in

ig. 6 (b). For the most complex benchmarks, gdb , vim and xalan ,
ll their speedups above 5.6 × with 8 threads. In particular, the

nalysis time for the largest benchmark gdb has been cut from

030.51 seconds to 290.53 seconds. 

Fig. 7 compares further the speedups achieved under three

ifferent thread configurations. Compared to sequential execu-

ion, ParSSA with the scheduling strategy has achieved noticeable

peedups for all the benchmarks evaluated, with the best reaching

.9X (in gdb ). This demonstrates that ParSSA is effective in accel-

rating memory SSA construction for large programs. 

In general, better speedups are obtained when more threads

re used. On average, the speedups gained with 4 threads are

.74 × higher than the speedups gained with 2 threads, while

he speedups gained with 8 threads are 1.47 × higher than the

peedups gained with 4 threads. However, it worth noting that

or small applications (e.g., a2ps , make and soplex ), using 8

hreads does not guarantee a better performance than using 4

hreads. There are two reasons behind this phenomenon. First,

ore threads lead to higher synchronisation overheads in access-

ng the shared data, offsetting the speedups gained from par-

llelism. Second, for small programs, the overhead of initiating

hreads is not negligible. In addition, some programs have better

peedups than others. The reason is that different programs have

ifferent inherent complexities in terms of memory SSA construc-

ion, resulting in different synchronisation overheads. 

. Related Work 

tatic Single Assignment (SSA) 

SSA form is the mainstream representation in modern optimis-

ng compilers and program analysis tools. Memory SSA advances

calar-based SSA by providing a sparse data-flow representation

or both top-level pointers and address-taken variables. Intraproce-

ural memory SSA forms ( Chow et al., 1996; Novillo and Canada,

007 ), which approximates conservatively the dependences across

he functions is cheaper to compute than their interprocedural

ounterparts. Recently, the idea of staged analysis ( Hardekopf and

in, 2011; Sui and Xue, 2016a ) provides an effective way for us-

ng pre-computed points-to information to bootstrap an interpro-

edural memory SSA. However, the algorithm is still costly for large

rograms with millions of lines of code. 
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Parallel Program Analysis 

Méndez-Lojo et al. (2010) introduce a parallel implementa-

tion of Andersen’s pointer analysis for C programs based on

graph rewriting. Their parallel analysis is context- and flow-

insensitive, achieving a speedup of up to 3 × on 8 CPU cores.

Recently, the whole-program sparse flow-sensitive pointer analy-

sis ( Hardekopf and Lin, 2011 ) is parallelised on multi-core CPUs

( Nagaraj and Govindarajan, 2013 ) and GPUs ( Nasre, 2013 ). The

speedups are up to 2.6 × on 8 CPU cores. In their report,

Singer and Ward describe a parallel scalar SSA form for Java pro-

grams by considering top-level pointers only. To the best of our

knowledge, this paper proposes the first approach to parallelising

interprocedural memory SSA construction that achieves an average

speedup of 4.7 × (up to 6.9 × ) on 8 CPU cores. 

5. Conclusion 

This paper presented ParSSA , the first parallel memory SSA

construction approach by partitioning the whole-program memory

objects into uniquely identified memory regions to fully parame-

terise indirect memory accesses in a function. Thus, the memory

dependences across functions are decoupled for parallelising mem-

ory SSA construction. Our results show that ParSSA can achieve an

average speedup of 4.7 × on an 8-core machine, making it deploy-

able in optimising compilers and program analysis tools. There few

possible future directions. 

There are few interesting directions along this work. One possi-

ble future work is to extend ParSSA to support fine-grained paral-

lelism than function level (e.g., basic block and code region level)

for constructing memory SSA form. For example, applying region-

based analysis ( Ye et al., 2014 ) to parameterise selected program

parts for parallel SSA construction. Another interesting direction is

to apply the proposed parameterised approach to support paral-

lelising precise pointer analysis (e.g., whole-program flow-sensitive

analysis ( Sui et al., 2016 ) and/or demand-driven analysis ( Sui and

Xue, 2016a )). 
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