
Journal of Network and Computer Applications 152 (2020) 102509

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

PGFIT: Static permission analysis of health and fitness apps in IoT
programming frameworks

Mehdi Nobakht a,∗, Yulei Sui b, Aruna Seneviratne c, Wen Hu d

a School of Engineering and Information Technologies, UNSW Canberra, Australia
b Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
c School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
d School of Computer Science and Engineering, UNSW Sydney, Australia

A R T I C L E I N F O

Keywords:
Permissions
Principle of least privilege
Static program analysis
IoT programming frameworks
Google Fit
Health and fitness data

A B S T R A C T

Popular Internet of Things (IoT) programming frameworks, such as Google Fit, enable third-party developers to
build apps that store and retrieve user data from a variety of data sources such as wearable devices. Most of
these apps, particularly those that are health and fitness-related, collect potentially sensitive personal data and
send it to cloud servers. Analogous to Android OS, IoT programming frameworks often follow similar permission
model; third-party apps on IoT platforms prompt users to grant the apps the access to their private data stored on
cloud servers of IoT programming frameworks. Most users have a poor understanding of why these permissions
are being asked. This can often lead to unnecessary permissions being granted, which in turn grant these apps
with excessive privileges. Over-privileged apps might not be harmful to users when they are used as designed,
however, they can potentially be exploited by a malicious actor in a cyber security attack. This is of particular
concern with health and fitness apps, which may be exploited to leak highly sensitive personal information. This
paper presents PGFIT, a static permission analysis tool that precisely and efficiently identifies privilege escalation
in third-party apps built on top of a popular IoT programming framework, Google Fit. PGFIT extracts the set of
requested permission scopes and the set of used data types in Google Fit-enabled apps to determine whether
the requested permission scopes are actually necessary. PGFIT performs graph reachability analysis on inter-
procedural control flow graph. PGFIT serves as a quality assurance tool for developers and a privacy checker for
app users. We evaluated PGFIT using a set of 20 popular Google Fit-enabled apps downloaded from Google Play.
Our tool successfully identified the unnecessary permission scopes granted in our data set apps and found that 6
(30%) of the 20 apps are over-privileged.

1. Introduction

The Internet of Things (IoT) largely consists of embedded devices
such as wearable accessories that generate data, and end applications
(e.g. mobile apps) that consume this data and optionally take actions.
Recently, programming frameworks have emerged which enable devel-
opers to create third-party apps that can process this data for a variety
of purposes. In particular, IoT programming frameworks for health and
fitness-tracking are receiving more attention due to the popularity of
wearables, smart watches and the proliferation of third-party IoT apps.
Google Fit (Google, 2017a), Apple’s HealthKit (Apple, 2017), Samsung
Digital Health Platform (Samsung, 2017), and Microsoft’s HealthVault

∗ Corresponding author.
E-mail address: mehdi.nobakht@unsw.edu.au (M. Nobakht).
URL: https://mehdi-nobakht.github.io/ (M. Nobakht).

(Microsoft, 2017) are a few examples of such platforms.
As a representative IoT programming framework, Google Fit paves

the way for third-party app programmers to efficiently write health and
fitness apps by providing high-level centralised APIs, without the need
to understand low-level implementation details. Google Fit also has a
central cloud-based repository that allows a user to store and retrieve
health and fitness-related data from multiple apps and devices such as
activity trackers and smart watches.

Google Fit APIs provide access to data with specified permissions
associated with a Google user account. Google Fit uses the OAuth pro-
tocol (The oauth 1.0 protocol, 2010; The oauth 2.0 protocol, 2012) to
authorise third-party apps by obtaining consent from users to access fit-

https://doi.org/10.1016/j.jnca.2019.102509
Received 29 April 2019; Received in revised form 6 November 2019; Accepted 14 December 2019
Available online 23 December 2019
1084-8045/Crown Copyright © 2020 Published by Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2019.102509
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2019.102509&domain=pdf
mailto:mehdi.nobakht@unsw.edu.au
mailto:https://mehdi-nobakht.github.io/
https://doi.org/10.1016/j.jnca.2019.102509


M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Fig. 1. A typical google fit consent screen.

ness information. Authorised apps are then allowed to store or read the
user’s fitness information. Google Fit blends the stored data from a vari-
ety of apps and makes them available to the user and authorised apps
on behalf of the user. As far as we know, apart from Google Fit’s own
app, 43 health and fitness apps based on the Google Fit programming
framework are available on the market (e.g., exercise activities track-
ers, heart rate monitors and calorie counters (Google, 2017b)). These
apps are developed by, among others, Motorola, Intel, Sony, Adidas and
Nike.

IoT programming frameworks often follow similar permission mod-
els to smartphone OS permissions, and IoT apps must be authorised by
the end-user to access health and fitness data. In Android’s case, users
are asked to grant permissions to a third-party app via a dialogue screen
that granularly lists the permission scopes with “deny” and “allow” but-
tons (see Fig. 1). Providing proper permission scopes is important to
avoid privilege escalation or permission misuse, as it exposes user to
the risk of leaking private user information. Yet our studies indicate,
however, that many apps request access to more data than they actu-
ally need to perform their core functions.

Nowadays, insurance companies offer incentives to encourage peo-
ple to be active (Assure, 2017; Medibank, 2017; AIA, 2017). The
rewards can be in the form of premium discounts or credits in a joint
loyalty program. In such voluntary plans, users agree to be monitored
by fitness devices, and whether biometric data (e.g., daily steps and
heart rates) can be shared privately with the insurer. Using data col-
lected from the user, an insurer can determine whether the user is eli-
gible for a reward. However, the user may only be willing to share
a subset of their health data with their insurer, and might not wish for
other parties to access certain information such as hospital appointment
records.

Granting the permissions in any app requires that third-party devel-
opers understand the usage of APIs within the context of IoT frame-
works. Giving unnecessary permissions to an app may expose users to
privacy risks such as leakage of sensitive user information such as blood
pressure levels or physical location data to an unnecessary wide audi-
ence.

Let us consider an over-privilege scenario in a third-party app built
upon Google Fit, whose cloud contains both user fitness data and health

data. The user wishes only to share their fitness data with this app, not
their health data. Instead, the user’s heath data will be accessed via
another medical app connecting to the same Google Fit cloud. The med-
ical app allows the user to organise their appointments and other health
needs. However, if the fitness app developer intentionally or uninten-
tionally requests to access both types of data on Google Fit cloud, the
user has to grant the blanket permission in order to use this third-party
app (even he/she may not realise this is an unnecessary authorisation).
Consequently, the over-privileged fitness app causes sensitive health
data to be leaked to this third party (e.g. the insurer).

The increasing deployment of various third-party apps on top of
IoT platforms raises security and privacy risks. Thus, it is important to
ensure that permissions granted will not be abused. However, detecting
excessive privileges is challenging due to the sheer size of modern IoT
apps and the complications of API usage in IoT programming frame-
works.

This paper focuses on discovering over-privilege permissions to
access user data within IoT platforms. In particular, we analyse a
dataset of apps working with the Google Fit framework to determine
how they adhere to the least-privilege principle to protect sensitive user
data. To this end, we perform comprehensive studies in the Google Fit
access control mechanism to gain insights into their structure and key
requirements. We have summarised the scopes of permission access and
data types used in existing Google Fit APIs.

We present PGFIT, a static analysis tool to identify overprivileged
apps developed upon the Google Fit programming framework. We for-
mulate the permission analysis as a source-sink graph reachability prob-
lem. PGFIT introduces context-sensitive reachability analysis into over-
privilege detection in IoT apps. By considering event-driven callbacks in
Android apps, PGFIT performs forward control-flow reachability analy-
sis to obtain the program slices from a source node (a Google Fit API
call which grants a permission scope) to a sink node (an API call which
consumes data types). On top of the slices of a given source-sink pair,
PGFIT performs backward reachability analysis to compute the values of
the data type variables from the sink node. An over-privilege is reported
in an app if a permission granted at a source node is never used (based
on the data types) in any of its sink nodes. We have evaluated PGFIT
on a set of 20 third-party apps developed upon Google Fit. Our analysis
found that six (30%) of them are over-privileged.

The paper makes the following key contributions:

• We have identified privilege escalation in IoT apps built upon the
existing popular IoT programming framework Google Fit. We have
performed comprehensive studies of the Google Fit permission con-
trol mechanism by summarising the existing Google Fit APIs, per-
mission scopes and data types.

• We present PGFIT, a static analysis tool that introduces context-
sensitive reachability analysis into over-privilege detection in apps
on top of IoT programming frameworks.

• We have implemented PGFIT as a software tool and evaluated it
over a set of 20 IoT Apps built on Google Fit. Our tool successfully
detected that six (30%) of them are over-privileged. PGFIT reduces
false alarm rates by 10% by eliminating “dead codes” compared to
a naive approach that does not employ control flow reachability
analysis.

The rest of this paper is organised as follows. Section 2 describes our
studies in Google Fit and ASM, a static analysis tool on which PGFIT is
built. Section 3 gives a representative threat model to highlight how an
app can be compromised to disclose private user information. Section
4 presents PGFit and its main components. The tool aims to perform
static analysis on Google Fit-enabled apps to check privilege escalations.
Section 5 reports the result of our analysis on a set of 20 Google Fit-
enabled apps. Related work is summarised in Section 6 with conclusions
in Section 7. In order to assist readers, we provide in Table 1 a list of
acronyms along with brief definitions as used throughout this article.

2



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Table 1
Acronyms and definitions.

Acronym Definition

API Application Programming Interface
APK Android Application Package
App Application
ASM ASMaLibrary
BLE Bluetooth Low Energy
DEX Dalvik EXecutable
HTTPS Hypertext Transfer Protocol Secure
ICC inter-component communication
ICFG Inter-procedural Control Flow Graph
IoT Internet of Things
JAR Java ARchive
JVM Java Virtual Machine
OAuth Open Authorisation
OS Operating System
REST Representational State Transfer
SDK Software Development Kit
SDN Software-defined Networking
SSA Static Single Assignment
UI User Interface
URI Uniform Resource Identifier
XML eXtensible Markup Language

a The ASM name does not mean anything; it is
just a reference to the __asm__ keyword in C, which
allows some functions to be implemented in assem-
bly language (Bruneton et al., 2002).

2. Background and our studies of Google Fit

This section describes our studies of the Google Fit framework
including (1) its overall structure and basic types of fitness related APIs,
(2) its data storage and representation, and (3) its permission and user
control mechanism. We also provide background information on ASM, a
static analysis library, on which PGFIT was developed to perform static
permission analysis for Google Fit-enabled apps.

2.1. Google Fit: IoT programming framework

Google Fit is a health and fitness-tracking platform developed by
Google which uses sensors in a user’s activity tracker or mobile device
to record physical fitness activities such as walking or cycling. It also
enables the user to measure stored information against their fitness
goals in order to provide a comprehensive view of fitness activities.
Google Fit, with its open programming framework, enables third-party
developers to build health and fitness apps to collect, insert, or query
user fitness-related data. Google Fit-enabled apps upload data to a cen-
tral repository, where it remains owned by the user and is associated
with their Google account. Google Fit blends a user’s data collected
from various sources and makes it available to the user and also to
authorised third-party apps from a single location. In this way, users
are able to query the stored fitness data and to track their progress.

2.1.1. Overview
The central repository of Google Fit can be accessed by either

Android or Web apps. Google Fit thus provides two sets of APIs: Android
APIs and Web REST API. Google Fit APIs for Android devices have two
main functionalities; (i) to provide access to data streams from sen-
sors embedded in Android devices and sensors available in companion
devices such as wearables, and (ii) to provide access to data history and
to allow apps to obtain the stored data. Android apps in these two sce-
narios can be seen as data sources and data sinks respectively. Google
Fit REST API, however, is not supposed to connect to any sensor. Thus,
it is intended to access user data in the fitness store. The REST API can
be used by any Web browser on any platform. Since our study involves
permission analysis on Android fitness apps, we focus on the Google Fit

Fig. 2. An overview of Google Fit on Android.

Android APIs interface.
The Google Fit ecosystem for Android devices consists of four major

components: Google Fitness Store, Google Fit APIs, Sensor Adapters and
Third-party Android Apps. Fig. 2 provides a general overview of the
Google Fit architecture. Google Fitness Store is a backend cloud storage
managed by Google which stores fitness data from various apps and
devices. Users track fitness activities and access fitness data on Google
Fit platform from Third-party Android Apps which can insert data and
also query the fitness store on behalf of users. Sensor Adapters interface
physical sensors on the mobile device and companion devices to Google
Fit. Google Fit APIs link the Google Fitness Store to third-party apps and
sensors.

Google Fit Android APIs consist of various APIs to access the fit-
ness store. A third-party fitness app interfaces to a fitness service via
an appropriate API. Below, we briefly describe these APIs in order to
provide the context for the permission analysis that will be presented
later.

• Sensors API provides access to raw sensor data streams and easily
discovers available sensor data sources.

• Recording API enables automatic collection of sensor data in a
power-efficient manner.

• History API allows apps to perform bulk operations such as inserting,
updating, and deleting fitness data.

• Sessions API enables apps to create an activity time interval (ses-
sions) in the fitness store in real time or after a fitness activity has
finished.

• BLE API provides access to Bluetooth Low Energy sensors by
enabling the app to look for available BLE devices and use embed-
ded sensors in them.

• Config API provides methods to create custom data types and also
methods for disconnection from Google Fit.

3



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

2.1.2. Connecting to Google Play
To use Google APIs such as authentication, Map, and Google Fit,

a Google-enabled app must first connect to Google Play services using
Google common API. Once connected to Google Play services, the app
can call Google API methods. The Google Play services system is com-
posed of two components: (i) a client library that resides in a third-
party app, and (ii) an implementation of Google Play services that runs
as a background service in the Android OS. The client library inter-
faces third-party apps to Google Play services and allows apps to obtain
authorisation from users to gain access to Google services with their
credentials. To connect to Google APIs, a third-party app must create
an instance of GoogleAPIClient which provides a common entry point
to all Google Play services. The GoogleAPIClient provides methods that
allow the app to specify what Google APIs are required and the desired
authorisation scopes too.

To analyse a Google Fit-enabled app, we used the publicly avail-
able Google Fit API (Google, 2017c) and collected all information about
Google Fit API interface methods. We additionally used Google devel-
oper documents (Google, 2017d) and collected information regarding
Google common API methods which are typically used in fitness apps.
The collected specification from Google common APIs and Google Fit
APIs includes method names, descriptions, and target classes. We saved
the collected specification in a list to be used later to identify Google
Fit API calls and Google common API calls.

More specifically, a Google-enabled app should invoke the addAPI
method and pass the required API token as an input parameter to spec-
ify what Google API is required. The required Google APIs appear as
string literals in the field of the Api class and the values of Google APIs
strings are documented by Google references. For example, an app that
requires access to raw sensor data streams must add the Sensors API to
enable this part of Google Play services.

2.1.3. Fitness data representation
Google Fit defines high-level representations for fitness data stored

in its repository, in order to make it easier for apps to interact with the
fitness store on any platform and to extract the required information.
We briefly elaborate on Google Fit representations for embedded sen-
sors and fitness data types and explain how Google Fit abstracts away
unnecessary information.

Google Fit defines Data Sources to represent unique sources of sensor
data. Data Sources contain information which can be used to uniquely
identify the hardware device and the app collecting the data. Google
Fit uses the notion of Data Types to represent the format of streams
of fitness data such as step count or heart rate. A single value of data
in a data type’s stream from a particular data source is represented
by a Data Point in Google Fit and includes a timestamp. A Data Point
can hold a value for either an instantaneous observation or aggregate
data over a time interval. For example, com.google.step_count.delta is
an instantaneous data type to represent the number of steps since the
last reading, while com.google.heart_rate.summary is an aggregate data
type which holds statistics for beats per minute during a time interval.

The Data Types representation in Google Fit abstracts away details
for apps wishing to access fitness data. In this way Google Fit removes
unnecessary details such as how the data is being collected or what
sensors, hardware or even apps are being used. To illustrate how this
device-independent abstraction works, consider a case where a user
uses two different Google Fit-enabled apps to record their activities. The
first app tracks cycling activities by using sensors in a wearable device.
The other app records walking activities by utilising embedded sensors
in the user’s smart phone. Both apps expose raw sensor data from hard-
ware sensors to Google Fit. Each value in such streams of data contains
information about the user’s activity. The user can later use a third app
to extract total calories expended over a time interval. For this purpose,
the third app can use the com.google.calories.expended data type to
query such information from Google Fit Store and deliver it to the user.
In this way, Google Fit abstracts away any details from available data

points in the fitness store.

2.1.4. Permissions and user controls
Google Fit requires user consent before apps can access user fit-

ness data. Apps must obtain authorisation by specifying the scope of
access to fitness data and the level of access. Google Fit classifies fit-
ness data into four different data types: activity, biometric, location, and
nutrition. The variation of fitness data types with read and write privi-
leges creates a set of 8 different authorisation scopes. For instance, the
FITNESS_ACTIVITY_READ scope provides read-only access to all data
related to a user’s activities. Table 2 shows string literals representing
each permission scope ps ∈ PS in Google Fit along with its correspond-
ing set of data types Dps. Note that for any two permission scopes ps1
and ps2, their data types Dps1 and Dps2 are always disjointed, i.e., Dps1
∩ Dps2 = 𝜑

Google Fit provides an OAuth-based authentication service for apps
to obtain required authorisation scopes. OAuth service involves a multi-
step authorisation dialogue over HTTPS between three entities: Google
Fit cloud backend, the app wishing to access fitness data, and the user
who owns the fitness data. The app first must specify one or more scopes
of access. Once Google Fit receives the app request, the user is prompted
to grant the app the required permissions. The user must approve or
deny the request at once. Fig. 1 shows a consent screen for the Google
Fit app developed by authors.

Once the user approves the app request to access the user’s fitness
data, Google Fit sends the authorisation code to the app and upon
app acknowledgement sends an access token. Having acquired a scoped
OAuth bearer token, the app can make Google Fit API calls to access all
fitness data types defined by that scope.

More specifically, a Google-enabled app should invoke the addScope
method with the required OAuth scope as an input parameter to spec-
ify the required authorisation scope. Google Fit defines authorisation
scopes as string literals. In most cases, these strings are passed directly
to the addScope method. However, in some cases, an instance of the
Scope class from Google common API is created to return Google Fit
scope strings. In these cases, the constructor method of this class accepts
a Uniform Resource Identifier (URI) string to indicate the intended
scope. The values of URI strings are documented in Google Fit API.

As seen in Fig. 1, the authorisation of Google Fit-enabled apps is
coarse-grained; multiple permission scopes to access fitness data types
are granted at once. Thus, the user should grant permission to the app to
access all requested scopes or deny all. While this coarse-grained autho-
risation can improve the simplicity and stability of Google Fit platform,
it also leaves users with no option to grant or deny permission scopes
separately.

2.2. ASM library

There exist various publicly-available frameworks for analysis of
Java apps when their source code are not accessible. Such frameworks
perform analysis either statically or dynamically. Static analysis is con-
ducted on some form of the source code or the object codes and involves
binary analysis and re-writing, whereas dynamic analysis is performed
after the app has been loaded into memory and just prior to execution.
Examples of static analysis frameworks are Soot (Vallée-Rai et al., 1999)
and WALA (Watson, 2017). There also exist analysis frameworks which
can provide both static (offline) and dynamic (runtime) Java bytecode
manipulation and analysis such as ASM API (Bruneton et al., 2002). We
developed a static analysis tool using ASM API to perform analysis on
compiled Java classes of Google Fit apps. We chose the ASM API for
its well-designed architecture and modular API that is easy to use. The
ASM API is also fast, robust, well-documented and has an open source
license.

ASM API uses the visitor pattern (Palsberg and Jay, 1998), which
allows one to define a new operation without changing the class of ele-
ments on which it operates. ASM library provides two set of APIs; the

4



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Table 2
Scopes for Google Fit and related data types.

Permission Scope Data Types

Activity SCOPE_ACTIVITY_READ
SCOPE_ACTIVITY_READ_WRITE

TYPE_ACTIVITY_SAMPLES

TYPE_ACTIVITY_SEGMENT
AGGREGATE_ACTIVITY_SUMMARY
TYPE_CALORIES_CONSUMED
TYPE_CALORIES_EXPENDED
AGGREGATE_BASAL_METABOLIC_RATE_SUMMARY
TYPE_CYCLING_PEDALING_CADENCE
TYPE_CYCLING_PEDALING_CUMULATIVE
TYPE_CYCLING_WHEEL_REVOLUTION
TYPE_CYCLING_WHEEL_RPM
TYPE_POWER_SAMPLE
TYPE_STEP_COUNT_CADENCE
TYPE_STEP_COUNT_DELTA

Body SCOPE_BODY_READ
SCOPE_BODY_READ_WRITE

TYPE_BODY_FAT_PERCENTAGE

AGGREGATE_BODY_FAT_PERCENTAGE_SUMMARY
TYPE_HEART_RATE_BPM
TYPE_HEIGHT
TYPE_WEIGHT

Location SCOPE_LOCATION_READ
SCOPE_LOCATION_READ_WRITE

TYPE_DISTANCE_DELTA

TYPE_LOCATION_SAMPLE
TYPE_SPEED

Nutrition SCOPE_NUTRITION_READ
SCOPE_NUTRITION_READ_WRITE

TYPE_NUTRITION

TYPE_HYDRATION

Core API with an event-based representation of classes and the Tree API
providing an object-based representation. To build a class hierarchy of
a Java project, ASM provides the ClassVisitor abstract class from Core
API. This abstract class has two main components: the ClassReader class
for parsing an existing compiled class, and the ClassWriter class for gen-
erating compiled classes directly in bytecode form. The MethodVisitor
abstract class is another visitor interface to visit all methods of a com-
piled class. ASM API thus allows one to visit a compiled Java class and
retrieve all kinds of information from the class such as fields, methods
and inner classes.

ASM API provides MethodVisitor abstract class to visit a Java
method. This class provides various methods to retrieve the Java
method contents such as modifiers, name, parameter and return types
and values. There is a method called visitParameter for extracting a
parameter name. However, this method will only return a parameter
name if a special compiler customisation has been set to include the
parameter name. Typically, most Java tools that produce and consume
compiled class files may not expect the larger static and dynamic foot-
print of class files that contain parameter names. In addition, some
parameter names such as secret keys or passwords may expose infor-
mation about security-sensitive methods.

While the process of obtaining names of parameters may at first
appear straightforward, it is not simple to obtain the names of method
parameters using ASM API. In order to address this, it is important
to know how a JVM executes Java methods. We briefly describe this
process here to be sufficient to infer names of method parameters (for
a complete description, see the JVM Specification (Oracle, 2017)). A
Java method consists of various elements such as its name, descriptors,
exceptions and instructions, where instructions represent the code of
the method. Inside a Java method, a method invocation is represented
by a Frame. A Frame is used to store data and partial results and con-
tains two parts: a local variable part and an operand stack. A JVM uses
local variables to pass parameters on method invocations. The JVM sup-
plies bytecode instructions to load constants or values (from local vari-
ables or fields) onto the operand stack. By examining these bytecode
instructions for transferring values between the local variable and the

operand stack, it is possible to infer parameters on method invocations.

3. Threat model

Health and fitness IoT programming frameworks store and maintain
sensitive user data produced by embedded sensors in connected devices.
Sensitive data can be activity-related such as calories consumed and
step counts, or biometric data such as heart rate. While these frame-
works provide tangible benefits to users, there is also a potential pos-
sibility to put users at risk of leaking their sensitive data. Denning et
al. survey the security and privacy in IoT-based smart homes and warn
that leaking of sensitive data could result in reputation and financial
damage (Denning et al., 2013).

When an app connects to IoT programming frameworks, it spec-
ifies the scope of access to user data. The app may request permis-
sions that are not necessary to what it really needs. In such cases, an
attacker could take advantage of these escalated privileges. In this study
we assume that an adversary compromises over-privileged fitness and
health apps working with IoT frameworks, in order to acquire private
user information. We thus aim to focus on app-level attacks that are
launched through malware or vulnerable apps. In the former, malicious
logic is disguised within the app at install time, while in the latter, the
app may contain design or implementation flaws.

We assume that fitness and health apps run on smart phones or
wearable devices whose hardware and software are trusted. Therefore,
attacks from an untrustworthy baseline are outside the scope of this
paper.

4. PGFIT - design and implementation

Scope and Assumptions. We developed a static analysis tool
called PGFIT, which analyses Google Fit-enabled Android apps in order
to determine whether the requested authorisation scopes are indeed
needed. PGFIT takes a given Android Application Package (APK) file as
input and performs analysis on it to compute Google Fit scope over-

5



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Fig. 3. An overview of PGFIT.

privilege. We assume apps are not obfuscated and can be analysed by
ASM API.

Overview. An overview of PGFIT is shown in Fig. 3. PGFIT takes a
given APK file of a third-party fitness app as input and carries out static
analysis. Under the hood, there are six phases of analysis in PGFIT. In
the first phase, Google-related class files will be identified among a large
number of class files in a typical Google Fit-enabled app. This helps to
avoid performing analysis on irrelevant class files. In the next phase,
PGFIT uses ASM API to extract all method calls within the identified
Google-related class files. This will build an intermediate representa-
tion which contains Google Fit method calls. Next, PGFIT will extract
requested permission scopes. To determine whether the requested per-
missions are indeed necessary, PGFIT first locates potential procedures
which may consume fitness data types. The procedures invoked by user
interactions or containing permission requests may use fitness data
types. PGFIT then creates the call graphs of such procedures and for-
ward traverses the graphs to visit all program statements to identify
Google method calls. It then performs a backward traversal to extract
used Google Fit data types within the app. Finally, in the last phase,
two sets of requested scope permissions and used Google Fit data types
are compared to compute over-privilege in the app.

4.1. Identifying google-related class files

Android apps compiled to Dalvik Executable (DEX) bytecode that
can be run on Android’s Virtual Machine. Due to the similarity of DEX
bytecode to Java bytecode and the availability of tools providing Java
bytecode analysis, we decided to convert DEX bytecode to the corre-
sponding Java bytecodes. To this end, PGFIT employs the publicly avail-
able dex2jar tool (dex2jar, 2017). In the first phase, PGFIT takes a given
APK as input and employs dex2jar to generate an equivalent JAR file
containing Java class files.

One of the challenges in analysing obtained JAR files from Android
Google Fit-enabled apps is the sheer size of the JAR files. We unpacked
app APKs in our study dataset (See Section 5.1) and observed that they
contain roughly 12,600 class files, on average. Note that many of these
classes originate from Java and Android native libraries or other app
libraries which are irrelevant to Google Fit Analysis. Thus, performing

resource intensive static analysis on all classes of an app is actually
unnecessary.

To overcome this challenge, we first collected all information about
Google Fit API method names and Google Fit-defined data type names
from the publicly-available Google Fit APIs (Google, 2017c) and stored
the Google Fit-related string names in a set. Then, a bash script was
developed and embedded in PGFIT. The script searches for entries in
the aforementioned set among all compiled class files of the JAR file.
The output of this phase is a list of compiled class files related to Google
Fit. In this way class files with no Google Fit API calls are filtered out.

4.2. Intermediate representation

We need to convert the compiled class files to some intermediate
representation suitable for our analysis. PGFIT, in this phase, takes
every class file in the list of Google Fit-related classes and then loads
each from the JAR file using Java internal libraries. The compiled class
files retain the structural information and many of symbols from the
source code. Note that unlike a Java source file which can contain sev-
eral classes, a compiled class file describes only one class. If a source
file includes a nested class, then the main and inner class are compiled
in two separate class files.

PGFIT employs ASM API to parse the compiled main class and nested
classes (if there is any inner class) and to visit all of their methods
to extract all method invocations. This list of method invocations also
includes Google API invocations which are called in the fitness app.
PGFIT stores this list of method invocations and other related informa-
tion, including caller and callee classes and target methods along with
their descriptors. A method descriptor itself is a list of type descriptors
that describe the parameter types and return types of the method. The
stored information is used in the next phase.

PGFIT examines every method invocation in the above list to deter-
mine whether it is a Google Fit API call or belongs to Google common
APIs. It takes every method invocation and compares (i) the method
name, (ii) method description, and (iii) the target class of method with
the Google Fit specification obtained from Google API references, as
explained in Section 2.1.2. If the method invocation matches Google Fit
API method, PGFIT, it then labels it with the corresponding Google Fit
API interfaces. The list of method invocations is then refined to contain
only Google common API calls or Google Fit APIs.

4.3. Extracting permission scopes

In this phase PGFIT runs multiple threads to analyse every method
invocation in the list of Google Fit-related method invocations. It aims
to discover (i) what Google Fit APIs have been requested to connect
and (ii) what authorisation scopes have been requested. PGFIT obtains
this information from Google common API method calls.

Further to the explanation in Section 2.1.2 and 2.1.4, Google Fit-
enabled apps should use addAPI and addScope methods to connect to
the required APIs and specify the scope of access. Table 3 shows these
two methods.

PGFIT searches in the list of Google Fit-related method invocations
for the above two methods. The method invocation which adds a scope
must satisfy two conditions: (i) the addScope method belonging to the
Builder class must be used to configure an instance of GoogleAPIClient
at the main entry point of Google Play services, and (ii) it must have
either a string parameter whose value is a scope permission value in
Table 2 or an instance of Scope which in turn returns Google Fit scope
strings.

PGFIT leverages the MethodNode class from ASM API and extracts
the requested APIs and permission scopes in a given Google Fit-enabled
app. The obtained information is stored in a list to be used in later
phases of analysis.

6



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Table 3
Google fit APIs.

Google Fit APIs Methods

Google Authorisation public GoogleApiClient.Builder addScope (Scope scope)
Google Fitness Service public GoogleApiClient.Builder addApi (Api api)

4.4. Identifying the location of google-defined data types

In order to discover all Google-defined data types that a Google Fit-
enabled app uses, we first need to identify the procedures that may
consume such data types. Analysing all procedures of the app with a
large number of class files is an inefficient and resource-intensive task.
Thus, in this phase PGFIT aims to identify potential procedures con-
taining Google Fit method invocations which may use Google-defined
data types. Table 4 shows Google Fit methods extracted from publicly
available Google Fit API (Google, 2017c).

Obviously, the procedure in which the app requests the required
permission scopes is more likely to contain method invocations which
use Google-defined data types. Thus, all the following statements and
called procedures immediately after the point where the permissions
are requested should be analysed. However, unlike this procedure
there might be other procedures containing Google Fit method invo-
cations. These procedures can be invoked via user interaction such
as inter-component communication or inter-application communica-
tion (through another app). For example, consider an app that when
launched requests read-write access to nutrition data types in Google
Fit. The app is designed so that it does not use any nutrition data types
until the user enters the consumed food (to record expended calories).
All possible interactions with the app must therefore be analysed for
any usage of Google-defined data types.

To this end, PGFIT searches for Google-defined data types in a given
app by analysing all statements and procedures (i) after a permission
scope is requested, and (ii) from the beginning of all entry points of the
app initiated by inter- and intra-application communications and which
may contain Google Fit methods. For the former, PGFIT is aware of the
starting point of analysis, as explained in the previous section; for the
latter, it is necessary to inspect the app and determine first all entry
points of the app. Below, we briefly describe the steps that PGFIT takes
to locate those entry points that may lead to Google Fit methods.

PGFIT first uses a publicly available tool named apktool (apktool,
2017) to decode the APK file of a given app. The tool reconstructs
the resource folder of the app including its manifest file and layout
files. After decoding the app, PGFIT analyses the metadata specifica-
tion in the manifest file to extract all declared activities. In Android
mobile apps an activity serves as the entry point for an app’s interac-
tion with its user by providing a window as the activity’s user inter-
face (UI). Among extracted activities, PGFIT selects Google Fit-related
activity class files and parses them to obtain the associated UI layout
ID by analysing the setContentView() method, which is a reference to
the layout resource passed to it. In Android apps, UI layouts are rec-
ommended to be defined with XML files to provide a human-readable
structure. All layouts in an app are stored in the res/layout/folder of
its project. In the next step, PGFIT finds the layout XML file name
from its associated ID by parsing the R class, which contains resource
IDs of all resources in the app res/directory. Having found the lay-
out XML files, PGFIT analyses them and extract a list of procedures
in the app that can be called by the user. For instance, a user can
interact with the app and input a consumed food item by clicking
on a button provided on the screen. This action invokes a method in
the app that makes use of a defined Google Fit data types such as
TYPE_NUTRITION.

4.5. Extracting google-defined data types

Once potential procedures with Google-defined data type consump-
tion are identified, PGFIT analyses every statement of these procedures.
It first builds a call graph over the procedures under examination and
performs a forward traversal of the graph looking for any Google API
method invocation which consumes a Google-defined data type. Argu-
ments of a method can be passed by value or by reference. In cases
where a reference to the data type is passed to the method invocation,
PGFIT backward traverses the graph to find the value of the reference
and obtain the actual Google-defined data type.

4.5.1. Call graph generation
Typically, tasks and functionalities in mobile apps are spread across

several procedures and end classes. Thus, it is necessary to perform
inter-procedural analysis (Reps, 1997) which operates across all class
files within the app. Since the information flows both from the caller
procedure to its callee and in the opposite direction, we use call graphs
to inform which procedure calls which. A call graph is a set of nodes
(vertices) and edges such that each node represents either a call site
(a place where a procedure is invoked) or a procedure and an edge
represents the connection or relationship between the call site and the
procedure. More specifically, PGFIT uses Inter-procedural Control Flow
Graph (ICFG) consisting of a set of nodes and a set of edges denoted by
< N, E >. In ICFG, a node n ∈ N represents the program statement and
an edge e ∈ E represents the control flow. Every function has a unique
entry node and a unique exit node, with each call site being split into
a call node and a return node. We use outEdges(e) to represent the out-
going edges of node n. Also, dst(e) denotes the destination node of edge
e.

4.5.2. Forward reachability analysis
Algorithm 1 performs a forward reachability analysis to compute

the data types of every source node nsrc ∈ SRC, which is either (i) a
program statement where permission scopes are requested, or (ii) an
entry statement of a procedure containing Google Fit APIs as listed in
Table 4, and the procedure which is invoked through inter-component
communication (ICC). SNK denotes the set of program statements con-
suming Google-defined data types. Every element nsnk ∈ SNK needs to
satisfy two conditions: (i) nsnk is a Google Fit method call from the list
in Table 4, and (ii) nsnk has a string parameter whose value is a data
type in Table 2.

PGFIT performs a forward traversal on the ICFG of the analysed
program from every source node nsrc to find its sinks (lines 2–29 in
Algorithm 1). A standard worklist algorithm is applied to compute the
nodes reachable from nsrc. The worklist W contains a set of param-
eterised nodes (statements) with each element (c, ns) representing a
context-sensitive statement, where c is a call stack c = [c1, c2, …cm]
denoting a sequence of call sites from the entry of a program to the
method containing ns.

To achieve precise results for our reachability analysis, PGFIT
employs context-sensitive analysis to distinguish different program con-
texts by solving a balanced-parentheses problem (Reps et al., 1995)
with calls and returns being matched (lines 11–22). The algorithm
pushes the context-sensitive nodes which have not been visited pre-
viously into worklist (lines 23–25) for further processing until a fixed-
point is reached.

7



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Table 4
Google fit APIs.

Google Fit APIs Public Method Summary

Google Fit History API Result<Status>deleteData(GoogleApiClient client, DataDeleteRequest request)
Result<Status>insertData(GoogleApiClient client, DataSet dataSet)
Result<DailyTotalResult> readDailyTotal(GoogleApiClient client, DataType dataType)
Result<DailyTotalResult> readDailyTotalFromLocalDevice(GoogleApiClient client, DataType dataType)
Result<DataReadResult>readData(GoogleApiClient client, DataReadRequest request)
Result<Status>registerDataUpdateListener(GoogleApiClient client, DataUpdateListenerRegistration request)
Result<Status>unregisterDataUpdateListener(GoogleApiClient client, PendingIntent pendingIntent)
Result<Status>updateData(GoogleApiClient client, DataUpdateRequest request)

Google Fit Recording API Result<ListSubscriptionsResult> listSubscriptions(GoogleApiClient client)
Result<ListSubscriptionsResult> listSubscriptions(GoogleApiClient client, DataType dataType)
Result<Status>subscribe(GoogleApiClient client, DataType dataType)
Result<Status>subscribe(GoogleApiClient client, DataSource dataSource)
Result<Status>unsubscribe(GoogleApiClient client, DataSource dataSource)
Result<Status>unsubscribe(GoogleApiClient client, DataType dataType)
Result<Status>unsubscribe(GoogleApiClient client, Subscription subscription)

Google Fit Sensors API Result<Status>add(GoogleApiClient client, SensorRequest request, OnDataPointListener listener)
Result<Status>add(GoogleApiClient client, SensorRequest request, PendingIntent intent)
Result<DataSourcesResult> findDataSources(GoogleApiClient client, DataSourcesRequest request)
Result<Status>remove(GoogleApiClient client, OnDataPointListener listener)
Result<Status>remove(GoogleApiClient client, PendingIntent pendingIntent)

Google Fit Sessions API Result<Status>insertSession(GoogleApiClient client, SessionInsertRequest request)
Result<SessionReadResult> readSession(GoogleApiClient client, SessionReadRequest request)
Result<Status>registerForSessions(GoogleApiClient client, PendingIntent intent)
Result<Status>startSession(GoogleApiClient client, Session session)
Result<SessionStopResult> stopSession(GoogleApiClient client, String identifier)
Result<Status>unregisterForSessions(GoogleApiClient client, PendingIntent intent)

4.5.3. Backward analysis algorithm
For every sink node nsnk on ICFG, we extract its Google-defined data

types through Algorithm 2. It evaluates the values of the parameter
dtv at nsnk, which is a Google API call (line 2). The value is extracted
directly if dtv is a constant variable (lines 4–6), otherwise the algorithm
starts backward data dependence analysis from the definition node of
dtv on ICFG (lines 7–25), where def (dtv) returns the definition state-
ment of dtv on the Static Single Assignment (SSA) form (Cytron et al.,
1991) of the analysed program. Note that we only analyse the state-
ments which are visited in the forward analysis (lines 11–13) since the
data type extraction for every call path is context sensitive.

A standard worklist algorithm is applied for def-use analysis (Cytron
et al., 1991) of variable dtv until a fixed point is reached (lines 9–24).
Our def-use analysis considers three types of statement that define the
value of dtv, i.e., assignment dtv = var (line 15), function call f (var);
f (dtv){… } (line 17), and function return dtv = f (…); f (…){… return-
var} (line 19). Note that loads and stores, which require pointer analy-
sis, are handled conservatively (line 22). For each of these three cases,
variable var is passed into dtv, which then is pushed into a worklist and
analysed recursively if var is not a constant (lines 29–35). In most real
apps, the values of data types usually flow via the above three types of
statement.

4.6. Over-privilege computation

Algorithm 3 computes whether a source node nsrc is over-privileged
by comparing the two sets of data types D and D′, where D is computed
through REACHABILITYANALYSIS in Algorithm 1 and D′ is the associated
data types of nsrc immediate available from Table 2. An over-privilege
is reported if D ∩ D′ = 𝜑 since an authorisation permission scope in D
is not permitted in D′. For example, through Algorithm 1, if PGFIT does
not retrieve any data type (i.e., D = 𝜑) for a permission scope whose
corresponding data types are D′ (obtained from Table 2), it will report
an over-privilege warning because D ∩ D′ = 𝜑. The time complexity of
the algorithm is O(N3), where N is the number of nodes on the ICFG
(Reps, 1997).

5. Analysis results

We applied PGFIT to a set of 20 fitness applications built upon
Google Fit to identify the occurrence of privilege escalation regarding
authorisation scopes. In cases of escalated privilege, fitness applications
expose users to the risk of accepting unnecessary scope permissions in
their apps. This exposes users to attacks where adversaries take advan-
tage of escalated privilege to leak private user information.

5.1. Dataset collection

The input to PGFIT are Google Fit-enabled Android applications. We
used a publicly available tool and downloaded applications that are free
and have no region restriction imposed by Google Play. In addition,
since PGFIT performs permission analysis by inspecting compiled class
files of a fitness application, As of November 2017, there are 43 Google
Fit-enabled applications available on Google Play Store. From this set
of apps, we selected all the apps that are publicly available and not
obfuscated as PGFIT is not intended for obfuscated code. To this end, we
used dex2jar in combination with JD tool (Java Decompiler, 2017) and
discarded applications with string-obfuscated source codes. Overall, our
dataset consisted of 20 Google Fit-enabled fitness applications.

5.2. Result

We have run PGFIT on our dataset of 20 fitness applications. During
the first phase PGFIT discovers that 14 applications contained Google
Fit API calls in one compiled class file, while in six applications Google
Fit API calls and data types were distributed in more than one class.
This shows that performing static analysis over all compiled class files
of an application is unnecessary. For example, Runtastic is a health and
fitness application to help users measure their activities (walking, run-
ning, jogging or biking) against goals they set. The APK file of the appli-
cation contains 3507 compiled class files, while Google Fit API methods

8



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Algorithm 1 Context-sensitive Forward Reachability Analysis.

and procedures are being employed among 3 class files.
Meanwhile, PGFIT reports the fitness services that an application

requested to connect to. The statistics of the extracted connection
request to Google APIs are presented in Table 5. As shown in the table,
History API and Sessions API are at the top of the list of most prevalent
in the set of 20 apps evaluated. The former enables an application to
access the fitness data history that was inserted or recorded using other
applications or itself. The latter provides a functionality to create ses-
sions when a user performs a fitness activity. The Config API is another
popular fitness service, employed mainly to disconnect from Google Fit.
Other fitness services, which provide functionality to store fitness data,
are the Recording API and Sensors API. However, these fitness services
are less prevalent, meaning most fitness applications read fitness data
from Google Fit rather than writing the fitness data to Google Fit, which
is against Google Fit principles.

Out of 20 fitness applications in our dataset, PGFIT found six
applications (30%) that request at least one authorisation scope but
never use any data types corresponding to that scope. This is unde-
sirable, because it allows an adversary to abuse this vulnerability
to leak sensitive information from a victim’s fitness data. Table 6
reports the unnecessary permissions among these six applications.
For example, five (83%) out of 20 apps grant permission scope
SCOPE_ACTIVITY_READ_WRITE, but the permission is never used in
these apps. One example of Google Fit-enabled applications that
exhibits over-privilege permission is 8fit; a personal trainer providing
workout routines and healthy meal plans tailored to a user. This appli-
cation requests access to three authorisation scopes but does not use
any data type related to any of the requested scopes.

For comparison, we implemented a naive approach by searching for
Google API method invocations that consume Google-define data types
directly without considering the reachability property of program flows
via call graph traversals introduced in Section 4.5. To validate the warn-

ings, we used JD tool to decompile the Google Fit-related compiled class
files in the 20 apps. We then manually investigated the reconstructed
source codes and compared the results obtained from PGFIT and the
naive approach with reverse-engineered codes. We did not find any
inconsistencies between the report of PGFIT and the manual analysis
of source codes, while the naive approach produced two false alarms,
which represents 10% overall false alarm rates. A careful inspection
discovered that the apps requested unnecessary scopes, and the devel-
opers of the apps used return statements before the Google API method
invocations that made them unrealisable. Both cases were discovered
successfully by PGFIT since it analysed control and data dependences of
an app context-sensitively. By identifying these area of dead codes, spu-
rious value-flows are eliminated. The earlier version of PGFIT (Nobakht
et al., 2018) reported that seven of the 20 Google-defined apps (35%)
have unnecessary permissions. Our manual inspections determined that
one app was not actually over-privileged, resulting in a 14% false pos-
itive rate. The false alarm in Nobakht et al. (2018) is due to the con-
servative analysis without considering context-sensitivity and ICC calls
via user interaction events. The improvement proposed in this paper
successfully reduces this false alarm.

In Android 6.0 (Marshmallow), Google redesigned its long-criticised
permission model to prompt the user during runtime, allowing them to
dynamically revoke granted permissions. Prior to this update, Android
systems implemented static permissions, requested upon app installa-
tion mechanism to request permission. The updated runtime permission
model of Android enhances security related to app permissions. How-
ever, as shown in Gasparis et al. (2018) most apps either have not yet
migrated to this new model because it cannot be enforced due to poten-
tial backwards compatibility issues or do not follow the recommended
guidelines. From an end-user perspective, these changes are rendered
ineffective by the fact that most of mobile users do not have sufficient
expertise to weigh the permissions requested against those that are nec-

9



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Algorithm 2 Backward Reachability Analysis to Extract Data Types.

Algorithm 3 Overprivilege Computation.

10



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Table 5
Statistics of Connection request to
Fitness Services in a set of 20
Google Fit-enabled Applications.

Fitness Service # of Apps

HISTORY_API 14 (70%)
SESSIONS_API 14 (70%)
CONFIG_API 12 (60%)
RECORDING_API 8 (40%)
SENSORS_API 5 (25%)

Table 6
Unnecessary scope permissions in 20 apps.

Authorisation Scope # of Apps

SCOPE_ACTIVITY_READ_WRITE 5 (83%)
SCOPE_BODY_READ_WRITE 4 (66%)
SCOPE_LOCATION_READ_WRITE 2 (33%)
SCOPE_BODY_READ 1 (16%)

essary for the core functionality of the app. The new permission model
of Android limits over-privileged apps yet still makes it possible for an
app to obtain escalated privilege to app permissions.

6. Related work

There are two lines of research most closely related to ours: IoT
security and least-privilege principle.

IoT Security. In recent years, much research has been conducted in
the context of IoT security. Research in this domain mainly focused on
three aspects: Protocols, Devices and Platforms. In IoT protocol security,
researchers warned how security flaws in IoT-specific protocols such as
ZigBee (Jun, 2017) and Zwave (Behrang Fouladi, 2017) make devices
vulnerable to compromise.

In IoT device security, Ronen et al. classified attacks on IoT devices
based on how the attacker deviates from the designed functional-
ity to achieve a different effect and demonstrated potential attacks
on smart lighting systems (Ronen and Shamir, 2016). In Nobakht et
al. (2016), authors proposed a network-level solution using Software-
defined Networking (SDN) to monitor smart home IoT network traffic
and machine learning detection mechanisms to identify malicious activ-
ities. In another attempt, authors in Nobakht et al. (2019) proposed a
security mechanism, called IoT-NetSec, to ensure IoT device availabil-
ity requirement is met. IoT-NetSec enables network operators to ensure
network service attacks such as heavy hitters are not occurring against
IoT devices and also these devices are not being compromised to per-
form such attacks.

Research into IoT platform security is still in its early stages. There
has been effort in analysing security concerns on programming frame-
works, in particular hub-based platforms (Fernandes et al., 2016a; Jia
et al., 2017). More recently Fernandes et al. (2016b) performed analysis
of the Samsung-owned SmartThings programming framework for smart
home applications. Although SmartThings is a closed systems and third-
party applications are run on a proprietary cloud backend, the authors
managed to access the source code of applications and discovered secu-
rity design flaws in SmartThings platforms and other common vulner-
abilities such as revealing sensitive information caused by the lack of
sufficient protection on protocols operating between the cloud back-
end and the client-side hub. In comparison, our work can be applied
on both cloud-based and hub-based configuration and is not limited to
closed source applications. Instead, this paper focused on analysing the
mechanism operating between IoT programming framework backends
and the IoT devices.

Least-privilege Principle. Limiting applications privilege can lower

potential security and privacy risks, however, there is a trade-off
between the complexity of the permission control model and enforc-
ing least-privilege. This is evidenced in a large body of prior research
work (Enck et al., 2009; Rahmati and Madhyastha, 2015; Felt et al.,
2012a, 2012b; Roesner and Kohno, 2013; Roesner et al., 2012).

The popularity and open-source nature of Android have attracted a
large number of research work to evaluate and propose enhancements
to the security of Android OS itself, apps built on top of Android and
Software Development Kit (SDK) tools to build such apps. In a recent
attempt, Acar et al. have systematically categorised research related
to Android security and privacy (Acar et al., 2016). Android employs
the concept of permission-based access control for privileged resources.
This area has received a lot of attention by the security research com-
munity with different motivations ranging from preventing unautho-
rised information disclosure (Jin et al., 2018; Wei et al., 2018; Nad-
karni et al., 2016; Jia et al., 2013; Arzt et al., 2014) to detecting
over-privileged apps (Vidas et al., 2011). Additionally, a large body of
research focuses on the modification Android’s permission enforcement
(Felt et al., 2011a; Nauman et al., 2010; Fragkaki et al., 2012; Dietz et
al., 2011).

Recently, a number of static analysis tools for analysing Android
OS have been proposed and implemented (Felt et al., 2011b; Au et al.,
2012) with the primary focus of creating a permission map for Android
OS. Felt et al. proposed Stowaway (Felt et al., 2011b) which used unit
testing and feedback directed API to observe the required permissions
for each API call. They determined that about one third of Android
apps in a set of 940 apps were over-privileged. In another attempt, the
PScout tool proposed by Wain Yee Au et al. (2012), extended Stowaway
and used static reachability analysis between permission checks and API
calls to extract permission specifications from Android OS source code.
More recently, Backes et al. built the AXPLORER (Backes et al., 2016)
tool to conduct an Android permission analysis that establishes a more
precise permission mapping. To evaluate the precision and performance
of such application analysis tools, Bonett et al. examined a set of promi-
nent Android static analysis tools that have been proposed in response
to malicious, curious or vulnerable apps (Bonett et al., 2018).

Our work is similarly motivated, however, these previous investiga-
tions analysed permissions granted to third-party applications to access
hardware and software resources on physical devices. In contrast to
prior work, we focus on permissions granted by the user to applications
to access their private data through health and fitness apps.

Another line of research focuses on the over-privilege permission
in IoT programming frameworks. Fernandes et al. (2016b) performed
a market-scale over-privilege analysis of third-party applications on
SmartThings and discovered that over 55% of applications are over-
privileged, citing the framework design flaw as the main factor of the
problem. In contrast, our work could be applied to many IoT program-
ming platforms using public cloud services with open standards and is
not limited to proprietary systems.

7. Conclusions

Emerging IoT programming frameworks for health and fitness appli-
cations provide tangible benefits to users. Typically, health and activ-
ity related information in such frameworks is collected from various
sources, unnecessary details are abstracted away using data analytic
techniques, and finally the user or authorised third-party applications
can access data from one central location.

The confidentiality of user data in such platforms is critical as leaked
sensitive user data poses security and privacy risks to users and could
results in financial and psychological harms. Over-privileged apps on
these platforms request end-users for permissions which are not neces-
sarily required for the core functionality of the apps. Over-privileged
apps might not be harmful to users and of themselves, however, they
are prime targets for abuse by other security vulnerabilities. Over-
privileged apps make it possible for adversaries to abuse escalated priv-

11



M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

ileges and leak user data for malicious purposes. By identifying over-
privileges, we can reduce the attack surface of apps using IoT program-
ming frameworks to ensure the confidentiality of user data stored on
such platforms.

This paper aims to address an issue that affects the security and
privacy of user data in IoT programming frameworks. To demonstrate
the concept, we have examined Google Fit, a popular IoT programming
framework, to determine how well Google Fit-enabled third-party apps
adhere to the least-privilege principle when requesting user consent to
access sensitive data. We first studied Google Fit and its permission con-
trol mechanism to gain insights into its structure and key requirements.

However, permission analysis of Google Fit-enabled third-party IoT
apps is challenging due to the closed-source system, the sheer size of
compiled class files and the complications of API usage in them. To
overcome these challenges, we have developed a static permission anal-
ysis tool, called PGFIT, to ensure third-party apps on top of Google Fit
adhere to the least-privilege principle. PGFIT takes a given Google Fit-
enabled app as input and extracts the set of authorisation scopes along
with the used Google-defined data types in the app, by performing for-
ward and backward reachability analysis to compute over-privilege. We
applied PGFIT to 20 Android Google Fit-enabled apps that were avail-
able on the market at the time of the study. Results from this study
showed that 30% of those Google Fit-enabled apps are over-privileged
and requested at least one unnecessary authorisation scope to access
user data. This problem in Google Fit stems from its coarse-grained per-
mission access control. PGFit, thus, guides third-party app developers
to assure their apps do not open an attack vector putting user at risk
of leaking sensitive data and also helps app users to check the privacy
requirement of app at install time.

Declaration of competing interest

There is no conflict of interest among editorial board.

Acknowledgments

We would like to thank the anonymous reviwers for helpful feed-
back. We are grateful to Andrew Noble for providing feedback on ear-
lier drafts.

References

Acar, Y., Backes, M., Bugiel, S., Fahl, S., McDaniel, P., Smith, M., 2016. SoK: lessons
learned from android security research for appified software platforms. In: 2016
IEEE Symposium on Security and Privacy (SP), pp. 433–451, https://doi.org/10.
1109/SP.2016.33.

AIA, November 2017. AIA Vitality. https://www.aiavitality.com.au/vmp-au/.
apktool, November 2017. https://ibotpeaches.github.io/Apktool/.
Apple, November 2017. HealthKit. https://developer.apple.com/healthkit/.
Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,

McDaniel, P., 2014. FlowDroid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14. ACM, New York, NY, USA, pp. 259–269, https://doi.org/10.1145/2594291.
2594299.

Assure, Q., November 2017. Qantas Assure. https://www.qantasassure.com/health-
insurance/offer.

Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D., 2012. PScout: analyzing the android
permission specification. In: CCS ’12, pp. 217–228.

Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., Weisgerber, S., 2016. On
demystifying the android application framework: Re-visiting android permission
specification analysis. In: USENIX Security ’16, pp. 1101–1118.

Behrang Fouladi, S.G., November 2017. Security Evaluation of the Z-Wave Wireless
Protocol.
https://sensepost.com/cms/resources/conferences/2013/bh_zwave/Security20
Evaluation20of20Z-Wave_WP.pdf.

Bonett, R., Kafle, K., Moran, K., Nadkarni, A., Poshyvanyk, D., 2018. Discovering flaws
in security-focused static analysis tools for android using systematic mutation. In:
Proceedings of the 27th USENIX Conference on Security Symposium, SEC’18.
USENIX Association, Berkeley, CA, USA, pp. 1263–1280. http://dl.acm.org/citation.
cfm?id3277203.3277298.

Bruneton, E., Lenglet, R., Coupaye, T., 2002. ASM: a code manipulation tool to
implement adaptable systems. Adaptable Extensible Compon. Syst. 30 (19).

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K., 1991. Efficiently
computing static single assignment form and the control dependence graph. TOPLAS
’91 13 (4), 451–490.

Denning, T., Kohno, T., Levy, H.M., 2013. Computer security and the modern home.
Commun. ACM 56 (1), 94–103.

dex2jar, November 2017. https://github.com/pxb1988/dex2jar.
Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S., 2011. Quire: lightweight

provenance for smart phone operating systems. In: Proceedings of the 20th USENIX
Conference on Security, SEC’11. USENIX Association, Berkeley, CA, USA, p. 23.
http://dl.acm.org/citation.cfm?id2028067.2028090.

Enck, W., Ongtang, M., McDaniel, P., 2009. On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS ’09. ACM, New York, NY, USA, pp. 235–245,
https://doi.org/10.1145/1653662.1653691.

Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E., 2011a. Permission
Re-delegation: attacks and defenses. In: Proceedings of the 20th USENIX Conference
on Security, SEC’11. USENIX Association, Berkeley, CA, USA, p. 22. http://dl.acm.
org/citation.cfm?id2028067.2028089.

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D., 2011b. Android permissions
demystified. In: CCS ’11, pp. 627–638.

Felt, A.P., Egelman, S., Wagner, D., 2012a. I’ve got 99 problems, but vibration Ain’T
one: a survey of smartphone users’ concerns. In: Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’12.
ACM, New York, NY, USA, pp. 33–44, https://doi.org/10.1145/2381934.2381943.

Felt, A.P., Egelman, S., Finifter, M., Akhawe, D., Wagner, D., 2012. How to ask for
permission. In: HotSec’12, p. 7.

Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A., 2016.
FlowFence: practical data protection for emerging IoT application frameworks. In:
USENIX Security ’16, pp. 531–548.

Fernandes, E., Jung, J., Prakash, A., 2016. Security analysis of emerging smart home
applications. In: S&P ’16, pp. 636–654, https://doi.org/10.1109/SP.2016.44.

Fragkaki, E., Bauer, L., Jia, L., Swasey, D., 2012. Modeling and enhancing android’s
permission system. In: Foresti, S., Yung, M., Martinelli, F. (Eds.), Computer Security
ESORICS 2012. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–18.

Gasparis, I., Aqil, A., Qian, Z., Song, C., Krishnamurthy, S.V., Gupta, R., Colbert, E.,
2018. Droid m: developer support for imbibing android’s new permission model. In:
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security, ASIACCS ’18. ACM, New York, NY, USA, pp. 765–776, https://doi.org/10.
1145/3196494.3196533.

Google, November 2017a. Google Fit. https://www.google.com/fit/.
Google, November 2017b. Apps Work with Google Fit. https://play.google.com/store/

apps/collection/promotion_3000e6f_googlefit_all.
Google, November 2017c. Google Fit Developer Reference. https://developers.google.

com/android/reference/com/google/android/gms/fitness/Fitness.
Google, November 2017d. Google Developer Reference. https://developers.google.com/

android/reference/com/google/android/gms/common/package-summary.
Java Decompiler, November 2017. http://jd.benow.ca/.
Jia, L., Aljuraidan, J., Fragkaki, E., Bauer, L., Stroucken, M., Fukushima, K., Kiyomoto,

S., Miyake, Y., 2013. Run-time enforcement of information-flow properties on
android. In: Crampton, J., Jajodia, S., Mayes, K. (Eds.), Computer Security ESORICS
2013. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 775–792.

Jia, Y.J., Chen, Q.A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z.M., Prakash, A., 2017.
ContexIoT: towards Providing Contextual Integrity to Appified IoT Platforms. San
Diego, CA. .

Jin, H., Liu, M., Dodhia, K., Li, Y., Srivastava, G., Fredrikson, M., Agarwal, Y., Hong, J.I.,
2018. Why are they collecting my data?: inferring the purposes of network traffic in
mobile apps. Proc. ACM Interact., Mob., Wearable Ubiquitous Technol. 2 (4),
173:1–173:27, https://doi.org/10.1145/3287051.

Jun, L., November 2017. I’m A Newbie yet I Can Hack ZigBee - Take Unauthorized
Control over ZigBee Devices. https://www.defcon.org/html/defcon-23/dc-23-
speakers.html#Li.

Medibank, November 2017. Medibank & Flybuys. https://flybuys.medibank.com.au/.
Microsoft, November 2017. HealthVault. https://www.healthvault.com.
Nadkarni, A., Andow, B., Enck, W., Jha, S., 2016. Practical DIFC enforcement on

android. In: 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, Austin, TX, pp. 1119–1136. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/nadkarni.

Nauman, M., Khan, S., Zhang, X., 2010. Apex: extending android permission model and
enforcement with user-defined runtime constraints. In: Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, ASIACCS ’10.
ACM, New York, NY, USA, pp. 328–332, https://doi.org/10.1145/1755688.
1755732.

Nobakht, M., Sivaraman, V., Boreli, R., 2016. A host-based intrusion detection and
mitigation framework for smart home IoT using OpenFlow. In: 2016 11th
International Conference on Availability, Reliability and Security, IEEE ARES ’16,
pp. 147–156, https://doi.org/10.1109/ARES.2016.64.

Nobakht, M., Sui, Y., Seneviratne, A., Hu, W., 2018. Permission analysis of health and
fitness apps in IoT programming frameworks. In: 2018 17th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications/12th
IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), IEEE TrustCom ’18, pp. 533–538, https://doi.org/10.1109/
TrustCom/BigDataSE.2018.00081.

Nobakht, M., Russell, C., Hu, W., Seneviratne, A., 2019. IoT-NetSec: policy-based IoT
network security using OpenFlow. In: 2019 IEEE International Conference on
Pervasive Computing and Communications Workshops, IEEE PerCom Workshops
’19, pp. 955–960, https://doi.org/10.1109/PERCOMW.2019.8730724.

12

https://doi.org/10.1109/SP.2016.33
https://doi.org/10.1109/SP.2016.33
https://www.aiavitality.com.au/vmp-au/
https://ibotpeaches.github.io/Apktool/
https://developer.apple.com/healthkit/
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://www.qantasassure.com/health-insurance/offer
https://www.qantasassure.com/health-insurance/offer
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref7
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref8
https://sensepost.com/cms/resources/conferences/2013/bh_zwave/Security%20Evaluation%20of%20Z-Wave_WP.pdf
http://dl.acm.org/citation.cfm?id3277203.3277298
http://dl.acm.org/citation.cfm?id3277203.3277298
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref11
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref12
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref13
https://github.com/pxb1988/dex2jar
http://dl.acm.org/citation.cfm?id2028067.2028090
https://doi.org/10.1145/1653662.1653691
http://dl.acm.org/citation.cfm?id2028067.2028089
http://dl.acm.org/citation.cfm?id2028067.2028089
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref18
https://doi.org/10.1145/2381934.2381943
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref20
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref21
https://doi.org/10.1109/SP.2016.44
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref23
https://doi.org/10.1145/3196494.3196533
https://doi.org/10.1145/3196494.3196533
https://www.google.com/fit/
https://play.google.com/store/apps/collection/promotion_3000e6f_googlefit_all
https://play.google.com/store/apps/collection/promotion_3000e6f_googlefit_all
https://developers.google.com/android/reference/com/google/android/gms/fitness/Fitness
https://developers.google.com/android/reference/com/google/android/gms/fitness/Fitness
https://developers.google.com/android/reference/com/google/android/gms/common/package-summary
https://developers.google.com/android/reference/com/google/android/gms/common/package-summary
http://jd.benow.ca/
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref30
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref31
https://doi.org/10.1145/3287051
https://www.defcon.org/html/defcon-23/dc-23-speakers.html#Li
https://www.defcon.org/html/defcon-23/dc-23-speakers.html#Li
https://flybuys.medibank.com.au/
https://www.healthvault.com
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/nadkarni
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/nadkarni
https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1109/ARES.2016.64
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00081
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00081
https://doi.org/10.1109/PERCOMW.2019.8730724


M. Nobakht et al. Journal of Network and Computer Applications 152 (2020) 102509

Oracle, November 2017. Java Virtual Machine Specification. https://docs.oracle.com/
javase/specs/jvms/se7/html/jvms-2.html.

Palsberg, J., Jay, C.B., 1998. The essence of the visitor pattern. In: COMPSAC ’98, pp.
9–15.

Rahmati, A., Madhyastha, H.V., 2015. Context-specific access control: conforming
permissions with user expectations. In: Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’15.
ACM, New York, NY, USA, pp. 75–80, https://doi.org/10.1145/2808117.2808121.

Reps, T., 1997. Program analysis via graph reachability. In: ILPS ’97, pp. 5–19.
Reps, T., Horwitz, S., Sagiv, M., 1995. Precise interprocedural dataflow analysis via

graph reachability. In: POPL ’95, pp. 49–61.
Roesner, F., Kohno, T., 2013. Securing embedded user interfaces: android and beyond.

In: Presented as Part of the 22nd USENIX Security Symposium, USENIX Security ’13.
USENIX, Washington, D.C., pp. 97–112. https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/roesner.

Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C., 2012.
User-driven access control: rethinking permission granting in modern operating
systems. In: 2012 IEEE Symposium on Security and Privacy, IEEE S&P ’12, pp.
224–238, https://doi.org/10.1109/SP.2012.24.

Ronen, E., Shamir, A., 2016. Extended functionality attacks on IoT devices: the case of
smart lights. In: EuroS&P ’16, pp. 3–12.

Samsung, November 2017. Samsung Digital Health. http://developer.samsung.com/
health.

The oauth 1.0 protocol, April 2010. RFC 5849, Internet Engineering Task Force (IETF).
https://tools.ietf.org/html/rfc5849.

The oauth 2.0 protocol, October 2012. RFC 6749, Internet Engineering Task Force
(IETF). https://tools.ietf.org/html/rfc6749.

Valle-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V., 1999. Soot - a
Java bytecode optimization framework. In: CASCON ’99, CASCON ’99. IBM Press.

Vidas, T., Christin, N., Cranor, L.F., 2011. Curbing android permission creep. In:
Proceedings of the Workshop on Web 2.0 Security and Privacy, W2SP ’11.

Watson, T.J., November 2017. Libraries for Analysis (WALA). http://wala.sf.net/.
Wei, F., Roy, S., Ou, X., Robby, 2018. Amandroid: a precise and general inter-component

data flow analysis framework for security vetting of android apps. ACM Trans. Priv.
Secur. (TOPS) 21 (3), 14:1–14:32, https://doi.org/10.1145/3183575.

Mehdi Nobakht is currently a Postdoctoral Research Fel-
low in the School of Engineering and Information Technol-
ogy (SEIT) at University of New South Wales (UNSW) Can-
berra Australia, where he is affiliated with UNSW Canberra
Cyber Research Centre. His research centres around Cyber-
physical Systems/Internet of Things (IoT) Security and Com-
puter Networks; spans from Adversarial Machine Learning and
Data Security to adopting Software Defined-networking (SDN)
and Distributed Ledger Technology (DLT) to address security
and privacy concerns in IoT systems. Mehdi received his Ph.D.
degree in Computer Science and Engineering (CSE) at UNSW
Sydney, Australia in 2018 and his M.Sc. degree in Informa-
tion Technology specialising in Electronics and Communica-
tion Systems at the University of Turku, Finland in 2013.

Yulei Sui is a Lecturer (Assistant Professor) and an ARC
DECRA at Faculty of Engineering and Information Technology,
University of Technology Sydney (UTS). He obtained his Ph.D
from University of New South Wales (UNSW), where he also
holds an Adjunct Lecturer position. He is broadly interested in
the research field of software engineering and programming
languages, particularly interested in static and dynamic pro-
gram analysis for software bug detection and compiler opti-
mizations. He worked as a software engineer in Program Anal-
ysis Group for Memory Safe C project in Oracle Lab Aus-
tralia. He was an Australian IPRS scholarship holder, a keynote
speaker at EuroLLVM and a Best Paper Award winner at CGO,
and has been awarded an Australian Discovery Early Career
Researcher Award (DECRA) 2017–2019.

Aruna Senviratne is a Professor at the School of Electrical
Engineering and Telecommunication (EET), UNSW Sydney.
He received the PhD degree in electrical engineering from
the University of Bath, United Kingdom. He is the foundation
chair in telecommunications and holds the Mahanakorn chair
of telecommunications in EET. He was the research director of
the Cyber Physical Systems Research Program, Data61, CSIRO.
His current research interests include mobile content distri-
butions and preservation of privacy. He has held academic
appointments with the University of Bradford, United King-
dom, Curtin University, and UTS.

Wen Hu is an Associate Professor at the School of Computer
Science and Engineering (CSE) at UNSW Sydney. Much of his
research career has focused on the novel applications, low-
power communications, security and compressive sensing in
sensor network systems and Internet of Things (IoT). Hu pub-
lished regularly in the top rated sensor network and mobile

computing venues such as ACM/IEEE IPSN, ACM SenSys, ACM
transactions on Sensor Networks (TOSN), IEEE Transactions
on Mobile Computing (TMC), and Proceedings of the IEEE.
Hu received his Ph.D. from UNSW Sydney. He is a recipient
of multiple research grants from Australian Research Council,
CSIRO and industries. He is a senior member of ACM and IEEE,
and is an associate editor of ACM TOSN, as well as serves on
technical advisory board (IoT) of ACS, Standards Australia and
the organising and program committees of networking con-
ferences including ACM/IEEE IPSN, ACM SenSys, ACM Mobi-
COM, ACM MobiSys, ACM/IEEE IOTDI, IEEE ICDCS, IEEE
LCN, IEEE ICC, IEEE GlobeCom. Hu works as the Chief Sci-
entist (part time) in WBS Tech to commercialise his research
results in smart buildings and IoT since 2017.

13

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref42
https://doi.org/10.1145/2808117.2808121
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref44
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref45
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/roesner
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/roesner
https://doi.org/10.1109/SP.2012.24
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref48
http://developer.samsung.com/health
http://developer.samsung.com/health
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc6749
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref52
http://refhub.elsevier.com/S1084-8045(19)30369-8/sref53
http://wala.sf.net/
https://doi.org/10.1145/3183575

	PGFit: Static permission analysis of health and fitness apps in IoT programming frameworks
	1. Introduction
	2. Background and our studies of Google Fit
	2.1. Google Fit: IoT programming framework
	2.1.1. Overview
	2.1.2. Connecting to Google Play
	2.1.3. Fitness data representation
	2.1.4. Permissions and user controls

	2.2. ASM library

	3. Threat model
	4. PGFit- design and implementation
	4.1. Identifying google-related class files
	4.2. Intermediate representation
	4.3. Extracting permission scopes
	4.4. Identifying the location of google-defined data types
	4.5. Extracting google-defined data types
	4.5.1. Call graph generation
	4.5.2. Forward reachability analysis
	4.5.3. Backward analysis algorithm

	4.6. Over-privilege computation

	5. Analysis results
	5.1. Dataset collection
	5.2. Result

	6. Related work
	7. Conclusions
	Declaration of competing interest
	Acknowledgments
	References


