
Runtime Detection of Memory Errors with Smart Status

Zhe Chen∗

Nanjing University of Aeronautics and Astronautics
Nanjing, Jiangsu, China
zhechen@nuaa.edu.cn

Chong Wang
Junqi Yan

Nanjing University of Aeronautics and Astronautics
Nanjing, Jiangsu, China

Yulei Sui
University of Technology Sydney

Sydney, NSW, Australia
yulei.sui@uts.edu.au

Jingling Xue
University of New South Wales

Sydney, NSW, Australia
j.xue@unsw.edu.au

ABSTRACT

C is a dominant language for implementing system software. Un-

fortunately, its support for low-level control of memory often leads

to memory errors. Dynamic analysis tools, which have been widely

used for detecting memory errors at runtime, are not yet satisfac-

tory as they cannot deterministically and completely detect some

types of memory errors, e.g., segment confusion errors, sub-object

overflows, use-after-frees, and memory leaks.

We propose Smatus, short for smart status, a new dynamic anal-

ysis approach that supports comprehensive runtime detection of

memory errors. The key innovation is to create and maintain a

small status node for each memory object. Our approach tracks not

only the bounds of each pointer’s referent but also the status and

reference count of the referent in its status node, where the status

represents the liveness and segment type of the referent. A status

node is smart as it is automatically destroyed when it becomes

useless. To the best of our knowledge, Smatus represents the most

comprehensive approach of its kind. In terms of effectiveness (for

detecting more kinds of errors), Smatus outperforms state-of-the-

art tools, Google’s AddressSanitizer, SoftBoundCETS and Valgrind.

In terms of performance, Smatus outperforms SoftBoundCETS and

Valgrind in terms of both time and memory overheads incurred, and

is on par with AddressSanitizer in terms of the time and memory

overheads tradeoff (with much lower memory overhead incurred).

CCS CONCEPTS

· Software and its engineering → Dynamic analysis; Soft-

ware testing and debugging; Software reliability; Software safety;

· Security and privacy→ Software and application security.

∗Zhe Chen is also affiliated with the Shanghai Key Laboratory of Trustworthy Com-
puting, East China Normal University, Shanghai, China and the State Key Laboratory
for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464807

KEYWORDS

memory errors, dynamic analysis, testing, error detection

ACM Reference Format:

Zhe Chen, Chong Wang, Junqi Yan, Yulei Sui, and Jingling Xue. 2021. Run-

time Detection of Memory Errors with Smart Status. In Proceedings of the

30th ACM SIGSOFT International Symposium on Software Testing and Anal-

ysis (ISSTA ’21), July 11ś17, 2021, Virtual, Denmark. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3460319.3464807

1 INTRODUCTION

C is a dominant language for implementing system software (e.g.,

operating systems and embedded software such as safety-critical

avionics systems [5]) and still one of the most popular program-

ming languages (e.g., with C coming in the first place in the TIOBE

ranking of popular programming languages in January 2021). Un-

fortunately, memory errors, which are caused by C’s support for

low-level control of memory, can result in program crashes and se-

curity vulnerabilities [44], and still rank among the most dangerous

software errors in recent CVE announcements.

Common types of memory errors include spatial errors and tem-

poral errors [26ś28, 40, 41]. Spatial errors are bounds violations, e.g.,

dereferencing null pointers or uninitialized wild pointers, and buffer

overflows (including over-reads). Temporal errors are accesses to

deleted objects, e.g., use-after-free (dereferencing dangling pointers)

and double frees. Beyond those, there are other types of memory

errors: segment confusion errors and memory leaks. A segment con-

fusion error occurs when the pointer of some segment type is used

as the pointer of another incompatible segment type [6], e.g., an in-

valid dereference that uses a function pointer as a data pointer, and

vice versa [44], and an invalid free that explicitly frees a non-heap

object [10, 11]. A memory leak occurs when an object allocated in

the heap is no longer accessible but has not been released, causing

impaired performance by increasing paging or exhausting memory.

Many dynamic analysis approaches have been proposed to detect

memory errors at runtime. They usually maintain metadata to

track the spatial or temporal information of each memory object or

each pointer’s referent, e.g., the bounds of the legitimate memory

locations that a pointer can access. In general, they do not report

false positives, compared to static analysis approaches [14, 16, 42,

43]. Several representative dynamic approaches include pointer-

based approaches [12, 17, 21, 23, 27, 29, 30, 33ś35, 40, 41, 47, 48, 51],

identifier-based approaches [26, 28, 34, 37, 40, 41, 45, 47], object-

based approaches using a shadow space [20, 25, 31, 32, 38, 39, 49]

296

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464807
https://doi.org/10.1145/3460319.3464807

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhe Chen, Chong Wang, Junqi Yan, Yulei Sui, and Jingling Xue

or bounds table [1, 3, 13, 22, 36, 40, 41, 46], guard-based approaches

[19, 20, 24, 38, 50], and quarantine-based approaches [20, 24, 38].

However, these existing dynamic approaches are not satisfactory

as they inherently cannot ensure comprehensive memory safety.

In particular, some approaches can find some kinds of errors but

may miss others, or even do not deal with some particular kinds

of errors at all. Let us consider four types of errors that cannot be

deterministically or completely detected: segment confusion errors,

sub-object overflows, use-after-frees and memory leaks.

1 void foo(); /* A func */

2 char *func(char *c)

3 { return c; }

4 int main()

5 { void (*p)() = foo;

6 char *s=func(p);

7 char ch=s[0];/*error*/

8 return 0; }

(a) Using a function as data.

1 void (*f(void (*p)()))()

2 { return p; }

3
4 int main()

5 { int a[100];

6 void (*p)() = f(a);

7 (*p)(); /*error*/

8 return 0; }

(b) Using data as a function.

Figure 1: Segment confusion errors.

Segment Confusion Errors. No existing approach can detect this

class of errors, such as invalid dereferences and invalid frees, as

segment types are not tracked [6]. Figure 1a illustrates an invalid

dereference that uses a function pointer as a data pointer and Fig-

ure 1b does the reverse. This kind of errors can cause information

leakage (by exposing, e.g., the code of foo in Fig. 1a), which can

be exploited by the attacker to hijack control-flow by executing

malicious code stored in the user memory (e.g., a in Fig. 1b) [44].

Invalid frees may be exploited to call free() on controllable mem-

ory locations to modify critical program variables or execute code

[10, 11]. Note that a segment confusion error is neither a spatial

error nor a temporal error as the accessed memory is indeed in

bounds and valid.

Sub-Object Overflows. Existing approaches cannot detect sub-

object overflows. For example, Figure 2a illustrates an overflow from

a field of a struct (i.e., a sub-object) to another field and Figure 2b

illustrates an overflow from an array element (i.e., a sub-object) to

another element. Object-based approaches, e.g., Google’s Address-

Sanitizer (ASan) [38] and Valgrind [31, 32, 39], track the bounds

of each live memory object, and thus can detect the spatial errors

caused by dereferencing a pointer outside the bounds of all live

objects. But they cannot detect overflows inside live objects. Even

if enhanced with a guard-based approach that inserts some guards

around each object, ASan still cannot detect sub-object overflows

that occur inside live objects and never access the guards.

Use-After-Frees. Existing approaches can detect use-after-frees

only in a probabilistic or partial way. For example, in Figure 2c,

dereferencing p2 at Line 7 accesses a heap object that has been

deleted via p1, and in Figure 2d, dereferencing p1 at Line 7 accesses

the stack object i that has been deleted when f returns. Pointer-

based approaches, e.g., CCured [29, 30], MSCC [34, 47], SoftBound

[27, 51], MemSafe [40, 41] and Delta Pointers [23], track the bounds

of each pointer’s referent, but cannot detect use-after-frees alone

because the liveness of the referent is not tracked. When enhanced

with an identifier-based approach that uses a lock-key scheme to

1 typedef struct

2 { int m1;

3 int m2; } st;

4 int main()

5 { st s;

6 int *p = &s.m1;

7 p[1] = 0;

8 /* spatial error */

9 return 0; }

(a) Sub-object overflow.

1 typedef struct

2 { char buf [10];

3 int i; } st;

4 int main()

5 { st arr [5];

6 st *p = arr;

7 p[2]. buf [20] = 'A';

8 /* spatial error */

9 return 0; }

(b) Intra-array overflow.

1 int main()

2 { int *p1;

3 int *p2;

4 p1 = (int*) malloc (8);

5 p2 = p1;

6 free(p1);

7 *p2 = 0;

8 /* temporal error */

9 return 0; }

(c) Use-after-free (heap).

1 void f(int **pa)

2 { int i;

3 *pa = &i; /* safe */ }

4 int main()

5 { int *p1;

6 f(&p1);

7 *p1;

8 /* temporal error */

9 return 0; }

(d) Use-after-free (stack).

Figure 2: Examples of spatial and temporal errors.

track liveness, SoftboundCETS (SoCets) [26, 28] can catch many

temporal errors but yields false negatives due to key reuse [37].

Object-based approaches cannot detect accesses to a freed object

after the reuse of the memory. Even if enhanced with a quarantine-

based approach that maintains a quarantine to postpone memory

deallocations and reuses, ASan still cannot detect errors on access-

ing deallocated memory objects after they have been removed from

the quarantine and then reallocated.

Memory Leaks. Existing approaches only provide partial ability in

detecting memory leaks. For example, object-based approaches (e.g.,

ASan) can detect memory leaks by checking whether there exist

live heap objects at the end of an execution. Valgrind can detect

memory leaks by remembering the addresses of all live heap objects

in a hash table and checking whether the table is empty at the end

of an execution. However, such checks can only be performed at the

end of an execution. This means, they cannot immediately detect

memory leaks on the spot, which is less helpful to debugging.

Challenges. It would be tempting to combine all existing dynamic

approaches in a single tool to ensure comprehensive memory safety

at runtime. Unfortunately, such a simple-minded approach will

still be incapable of detecting the above four types of errors in a

deterministic and complete way. Moreover, this combination will

impose unnecessary overheads as it must maintain redundant meta-

data, e.g., the bounds of pointers’ referents duplicate the bounds

of live objects. Therefore, we need a new approach to overcome

these difficulties, but proposing a new approach that outperforms

existing tools in both effectiveness and performance is non-trivial.

Our Solution.We introduce Smatus, short for smart status, a new

dynamic analysis approach that supports comprehensive runtime

detection of memory errors. The key innovation is to create and

maintain a small status node for each memory object. This approach

tracks not only the bounds of each pointer’s referent but also the

status and reference count of the referent in its status node, where

the status represents the liveness and segment type (e.g., heap,

297

Runtime Detection of Memory Errors with Smart Status ISSTA ’21, July 11–17, 2021, Virtual, Denmark

stack, global, static or function) of the referent. All the pointers

pointing to the same object share the same status node in their

pointer metadata. A status node is łsmartž in the sense that it is

automatically destroyed when it becomes useless (indicated by its

reference count).

Smatus’s capability in detecting memory errors is comprehen-

sive. A spatial error is detected if the accessed locations are outside

the tracked bounds. A temporal error is detected if the tracked

status indicates invalidity. A segment confusion error is detected

if the tracked segment type does not match the way the pointer is

used. A memory leak is immediately detected on the spot when the

tracked reference count of a live heap object becomes zero.

In summary, we make the following contributions:

(1) We propose Smatus, a single memory safety solution that

can detect spatial errors, temporal errors, segment confusion

errors, and memory leaks. To the best of our knowledge,

Smatus represents the most comprehensive approach of its

kind.

(2) We have developed an implementation of Smatus. Our tool

supports both hash-table- and trie-based metadata spaces,

enabling a metadata-related optimization.

(3) We have evaluated Smatus against three state-of-the-art

tools, Google’s AddressSanitizer (ASan) [38], SoftBound-

CETS (SoCets) [26ś28, 51] and Valgrind [31, 32, 39], in terms

of effectiveness and performance.We use a large set of bench-

marks including 1197 benchmarks from the NIST Software

Assurance Reference Dataset (SARD) complemented with

124 hand-craftedmicrobenchmarks (to cover typical memory

errors and C constructs that are not included in the SARD),

20 MiBench benchmarks, and 5 SPEC CPU 2017 benchmarks.

For effectiveness, Smatus outperforms the three existing

tools by detecting more kinds of errors. For performance,

Smatus outperforms SoCets and Valgrind in terms of both

time and memory overheads incurred, and is on par with

ASan in terms of the time and memory overheads tradeoff

(with much lower memory overhead incurred).

The rest of this paper is organized as follows. Section 2 introduces

the Smatus approach. Section 3 describes possible implementation

choices. Section 4 evaluates Smatus. Section 5 discusses the related

work. Section 6 concludes the paper.

2 THE SMATUS APPROACH

In this section, we describe our Smatus approach including the

metadata structure and the monitoring algorithm used.

2.1 The Pointer Metadata and Monitoring

Smatus creates and maintains a pointer metadata (pmd) for each

pointer variable. Figure 3 defines the pmd structure. To detect spatial

errors at the object and sub-object levels, the pmd stores the base

and bound of a pointer’s referent, i.e., the legitimate range that can

be accessed by the pointer. Before the pointer is dereferenced or

freed, the access is checked against the bounds to ensure spatial

safety. For example, in Fig. 2a, when p points to s.m1 (whose address

is assumed to be 0x3000) after the assignment at Line 6, the pmd of

p stores the bounds [0x3000, 0x3008), as shown in Fig. 4. When p is

typedef struct

{

void *base;

void *bound;

SND *snda;

} PMD;

Figure 3: Pmd.

...
0x3000

m1
0x3008

m2

...

0x3000 0x3008

stack 2

the pmd of p

Figure 4: The pmd of p in Fig. 2a.

typedef enum {

function , ...

} status;

typedef struct

{

status stat;

size_t count;

} SND;

Figure 5: Snd.

...
0x1000

foo

0x1256
...

0x1000 0x1001

function 3

the pmd of p

0x1000 0x1001

the pmd of s

Figure 6: The pmds of p and s in Fig. 1a.

dereferenced at Line 7, the accessed range [3008, 3016) is outside

the legitimate range [3000, 3008), indicating a sub-object overflow.

Smatus creates and maintains a small status node (snd) for each

memory object. Figure 5 defines the snd structure. To detect a

segment confusion error, a temporal error or a memory leak, the

snd stores the status and reference count of the object. The status

value is one of these possibilities: invalid, heap, stack, global, static

and function, i.e., the liveness and segment type of the object. The

reference count tracks the number of pointers pointing to the object.

To model the points-to relation, the address of the referent’s snd is

stored in a pointer field of the pmd, say, snda in Figure 3.

The initial reference count of a heap snd is zero. Pointer assign-

ments are instrumented to update pmds and snds. Deallocating

snds is necessary because keeping useless snds can cause heavy

memory overhead. An snd can be safely deallocated when its ref-

erence count becomes 0 again, i.e., when no pointer points to the

corresponding object and, equivalently, no pmd uses this snd. As

a result, the instrumented allocators create the snd and then let

the monitoring algorithm automatically delete it when the count

becomes 0. The łsmart statusž idiom resembles reference-counted

smart pointers in languages such as C++11: you create the object

and then let the system take care of deleting it at the correct time.

Automatically deallocating snds requires a different initial ref-

erence count in a non-heap snd. Note that a pointer variable can

reference a stack object via the address-of operator, i.e., p=&obj.

As a result, when no pointer points to the object, we still need to

ensure that the count is greater than 0 to avoid automatic dealloca-

tion, as the object may be referenced again via &. Thus, the initial

count of stack snds should be 1. Furthermore, to make automatic

deallocation possible after the object is out of scope, i.e., when it

can no longer be referenced via &, the count should be addition-

ally decremented before the function returns. Similarly, the initial

counts of global, static and function snds should also be 1.

When a heap or stack object is manually or automatically allo-

cated, a corresponding heap or stack snd is created, respectively.

For example, in Figure 4, a stack snd is created for the struct s at

Line 5 and its reference count becomes 2 after Line 6 (recall that

the initial count is 1). When the object is explicitly or automatically

298

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhe Chen, Chong Wang, Junqi Yan, Yulei Sui, and Jingling Xue

deallocated, its status is marked invalid. When the program starts

running, the snds of global, static and function objects are created,

but never marked invalid as these objects are never deallocated.

To reduce overhead, multiple objects may share the same snd.

For example, all stack objects within a function share one stack snd

as they are allocated and deallocated at the same time, i.e., at the

beginning and end of the function execution, respectively. Similarly,

all global, static or function objects share one global, static or

function snd. Note that heap objects cannot share one snd as they

are usually allocated and deallocated at different times.

Smatus can detect segment confusion errors as segment types

are tracked in snds. For example, in Figure 1a, when s points to

function foo after the assignment at Line 6, the pmds of p and s are

shown in Figure 6. When s is dereferenced at Line 7, its referent’s

segment type function does not match the way the pointer is used

(as a data pointer), and thus a segment confusion error is detected.

0x2000 0x2008

heap 2

the pmd of p1

0x2000 0x2008

the pmd of p2

(a) Before deallocation.

0x2000 0x2008

invalid 2

the pmd of p1

0x2000 0x2008

the pmd of p2

(b) After deallocation.

Figure 7: The metadata of p1 and p2 in Figure 2c.

Smatus can also detect temporal errors as liveness is tracked in

the snd. Note that a pmd contains the address of the referent’s snd,

instead of the snd itself. Thus, the snd can be shared by multiple

pmds. For example, in Figure 2c, when p2 points to the heap object

after the assignment at Line 5, the pmds of p1 and p2 are shown in

Figure 7a. Note that the reference count also indicates the number

of pmds that use the snd. When the heap object is deallocated via

p1 at Line 6, its status is marked invalid as shown in Figure 7b.

Note that the status value in the pmd of p2 has also been implicitly

updated. As a result, when p2 is dereferenced for a write at Line 7,

its referent’s status is invalid, and thus, a use-after-free is detected.

Note that we should not deallocate the snd along with the object

at Line 6, otherwise the pmds sharing this snd, e.g., the pmd of p2,

would incorrectly lose their status information. This means that the

snd may live past the lifetime of the object. Similarly, the temporal

error in Figure 2d can be detected as the status of p1’s referent, i.e.,

i, is marked invalid when f returns. Note that the error detection

is deterministic and complete, as the snd is not reused; when the

memory is reallocated, a new snd is created for the memory.

1 p1 = (int*) malloc (8);

2 p2 = p1;

3 int i; p1 = &i;

4 p2 = &i; /*mem leak*/

Figure 8: A memory leak.

Smatus can detectmem-

ory leaks on the spot. For

example, in Figure 8, when

p2 points to the heap ob-

ject after the assignment

at Line 2, the pmds of p1

and p2 are the same as the pmds in Figure 7a. When p1 points to

i after the assignment at Line 3, as shown in Figure 9a, the pmd

of p1 switches to the snd of i, and thus, the count in the heap snd

is decremented. When p2 also points to i at Line 4, as shown in

Figure 9b, the pmd of p2 also switches to the snd of i, and thus,

the count in the heap snd is decremented to 0. Thus a memory leak

is detected, as no pointer points to the heap object. The snd of the

heap object (the gray cell) can be safely deallocated at this time.

stack 2

0x3000 0x3008

heap 1

the pmd of p1

0x2000 0x2008

the pmd of p2

(a) After p1 = &i.

stack 3

0x3000 0x3008

heap 0

the pmd of p1

0x3000 0x3008

the pmd of p2

(b) After p2 = &i.

Figure 9: The metadata of p1 and p2 in Figure 8.

2.2 Instrumentation Semantics

Now we formally present the instrumentation details using the

semantics of instrumented programs. We assume that the program

is in a low level intermediate representation inwhich data structures

have been flattened and all operations are performed on atomic

data types. Figure 10 gives the syntax of the C fragment used in the

operational semantics. Figure 11 shows the semantic rules.

Atomic Types a ::= int | r*

Referent Types r ::= a | struct id | void ()

Functions f ::= fid() { · · · ; vidi : ai ; · · · ; c }

Global Variables д ::= nil | vid : a ; д

LHS Expressions lhs ::= vid | *lhs

RHS Expressions rhs ::= fid | lhs | &lhs | rhs + rhs

| (r∗)malloc(rhs)

Commands c ::= lhs = rhs | rhs() | free(rhs)

Figure 10: The syntax of the C fragment.

We denote a pmd by a tuple (b,e,sa), which includes the base

b and bound e of its referent and the address sa of its snd. We

denote an snd by a pair (s,c), which includes the status value s

and reference count c of its referent. For a given program, all its

function (global) objects share the unique snd address f_sa (g_sa)

with its status value being function (global).

The operational semantics relies on an environment E = (M ,G,

H ,K ,P ,S), where the memory M : Adr 7→ Val is a mapping from

addresses to values, the global storage G : Var 7→ Adr × AType is

a mapping from global variable identifiers to their addresses and

types, the heap block table H is a mapping from base addresses to

bounds, the stackK is a list of frames, the pmd table P : Adr 7→ Pmd

is a mapping from addresses of pointer variables to pmds, the snd

table S : Adr 7→ Snd is a mapping from addresses to snds. We

assume that En always consists ofMn , ..., Sn . The operationM[l ⇓

v] stores value v to address l and results in a new mapping, while

K[⇓ v] pushes value v to the top frame. Let F be the function table

that maps function pointers to function frames and commands.

Evaluating an lhs expression by (E, lhs) ⇒l loc (sa) : a yields its

address loc , the address sa of its snd and its type a without chang-

ing the environment. Evaluating a rhs expression by (E,rhs) ⇒r

299

Runtime Detection of Memory Errors with Smart Status ISSTA ’21, July 11–17, 2021, Virtual, Denmark

(E, lhs) ⇒l loc (sa) : a Rules for LHS:

[GVar] G (vid) = (l ,a)

(E,vid) ⇒l l(g_sa) : a

[SVar] K (vid) = (l ,a,sa)

(E,vid) ⇒l l(sa) : a

[Deref] (E, lhs) ⇒l l(.) : a∗ M (l) = l ′ P (l) = (b,e,sa)

(l ′ , 0) ∧ (b ≤ l ′) ∧ (l ′ + sizeof(a) ≤ e)

(sa , 0) ∧ (S (sa).s , invalid) ∧ (S (sa).s , function)

(E,∗lhs) ⇒l l
′
(sa)

: a

(E,rhs) ⇒r (E ′,val(b,e,sa) : a) Rules for RHS:

[Fun] F (fid) = (fr,c)

(E,fid) ⇒r (E,fid(fid,fid+1,f_sa) : void (*)())

[Lhs] (E, lhs) ⇒l l(.) : a M (l) = val P (l) = (b,e,sa)

(E, lhs) ⇒r (E,val(b,e,sa) : a)

[Ref] (E, lhs) ⇒l l(sa) : a sizeof(a) = n

(E,&lhs) ⇒r (E,l(l,l+n,sa) : a∗)

[AddPtr] (E,rhs1) ⇒r (E1,l(b,e,sa) : r∗) sizeof(r) =m

(E1,rhs2) ⇒r (E2,n(.) : int)

(E,rhs1 + rhs2) ⇒r (E2, (l + n ∗m)(b,e,sa) : r∗)

[Alloc] (E,rhs) ⇒r (E1,n(.) : int) sizeOf(r) > 0

umalloc(E1,n) = ((M2,G1,H2,K1,P1,S1),l)

getFreshSnd(S1) = sa

E3 := (M2,G1,H2,K1,P1,S1[sa ⇓ (heap,0)])

(E, (r∗)malloc(rhs)) ⇒r (E3,l(l,l+n,sa) : r∗)

(E,c) ⇒c (E ′,R) Rules for commands:

[AssignPtr]

(E,rhs) ⇒r (E1,v(b,e,sa) : r∗) (E1, lhs) ⇒l l(.) : r∗

sal := P1 (l).sa (sal = 0) ∨ (S1 (sal).s , heap) ∨ (S1 (sal).c > 1)

S2 :=





S1, if sa = sal
S1[sa.c ⇓ sa.c + 1], if P1 (l) = None ∨ S1 (sal) = None

S1[sa.c ⇓ sa.c + 1,sal .c ⇓ sal .c − 1], if S1 (sal).c > 1

S1[sa.c ⇓ sa.c + 1,sal ⇓ None], if S1 (sal).c = 1

E3 := (M1[l ⇓ v],G1,H1,K1,P1[l ⇓ (b,e,sa)],S2)

(E, lhs = rhs) ⇒c (E3,OK)
[Call]

(E,rhs) ⇒r (E1,l(b,e,sa) : a)

(l , 0) ∧ (l = b) ∧ (sa , 0) ∧ (S1 (sa).s = function)

F (l) = (fr,c) cframe(E1, fr) = (M2,G2,H2,K2,P1,S1)

getFreshSnd(S1) = saf
E3 := (M2,G2,H2,K2[⇓ saf],P1,S1[saf ⇓ (stack,1)])

(E3,c) ⇒c (E4,R) dframe(E4) = (M5,G5,H5,K5,P4,S4)

E6 := (M5,G5,H5,K5,P4,S4[saf ⇓ (invalid,S4 (saf).c − 1)])

(E,rhs()) ⇒c (E6,R)

[Free] (E,rhs) ⇒r (E1,l(b,e,sa) : r∗)

(l , 0) ∧ (l = b) ∧ (sa , 0) ∧ (S1 (sa).s = heap)

ufree(E1,l) = (M2,G1,H2,K1,P1,S1)

S2 := S1[∀n : b ≤ n < e . P1 (n).sa.c ⇓ P1 (n).sa.c − 1]

P2 := P1[∀n : b ≤ n < e . n ⇓ None]

E3 := (M2,G1,H2,K1,P2,S2[sa.s ⇓ invalid])

(E,free(rhs)) ⇒c (E3,OK)

Figure 11: Semantics of instrumented programs.

(E ′,val(b,e,sa) : a) yields its valueval , the pmd (b,e,sa) of its refer-

ent and its type a, and changes the environment E to E ′. Evaluating

a command by (E,c) ⇒c (E ′,R) yields a result R (which must be

OK if successful) and changes the environment E to E ′.

Rule [Alloc] allocates a block at address l in the heap using

the original allocator umalloc, creates a new snd at address sa

using getFreshSnd, and sets its status value to the segment type

heap and its reference count to zero. Rule [Call] allocates local

objects in frame fr on the stack using the frame constructor cframe,

creates a new snd at address saf , pushes saf to the top frame, and

sets its status value to the segment type stack and its reference

count to 1. Then, the commands c in the function are executed,

and subsequently, the frame is destroyed using dframe. Finally the

snd’s status is set to invalid and its count is decremented.

Rule [AssignPtr] assigns the rhs pointer to the lhs pointer

variable. If the lhs variable has a pmd, then the pmd is checked

to ensure that the reference count is greater than 1 if its status is

heap, i.e., no memory leak occurs (as some other pointers point to

the old referent). Then the reference count of the new referent is

incremented (as a reference to the new referent has been added). If

the lhs variable has an old referent, then the reference count of the

old referent is decremented (as a reference to the old referent has

been removed). If its reference count is 1, then its snd is removed

as no pointer points to it afterwards. Finally the value and pmd of

the lhs variable is updated using those of the rhs pointer.

If the lhs variable is a global or stack variable, Rules [GVar] and

[SVar] compute its address and snd. If the rhs pointer is a function

pointer, Rule [Fun] computes its value and pmd. If the rhs pointer

is a global or stack variable, Rule [Lhs] reads its value and pmd

from the memory and pmd table, respectively. If the rhs pointer

is the address of an object or sub-object, Rule [Ref] computes its

value and pmd. If the rhs pointer is a pointer arithmetic, i.e., the

sum of a pointer and an integer, Rule [AddPtr] computes its value

as usual and its pmd inherits the pmd of the pointer.

Rule [Deref] dereferences a pointer, by checking the accessed

locations [l ′,l ′+sizeof(a)) against its pmd (b,e,sa) to ensure that

they are within the bounds [b,e) (spatial safety), the status is not

invalid (temporal safety), and the segment type is not function

(segment safety). Note that Rule [Call] requires the segment type

to be exactly function as the pointer is used as a function.

Rule [Free] first ensures that the freed object is in the heap, then

deallocates the object using the original deallocator ufree. After

that, the reference counts of the pmds indexed by the addresses

between the base and bound are decremented and then these pmds

are removed, where these pmds are exactly the pmds of the object’s

pointer members if they exist. Finally, the snd of the freed object

is marked as invalid. Note that this implicitly changes the status

value in the pmds of all the pointer variables pointing to this object,

as they share the same snd.

2.3 The Function Metadata and Monitoring

When pointers are passed across the function calls as arguments

and return values, their pmds travel with them. Smatus creates

and maintains a function metadata (fmd) for each function that has

pointer parameters or returns a pointer. The fmd stores an array of

the function’s pointer metadata (fpmds) and the capacity of the array.

Note that the array contains the pointer metadata of its arguments

and return value, indexed by their relative positions in the function

300

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhe Chen, Chong Wang, Junqi Yan, Yulei Sui, and Jingling Xue

definition. Like a pmd, each fpmd also stores the base, bound and

snd address of the referent. For example, in Figure 2d, function f

has a pointer parameter pa. Before f is called at Line 6, its fmd is

created. The fmd contains one fpmd, which is updated using the

pmd of the pointer constant &p1, with the bounds [&p1, &p1+1).

When the argument &p1 is assigned to the parameter pa at Line 1,

the pmd of pa is updated using the fpmd. When pa is dereferenced

for a write at Line 3, the accessed range [&p1, &p1+1) is compared

with the legitimate range tracked in its pmd. In this case, no error

is detected as all the checks are passed successfully.

The rules of our monitoring algorithm for function calls are:

(1) Before a function is called, its fmd is created and its fpmds

are updated using the pmds of arguments.

(2) When arguments are assigned to parameters after the func-

tion execution starts, the pmds of the parameters are updated

using the corresponding fpmds. After that, the pointer pa-

rameters are treated like local pointer variables in the stack.

(3) Before the function returns, its fpmds are updated using the

pmds of return value (as a return value may be a structure

containing multiple pointers).

(4) After the function returns, the pmds of the variable storing

the return value are updated using the corresponding fpmds.

2.4 Library Function Calls

The above instrumentation can be directly applied to library func-

tions to generate instrumented libraries so as to pass pmds. How-

ever, if a library is provided in the pre-compiled form, we are not

able to rewrite its function definitions. Thus, we do not pass the

pmds of arguments and return value across library function calls

via the fmd. Instead, we provide wrappers for library functions.

A wrapper function summarizes the behavior of the original

function on its arguments and return value, so as to check the pmds

of the arguments for memory safety before calling the original

function and update the pmds of the variable storing the return

value after the call. For example, the wrapper of malloc accepts the

pmd of the pointer variable storing the return value as an argument

so as to update the pmd of the variable after calling malloc. The

wrapper of free accepts the pmd of the pointer argument as a new

argument so as to check whether the pointer is the base of a valid

heap object before calling free, and then update the status of the

pmd to invalid after the call.

3 DESIGN CHOICES

SourceCodeTransformation. Instrumentation can be performed

on different representations of a program [9]. For example, ASan

and SoCets perform instrumentation at the IR-level while Valgrind

uses binary-level instrumentation. Unfortunately, these techniques

are optimization sensitive [8], i.e., many errors caught under the

compiler optimization level -O0 cannot be detected under a higher

level such as -O1, -O2 and -O3 (validated in Section 4.1). Thus,

Smatus uses Clang-based source transformation, i.e., rewrites the

code written by the programmer, to ensure effectiveness at high

optimization levels.

Wrapper Functions for the C Library. Smatus provides wrap-

pers for the most frequently used library functions in the standard

C library. It also automatically generates wrappers for other library

functions, which do not detect memory errors but assign large

bounds and the global snd to the pmds of the returned pointers to

avoid false positives. To check the memory accesses in these library

functions, it also accepts user-defined wrappers.

Disjoint Metadata. The pmd can be inlined to the pointer variable

to form a fat pointer [12, 21, 29, 30, 33], or stored in a metadata space

disjoint from pointer variables. Compared with fat pointers, disjoint

metadata space causes higher overhead due to the lookup expense

but does not change the memory layout and thus provides better

compatibility. Thus we use a disjoint metadata space. It consists

of a pmd table and a fmd table, which map a pointer variable or a

function to its metadata structure by its address, respectively.

HashTable andTrie.The pmd and fmd tables can be implemented

using hash tables or tries. Smatus supports both for evaluating

their impact to performance. To enable explicit table lookups, the

pmd includes the pointer variable’s address (not its value), which

uniquely identifies the pmd. When hash tables are used, the hash

function converts the address into the slot index of the pmd:

index = hash(address, capacity)

When two-level tries are used, the address is converted into the

index in the primary trie using the lower 26-48th bits and the index

in the secondary trie using the lower 4-25th bits:

primaryIndex = (address >> 25) & 0x7FFFFF

secondaryIndex = (address >> 3) & 0x3FFFFF

The pmd table only maintains the pmds of pointer variables. That

is, pointer constants (e.g., function names, array names and variable

addresses) do not need pmds, because they do not have addresses

for indexing and their referents’ bounds and status are known at

compile-time. Note that the fpmd does not include the address of

a pointer argument as the fpmd can be identified by its relative

position in the parameter list and this saves memory.

Using pmd Variables. One optimization is to store pmds in stack

variables instead of the pmd table to reduce time overhead by re-

ducing table lookups. For each pointer p, a pmd variable definition

named pmd_p is inserted. For each struct s containing pointers, a

pmd array definition named pmd_s[K] is inserted, where K is the

number of pointers in the struct. For each array a[M][N] contain-

ing pointers, a pmd array definition named pmd_a[M][N][K] is

inserted, where K is the number of pointers in the element.

Note that this optimization only applies to pointers in explicitly

defined variables. This means, if a pointer is dynamically allocated

in the heap at runtime, its pmd must be stored in the pmd table as

the pointer is not named. Furthermore, if the address of the variable

escapes from the function, e.g., being stored in a pointer or passed

as an argument, then its pmd should still be stored in the pmd table

as the pointer may be used outside the function where the pmd

variable is not accessible. Thus we have implemented a simple static

analysis to decide whether the address of a variable can escape from

the function. If yes, no pmd variable is inserted for this variable.

4 EXPERIMENTAL EVALUATION

We have implemented the Smatus approach in the memory safety

module of Movec [7, 8]. The artifact is available at https://github.

com/drzchen/movec. More information aboutMovec is available

at https://drzchen.github.io/projects/movec.

301

https://github.com/drzchen/movec
https://github.com/drzchen/movec
https://drzchen.github.io/projects/movec

Runtime Detection of Memory Errors with Smart Status ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: Effectiveness of four tools on SARD andmemsafewith all compiler optimizations turned off. InColumn łProgramsž, T

(number of programs) = B (number of bad programs) + G (number of good programs). In each of the remaining columns, E and

N denote the numbers of the programs with and without errors detected, respectively. The number inside each pair of paren-

theses denotes the number of good programs. Note that SARD-89-2 is originally part of SARD-89, but identified separately

because its programs need inputs. Thus, we have written extra scripts to feed the inputs and run these programs.

Suite Programs ASan SoCets Valgrind Movec

Name T B G E(G) N(G) E(G) N(G) E(G) N(G) E(G) N(G)

SARD-81 5 5 0 4(0) 1(0) 4(0) 1(0) 0(0) 5(0) 5(0) 0(0)

SARD-88 28 14 14 23(9) 5(5) 14(2) 14(12) 16(9) 12(5) 23(9) 5(5)

SARD-89 1152 864 288 686(1) 466(287) 829(0) 323(288) 149(1) 1003(287) 862(1) 290(287)

SARD-89-2 12 9 3 6(0) 6(3) 6(0) 6(3) 0(0) 12(3) 9(0) 3(3)

memsafe 124 105 19 88(0) 36(19) 88(-7) 36(12) 25(0) 99(19) 105(0) 19(19)

Total 1321 997 324 807(10) 514(314) 934(2) 380(315) 190(10) 1131(314) 1004(10) 317(314)

In this section, we use a large set of benchmarks to evaluate

Movec (i.e., Smatus) in terms of effectiveness (for detecting var-

ious memory errors) and performance (for the time and memory

overheads incurred).

The first set of 1197 benchmarks comes from three benchmark

suites (IDs 81, 88 and 89) of the NIST Software Assurance Refer-

ence Dataset (SARD). A benchmark is called a good program if it is

marked as safe by using a file name with the suffix OK and, other-

wise, a bad program. These benchmarks do not cover many typical

memory errors and C constructs. Thus, we have developed a new

memsafe benchmark suite to cover various typical memory errors

and C constructs that are not included in the SARD [4]. This suite

contains 124 microbenchmarks, of which 105 are unsafe programs

seeded with one clearly marked error and 19 are safe.

The second set of benchmarks consists of real applications in-

cluding 20 MiBench benchmarks [18] and 5 pure-C SPEC CPU 2017

benchmarks. We use MiBench because C is widely used in devel-

oping embedded systems and MiBench is a free and commercially

representative embedded benchmark suite and covers many do-

mains such as automotive, consumer, network, office, security and

telecommunication. SPEC has also been widely used in evaluating

performance of computing systems.

We compareMovec with three state-of-the-art tools, Google’s

ASan, SoCets and Valgrind. Valgrind [31, 32, 39] is probably the

most widely used tool for detecting memory errors. ASan [38]

significantly outperforms Valgrind and Dr. Memory [2] in runtime

overheads, and has been integrated into popular compilers such as

GCC and Clang. SoCets [26ś28, 51] significantly outperforms Jones

and Kelly’s BCC [22] and Valgrind in runtime overheads, and has

comparable performance as MSCC [47]. As discussed in Section 1,

proposing a new approach that outperforms these tools in both

effectiveness and performance is rather challenging.

All experiments were conducted on a computer equipped with a

2.3GHz Intel Core i5-6200U CPU and a 4GB DDR3 RAM, running on

a 64-bit Ubuntu 16.04 with Linux kernel 4.4.0. We used ASan inte-

grated with LLVM-6.0, the latest version of SoCets integrated with

LLVM-3.4, and Valgrind 3.11.0 from the latest Ubuntu repository.

4.1 Effectiveness

For the first set of benchmarks, we first compile the instrumented

programs with all compiler optimizations turned off, i.e., using

-O0. As shown in Table 1, Movec successfully detects the errors in

1004 programs. In particular,Movec reports not only all the labeled

errors in bad programs but also more errors beyond the labeled ones

for some bad programs. For example, Movec detects the labeled

error and 8 extra spatial errors in the benchmark ID 283 of SARD-88,

including out-of-bounds accesses in array subscripts and library

functions such as printf, strcpy, strlen and strrchr. Movec

reports the errors in 10 good programs that actually contain errors.

For example, Movec detects extra memory leaks in some good

benchmarks (IDs 290, 292, 294, 296 of SARD-88 etc.).Movec does

not report errors in only three bad programs (IDs 163, 164, 165 of

SARD-89), and neither do the other three tools, as the seeded error

is not reachable at runtime (these programs abort on an assertion

failure). In contrast, ASan, SoCets and Valgrind are able to detect

errors in only 807, 934 and 190 programs, respectively, i.e., they

are ineffective for the remaining bad programs. SoCets is the only

one that reports false positives for 7 safe programs in memsafe. To

summarize, Movec is the only tool that identifies all the erroneous

programs.

We then compile the instrumented programs with compiler opti-

mizations turned on, i.e., using -O1, -O2 or -O3. Due to its support

for source code transformation, Movec is optimization-insensitive,

as the number of detected errors does not fluctuate across the op-

timization flags [8, 9]. For example, Movec still identifies 1004

erroneous programs under -O3 just as under -O0. In contrast, the

existing tools do not enjoy this property. Indeed, ASan, SoCets and

Valgrind identify only 56, 26 and 31 erroneous programs under -O3,

respectively, which are much less than what are found under -O0.

This is because they perform instrumentation on IR or binary code

(instead of source code), which is optimization sensitive.

For the second set of benchmarks, Table 2 shows the results

on the programs with the errors detected under -O0 (default) or

-O3. It is clear that Movec can detect more memory errors. For

example, Movec is the unique tool that detects spatial errors in

lame, x264 and xz and memory leaks in ispell, lame, qsort and

rsynth. Again, SoCets reports false positives for rsynth, tiff,

x264 and imagick. Valgrind can detect uninitialized values that are

not memory errors. To summarize,Movec again outperforms the

other tools in terms of effectiveness.

302

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhe Chen, Chong Wang, Junqi Yan, Yulei Sui, and Jingling Xue

Table 2: Effectiveness of four tools onMiBench and SPEC. ✓

denotes that no error is reported, × denotes that false pos-

itives are reported, and ? denotes that the instrumentation

fails. For detected errors, SP = spatial errors, e.g., buffer over-

flows and invalid reads; ML = memory leaks; UT = errors of

unknown type; UV = uninitialized values.

Programs ASan SoCets Valgr. Movec

blowfish SP SP (UV) SP
ispell ✓ ✓ ✓ ML
jpeg SP UT ✓ SP
jpeg-O3 SP ? ✓ SP
lame ✓ ✓ ✓ SP+ML
lame-O3 ✓ ? ✓ SP+ML
patricia ML ✓ ML ML
qsort ✓ ✓ ✓ ML
rijndael SP SP ✓ SP
rijndael-O3 ✓ SP ✓ SP
rsynth SP × SP SP+ML
rsynth-O3 ✓ × SP SP+ML
susan ML ✓ ML ML
tiff ✓ × ✓ ✓

tiff-O3 ✓ ? ✓ ✓

typeset ML UT ML SP+ML
typeset-O3 ML ? ML SP+ML

x264 ✓ × ✓ SP
imagick ML × ML ML
imagick-O3 ML ? ML ML
nab ML ✓ ML ML
nab-O3 ML × ML ML
xz ML ✓ ML SP+ML

When compiler optimizations such as -O3 are used,Movec re-

tains its effectiveness, but ASan, SoCets and Valgrind are not effec-

tive as before. For example, ASan fails to detect errors in rijndael

and rsynth under -O3 but succeeds under -O0. SoCets fails to in-

strument jpeg, lame, tiff, typeset and imagick but succeeds

under -O0, and reports false positives for nab only under -O3.

Let us systematically analyze and summarize the effectiveness

of these four tools evaluated. Table 3 shows the results in two parts,

where Y/N/P denote Yes/No/Partial, respectively.

• Its first half shows whether each tool can detect particular types

of memory errors, where dashed lines separate the spatial errors,

temporal errors, segment confusion errors, memory leaks and

the errors that occur during the library function execution.

ASan cannot detect uninitialized pointers, global object and

sub-object overflows, long-jump overflows (that access a legiti-

mate location by using a long-distance pointer arithmetic), and

stack use-after-frees. For example, if an uninitialized pointer ac-

cidentally points to allocated memory, ASan does not detect any

error as it does not track the bounds per pointer. ASan cannot

detect the overflows on global objects and sub-objects as it does

not insert guards around these objects. ASan cannot detect long-

jump overflows as such an overflow may jump over the guards

inserted around memory blocks and fall into allocated memory.

ASan cannot detect the errors of using a stack object after its au-

tomatic deallocation, because the stack frame is reused by some

subsequent calls, and thus, ASan does not invalidate the shadow

space of stack objects after the function returns.

Table 3: Effectiveness summarized for four tools.

Errors/Syntax ASan SoCets Valgr. Movec

null ptr Y Y Y Y

uninitialized ptr N Y Y Y

manufactured ptr Y N N Y

global overflow N Y N Y

static overflow Y Y N Y

stack overflow Y Y N Y

heap overflow Y Y Y Y

sub-object overflow N N N Y

long-jump overflow N Y N Y

stack use-after-free N Y N Y

heap use-after-free Y Y Y Y

double free Y Y Y Y

invalid dereference N N N Y

invalid free P P P Y

memory leak P N P Y

library func Y N Y Y

func ptr assignment Y N Y Y

func ptr dereference N N N Y

variadic func decl Y N Y Y

va_arg call Y N Y Y

va_arg dereference Y N Y Y

va_arg subscript Y N Y Y

va_arg member Y N Y Y

const data ptr Y N N Y

stack data ptr N Y N Y

global data ptr N Y N Y

global ptr array N N N Y

global struct array N N N Y

SoCets does not support manufactured pointers, e.g., it re-

ports a false positive for the safe program in Fig. 12a where

pointer p is assigned with a designated address value and then

dereferenced, as it incorrectly computes the bounds of the con-

stant data pointer. SoCets cannot detect sub-object overflows

(e.g., Fig. 2a) as it only computes the bounds of the outer object.

Valgrind cannot detect manufactured pointers, non-heap ob-

ject and sub-object overflows, long-jump overflows, and stack

use-after-frees. All these weaknesses are essentially attributed to

the disadvantages of the object-based approach used.

Neither of ASan, SoCets and Valgrind can detect segment

confusion errors, e.g., the invalid dereferences in Figure 1, since

neither tracks the segment type of a memory object. These ex-

isting tools can report invalid frees, but they neither locate the

errors nor provide any precise error information, which can be

less helpful to the developers when compared withMovec.

Finally, ASan and Valgrind miss some memory leaks in

MiBench as they check for leaked objects only at the end of

an execution, whereas Movec checks for leaks during the execu-

tion to enable immediate leak detection, which is more helpful to

debugging. SoCets is not designed for detecting memory leaks.

• The second half of Table 3 shows how each tool supports diverse

C constructs, which are easy to be handled incorrectly. ASan,

SoCets and Valgrind cannot handle many constructs, even if they

operate on the simplified IR or binary code of a C program.

ASan and Valgrind provide a similar degree of support for C

constructs, as they use a similar object-based approach, where

303

Runtime Detection of Memory Errors with Smart Status ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 4: Performance of ASan, SoCets, Valgrind andMovec on the MiBench and SPEC benchmarks. Wemeasure overheads by

calculating the time ratios (T.R.) and the memory ratios (M.R.) of the instrumented programs, i.e., execution time (in seconds)

andmemory consumption (in kilobytes) of the instrumented programs relative to those of the original programs. For example,

the T.R. 1.78 means that the instrumented program is 1.78x slower than the original one, indicating a time overhead of 78%.

Programs Original -O3 ASan SoCets Valgrind Movec -O3 (trie, pmdvar)
time mem time mem T.R. M.R. time mem T.R. M.R. time mem T.R. M.R. time mem T.R. M.R.

CRC32 0.18 756 0.32 6492 1.78 8.59 0.56 1732 3.11 2.29 4.94 41508 27.44 54.90 0.51 1492 2.83 1.97
FFT 0.09 1340 0.15 7608 1.67 5.68 0.18 2676 2.00 2.00 3.17 42612 35.22 31.80 0.14 2744 1.56 2.05

adpcm 0.37 756 0.81 6496 2.19 8.59 1.44 1708 3.89 2.26 6.13 41508 16.57 54.90 0.83 1484 2.24 1.96
basicmath 0.27 1008 0.43 6884 1.59 6.83 0.30 2376 1.11 2.36 8.34 42620 30.89 42.28 0.29 2304 1.07 2.29
bitcount 0.07 756 0.29 6596 4.14 8.72 0.48 1936 6.86 2.56 3.58 41516 51.14 54.92 0.74 1628 10.57 2.15
blowfish 0.20 772 Abort on SEGV 1.68 1860 8.40 2.41 13.46 41528 67.30 53.79 1.18 1432 5.90 1.85
dijkstra 0.03 872 0.19 11284 6.33 12.94 0.38 3840 12.67 4.40 1.11 47672 37.00 54.67 0.28 1792 9.33 2.06

gsm 0.20 812 0.95 7068 4.75 8.70 2.94 2248 14.70 2.77 4.94 41568 24.70 51.19 2.14 1744 10.70 2.15
ispell 0.00 2136 0.01 7752 2.50 3.63 0.01 3004 1.25 1.41 0.44 41584 110.00 19.47 0.01 2528 1.25 1.18
jpeg 0.01 2076 0.08 8112 8.00 3.91 0.24 3776 24.00 1.82 1.44 41572 144.00 20.03 0.24 3216 24.00 1.55
lame 0.13 3232 0.73 9676 5.62 2.99 3.16 4988 24.31 1.54 9.18 42860 70.62 13.26 2.92 4200 22.46 1.30

patricia 0.08 7684 0.25 16340 3.13 2.13 0.20 45836 2.50 5.97 4.07 71968 50.88 9.37 0.33 55760 4.13 7.26
qsort 0.05 3024 0.09 9420 1.80 3.12 57.59 7760 1151.80 2.57 1.61 42604 32.20 14.09 0.11 3984 2.20 1.32

rijndael 0.05 824 0.51 6744 10.20 8.18 1.23 2008 24.60 2.44 4.13 41536 82.60 50.41 0.88 1544 17.60 1.87
rsynth 0.18 2872 0.52 15616 2.89 5.44 Abort on a false positive 6.64 45208 36.89 15.74 5.11 3480 28.39 1.21

sha 0.02 1352 0.08 6644 4.00 4.91 0.14 1964 7.00 1.45 0.99 41512 49.50 30.70 0.15 1528 7.50 1.13
strsearch 0.01 840 0.02 6636 3.40 7.90 0.01 2184 2.00 2.60 0.49 41536 98.00 49.45 0.01 1836 1.40 2.19

susan 0.04 2100 0.31 8616 7.75 4.10 1.33 3192 33.25 1.52 3.53 42656 88.25 20.31 0.61 3296 15.25 1.57
tiff 0.01 2048 0.01 2076 1.00 1.01 Abort on a false positive 1.92 42584 160.00 20.79 0.01 1972 1.00 0.96

typeset 0.08 10248 0.61 33196 7.63 3.24 Abort on a detected error 5.64 58168 70.50 5.68 0.38 35652 4.75 3.48
AVERAGE 4.23 5.82 77.85 2.49 64.19 33.39 8.71 2.08

overMovec 0.21 2.83 3.86 1.21 3.18 16.24
overMovec-O3 0.49 2.81 8.94 1.20 7.37 16.09

GEOMEAN 3.48 4.99 8.55 2.31 53.84 27.61 5.12 1.85
overMovec 0.35 2.72 0.85 1.26 5.36 15.06

overMovec-O3 0.68 2.70 1.67 1.25 10.51 14.94

lbm 3.03 420232 11.46 477784 3.78 1.14 32.87 420204 10.85 1.00 104.72 561984 34.56 1.34 35.09 420424 11.58 1.00
x264 51.34 158852 338.16 196752 6.59 1.24 Abort on a false positive 2973.80 242124 57.92 1.52 1484.13 174276 28.91 1.10

imagick 0.02 6868 0.16 21880 8.00 3.19 Abort on a false positive 1.71 47564 85.50 6.93 0.22 11160 11.00 1.62
nab 1.84 3128 4.31 15380 2.34 4.92 12.59 8232 6.84 2.63 63.57 45660 34.55 14.60 9.30 4920 5.05 1.57
xz 12.26 567328 45.72 653728 3.73 1.15 184.22 644832 15.03 1.14 524.30 756524 42.77 1.33 229.72 568716 18.74 1.00

AVERAGE 4.89 2.33 10.91 1.59 51.06 5.14 15.06 1.26
overMovec 0.14 1.79 0.31 1.22 1.45 3.95

overMovec-O3 0.32 1.85 0.72 1.26 3.39 4.08
GEOMEAN 4.45 1.91 10.37 1.44 47.93 3.07 12.84 1.23
overMovec 0.15 1.51 0.34 1.14 1.57 2.44

overMovec-O3 0.35 1.55 0.81 1.17 3.73 2.50

1 int main() {

2 int *p, i;

3 unsigned long addr =

4 (unsigned long)&i;

5 p = (int *)addr;

6 i = *p; /*safe*/

7 return 0;

8 }

(a) Manufactured Pointer.

1 void foo(); /*A func*/

2 int main() {

3 int *p1 = (int *)foo;

4 int *p2 = p1 + 1;

5 void (*p3)() =

6 (void (*)())p2;

7 (*p3)(); /*error*/

8 return 0; }

(b) Function Pointer Deref.

Figure 12: Programs that ASan/SoCets/Valgr. cannot handle.

pointer manipulations are irrelevant. For example, in Fig. 12b,

all pointers refer to function foo, but p3 is not equal to the base

address of foo. Its dereference at Line 7 causes the program to

invoke foo three times on our platform, resulting in a spatial error.

However, ASan and Valgrind cannot detect this error because the

function is stored in an allocated memory. They do not support

stack/global data pointers and global pointer/struct arrays well,

because these pointers (or in global arrays) are usually initialized

to the addresses of stack or global objects but they cannot detect

stack use-after-frees and overflows on global objects.

SoCets does not support function pointer assignments and

dereferences, variadic function declarations, and va_arg calls,

constant data pointers, and global pointer/struct arrays. For exam-

ple, SoCets does not detect the error of dereferencing a non-base

function pointer in Fig. 12b because it does not instrument the

dereference of a function pointer due to a representation that is

different from that for the dereference of a data pointer. In Fig.

12a, the false positive also shows that SoCets does not support

the pointers initialized with constant data pointers.

Smatus is more effective because it provides more comprehen-

sive detection of memory errors. In contrast, ASan, SoCets and

Valgrind provide partial memory safety only as they are inherently

limited by the capabilities of their monitoring algorithms.

4.2 Performance

The performance evaluation uses the MiBench and SPEC bench-

marks.Movec may detect multiple errors in a run without termi-

nating program execution, resulting in a complete measurement

304

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhe Chen, Chong Wang, Junqi Yan, Yulei Sui, and Jingling Xue

for the time and memory overheads incurred. Unfortunately, ASan,

SoCets and Valgrind force a program to abort on the first detected

error, making these measurements incomplete. Thus we have devel-

oped a safer version of the benchmarks for performance evaluation

by manually correcting some errors detected in Section 4.1, making

these measurements complete. Note that we are not able to correct

all errors as we are unware of how to correct the errors strongly

related to program-specific allocators and algorithms.

We ran the original programs and the instrumented programs

of each tool five times using the large inputs from MiBench and

test inputs from SPEC, and collected their execution times and

memory consumption using the arithmetic average of the five runs.

The execution time of a program accounts for the elapsed time

between the program’s invocation and its termination, while its

memory consumption indicates maximum resident set size (RSS)

of the process during its lifetime. Execution time and memory

consumption were reported using GNU time.

Table 4 shows the performance data. We compiled the instru-

mented programs with all optimizations turned off (under -O0),

since ASan, SoCets and Valgrind may miss errors when optimiza-

tions are used (Section 4.1). We also usedMovec under the most

aggressive optimization level -O3, since Movec is optimization-

insensitive. For MiBench, the execution time of Movec is 8.71x rel-

ative to the original run on average, while its memory consumption

is 2.08x. In contrast, the time ratios of ASan, SoCets and Valgrind

are 4.23x, 77.85x and 64.19x, respectively, while their memory ra-

tios are 5.82x, 2.49x and 33.39x, respectively. When compared with

Movec under -O0, ASan spends only 0.21x less time but 2.83x more

memory, SoCets is 3.86x slower and consumes 1.21x more memory,

and Valgrind is 3.18x slower and consumes 16.24x more memory.

When compared with Movec under -O3, ASan spends 0.49x less

time, SoCets and Valgrind are 8.94x and 7.37x slower, respectively.

Therefore, Movec outperforms SoCets and Valgrind in both exe-

cution time and memory consumption, and is on par with ASan

because of their respective strengths in time and memory. If we use

the metric of geometric mean (GEOMEAN) instead of arithmetic

average, the results are similar. For SPEC, we can draw a similar

conclusion except that the performance of SoCets is unclear due to

abortion on false positives.

Table 5: Performance impact of various design choices of

Movec on theMiBench and SPEC benchmarks. All time and

memory ratios are average values on the programs.

Suites Choices Hash table Trie

T.R. M.R. T.R. M.R.

MiBench under -O3 11.39 1.80 10.02 2.08

+ pmd var 8.43 1.83 8.71 2.08

+ no check 4.43 1.82

SPEC under -O3 21.28 1.19 17.40 1.27

+ pmd var 14.85 1.19 15.06 1.26

+ no check 5.77 1.18

We have also evaluated the performance impact of various design

choices of Movec (Table 5). Hash-table- and trie-based metadata

spaces show similar performance in general, as the latter spends

12-18% less time when pmd variables are not used but around 10%

more memory. When pmd variables are used, the time overhead is

reduced by 26-30% and 13% for the hash table-based and trie-based

metadata spaces, respectively. We have also found that much time

is spent in checking the validity of memory accesses, as the time

overhead can be greatly reduced when no check is performed (only

metadata is propagated) at runtime.

The performance difference between Movec and ASan is in-

fluenced by their different monitoring algorithms. First, Movec

uses a pointer-based approach, whereas ASan uses an object-based

approach and implements metadata space using a large shadow

space of the memory used by a program including some unused

memory (trading memory for time). Thus ASan spends less time

than Movec, but much more memory for all programs. ASan in-

herently cannot detect some memory errors, although it incurs

lower time overhead. Second, the lower memory consumption of

Movec is also attributed to smart status, because a freed object can

be immediately deallocated and reused by the operating system,

while we only need to preserve its snd until no pointer points to it.

In contrast, ASan uses a quarantine-based approach to detect heap

use-after-frees, thus it has to maintain a self-managed quarantine

to collect freed objects, which consumes additional memory.

The performance difference between Movec and SoCets is influ-

enced by the following factors. First, the current implementation

of Movec uses a purely dynamic technique that monitors each

potential error, whereas SoCets uses static analysis to remove un-

necessary and redundant runtime checks. For example, SoCets uses

dominator-based redundant check elimination [27, 51] and dataflow

analysis [26, 28], which have removed many checks and largely

reduced time overheads. However, SoCets is extremely slow on

qsort, because there is a large number of checks on pointer ma-

nipulations that cannot be removed by its static analysis. The time

overheads of Movec may be greatly reduced if it is equipped with

a similar analysis (Table 5 gives an evidence). SoCets does not track

segment confusion errors, memory leaks and library functions,

again reducing its overheads. Second, the lower memory consump-

tion of Movec is also attributed to smart status, because we do not

need to permanently store the snd of a deallocated object as it is

automatically deallocated when no pointer points to it. In contrast,

SoCets uses an identifier-based approach to detect temporal errors,

thus it has to maintain a self-managed pool of freed locks for reuse,

which consumes additional memory.

Smatus is more efficient because its new data structure and

algorithm consume less memory due to immediate deallocation of

freed objects and automatic deallocation of their smart status. In

contrast, the performance of existing tools is inherently limited by

the capabilities of their monitoring algorithms.

5 RELATED WORK

In this section, we compare Smatus with related work and summa-

rize its limitations at the end of this section.

Pointer-based Approaches. These appropaches track the bounds

of each pointer’s referent in a fat pointer [12, 21, 29, 30, 33], a low-

fat pointer [15, 23] or a disjoint metadata space [17, 27, 34, 35, 40, 41,

47, 48, 51]. Note that these approaches are the only way to enforce

complete spatial safety [44], and consequently, have been widely

305

Runtime Detection of Memory Errors with Smart Status ISSTA ’21, July 11–17, 2021, Virtual, Denmark

used in CCured [29, 30], MSCC [34, 47], SoCets [27, 51], MemSafe

[40, 41], Delta Pointers [23] and many safe dialects of C/C++ such

as Cyclone [21], Ironclad C++ [12], and Microsoft’s Checked C

[17, 35].

Onemain disadvantage is that they cannot detect temporal errors

alone, e.g., use-after-frees and double frees, because the liveness

of a referent is not tracked. Smatus achieves temporal safety by

using smart status. Another disadvantage is that the tool/user must

provide wrapper functions for all pointer-relevant library functions

that cannot be instrumented from scratch (e.g., the source code

is not available) because libraries do not provide the bounds of a

pointer’s referent. Smatus faces the same problem but our solution

is to provide wrappers for the standard C library and automatically

generate wrappers for other library functions (Section 3).

Identifier-based Approaches. These approaches generate a

unique identifier number for each object and use a lock-key scheme

to track its liveness and can thus catch many temporal errors. They

are used in ARM’s Memory Tagging Extension [37] and also often

used as an enhancement of pointer-based approaches in, e.g., MSCC

[34, 47], SoCets [26, 28], and MemSafe [40, 41].

One main disadvantage is that their error detection is probabilis-

tic (i.e., yields false negatives) due to key reuse (i.e., the equality

of two keys) [37]. Even combined with a pointer-based approach,

they cannot detect segment confusion errors and memory leaks.

Moreover, this combination causes additional overheads as they

have to maintain a list of unallocated/deallocated locks for reuse.

Smatus is a better alternative. On the one hand, it can detect

not only temporal errors without false negatives but also segment

confusion errors and memory leaks. On the other hand, smart status

nodes are automatically deleted when becoming useless, making

the reuse problem irrelevant and also reducing overheads.

ReferenceCounting and Smart Pointers.Thesewell-established

techniques are used in languages like C++. Smart status resem-

bles reference-counted smart pointers. The difference is that smart

pointers are used to automatically delete heap objects at the correct

time, whereas smart status is used to detect memory errors. Smart

pointers have a well-known limitation: they do not work on circu-

lar structures. Similarly, Smatus cannot detect the memory leak

involving a circular structure that is not pointed by any outside

pointers. However, if one element in the circle is explicitly freed,

then Smatus can detect the leaks caused by the remaining elements.

Other tools like ASan and SoCets cannot detect this kind of memory

leaks either. Valgrind can detect it by remembering the addresses

of all live heap objects in a hash table, resulting in large overheads.

Object-based Approaches. These approaches track the bounds

of a live memory object in a shadow space [20, 25, 31, 32, 38, 39,

49] or a bounds table [1, 3, 13, 22, 36, 40, 41, 46] and can thus

detect the spatial and temporal errors caused by dereferencing

a pointer outside the bounds of all live objects, such as invalid

pointers (e.g., null or uninitialized pointers), buffer overflows to

unallocated memory and use-after-frees. As a representative, ASan

[38] maintains a shadow space of the memory used by a program

(one byte for every 8 bytes of data) to specify whether the first

k bytes have been allocated (addressable). Every operation that

allocates or frees a memory object is instrumented to update the

shadow space appropriately. When a pointer is dereferenced or

freed, the shadow space of the accessed location is checked to

ensure that it belongs to a valid object. Valgrind [31, 32, 39] uses

a similar approach, but performs instrumentation on binary code

at runtime, instead of on IR, which brings better compatibility but

incurs higher overheads.

One main disadvantage is that their error detection is partial,

i.e., yields false negatives for both spatial and temporal safety. For

example, they cannot detect overflows across or inside live objects

and accesses to a freed object after the reuse of the memory. Smatus

achieves more complete spatial and temporal safety.

Guard-basedApproaches.These approaches insert guards around

an object [19, 20, 24, 38, 50] to detect buffer overflows across live ob-

jects. For example, ASan [38] inserts poisoned redzones around each

object where the bytes in redzones are marked as unallocated in

the shadow space, and thus accessing redzones indicates overflows.

One main disadvantage is that their error detection is still partial.

For example, they cannot detect sub-object overflows (that occur

inside live objects and never access the guards) and long-jump

overflows (that access another live object by jumping over guards).

Quarantine-based Approaches. These approaches maintain a

quarantine to collect freed objects and make free a no-op to post-

pone memory deallocations and reuses [20, 24, 38] and can thus

detect heap use-after-frees. As one main limitation, they cannot de-

tect accessing deallocated memory after it has been removed from

the quarantine (due to, e.g., it being full) and then reallocated [37].

Moreover, the quarantine itself also increases memory overhead.

ConservativeGarbageCollectors.These have been used inmany

high level programming languages to avoid dangling pointers (by

making free a no-op) and memory leaks. They have also been

used by some C dialects, e.g., Cyclone [21] and Ironclad C++ [12].

One main disadvantage is that they can only prevent errors but

cannot detect errors in the program. Elsewhere [20, 24, 33], garbage

collectors have been used to detect memory leaks by searching the

heap for allocated objects that no longer seem to be referenced.

However, this can yield false negatives due to the conservatism

(garbage objects may be accidentally łreferencedž by an integer).

Limitations of Smatus. Let us summarize the limitations dis-

cussed in the previous sections.

• Smatus needs wrapper functions for all pointer-relevant library

functions that cannot be instrumented from scratch (e.g., the

source code is not available). The user may write user-defined

wrappers if the tool-provided or automatically generated wrap-

pers are not satisfactory.

• Smatus cannot detect the memory leak involving a circular struc-

ture that is not pointed by any outside pointers. The programmer

is responsible for breaking the circle by explicitly freeing one

element in the circle.

• Smatus incurs higher time overheads than ASan. Although we

believe its current time overheads are tolerable for testing, incor-

porating a static analysis into a future version of Movec may

greatly reduce the time overheads.

6 CONCLUSION

We have proposed a new dynamic analysis approach, Smatus, to

achieve comprehensive runtime detection of memory errors. Smart

306

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhe Chen, Chong Wang, Junqi Yan, Yulei Sui, and Jingling Xue

status is at the core of this approach. We believe that having a single

solution that can detect spatial errors, temporal errors, segment

confusion errors and memory leaks alone is, in principle, a useful

contribution. Experiments have shown that Smatus enjoys stronger

bug-finding ability with moderate and acceptable overheads.

ACKNOWLEDGMENTS

This work was supported by the Joint Research Funds of National

Natural Science Foundation of China and Civil Aviation Adminis-

tration of China (No. U1533130), the Fundamental Research Funds

for AI (No. NZ2020019), the Open Project of Shanghai Key Labora-

tory of Trustworthy Computing, and the Open Project of State Key

Laboratory for Novel Software Technology (No. KFKT2020B10).

REFERENCES
[1] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy

Bounds Checking: An Efficient and Backwards-Compatible Defense against Out-
of-Bounds Errors. In Proceedings of the 18th USENIX Security Symposium. USENIX
Association, 51ś66.

[2] Derek Bruening and Qin Zhao. 2011. Practical memory checking with Dr. Mem-
ory. In Proceedings of the 9th International Symposium on Code Generation and
Optimization, CGO 2011. IEEE Computer Society, 213ś223.

[3] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer. 2018. CUP:
Comprehensive User-Space Protection for C/C++. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, AsiaCCS 2018. ACM,
381ś392.

[4] Zhe Chen. 2021. Movec-MSBench: A Memory Safety Benchmark Suite, Version 2.0.0.
https://github.com/drzchen/movec-msbench

[5] Zhe Chen, Yi Gu, Zhiqiu Huang, Jun Zheng, Chang Liu, and Ziyi Liu. 2015.
Model Checking Aircraft Controller Software: A Case Study. Software-Practice &
Experience 45, 7 (2015), 989ś1017.

[6] Zhe Chen, Chuanqi Tao, Zhiyi Zhang, and Zhibin Yang. 2018. Beyond spatial
and temporal memory safety. In Proceedings of the 40th International Conference
on Software Engineering (ICSE 2018), Companion Volume. ACM, 189ś190.

[7] Zhe Chen, Zhemin Wang, Yunlong Zhu, Hongwei Xi, and Zhibin Yang. 2016.
Parametric Runtime Verification of C Programs. In Proceedings of the 22nd Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2016) (Lecture Notes in Computer Science, Vol. 9636). Springer,
299ś315.

[8] Zhe Chen, Junqi Yan, Shuanglong Kan, Ju Qian, and Jingling Xue. 2019. Detecting
Memory Errors at Runtime with Source-Level Instrumentation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019. ACM, 341ś351.

[9] Zhe Chen, Junqi Yan, Wenming Li, Ju Qian, and Zhiqiu Huang. 2018. Runtime
verification of memory safety via source transformation. In Proceedings of the
40th International Conference on Software Engineering (ICSE 2018), Companion
Volume. ACM, 264ś265.

[10] TheMITRECorporation. 2009-05-08. CWE-762: MismatchedMemoryManagement
Routines. https://cwe.mitre.org/data/definitions/762.html

[11] The MITRE Corporation. 2020-02-24. CWE-590: Free of Memory not on the Heap.
https://cwe.mitre.org/data/definitions/590.html

[12] Christian DeLozier, Richard A. Eisenberg, Santosh Nagarakatte, Peter-Michael
Osera, Milo M. K. Martin, and Steve Zdancewic. 2013. Ironclad C++: a library-
augmented type-safe subset of c++. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013. ACM, 287ś304.

[13] Dinakar Dhurjati and Vikram S. Adve. 2006. Backwards-compatible array bounds
checking for C with very low overhead. In Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006). ACM, 162ś171.

[14] Thomas Dillig, Isil Dillig, and Swarat Chaudhuri. 2014. Optimal Guard Synthesis
forMemory Safety. In Proceedings of the 26th International Conference on Computer
Aided Verification, CAV 2014 (Lecture Notes in Computer Science, Vol. 8559), Armin
Biere and Roderick Bloem (Eds.). Springer, 491ś507.

[15] Gregory J. Duck and Roland H. C. Yap. 2016. Heap bounds protection with
low fat pointers. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016. ACM, 132ś142.

[16] I. A. Dudina and A. A. Belevantsev. 2017. Using static symbolic execution to detect
buffer overflows. Programming and Computer Software 43, 5 (2017), 277ś288.

[17] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi. 2018. Checked C: Making C Safe by
Extension. In Proceedings of the 2018 IEEE Cybersecurity Development Conference,
SecDev’18. IEEE, 53ś60.

[18] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor
Mudge, and Richard B. Brown. 2001. MiBench: A free, commercially representa-
tive embedded benchmark suite. In Proceedings of the IEEE 4th Annual Workshop
on Workload Characterization. IEEE, 3ś14.

[19] Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-weight bounds
checking. In 10th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2012. ACM, 135ś144.

[20] Reed Hastings and Bob Joyce. 1992. Purify: Fast detection of memory leaks and
access errors. In In Proceedings of the Winter 1992 USENIX Conference. 125ś138.

[21] Trevor Jim, J. GregoryMorrisett, Dan Grossman, MichaelW. Hicks, James Cheney,
and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In Proceedings of the 2002
USENIX Annual Technical Conference. USENIX, 275ś288.

[22] Richard W. M. Jones and Paul H. J. Kelly. 1997. Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs. In Proceedings of the 3rd Inter-
national Workshop on Automated Debugging, AADEBUG 1997. 13ś26.

[23] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano
Giuffrida. 2018. Delta pointers: buffer overflow checks without the checks. In
Proceedings of the 13th EuroSys Conference, EuroSys 2018. ACM, 22:1ś22:14.

[24] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2016. DoubleTake: fast
and precise error detection via evidence-based dynamic analysis. In Proceedings
of the 38th International Conference on Software Engineering, ICSE 2016, Laura K.
Dillon, Willem Visser, and Laurie Williams (Eds.). ACM, 911ś922.

[25] Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and Thomas W. Reps. 2001.
Debugging via Run-Time Type Checking. In Proceedings of the 4th International
Conference on Fundamental Approaches to Software Engineering, FASE 2001 (Lecture
Notes in Computer Science, Vol. 2029). Springer, 217ś232.

[26] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015. Everything
You Want to Know About Pointer-Based Checking. In 1st Summit on Advances in
Programming Languages, SNAPL 2015 (LIPIcs, Vol. 32). Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 190ś208.

[27] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
2009. SoftBound: highly compatible and complete spatial memory safety for C.
In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009. ACM, 245ś258.

[28] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
2010. CETS: compiler enforced temporal safety for C. In Proceedings of the 9th
International Symposium on Memory Management, ISMM 2010. ACM, 31ś40.

[29] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans.
Program. Lang. Syst. 27, 3 (2005), 477ś526.

[30] George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: type-safe
retrofitting of legacy code. In Proceedings of the 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2002), John Launchbury and JohnC.
Mitchell (Eds.). ACM, 128ś139.

[31] Nicholas Nethercote and Julian Seward. 2007. How to shadow every byte of
memory used by a program. In Proceedings of the 3rd International Conference on
Virtual Execution Environments, VEE 2007. ACM, 65ś74.

[32] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language Design and Implementation, PLDI 2007.
ACM, 89ś100.

[33] Yutaka Oiwa. 2009. Implementation of the memory-safe full ANSI-C compiler.
In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009. ACM, 259ś269.

[34] Harish Patil and Charles N. Fischer. 1997. Low-Cost, Concurrent Checking of
Pointer and Array Accesses in C Programs. Software - Practice and Experience 27,
1 (1997), 87ś110.

[35] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and Michael
Hicks. 2019. Achieving Safety Incrementally with Checked C. In Proceedings of
the 8th International Conference on Principles of Security and Trust, POST 2019,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019 (Lecture Notes in Computer Science, Vol. 11426). Springer, 76ś98.

[36] Olatunji Ruwase and Monica S. Lam. 2004. A Practical Dynamic Buffer Overflow
Detector. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2004. The Internet Society, 159ś169.

[37] Kostya Serebryany. 2019. ARMMemory Tagging Extension and How It Improves
C/C++ Memory Safety. The Usenix Magazine 44, 2 (2019), 12ś16.

[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference, Boston, MA, USA. USENIX Association, 309ś318.

[39] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Unde-
fined Value Errors with Bit-Precision. In Proceedings of the 2005 USENIX Annual
Technical Conference. USENIX, 17ś30.

[40] Matthew S. Simpson and Rajeev Barua. 2010. MemSafe: Ensuring the Spatial and
Temporal Memory Safety of C at Runtime. In 10th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2010. IEEE Computer
Society, 199ś208.

307

https://github.com/drzchen/movec-msbench
https://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/590.html

Runtime Detection of Memory Errors with Smart Status ISSTA ’21, July 11–17, 2021, Virtual, Denmark

[41] Matthew S. Simpson and Rajeev Barua. 2013. MemSafe: ensuring the spatial and
temporal memory safety of C at runtime. Software - Practice and Experience 43, 1
(2013), 93ś128.

[42] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using
full-sparse value-flow analysis. In International Symposium on Software Testing
and Analysis, ISSTA 2012. ACM, 254ś264.

[43] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting Memory Leaks Statically
with Full-Sparse Value-Flow Analysis. IEEE Trans. Software Eng. 40, 2 (2014),
107ś122.

[44] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy, SP 2013. IEEE
Computer Society, 48ś62.

[45] Kostyantyn Vorobyov, Nikolai Kosmatov, Julien Signoles, and Arvid Jakobsson.
2017. Runtime Detection of Temporal Memory Errors. In Proceedings of the
17th International Conference on Runtime Verification, RV 2017 (Lecture Notes in
Computer Science, Vol. 10548). Springer, 294ś311.

[46] Kostyantyn Vorobyov, Julien Signoles, and Nikolai Kosmatov. 2017. Shadow state
encoding for efficient monitoring of block-level properties. In Proceedings of the
2017 ACM SIGPLAN International Symposium on Memory Management, ISMM
2017. ACM, 47ś58.

[47] Wei Xu, Daniel C. DuVarney, and R. Sekar. 2004. An efficient and backwards-
compatible transformation to ensurememory safety of C programs. In Proceedings
of the 12th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2004). ACM, 117ś126.

[48] Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. 2014. WPBOUND: Enforcing Spatial
Memory Safety Efficiently at Runtime with Weakest Preconditions. In 25th IEEE
International Symposium on Software Reliability Engineering, ISSRE 2014. IEEE
Computer Society, 88ś99.

[49] Suan Hsi Yong and Susan Horwitz. 2003. Protecting C programs from attacks via
invalid pointer dereferences. In Proceedings of the 11th ACM SIGSOFT Symposium
on Foundations of Software Engineering and the 9th European Software Engineering
Conference, ESEC/FSE 2003, Jukka Paakki and Paola Inverardi (Eds.). ACM, 307ś
316.

[50] Qiang Zeng, Dinghao Wu, and Peng Liu. 2011. Cruiser: concurrent heap buffer
overflow monitoring using lock-free data structures. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011. ACM, 367ś377.

[51] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
2012. Formalizing the LLVM intermediate representation for verified program
transformations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012. ACM, 427ś440.

308

	Abstract
	1 Introduction
	2 The Smatus Approach
	2.1 The Pointer Metadata and Monitoring
	2.2 Instrumentation Semantics
	2.3 The Function Metadata and Monitoring
	2.4 Library Function Calls

	3 Design Choices
	4 Experimental Evaluation
	4.1 Effectiveness
	4.2 Performance

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

