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ABSTRACT

We present, Vip, an approach to boosting the precision of Virtual
call Integrity Protection for large-scale real-world C++ programs
(e.g., Chrome) by using pointer analysis for the irst time. Vip intro-
duces two new techniques: (1) a sound and scalable partial pointer
analysis for discovering statically the sets of legitimate targets at
virtual callsites from separately compiled C++ modules and (2) a
lightweight instrumentation technique for performing (virtual call)
integrity checks at runtime. Vip raises the bar against vtable hi-
jacking attacks by providing stronger security guarantees than the
CHA-based approach with comparable performance overhead.

Vip is implemented in LLVM-3.8.0 and evaluated using SPEC
programs and Chrome. Statically, Vip protects virtual calls more
efectively than CHA by signiicantly reducing the sets of legitimate
targets permitted at 20.3% of the virtual callsites per program, on
average. Dynamically, Vip incurs an average (maximum) instru-
mentation overhead of 0.7% (3.3%), making it practically deployable
as part of a compiler tool chain.
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· Software and Its Engineering → Automated Static analysis;
Object-Oriented Languages; · Security and Privacy → Software
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1 INTRODUCTION

As a low-level object-oriented language, C++ is a primary choice for
implementing a wide variety of system software (e.g., web browsers
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and language runtimes) to achieve both performance and abstrac-
tion. Modern compilers, such as LLVM and GCC, implement C++’s
dynamic dispatch using virtual tables (vtables), each of which con-
tains the pointers to the virtual functions of a class. A virtual call
invoked on an object of a class is dispatched via one extra level of
indirection. First, the vtable for the class is retrieved from a vtable
pointer (vtptr) stored in the object. Then, the vtable is looked up to
determine the virtual function in the class that should be called.

Unlike managed languages such as Java, C++’s low-level vtable
representation enables faster dynamic dispatch, but is vulnerable
to attacks due to the absence of memory safety. As an increasingly
popular attack, vtable hijacking [45, 50] is presently receiving much
attention. Despite widely deployed mitigation techniques like stack
canaries [11], Data Execution Prevention (DEP) [3] and Address
Space Layout Randomization (ASLR) [4], attackers can still hijack
vtables [9, 21, 51]. By irst exploiting a memory corruption bug (e.g.,
use-after-free) in the program to overwrite the vtptr of an object,
an attacker can redirect the program to a chosen location (e.g., a
system call) through a counterfeit or an existing vtable whenever
that compromised object calls one of its virtual functions.

A heavyweight approach to virtual call integrity protection is
to enforce full memory safety [13, 30ś32]. This ensures that no
dangling or out-of-bounds pointers can be read or written by the
program, thus preventing the attacks in its irst step but incurring a
2× ś 4× performance slowdownwith respect to the native runs [22].

Recent solutions protect virtual call integrity by using a light-
weight Control-Flow Integrity (CFI) [6] approach, at either the
binary code [15, 36, 47, 51] or source code [21, 33, 46, 50]. In gen-
eral, source-level CFI provides stronger security guarantees by
considering high level C++ semantics, making sophisticated attacks
(such as COOP [37]) harder [24, 46, 50]. The enforcement is done
by inserting runtime checks before a virtual call to validate the
control low transfers based on a set of statically computed target
functions by using Class Hierarchy Analysis (CHA) [9, 12, 46].

Insights. Due to dynamic binding, a pointer to an object de-
clared to have the type of class A (static type) may actually point to
an object of type A or one of its subtypes (dynamic type) at runtime.
Figure 1(a) gives a virtual call invoked through a pointer p of a static
type A, with the related object layout depicted in Figure 1(b). Note
that B is a subclass of A but C is not type-related with A and B. As
highlighted in red in Figure 1(c), the CHA-based CFI [21, 46] over-
approximates the set of dynamic types of the objects pointed to by
p as {A,B}, i.e., the set of types in A’s class hierarchy. Thus, A::f
and B::f are the two legitimate functions allowed to be called. By
excluding C::f, the CHA-based approach is more precise than C++-
unaware approaches [6, 21, 46], but still not precise enough, since
A::f is spurious but still considered to be legitimate at runtime.
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1 class A {
2 public: virtual void f() {...}
3 };
4 class B: public A {
5 public: virtual void f() {...}
6 };
7 class C {
8 public: virtual void f() {...}
9 };

10 ...
11 int main() {
12 A *p = new B;
13 p->f();
14 }

&A::f

VTableA

p
vtptr

…

&B::f

VTableB

&C::f

VTableC

new B

(a) Source code (b) Object layout

vtptr = *p; //load vtable
vfn = &vtptr[0]; //the 1st vtable entry address
fp = *vfn; //load virtual function
assert(fp==&A::f || fp==&B::f);
fp(p); //call virtual function

(c) Pseudo LLVM instructions for virtual call p->f()

Figure 1: Imprecision of the CHA-based approach, which ex-

cludes C::f, but includes a spurious function A::f.

Therefore, the CHA-based approach still provides an attacker
a lot of opportunities to launch vtable hijacking attacks by using
virtual functions that are considered as legitimate but spurious.
The problem is ampliied in large C++ applications, e.g., Google’s
Chrome, which relies heavily on OO features, such as inheritance.
In Chrome, the largest class hierarchy has over 9000 classes, and
a virtual call may be resolved to have over 2000 virtual functions
by CHA. This leads to substantial attack surface and overhead [17].
In general, the more precisely the virtual call targets are resolved
statically, the more secure the virtual call integrity protection will
be, thus raising the bar against sophisticated attacks (e.g., reducing
the number of virtual function gadgets [37] for code reuse attacks).

Challenges. Accurately resolving virtual calls requires an inter-
procedural pointer analysis. However, analyzing large-scale C++
programs, such as Chrome, with over 15 MLOC, poses a big chal-
lenge to the existing łscalablež pointer analyses that work only for
C [18, 19, 26, 39, 40, 48, 49]. C++ Programs tend to have more indi-
rect calls in the form of polymorphic virtual calls. C++ templates
and STL promise generic containers and algorithms, but also cause
compilers to generate a huge amount of low-level code (e.g., LLVM
IR), which signiicantly complicates pointer analysis further.

Another challenge is that existing pointer analyses [8, 19, 25, 26,
39, 48, 48, 49] are łwhole-programž analyses with the assumption
that the entire program is compiled into one single module. How-
ever, many programs are often composed of separately compiled
modules. For example, Chrome has one executable (5.9 MLOC)
with 131 dynamically linked libraries (9.3 MLOC). Whole-program
pointer analyses are unscalable when applied to such large code-
bases or unsound when applied to their modules separately. To
enforce CFI, the targets at a virtual callsite must also be resolved
soundly. Missing any target may result in false protection that
forces a program to crash during runtime CFI checks.

A inal challenge faced is to develop a lightweight instrumenta-
tion mechanism to protect virtual calls with negligible overhead.

Our Solution. This paper presents Vip, an approach to boost-
ing the precision of Virtual call Integrity Protection for large-scale
C++ programs (e.g., Chrome) by introducing a new partial pointer
analysis for discovering statically the sets of legitimate targets at

virtual callsites and a lightweight instrumentation technique for
performing CFI checks at virtual callsites. Vip achieves a compa-
rable low overhead with the state-of-the-art CHA-based solutions
(e.g., Vtv [46], Clang Vcfi [2] and OVT/Ivt [9]), but ofers better
precision, thus raising the bar against vtable hijacking attacks.

One key technique of Vip is a partial pointer analysis for han-
dling separately compiled modules in a C++ program. Our anal-
ysis allows spurious target functions introduced at a virtual call-
site by CHA to be signiicantly reduced. To boost eiciency while
achieving soundness, Vip irst applies a pre-analysis using a fast
CHA [9, 12, 46] by gathering the class hierarchy information from
the entire program. Our partial analysis handles a single module
by introducing type-based unknown objects ut wherever the code
analyzed is incomplete. Each ut represents a set of unknown objects
whose types are t or subtypes of t . The crux of our analysis is to
infer t by leveraging the existing type information available in the
code, so that the precise type information can be used to ilter out
the spurious targets introduced by CHA for a virtual callsite. To
enhance precision further, Vip also supports cross-module analysis
by creating ine-grained unknown objects in selected modules (e.g.,
Chrome executables), facilitated by building a lightweight type
summary of helper modules (e.g., Chrome libraries).

Compared to the CHA-based approach, our partial pointer analy-
sis can reduce not only the set of legitimate targets permitted at a vir-
tual callsite but also the runtime lookup overhead incurred [21, 46].
However, developing an eicient set membership test at runtime
becomes non-trivial. A recent work, Ovt/Ivt [9], reorders/inter-
leaves the memory layout of the vtables in the same class hierarchy
to make their addresses continuous and thus simpliies a set mem-
bership test to a cheap range check. However, this technique is
inapplicable here. As Vip removes many spurious virtual functions
permitted by CHA, an eicient single-range check has been turned
into ineicient multiple-range checks. To protect virtual calls with
our partial pointer analysis, another key technique of Vip is a sim-
ple yet eicient index-based instrumentation, which allows a set
membership test at any callsite to be realized eiciently by one
single-range check, followed possibly by one bit-wise element test.

In summary, the contributions of this paper are as follows:

• We present Vip, a new Virtual call Integrity Protection for
large-scale real-world C++ programs by combining static
pointer analysis with dynamic instrumentation.
ś We introduce a sound and scalable partial pointer

analysis for discovering the sets of legitimate targets
at virtual call sites from separately compiled modules.

ś We introduce a fast index-based instrumentationmech-
anism, which works for any complex class hierarchy
(without the need for reordering or interleaving vta-
bles), for performing CFI checks at virtual callsites.

• We have implemented Vip fully in LLVM-3.8.0 and evalu-
ated it using SPEC programs and Chrome. Statically, Vip
protects virtual calls more efectively than CHA by signif-
icantly reducing the sets of legitimate targets permitted
at 20.3% of the virtual callsites per program, on average.
Dynamically, Vip incurs an average (maximum) instru-
mentation overhead of 0.7% (3.3%), making it practically
deployable as part of a compiler tool chain.

330



Boosting the Precision of Virtual Call Integrity
Protection with Partial Pointer Analysis for C++ ISSTA’17, July 2017, Santa Barbara, CA, USA

2 BACKGROUND

In this section, we introduce the background on virtual call integrity,
including C++ dynamic dispatch, the threat model adopted, vtable
hijacking, and CHA-based protection techniques.

C++ Dynamic Dispatch. In C++, a base class (e.g., A) and de-
rived classes (e.g., B) can have virtual functions with the same
function signature (i.e., name, argument types and qualiiers). The
actual runtime function invoked on an object is decided through
dynamic dispatch at runtime, depending on the dynamic type of the
receiver object. Modern compilers (e.g., LLVM and GCC) implement
dynamic dispatch on an object of a class via a vtable containing
the pointers to the virtual functions of the class. For an object of a
class, a vtable pointer (vtptr) that points to its vtable is stored in
the object. A virtual call on a pointer is dispatched in four steps
(Figure 1(c)): (1) obtaining vtptr by dereferencing the pointer to the
object, (2) obtaining &vtptr[idx] of the entry in the vtable at a
designated ofset idx for the target function, (3) loading the address
of the function from vtptr[idx], and (4) calling the function.

Threat Model. We consider a common threat model that is con-
sistent with prior work in virtual call integrity protection [46, 50].
The attacker can exploit an existing memory corruption vulnera-
bility in the program to read arbitrary areas of memory and write
to all writable memory addresses. The program does not contain
self-modifying code, and data execution prevention (DEP) [3] is
in place, so the attacker is unable to write into executable mem-
ory or inject code for execution. Auxiliary protections for return
instructions (e.g. shadow stack) are assumed to be deployed.

Atacks and Defenses. All vtables are placed in the read-only
section of an executable, but pointers (vtptr) to them reside in ob-
jects that are writable. Vtable hijacking attacks irst exploit a mem-
ory corruption bug in a program to overwrite a vtptr of an object
and then make this vtptr point to a location of the attacker’s choice
(e.g., a counterfeit or an existing vtable). For example, in Figure 1(b),
by corrupting object new B, the attacker can redirect its vtptr from
VTableB to VTableA or VTableC, then p->f() will invoke A::f or
C::f, which may contain sensitive calls (e.g., system()).

Existing protection techniques [21, 46, 50] place checks before
a virtual call to validate control-low transfers using CHA [12],
which collects the subtyping relations of a hierarchy of classes and
computes conservatively a set of legitimate targets for each virtual
callsite by traversing the class hierarchy. Compared with pointer
analysis, CHA is fast but imprecise as it does not need to analyze the
implementation of a class, e.g., reason about the low of a function
pointer (from its creation to a use). Thus, in Figure 1, a spurious
call to A::f at p->f() is still allowed by CHA.

3 THE VIP APPROACH

We irst describe our program representation of a C++ program,
then introduce our inclusion-based interprocedural partial pointer
analysis for analyzing incomplete programs, and inally, discuss
our instrumentation and runtime checking technique to protect
virtual calls in terms of the computed points-to information.

3.1 Program Representation

We choose LLVM’s partial SSA form to represent a program by
following [8, 19, 25, 48, 49]. As shown in Table 1, the set of all

Table 1: Domains and LLVM IR used by pointer analysis.

Analysis Domains
f ∈ F Program functions
c,fld ∈ C Constants
t ∈ T Types
p,q,ret ∈ S Stack virtual registers
g ∈ G Global pointer variables
p,q,ret,g ∈ P = S ∪ G Top-level Pointers
a,af,a.fld,a[c] ∈ A Allocation-based normal objects
ut ∈ U Type-based unknown objects
o ∈ O = A ∪U Abstract objects
v ∈ V = P ∪ O program variables

LLVM IR
Prog::= M Program
M ::= m Module

m ::= g | f(p1, . . . ,pn){ inst; } Global |Function
inst::= p = &a AddressOf

p = ∗q Load
∗p = q Store
p = (t) q Cast
p3 = phi(p1,p2) Phi
p = &(q→ fld) Field
p = &q[c] (constant index) Array-C
p = &q[i] (variable index) Array-V
ret = f(p1, . . . ,pn) (direct call) Call-D
ret = fp(p1, . . . ,pn) (indirect call) Call-I
returnf q Return

variablesV in the program are separated into two subsets: O that
contains all possible targets, i.e., abstract objects or address-taken
variables of a pointer, and P that contains all top-level pointers.

In LLVM-IR, top-level pointers in P = S ∪ G, including stack
virtual registers (symbols starting with “%") and global pointer
variables (symbols starting with “@"), are explicit, i.e., directly
accessed. Abstract objects in O are implicit, i.e., accessed indirectly
at LLVM’s load or store instructions via top-level pointers.

We distinguish two kinds of abstract objects, O = A ∪U . For a
complete program, every abstract object a ∈ A is identiied by its
memory allocation (global, stack, heap or function). In our notation,
af denotes a function object f, a.fld represents the subobject of
an object a that corresponds to its ield fld, and a[c] denotes a
subobject that corresponds to an array element of a indexed by a
constant c. For convenience, we write a[*] to denote any subobject
of a (except for a function) at a variable index. For an incomplete
program, we use a type-based unknown object ut ∈ U to represent
any object of type t or a subtype of t when t is a class/struct type.

Table 1 also gives LLVM IR. A program comprises a number
of modules with each module M consisting of global variables and
function deinitions. The body of function f contains 11 types of
instructions. AddressOf p = &a models an allocation site. Load
and Store represent read and write operations of address-taken
variables, respectively. Cast denotes a casting instruction, e.g.,
bitcast. Phi is a standard SSA instruction introduced at a control
low conluence point. To analyze precisely a vtable (an array of
function pointers) and vtptr (a ield of an object), we model array
and ield accesses using Array-C, Array-V and Field. As in prior
work [8, 35], our handling of ield- and array-sensitivity is ANSI-
compliant [20]. A direct call is represented by Call-D. An indirect
call is represented by Call-I, where fp is a function pointer. For
a C++-style virtual call, p1 points to its receiver object. Finally,
returnf q denotes a return instruction in function f.
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1: class A { 1: VTableA = {&aA::f, ...}
2: 2:
3: A() { } 3: void A::A(A *this) {
4: virtual void f() { 4: tmp = &VTableA;
5: ... 5: *this = tmp;
6: } 6: }
7: }; 7: void A::f(A *this) {...}
8: 8:
9: void main() { 9: void main() {
10: A *p = new A; 10: p = &a;
11: 11: A::A(p);
12: 12:
13: p->f(); 13: vtptr = *p;
14: 14: vfn = &vtptr[0];
15: 15: fp = *vfn;
16: 16: fp(p);
17: } 17: }

(a) C++ code (b) LLVM IR

Figure 2: C++ code and its corresponding LLVM IR.

Example 1 (LLVM IR). Figure 2(a) gives a C++ code fragment,

including a class deinition (lines 1-7), an object creation statement

(line 10) and a virtual call (line 13). Figure 2(b) shows its LLVM IR. For

class A, LLVM generates its vtable, VTableA (an array of constants),

to store the function object aA::f (line 1 in Figure 2(b)). The address

of VTableA is stored into an object of class A whenever the object is

created and initialized via a constructor of A (lines 3-6 in Figure 2(b)).

An object creation statement A ∗ p = new A is translated into two

instructions, an AddressOf that allocates an object a and a function

call Call-D that passes p into A’s constructor to initialize a by storing

in it a pointer to A’s vtable. A virtual call p->f() is translated into four

instructions: (1) a Load (reading the vtable pointer), (2) an Array-C

(getting the address of the entry in vtable corresponding to the virtual

function to be called), (3) a Load (reading the virtual function pointer),

and (4) an Call-I (making an indirect function call).

3.2 Partial Pointer Analysis for C++

Section 3.2.1 describes briely the unsoundness of conventional
pointer analysis (CPA) in analyzing incomplete code. Section 3.2.2
introduces our partial pointer analysis (PPA) for a single module
with incomplete code. Finally, Section 3.2.3 discusses how to en-
hance the precision of PPA by using a type-based side-efect sum-
mary (PPASummary). Figure 3 gives an example that compares all the
relevant analyses in analyzing a single module main.bc.

3.2.1 CPA’s Unsoundness for Incomplete Code. CPA’s unsound-
ness arises when analyzing three incomplete code patterns in a
module M. (1) A call instruction ret = f(p1, . . . ,pn) in M may call a
function f deined in another module. Any object (together with
its ields) and array elements passed indirectly through arguments
p1, · · · ,pn may be modiied outside M, and ret may also point to
objects not deined in M. (2) A function f(p1, . . . ,pn) deined in M

may be called by a function in another module. f’s formal param-
eters p1, · · · ,pn may point to incomplete points-to targets. (3) A
global variable is used in M but deined in another module.

CPA is unsound due to missing pointed-to targets in some point-
ers, resulting in missing target functions at some callsites in M. Thus,
CPA is not suited for enforcing CFI, since such false protection will
cause the program to crash at runtime checks.

Example 2 (CPA). Figures 3(a) and (b) list the source iles of a

program and their LLVM IR. Module lib.bc is used as a dynamic

library when linked with module main.bc. When applying CPA to

analyze main.bc in Figure 3(b), where the callsite at line 11 invokes

getC deined in lib.bc, the points-to set of c is empty as the body

of getC is unavailable. As setData is also not available for analysis,

both x->q and p also have an empty points-to set each. Thus, no

function is found to be invokable at p->f(). So CPA is unsound.

3.2.2 Partial Pointer Analysis (PPA) . PPA is described below.
Pre-analysis. To enable PPA to achieve soundness and scala-

bility for a single module, we irst apply a lightweight pre-analysis
consisting of two phases: (1) a CHA phase [9, 12] that obtains the
subclasses of every class across all modules, together with the pro-
totype declarations for all the virtual functions in a class, and (2)
an escape analysis that computes escMs(g) (escMs(f)), the set of
modules that uses (calls) a global pointer variable g (a function f).

Main Analysis. PPA analyzes a single module by introducing
type-based unknown objects ut ∈ U to handle the three cases
discussed in Section 3.2.1. Each ut represents a set of unknown
objects whose types are t or subtypes of t . Our analysis aims to
infer t by leveraging the existing type information of the pointers
in P and allocation-based objects in A in the analyzed module in
order to ilter out spurious target functions that would otherwise
be introduced at a virtual callsite by CHA. To improve precision
further, PPASummary enhances PPA by applying a lightweight type-
based side efect summary of functions across all the modules.

Before delving into the inference rules in Figure 4, we explain
the basic idea behind by revisiting the code in Figure 3(a).

Example 3 (PPA). Figure 3(c) compares the sets of target functions

resolved at p->f() by CHA, CPA, PPA and PPASummary. CHA assumes

soundly that any virtual function f() in A or its subclasses may be

called. CPA inds unsoundly no targets, as explained in Example 2.

PPA computes soundly the points-to information in Figure 3(d) by

applying our inference rules to Figure 3(b). When analyzing line 11,

PPA adds an unknown object uC to the points-to set of c to represent

an object of type C returned from getC (as C has no subtypes). This

object will low to pointer p at p->f() via a store at line 15 and a

load at line 17. For an object a (created as an instance of X at line

12) passed indirectly via x to setData (line 16), PPA adds another

unknown object uB to the points-to set of a.q. Here, uB indicates that

a.q may be modiied by this call to point to an object of type B or one

of its subtypes, deduced from the declaration type B* of ield q (line 4

of Figure 3(a)). Finally, we ind that p points to objects of type B and

C. Thus, the spurious target A:f introduced by CHA is removed.

PPASummary further improves the precision of PPA by building a

lightweight type summary for lib.bc to indicate that setData does

not modify any object of type B*. Thus, there is no longer a need to

add uB to the points-to set of a.q. This way, p is found to point soundly

to objects of type C only, as illustrated in Figure 3(e).

Inference Rules. Figure 4 gives our inference rules for PPA
and PPASummary. In LLVM SSA form, a pointer p ∈ P is deined
uniquely to have one single static type at its declaration while an
object a ∈ A that is created at an allocation site may have multiple
(dynamic) types due to Cast operations applied to the object. For a
pointer p ∈ P, we use T (p) to denote its pointer type and T (p )̃ to
denote its pointee type. For example, given a pointer declaration B*

p, we have T (p) = B∗ and T (p )̃ = B. For an allocation-based object
a ∈ A, ts(a) denotes the set of (dynamic) types that a may have.

Below we examine our inference rules for a module M in Figure 4.
We write pt(v ) to represent the points-to set of a variable v ∈ V .
The irst 13 rules (A-* inference rules) aim to resolve ts(a) for an
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lib.h

1: class A {public: virtual void f();};
2: class B: public A {public: virtual void f();};
3: class C: public B {public: virtual void f();};
4: class X {public: B *q; int data;};
5: void setData(X *x, int d);
6: C *getC();

lib.cpp

7: #include ”lib.h”
8: void setData(X *x, int d) {
9: x->data = d;
10: }
11: C *getC() {return new C;}

main.cpp

12: #include ”lib.h”
13: void main() {
14: C *c = getC();
15: X *x = new X; //abstract object a
16: x->q = c;
17: setData(x, 1);
18: A *p = x->q;
19: p->f();
20: }

(a) C++ source �les

lib.bc

1: void setData(X *x, int d) {
2: tmp1 = &(x->data);
3: *tmp1 = d;
4: }
5: C *getC() {
6: tmp2 = &c’;
7: C::C(tmp2);
8: return tmp2;
9: }

main.bc

10: void main( ) {
11: c = getC();
12: x = &a;
13: X::X(x);
14: tmp = &(x->q);
15: *tmp = c;
16: setData(x, 1);
17: p = *tmp;
18: vtptr = *p;
19: vfn = &vtptr[0];
20: fp = *vfn;
21: fp(p);
22: }

(b) Two modules in the form of LLVM IR
(with four constructors’ IR omi�ed for brevity)

Analysis Target Functions Soundness
CHA {A::f, B::f, C::f} ✓
CPA ∅ ✗
PPA {B::f, C::f} ✓
PPASummary {C::f} ✓

(c) Target functions at virtual call p->f()

Pointer Points-to Set Statement Rule
pt(c) ={uC } 11 [U-CALL-D]
pt(x) ={a} 12 [A-ALLOC]
pt(tmp) ={a.q} 14 [A-FIELD]

pt(a.q) ={uC, uB }
15 [A-STORE]
16 [U-CALL-D]

pt(p) ={uC, uB } 17 [A-LOAD]
pt(vtptr) ={uvoid (A*)* } 18 [U-LOAD]

pt(vfn) ={uvoid (A*)* } 19 [U-ARRAY]

pt(fp) ={uvoid (A*) } 20 [U-LOAD]

Resolve(fp(p)) ={B::f, C::f} [U-CALL-I]

(d) Points-to sets inferred by PPA

Pointer Points-to Set Statement Rule
… (Same as in Figure 3(d))

pt(a.q) ={uC }
15 [A-STORE]
16 [U-CALL-D]

pt(p) ={uC } 17 [A-LOAD]
… (Same as in Figure 3(d))
Resolve(fp(p)) ={C::f} [U-CALL-I]

(e) Points-to sets inferred by PPASummary

Figure 3: An example illustrating partial pointer analysis with two modules main.bc and lib.bc. The analysis will focus only

on main.bc with the function bodies of getC and setData in lib.bc being unavailable to main.bc.

[A-GLOBAL]
g = &a g ∈ G t = T (g)

{a} ⊆ pt(g) { t̃ } ⊆ ts(a)
[A-HEAP]

p = &a a is a heap obj

{a} ⊆ pt(p) ts(a) = ∅
[A-STACK]

p = &a a is a stack obj t = T (p)

{a} ⊆ pt(p) { t̃ } ⊆ ts(a)

[A-PHI]
p3 = phi(p1, p2)

pt(p1) ⊆ pt(p3) pt(p2) ⊆ pt(p3)
[A-CAST]

p =(t ) q a ∈ pt(q) a ∈ A

pt(q) ⊆ pt(p) { t̃ } ⊆ ts(a)
[A-FUNCTION]

p = &af f(p1, ..., pn) t = T (p)

{af } ⊆ pt(p) { t̃ } ⊆ ts(af)

[A-LOAD]
p = ∗q a ∈ pt(q) a ∈ A

pt(a) ⊆ pt(p) [A-STORE]
∗p = q a ∈ pt(p) a ∈ A

pt(q) ⊆ pt(a)
[A-FIELD]

p = &(q→ fld) a ∈ pt(q) a ∈ A t = T (p )

{a.fld} ⊆ pt(p) { t̃ } ⊆ ts(a.fld)

[A-ARRAY-C]
p = &q[c] a ∈ pt(q) a ∈ A t = T (p)

{a[c]} ⊆ pt(p) { t̃ } ⊆ ts(a[c])
[A-ARRAY-V]

p = &q[i] a ∈ pt(q) a ∈ A t = T (p)

{a[∗]} ⊆ pt(p) { t̃ } ⊆ ts(a[∗])

[A-CALL-D]

ret = f(p1, ..., pn) ∈ M
f(q1, ..., qn) ∈ M

′ M = M′ returnf q

∀i ∈ {1, ..., n} : pt(pi) ⊆ pt(qi) pt(q) ⊆ pt(ret)
[A-CALL-I]

ret = fp(p1, ..., pn) ∈ M f ∈ Resolve(fp(p1, ..., pn))
f(q1, ..., qn) ∈ M

′ M = M′ returnf q

∀i ∈ {1, ..., n} : pt(pi) ⊆ pt(qi) pt(q) ⊆ pt(ret)

[U-FUNCTION]
f(p1, ..., pn) ∈ M M′ ∈ escMs(f) M , M′

∀i ∈ {1, ..., n} t = T (pi) : {ut̃ } ⊆ pt(pi)
[U-FIELD]

p = &(q→ fld) t = T (p)
u− ∈ pt(q) u− ∈ U

{u′
t̃
} ⊆ pt(p)

[U-ARRAY]

p = &q[−] t = T (p)
u− ∈ pt(q) u− ∈ U

{u′
t̃
} ⊆ pt(p)

[U-PTG]

a ∈ pt(p)
a ∈ A

{a} ⊆ ptg(p)

[U-LOAD]

p = ∗q t = T (p)
u− ∈ pt(q) u− ∈ U

{u′
t̃
} ⊆ pt(p) [U-CAST-D]

p =(t ′) q ut ∈ pt(q)

ut ∈ U t ′̃ <: t

{u
t
′̃ } ⊆ pt(p)

[U-CAST-U]

p =(t ′) q ut ∈ pt(q)

ut ∈ U t <: t ′̃

{ut } ⊆ pt(p)
[U-PTG-REC]

a ∈ ptg(p) a ∈ A

pt(a) ∪ {a.fld, a[∗]} ⊆ ptg(p)

[U-GLOBAL]

g ∈ M g ∈ G M′ ∈ escMs(g) M , M′

a ∈ ptg(g) f ∈ F t ∈ ts(a) ∩summary (f)

{ut̃ } ⊆ pt(a)
[U-CALL-D]

ret = f(p1, ..., pn) ∈ M f ∈ M′ M , M′

t = T (ret) i ∈ {1, ..., n} a ∈ ptg(pi) t ′ ∈ ts(a) ∩summary (f)

{ut̃ } ⊆ pt(ret) {u′
t
′̃
} ⊆ pt(a)

[U-CALL-I]
ret = fp(p1, ..., pn) ∈ M f ∈ Resolve(fp(p1, ..., pn)) f ∈ M′ M , M′ t = T (ret) i ∈ {1, ..., n} a ∈ ptg(pi) t ′ ∈ ts(a) ∩summary (f)

{ut̃ } ⊆ pt(ret) {u′
t
′̃
} ⊆ pt(a)

Figure 4: Partial pointer analysis for analyzing a module Mwithout and with side-efect summary (f) of a function f (Figure 6).

allocation-based object a ∈ A while the last 11 rules (U-* inference
rules) introduce unknown objects inU with their types inferred
from the types of pointers in P and allocation-based objects in A.

(1) A-* inference rules. [A-’LOBAL], [A-STACK] and [A-HEAP] han-
dle global, stack and heap object allocations, respectively. For a
global or stack object, its initial type is read of from its allocation
site. For a heap object, its initial type is void and thus ignored; its
concrete types will be deduced at later Cast instructions. In addi-
tion to propagating the points-to information, [A-CAST] adds the

casting type t̃ to ts(a). [A-FUNCTION] creates an object for a function
f whose address is taken by pointer p for making indirect calls.

[A-PHI] propagates the points-to targets o ∈ A ∪U between
pointers. [A-LOAD] and [A-STORE] handle loads and stores for address-
taken objects in A. [A-FIELD], [A-ARRAY-C] and [A-ARRAY-V] real-
ize ield- and array-sensitivity. For p = &(q→ fld) or p = &q[_],
where q points to a base object a ∈ A, p is made to point to the sub-
object a.fld or a[_]. In LLVM IR, a high-level statement p->f=q in
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Resolve(fp(p1, ...,pn))=




{f(q1, ...,qn)∈VF |C1∧(C2∨C3∨C4)} Virtual Call

{f(q1, ...,qn)∈F |C5∧(C2∨C6)} Otherwise

C1: T (q1)I <: T (p1)I ∧ ∀i ∈ {2, ...,n} : T (pi) = T (qi)

C2: af ∈ pt(fp)

C3: u− ∈ pt(fp) ∧ a ∈ pt(p1) ∧ t ∈ ts(a) ∧ f(q1, ...,qn) ∈ vfns(t )

C4: u− ∈ pt(fp) ∧ ut ∈ pt(p1) ∧ t
′
<: t ∧ f(q1, ...,qn) ∈ vfns(t

′)

C5: ∀i ∈ {1, ...,n} : T (pi) � T (qi) [Type Compatibility � by C99]

C6: u− ∈ pt(fp) ∧ f ∈ F

Figure 5: Resolving indirect calls, where VF ⊆ F (Table 1)

contains all virtual functions. For a type t , vfns(t ) denotes

the set of virtual functions in its vtable. Recall that for a

pointer r ∈ P, T (r ) (T̃ (r )) denotes its pointer (pointee) type

and <: denotes the standard subtyping relation.

C++ is decomposed into tmp = &(p->f) and *tmp = q. Similarly,
p[_]=q in C++ is decomposed into tmp = &p[_] and *tmp = q.

Passing arguments into and receiving values from a callee in-
voked directly (indirectly) at a callsite are handled by [A-CALL-D]

([A-CALL-I]). Both the call and return instructions are assumed to
be in the same module (M = M′). In [A-CALL-I], the target functions
are found by Resolve(fp(p1, . . . ,pn)), as explained shortly below.

(2) U-* inference rules. [U-FIELD] and [U-ARRAY] adds an unknown

object u′
t̃
, where t = T (p), to p’s points-to set if q points to an un-

known object u_ ∈ U . For type casting, the type of an unknown
object is narrowed for a downcast ([U-CAST-D]) but not an upcast
([U-CAST-U]), where <: denotes the subtyping relation.

[U-LOAD] reasons about reading from an unknown object at a
load p = ∗q. If q points to u_, a new unknown object ut̃ is created,
where t = T (p), and added into p’s points-to set. To trade precision
for eiciency, we do not have a corresponding rule [U-STORE] for
handling writes into an unknown object. This is sound as [U-LOAD]
has over-approximated the efects of such writes.

If a global pointer g ∈ G that is deined in module M escapes to an-
other module M′ by our pre-analysis, [U-’LOBAL] assumes that any
object a ∈ A pointed to by g recursively and its subobjects are mod-
iied in M′. We use a points-to graph ptд(g) to capture the escaped
objects via g ([U-PT’] and [U-PT’-REC]). Every object a ∈ ptд(g)

may point to an object ut̃ , where t ∈ ts(a). We will use a side-efect
summary to ilter spurious types thus introduced (Section 3.2.3).

[U-FUNCTION] handles the case when a function f is deined in M

but called in another module M′. Conservatively, its parameter pi
may point to an unknown object ut̃ created in M′, where t = T (pi).

[U-CALL-D] analyzes a direct call ret = f(p1, . . . ,pn) in M with
f deined in another module M′. Every object a ∈ ptд(pi) passed
indirectly through pi to M′ may be modiied in M′. Similarly, ret
may point to an unknown object ut̃ , where t = T (ret). [U-CALL-I]
analyzes an indirect call ret = fp(p1, . . . ,pn) in M, where fp may
point to a function deined in another module M′. [U-CALL-I] be-
haves identically as [U-CALL-D] except that the target functions
invoked at the callsite are found by Resolve(fp(p1, . . . ,pn)).

(3) Resolve(fp(p1, . . . ,pn)). As shown in Figure 5, this auxil-
iary function, which is used in [A-CALL-I] and [U-CALL-I], resolves
fp(p1, . . . ,pn) to a target function f(q1, . . . ,qn) by distinguishing
two kinds of indirect calls (in LLVM IR), as discussed below. We
use the clang++ front-end to annotate and identify a virtual callsite

when generating low-level LLVM IR. In C++, the irst parameter of
a virtual function represents the hidden łthisž pointer variable.

(I) C++ Virtual Calls. f(q1, . . . ,qn) is a target function if C1 ∧
(C2 ∨ C3 ∨ C4) holds, where C1 requires f to be a valid can-
didate function according to the C++ speciication for virtual
calls [1] and C2 ∨ C3 ∨ C4 requires fp to satisfy some condi-
tions related to the points-to information at this callsite. If C2
holds, then fp points to f explicitly. Consider C3, where fp

points to an unknown function, i.e., u_ ∈ pt(fp). If p1 points to
a receiver object a of type t, then f is a target function, where
f ∈ vfns(t) is a virtual function in t’s vtable, provided that C1
also holds. C4 is similar to C3 except that C4 handles the case
when p1 points to an unknown receiver object of type ut .

(II) C-Style Indirect Calls. These include both the calls made
indirectly via C-style function pointers and C++-style mem-
ber function pointers (which are rarely used and thus han-
dled conservatively). Here, f(q1, . . . ,qn) is a target function if
C5 ∧ (C2 ∨ C6) holds, where C5 requires fp and f to be type-
compatible according to the C99 standard (ISO/IEC 9899:1999).
C2 is the same as above. If C6 is applicable, then f ∈ F is any
function that satisies C5 under the C/C++ semantics.

Example 4 (PPA). By applying PPA to the LLVM IR in Figure 3(b),

we give the points-to sets obtained and the corresponding inference

rules applied in Figure 3(d). For the indirect call, i.e., C++ virtual

call, at line 21 in Figure 3(b), p is found to point to uB and uC. By

applying [U-CALL-I], where C1∧C4 holds, the set of target functions

is resolved to be {B::f,C::f}. Compared with CHA (Figure 3(c)), PPA

has successfully removed its spurious target A::f.

3.2.3 Type-based Side-Efect Summaries (PPASummary). We make
[U-’LOBAL], [U-CALL-D] and [U-CALL-I] in Figure 4 more precise, by

reining their ts(a) to ts(a) ∩ summary(f) by using a side-efect

type summary for every relevant function f. As a result, unknown
objects with fewer types will be generated.

[S-STORE]
∗p = q ∈ f t = T (p)

{ t̃ } ⊆ summary (f)
[S-CALL-D]

ret = f′(p1, ...,pn) ∈ f

summary (f′) ⊆ summary (f)

[S-CALL-I]
ret = fp(p1, ...,pn)∈f f′(q1, ...,qn) ∀i∈{1, ...,n} : T (qi)�T (pi)

summary (f′) ⊆ summary (f)

Figure 6: Type-based summarization for a function f.

Figure 6 gives the three rules for computing summary(f) for
every function f in all the modules in a program. We collect the
types of objects that may be modiied at a store in f ([S-STORE]).
We also recursively collect such types interprocedurally at a direct
([S-CALL-D]) and indirect call ([S-CALL-I]) in f.

Example 5 (PPASummary). With type-based summaries, we have re-

ined the points-to sets from Figure 3(d) to Figure 3(e). As

summary (setData) = {int }, no object of type B* is ever modiied

at the direct call to setData at line 16 in Figure 3(b). Thus, when

applying [U-CALL-D] to this call, a.q will no longer point to UB, since

a.f passed into setData via pointer x is not modiied in setData.

Therefore, C::f is the only target resolved at line 21 (Figure 3(c)).
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1: void main() {
2: A *p;
3: ...

4: p->f();
5: }

X::f

A::f

B

C::f D::f

E::f

F::f

(a) Source code (b) Class hierarchy

1: vtptr = *p;
2: assert(vtptr==&VTableC | | vtptr==&VTableF);
3: vfn = &(vtptr[0]);
4: fp = *vfn;
5: call fp(p);

(c) Runtime checks (for vtables)

1: vtptr = *p;
2: vfn = &(vtptr[0]);
3: fp = *vfn;
4: assert(fp==&C::f | | fp==&F::f);
5: call fp(p);

(d) Runtime checks (for virtual functions)

Figure 7: Protecting indirect calls with membership tests.

3.3 Pointer-Analysis-Guided Instrumentation

We present our new lightweight instrumentation technique to pro-
tect indirect calls in terms of the computed points-to information.

Prior Runtime Checks. We use an example in Figure 7 to
illustrate why existing solutions [9, 17, 21, 33, 46, 50] are inei-
cient in implementing our ine-grained CFI protection (made pos-
sible by pointer analysis). Figure 7(a) gives a C++ code fragment
with a virtual call p->f(), where p is of type A*. The class hi-
erarchy containing the set of all implementations of f, denoted
Tf = {X::f,A::f,C::f,D::f,E::f,F::f}, is given in Figure 7(b).

Suppose T
p

f
= {C::f,F::f} is the set of target functions found

at p->f() by pointer analysis. To enforce CFI for p->f(), we can
insert runtime checks for either the vtables accessed [9, 17, 46] (Fig-
ure 7(c)) or the virtual functions accessed [21, 33, 50] (Figure 7(d)),
against T

p

f
, a set of statically determined legitimate targets. How-

ever, such a set-membership test is impractically expensive for
large programs, as T

p

f
can be large. For example, Chrome has large

and deep class hierarchies consisting of thousands of classes. T
p

f

contains an average of 24.8 targets with the largest reaching 2013.
To accelerate membership testing, a recent CHA-based approach

for enforcing CFI, calledOvt/Ivt [9], reorders/interleaves the mem-
ory layout of the vtables in the same class hierarchy tomake their ad-
dresses continuous. For the class hierarchy in Figure 7(b), &VTableA
ś &VTableF will be continuous in memory. Thus, the set member-
ship test in Figure 7(c) can be simpliied to a fast single range test:

assert(vtptr >= &VTableA && vtptr <= &VTableF);

Unfortunately, the set of legitimate targets allowed is Tf = { A::f,

C::f, D::f, E::f, F::f} rather than T
p

f
= { C::f, F::f}. To avoid

spurious targets such as A::f, D::f and E::f introduced by CHA
but excluded by our approach, a singe range check would have to
be split into multiple range checks, which are costly. Finally, re-
ordering/interleaving vtables is complex and error prone, especially
in the presence of multiple and virtual inheritance.

Fast Index-based Runtime Checks. We introduce a simple
yet eicient technique for protecting indirect calls based on the

Candidate functions for f: X::f A::f C::f D::f E::f F::f
IDs: 0 1 2 3 4 5

(a) ID assignment for function f

Candidate functions for p->f(): C::f D::f E::f F::f
IDs: 2 3 4 5
Valid Vector (idmin = 2,idmax = 5): 1 0 0 1

(b) Valid vector construction for p->f()

1: vtptr = *p;
2: vfn = &(vtptr[0]);
3: fp = *vfn;
4: fid = *(fp-0x08); //load function id
5: assert(idmin ≤fid≤ idmax); //range check
6: flag_addr = &vec[fid-idmin];//load valid bit
7: assert(*flag_addr==1); //validity check
8: call fp(p);

(c) Runtime checks for p->f()

Figure 8: Protecting indirect calls with an index-based in-

strumentation, illustrated for the code in Figure 7(a).

computed points-to information, without requiring vtable re-layout.
For every indirect call protected, this technique requires only one
single range check, and possibly, one more vector membership test.

Below we introduce our index-based technique by applying it to
protect p->f() in Figure 7(a), as illustrated in Figure 8:

(1) Assigning IDs. Let Cf be the class hierarchy, which is always a
DAG in C++, that contains all the possible implementations of
f , denoted Tf , in the program. We assume that Cf has a single
source (as its root) and will consider more complex class hierar-
chies in Section 3.3.2. We assign a unique ID to every function
in Tf . To facilitate a word-based optimization (OneWordOpt)
discussed in Section 3.3.1, we will number the functions in Tf
continuously, starting from 0, by traversing Cf in DFS. In our
example, Tf = {X::f,A::f,C::f,D::f,E::f,F::f} (as assumed
earlier). By traversing the class hierarchy shown in Figure 7(b)
in DFS, we obtain the ID assignment given in Figure 8(a).

(2) Assigning Preix Data. For every function in Tf , its unique
ID (represented by a 64-bit word) is inserted at the start of the
function as its preix data [6].

(3) Constructing Valid Vectors. For p->f(), where p is of type A*,
we construct a valid vector, implemented as an array of chars, to
tag the set of legitimate targets, T

p

f
, found by pointer analysis. Let

idmin and idmax be their smallest and largest IDs, respectively.
We create a valid vector vecA

f
[0 : idmax−idmin] and set vec

A
f
[i] to

1 if T
p

f
contains a function with ID, f id , such that f id−idmin = i ,

and 0 otherwise. In our example, T
p

f
= {C::f,F::f}. Thus, its

valid vector is initialized as shown in Figure 8(b).
(4) Inserting Runtime Checks. For every virtual callsite p->f(),

we insert the runtime checks, as shown in Figure 8(c), to allow
only the targets in T

p

f
to be called. This involves one range check

(line 5), and possibly, one more vector membership test (line 7).

In Figure 8(c), the two tests in lines 5 and 7 are implemented with
8 low-level LLVM instructions: 2 subtractions, 2 loads, 1 pointer
arithmetic, and 3 comparisons. The checking overhead at a callsite
is independent of the callsite protected and class hierarchies used.
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Binary value Decimal value
Valid vector 0...01001 9

(a) Word encoding for p->f()

1: vtptr = *p;
2: vfn = &vtptr[0];
3: fp = *vfn;
4: fid = *(fp-0x08); //load function id
5: assert(idmin ≤fid≤ idmax); //range check
6: assert((9>>(idmax-fid))&1==1);//validity check
7: call fp(p);

(b) Runtime checks for p->f()

Figure 9: OneWordOpt: replacing a valid vector by a 64-bit

word for a callsite with 64 or fewer legitimate targets.

3.3.1 Optimizations . Two optimizations are described below.

MemTSTOpt. An index-based check involves three compar-
isons, as mentioned above. If an indirect callsite has no more than
three legitimate targets, a traditional set membership test (as il-
lustrated in Figure 7(d)) is adopted. For a single-target callsite, the
target can be devirtualized, with its runtime checking avoided alto-
gether. As pointer analysis becomes more and more precise, more
and more virtual callsites will beneit from this optimization.

OneWordOpt. If a valid vector has 64 elements or fewer, we
will use a 64-bit word instead of an array of chars so that we can
replace a vector element test in line 7 of Figure 8(c) with a more
eicient bitwise operation. Figure 9 demonstrates this optimiza-
tion for checking the same callsite p->f() illustrated in Figure 8.
In Figure 9(a), the binary pattern 0 · · · 01001 (corresponding to a
decimal value of 9) that is stored in a valid vector in Figure 8(b) is
now stored in a 64-bit word. The unused higher bits are assigned 0.
In Figure 9(b), a bitwise check in line 6 is performed instead.

3.3.2 Handling Complex Class Hierarchies. Our instrumentation
scheme works well for any complex class hierarchies, including
multiple inheritance (Figure 10(a)) and virtual diamond inheritance
(Figure 10(b)), which result in non-tree-like class hierarchies.

A

B

C

D E

F

G

H

I

(0)

(1)

(5)

(6)

(2)

(3) (4)

(7)

(8)

A

B

C

D E

F

(0)

(1) (5)

(2)

(3) (4)

(a) Multiple inheritance (b) Virtual diamond inheritance

Figure 10: Complex class hierarchies in C++, with the IDs

assigned for a function assumed to be deined in each class.

In C++, every class hierarchy must be a DAG. We can assume
that every class hierarchy has a single source node, i.e., a root, by
adding a dummy class to connect with the original source nodes. Let
Cf be a single rooted class hierarchy containing all the deinitions
of a virtual function f . We can assign unique IDs to these functions
continuously by traversing Cf in DFS (i.e., preorder for trees).

Our index-based instrumentation scheme is correct, as revealed
by the runtime checks in Figure 8, as long as our ID assignment
is unique. However, assigning these IDs in DFS ensures that the
deinitions of f in the same tree-like sub-class hierarchy of Cf
always receive continuous IDs, thereby maximizing the chances for
OneWordOpt in Figure 9 to be applied. For complex class hierarchies

Table 2: Program characteristics.

Program KLOC #Stmt #Ptrs #Objs #CallSite
dealII 199 577482 530249 77894 94284
eon 41 65218 63385 15855 14033
omnetpp 48 95961 108349 8592 20601
povray 155 126484 189118 8195 15226
soplex 41 54190 69287 4191 9878
xalan 553 744971 703675 73973 106090
Chrome 15224 20362892 34173201 1685228 3566682
Total 16261 22027198 35837264 1873928 3826794

in Figure 10, continuous IDs occur also for Figure 10(b) but not
for Figure 10(a), assuming that every class contains a deinition
of f . In practice, our ID assignment is efective. For Chrome, non-
continuous IDs occur only in 371 out of 66609 indirect callsites.

4 EVALUATION

Our objective is to demonstrate that Vip can signiicantly improve
the precision of virtual call integrity protection by using pointer
analysis compared to the state-of-the-art CHA-based approach,
thereby raising the bar against control-low hijacking attacks.

We evaluate Vip using all SPEC2000/2006 C++ programs except
444.namd and 473.astar (because 444.namd has no virtual calls and
473.astar has one virtual call with one target resolved by both CHA
and pointer analysis) and Google’s Chrome browser (with over
15 MLOC) based on the open-source project Chromium (version
54.0.2798.0). Their characteristics are listed in Table 2.

Vip protects virtual calls more efectively than CHA by signii-
cantly reducing the sets of legitimate target functions permitted at
20.3% of the virtual callsites per program, on average. Vip incurs
an average (maximum) instrumentation overhead of 0.7% (3.3%),
making it deployable as part of a compiler tool chain.

4.1 Implementation

Vip is implemented on top of SVF [41] in LLVM-3.8.0. During the
pre-analysis, CHA is applied to the entire program to obtain the
class hierarchy information. Our pointer analysis is ield- and array-
sensitive. Each ield of a struct is treated as a separate object. Ele-
ments of an array are distinguished when accessed using constant
indexes. Positive weight cycles (PWCs) that arise from processing
ields and arrays are collapsed [35]. Distinct allocation sites (i.e.,
AddressOf instructions) are modeled by distinct objects [19, 25].

Our inclusion-based partial pointer analysis uses a wave prop-
agation solver for constraint resolution, with PWCs detected by
Nuutila’s algorithm [34]. To improve precision, library functions
are summarized according to Figure 6. The call graph of a program
module is built on the ly by [A-CALL-I] and [U-CALL-I] (Figure 4).
Points-to sets are represented using LLVM’s SparseBitVectors.

For our fast index-based instrumentation, we irst assign unique
IDs to the virtual functions with the same function signature based
on the pre-computed class hierarchy. We then insert the runtime
checks at every virtual callsite according to the set of legitimate
targets found by pointer analysis. All valid vectors are placed in the
read-only section to protect them from being modiied by attackers.

4.2 Experiment Setup and C++ Applications

Experiment Setup. All our experiments were conducted on a
platform consisting of a 3.70GHz Xeon(R) E5-1620 v2 CPU with
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Figure 11: Precision comparison at callsites where Vip and resolves fewer targets than CHA.

Table 3: Instrumentation statistics of Vip.

Program #CallSites
#Callsites with diferent checks
1 2 3 4∼64 > 64

dealII 902 306 157 59 378 2
eon 91 31 3 0 57 0
omnetpp 686 465 83 26 105 7
povray 122 95 20 7 0 0
soplex 553 420 91 14 28 0
xalan 9342 4500 1637 659 2469 77
Chrome 66609 37874 9630 2050 15882 1173
Total 78305 43691 11621 2815 18919 1259

128 GB memory, running Ubuntu Linux 14.04. The individual C++
iles of a program are compiled under -O2 into bitcode iles by the
clang++ front-end and then the iles within the same program mod-
ule are merged together using the LLVM Gold Plugin at link time
(-lto). CHA, as a pre-analysis of Vip, collects the class hierarchy
information from all modules. Then we perform pointer analysis
and instrumentation on each module. Finally clang++ is used to
generate the inal executable using the instrumented bitcode iles.

C++Applications. WeuseChrome including thewhole browser
and its supporting libraries in the Chromium code base. Chrome
contains one executable (5.9MLOC) and 131 shared libraries
(9.3MLOC), totaling 15.2 MLOC with 132 modules compiled by
clang++. Its largest class hierarchy has 9519 classes. Based on CHA,
some virtual callsites can invoke over 2000 target functions. The ex-
ecutable and shared libraries interact closely with 22952 functions
deined in the executable being called from the shared libraries, and
150360 callsites in the executable calling functions deined in the
libraries. As far as we know, Vip is the irst sound pointer analysis
that scales to multi-MLOC C++ programs, and also the irst partial
analysis that works at this scale. We also use six SPEC programs
to compare against the CHA-based approach for both precision
and performance. Every SPEC program consists of a single module.
Thus, our partial pointer analysis becomes a full analysis.

4.3 Precision and Performance

This section evaluates the precision and performance of Vip using
large-scale applications, including SPEC programs and Chrome.

Precision of pointer analysis. Table 4 compares the precision
of Vip against CHA in terms of the number of target functions re-
solved at all virtual callsites. Column 2 gives the number of callsites

Table 4: Target functions resolved by Vip and CHA.

Program
#Callsite Analysis time

Vip Vip More Found by Vip
CHA Vip=CHA <CHA 1 2 3

dealII 568 334 77 131 14 1.3secs 77.9secs
eon 43 48 8 2 0 0.1secs 3.9secs
omnetpp 657 29 4 14 0 0.1secs 21.1secs
povray 112 10 0 10 0 0.1secs 53.7secs
soplex 549 4 4 0 0 0.1secs 4.7secs
xalan 7445 1897 1423 208 66 2.2secs 4780.0secs
Chrome 53994 12615 5468 1507 771 2188.0secs 6.1hrs
Total 63368 14937 6984 1872 851 2192.0secs 7.4hrs

where Vip has the same precision as CHA, while Column 3 gives
the number of callsites where Vip is more precise. Columns 4 ś 6
show the number of these callsites where Vip can further reduce
the number of targets to one, two and three, respectively.

Figure 11 gives the details about the callsites where Vip resolves
fewer targets than CHA. For each program, the x-axis represents its
callsites and the y-axis represents the number of targets at a callsite
resolved byVip and CHA. To save space, soplex is omitted as its four
more precise callsites are all reduced to one target (Table 4). Vip
resolves fewer targets than CHA at 14937 out of all 78305 callsites
in all programs by removing 9.8% of the (spurious) targets resolved
by CHA. On average, Vip is more precise than CHA at 20.3% of the
callsites per program. Over 50% of the callsites in dealII, omnetpp,
povray, soplex, xalan andChrome have fewer than four targets. This
clearly shows that our pointer analysis can signiicantly increase
the precision of CFI and provide lots of opportunities for the two
optimizations in Section 3.3.1 to boost the performance of Vip.

Static Instrumentation. As shown in Table 3, Column 2 gives
the number of callsites for each program. Columns 3 ś 5 give the
number of callsites where MemTSTOpt is applied (Section 3.3.1).
In particular, the single-target callsites (with over 30% in all pro-
grams and over 50% in four of the seven programs) require no
runtime checks at all. Column 6 gives the number of callsites where
OneWordOpt (Section 3.3.1) is applied. Column 7 shows the num-
ber of callsites with unoptimized instrumentation, requiring the
most time-consuming runtime checks. However, those callsites
only occupy a very small percentage of the total callsites (less than
2% for every program). These results demonstrate the signiicant
improvements made by Vip in reducing spurious target functions.
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Figure 12: Runtime overhead of Vip against the native run.
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Figure 13: Distribution of runtime checks inserted by Vip.

Analysis Times. These are given in the last two columns in
Table 4 for CHA and Vip. It takes 6.1 hours for Vip to analyze the
largest program (Chrome). The only SPEC program that takes more
than one hour to inish is xalan as it has an order of magnitude
more virtual callsites than the other SPEC programs (Table 3). Vip
can analyze each remaining program within two minutes.

Runtime Overhead. We measure the performance of the SPEC
programs using their reference inputs. For Chrome, we use eight
industry browser benchmarks, peacekeeper [14], dromaeo [28],
kraken [29], litebrite [27], octane [16], sunspider [7], jetstream [10]
andwirple-bmark [5], with the irst six being also used in [9, 17, 50].

Figure 12 compares the runtime overheads of Vipwith the native
runs. Figure 13 shows the percentages of diferent kinds of runtime
checks over the total. For Chrome, there are eight bars, one for each
browser benchmark used, identiied by the irst letter of its name.
The overheads for eon (2.2%) and xalan (3.3%) are over 1% due to
their relatively high percentages of unoptimized or partially opti-
mized checks (by MemTSTOpt or OneWordOpt). For Chrome, the
overheads are relatively small, because the number of lightweight
checks (for ≤3 targets) is around 60% of all checks executed.

Vip incurs comparable overheads as Ovt/Ivt [9]. For the ive
common programs used, omnetpp, povray, soplex, xalan andChrome
(evaluated under kraken, octane and sunspider), Vip has an average
overhead of 0.76%, compared to 1.17% reported in their paper.

Space Overhead. Due to our index-based instrumentation, there
are slight increases in terms of LLVM IR instructions used, ranging
from to 0.3% (povray) to 6.5% (xalan) with an average of 2.5%. The
space overheads (due to the use of valid vectors and 64-bit words)
range from 0 KB (povray) to 263.4KB (Chrome) with an average of
42KB, which are consistent with the results reported in Table 3.

A Proof-of-Concept Atack. Consider Figure 1, representing a
real scenario for Chrome. For p->f(), we use an attack to corrupt
the vtable pointer in an object pointed to by p by exploiting a use-
after-free or bufer overlow vulnerability. Then p->f()will invoke
an illegitimate function A::f that contains a sensitive method e.g.,
system(). This attack is prevented by Vip but not by CHA.

5 RELATED WORK

Virtual Call Integrity Protection. Vtable hijacking attacks
can be mitigated in source- or binary-level programs.

Binary-level defenses [15, 36, 51] can be deployed to produc-
tion code where source code is not available. However, as compiler
optimizations cannot be easily applied to binaries, binary-level
instrumentation is often more expensive than source-level instru-
mentation. In addition, due to the lack of high-level C++ semantics,
binary-level defenses cannot protect C++ virtual calls precisely,
making them vulnerable to COOP-style attacks [37].

Closest to ourwork are source-level vtable protection and forward-
edge CFI techniques via compiler transformations. Source-level
defenses give stronger security guarantees than binary-level ones,
making vtable hijacking harder. Vtv [46] and SafeDispatch [21]
are two early CHA-based techniques usingmembership tests.Vtv [46]
incurs an overhead of 4.1% on SPEC programs. SafeDispatch re-
quires proile-guided optimizations to achieve an overhead of 2.1%.
Later,Ovt/Ivt [9] simpliies membership tests into range checks by
reordering/interleaving vtables to make their addresses continuous.
However, this requires signiicant modiications to the memory
layout of vtables, which can be complex and error prone, especially
in the presence of multiple and virtual inheritance [9]. VTrust [50],
which is a recent CHA-based approach, checks a virtual function
using a signature comparison, by trading precision for eiciency.

Vip enforces a much more precise call graph than the CHA-
based approach by using pointer analysis and a fast index-based
instrumentation technique. Thus, the bar is raised against vtable
hijacking by providing stronger security guarantees.

Pointer Analysis. Most of the existing pointer analyses [19, 25,
26, 38, 39, 42ś44, 48, 49] for C only model a subset of the modern
intermediate languages (e.g., LLVM IR). A few approaches [8, 23]
provide comprehensive support for analyzing both C and its OO
incarnation, C++. Furthermore, existing whole-program pointer
analyses [8, 19, 25, 26, 48] assume that the entire program is com-
piled into a single program module (e.g., linked into one LLVM
bc). However many real-world programs are often composed of
separately compiled modules, such as Chrome. Applying previous
pointer analyses to resolve virtual calls in a single program module
with incomplete code leads to unsound results, which makes CFI
unusable in practice due to false protection. This paper introduces a
new partial pointer analysis to support both C and C++. We enforce
the pointer analysis results for virtual call integrity protection as a
major client, showing the beneits of our partial pointer analysis.

6 CONCLUSION

This paper introduces Vip, a new approach to boosting the preci-
sion of CFI protection for large-scale multi-MLOC real-world C++
programs. Vip introduces a new partial pointer analysis and a new
lightweight instrumentation technique to enforce CFI at virtual
callsites, thereby raising the bar against vtable hijacking attacks.
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