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ABSTRACT
We introduce a static detector, Saber, for detecting mem-
ory leaks in C programs. Leveraging recent advances on
sparse pointer analysis, Saber is the first to use a full-sparse
value-flow analysis for leak detection. Saber tracks the flow
of values from allocation to free sites using a sparse value-
flow graph (SVFG) that captures def-use chains and value
flows via assignments for all memory locations represented
by both top-level and address-taken pointers. By exploiting
field-, flow- and context-sensitivity during different phases
of the analysis, Saber detects leaks in a program by solving
a graph reachability problem on its SVFG.

Saber, which is fully implemented in Open64, is effec-
tive at detecting 211 leaks in the 15 SPEC2000 C programs
and five applications, while keeping the false positive rate
at 18.5%. We have also compared Saber with Fastcheck
(which analyzes allocated objects flowing only into top-level
pointers) and Sparrow (which handles all allocated objects
using abstract interpretation) using the 15 SPEC2000 C pro-
grams. Saber is as accurate as Sparrow but is 14.2X faster
and reports 40.7% more bugs than Fastcheck at a slightly
higher false positive rate but is only 3.7X slower.

Categories and Subject Descriptors
D 2.4 [Software/Program Verification]: Reliability; D
3.4 [Processors]: Compilers, Memory Management; F 3.2
[Semantics of Programming Languages]: Program Anal-
ysis

General Terms
Algorithms, Languages, Verification

Keywords
Memory Leaks, Static Analysis, Sparse Value-Flow Analysis

1. INTRODUCTION
This paper introduces a new static detector, Saber, which

is fully implemented in the Open64 compiler, for detecting
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Table 1: Comparing Saber with other static detec-
tors on analysing the 15 SPEC2000 C programs.
The data for Clang, which stands here for its static
analysis tool, and Saber are from this paper while
the data for the other three tools are from the pa-
pers cited. Saturn [20], which has no published data
on SPEC2000, runs at 50 LOC/sec with a false pos-
itive rate of 10% [2].

Leak Detector
Speed Bug False Positive

(LOC/sec) Count Rate (%)

Contradiction [14] 300 26 56
Clang [8] 400 27 25
Sparrow [9] 720 81 16
Fastcheck [2] 37,900 59 14
Saber 10,220 83 19

memory leaks in C programs. Table 1 compares Saber with
several other static detectors based on published and self-
produced data on their scalability and accuracy in analysing
the 15 SPEC2000 C programs (totalling 620 KLOC). These
results, together with those reported later on analysing five
applications (totalling 1.7 MLOC), show that Saber has
met its design objectives, as discussed below.

1.1 Motivations and Objectives
To find memory leaks statically in a C program, a leak

analysis reasons about a source-sink property : every object
created at an allocation site (a source) must eventually reach
a free site (a sink) during any execution of the program. The
analysis involves tracking the flow of values from sources to
sinks through a sequence of memory locations represented
by both top-level and address-taken pointers in the program.
In order to be scalable and accurate, its underlying pointer
analysis must also be scalable and accurate.

Current static detection techniques include Contradic-
tion [14] (data-flow analysis), Saturn [20] (Boolean satis-
fiability), Sparrow [9] (abstract interpretation), Clang [8]
(symbolic execution) and Fastcheck [2] (sparse value-flow
analysis). Two approaches exist: iterative data-flow analysis
and sparse value-flow analysis. The former tracks the flow
of values iteratively at each point through the control flow
while the latter tracks the flow of values sparsely through
def-use chains or SSA form. The latter is faster as the infor-
mation is computed only where necessary using a sparse rep-
resentation of value flows. Among all published static leak
detectors, Fastcheck is the only one in the latter category
and all the others fall into the former category. However,



Fastcheck is limited to analysing allocation sites whose
values flow only into top-level pointers but ignores the re-
maining ones otherwise. Its sparse representation maintains
precise def-use chains only for top-level pointers, which is
obtained using the standard def-use analysis designed for
scalars without the need to perform a pointer analysis.

Therefore, as shown in Table 1, Fastcheck is the fastest
but not the most accurate. The other prior tools are signif-
icantly slower but can be more accurate as is the case for
Saturn and Sparrow, because they reason about the flow
of values through both top-level and address-taken pointers,
albeit iteratively rather than sparsely.

This research draws its inspiration from the Fastcheck
work [2]. We aim to build Saber by using for the first
time a full-sparse value-flow analysis for all memory loca-
tions. Saber tracks the flow of values from allocation to
free sites using a sparse graph representation that captures
def-use chains and value flows via assignments for both top-
level and address-taken pointers. The edges in the graph are
annotated with guards that represent branch conditions un-
der which the value flow happens. Like Fastcheck, Saber
uses the guard information to reason about sink reachability
on all paths. At this stage in its development, Saber is ex-
pected to be as accurate as Sparrow yet only slightly slower
than Fastcheck. This is feasible since full-sparse value-flow
analysis can now be done more efficiently and accurately
than before by leveraging recent advances on sparse pointer
analysis [5, 6, 10, 18, 24]. Instead of resolving pointers it-
eratively in a data-flow analysis framework, sparse pointer
analysis interleaves pointer resolution and def-use or SSA
construction to obtain pointer information more quickly.

1.2 Challenges
As shown in Table 1, Sparrow is more accurate than

Fastcheck but at a 52.6X slowdown. To combine the best
of both worlds, Saber needs to make a good balance be-
tween scalability and accuracy. Saber must be lightweight
when reasoning about the flow of values from allocation sites
through the def-use chains for address-taken pointers, which
are ignored by Fastcheck. In addition, such def-use chains
must be accurate enough to allow more leaks to be detected.
Finally, the false positive rate must be kept low.

1.3 Our Solution
We have designed and implemented Saber in the Open64

compiler using a full-sparse value-flow analysis for all mem-
ory locations (top-level and address-taken pointers). Saber
operates in four phases, by (1) performing a pre-analysis (to
discover pointer/aliasing information), (2) putting all loca-
tions in SSA form, (3) building a sparse representation of
value flows, called a sparse value-flow graph (SVFG), that
captures def-use chains and value flows via assignments for
all locations, and (4) detecting leaks in a program via solv-
ing a graph (sink) reachability problem on its SVFG. The
novelty lies in infusing field-sensitivity (by distinguishing dif-
ferent fields in a struct), flow-sensitivity (by tracking flow of
statements) and context-sensitivity (by distinguishing differ-
ent call sites of a function) at different phases of the analysis
to balance scalability and accuracy judiciously.

This paper makes the following contributions:

‚ Saber is the first that finds memory leaks by using a
full-sparse value-flow analysis to track the flow of val-
ues through all memory locations and the first major

client showing the benefits of sparse pointer analysis.

‚ Saber uses a new SVFG to maintain value flows for all
memory locations, which may also be useful for other
bug detection tools.

‚ Saber is effective at detecting 211 leaks in the 15
SPEC2000 C programs and five other open-source ap-
plications, while keeping the false positive rate at 18.5%.

‚ Saber is as accurate as Sparrow but is 14.2X faster
and reports 40.7% more bugs than Fastcheck at a
slightly higher false positive rate but is only 3.7X slower,
measured by the 15 SPEC2000 C programs (Table 1).

2. THE SABER DETECTOR
Saber detects memory leaks using a full-sparse value-flow

analysis. This requires all memory locations, represented by
both top-level variables and address-taken variables, to be
put in SSA form. In SSA form, each variable is defined
exactly once in the program text. Distinct definitions of
a variable are distinctly versioned. At a join point in the
control-flow graph (CFG) of the program, all versions of the
same variable reaching the point are combined using a φ
function, producing a new version for the variable.

The conversion to SSA implies that the def-use chains for
both top-level and address-taken variables need to be de-
termined. For top-level variables, this is done trivially just
like for scalars. For address-taken variables, a pointer anal-
ysis is required due to the existence of indirect defs and uses
through pointers. For improved precision, some degree of
flow-sensitivity is usually considered. Then there are two
approaches to determining the def-use chains for address-
taken variables. A traditional data-flow analysis computes
the pointer information at every program point by respect-
ing the control flow in the CFG of a program. This is costly
as it propagates pointer information blindly from each node
in the CFG to its successors without knowing if the informa-
tion will be used there or not. In contrast, a sparse pointer
analysis [5, 6, 18, 24] propagates the pointer information
from variable defs directly to their uses along their def-use
chains, but, unfortunately, the def-use information can only
be computed using the pointer information. To break the
cycle, a sparse pointer analysis typically proceeds in stages:
def-use chains are initially approximated based on some fast
pointer analysis and then refined in a sparse manner.

Perform
Pre-Analysis

Build Full-
Sparse SSA

Build
SVFG

Detect Leaks via
Graph Reachability

on SVFG

Figure 1: Structure of the Saber detector.

Saber proceeds in four phases, as shown in Figure 1.
Their functionalities are described below, with details given
in Sections 2.3 – 2.6. To balance scalability and accuracy,
Saber exploits field-, flow- and context-sensitivity during
its analysis.

Phase 1: Pre-Analysis This is applied to the program to
discover its pointer (and aliasing) information reason-
ably efficiently and accurately. To this end, we re-
sort to flow- and context-insensitive Andersen’s pointer
analysis with offset-based field sensitivity and callsite-
sensitive heap cloning for malloc wrappers.



1 void SerialReadBuf() {
2 for (n=0; nă100; n++) {
3 char** buf = readBuf();

4 char* tmp = *buf;
5 if (*tmp !“ ’zn’)
6 printf(”%s”,*tmp);
7 else
8 continue;
9 freeBuf(buf);

10 }
11 }
12 char** readBuf() {
13 char** mBuf = malloc(); //o
14 *mBuf = malloc(); //o1

15 //... (write into **mBuf);
16 return mBuf;
17 }
18 void freeBuf(char** fBuf) {
19 char* z = *fBuf;
20 free(z);
21 free(fBuf);
22 }

(a) Input program

SerialReadBuf:

return

continue

for (...)

freeBuf(buf0)

µpR1q

printf(...)

if (...)

R1 “ χpR0q

buf0 = readBuf()

µpR1q

. . . = *buf0

free(fBuf0)

free(z0)

µpR0q

z0 = *fBuf0

R0=...

R1 “ χpR0q

return buf0

*mBuf0=malloc()

mBuf0=malloc()1
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(b) Full-sparse SSA

Cond : *tmp !“ ’zn’
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(c) SVFG (with its unlabelled
edges being guarded by true)

Figure 2: A motivating example

Phase 2: Full-Sparse SSA This is built for each function
individually, by considering all memory locations. We
adopt a balanced model to represent memory loca-
tions accessed indirectly at loads, stores and callsites.
To improve accuracy, the pointer information obtained
by pre-analysis is further refined sparsely with an in-
traprocedural flow-sensitive pointer analysis.

Phase 3: SVFG A sparse representation that captures def-
use chains and value flows via assignments for all mem-
ory locations in the program, called a sparse value-flow
graph (SVFG), is constructed based on the full-sparse
SSA form. Each def-use edge is annotated with a guard
that captures the branch conditions between the def
and the use in the program. Such guards are gener-
ated on-demand only when some allocation sites are
analyzed during the leak detection phase.

Phase 4: Leak Detection This is performed by solving a
graph reachability problem context-sensitively on the
SVFG, starting from allocation sites (sources) and mov-
ing towards free sites (sinks).

2.1 Program Representation
In the canonical form, a statement in the CFG of an input

program is one of the following: (1) an assignment of the
form, x “ &y (address), x “ y (copy), ˚x “ y (store) or
x “ ˚y (load), where x and y are local or global variables,
(2) a call b “ fpa1, . . . , anq, where b, a1, . . . , a1 are all local
variables, (3) a return statement, return r, where r is a local
variable, and (4) a two-way branch (i.e., an if-statement).

During the conversion to SSA, three new types of state-
ments are introduced: φ, µ, and χ. The φ functions are
added at join points as is standard. Following [3], indirect
defs and uses at loads and stores are represented by using
µ and χ functions. Each load x “ ˚y in the input program
is annotated with a function µpvq for each variable v that
may be read by the load. Similarly, each store ˚x “ y in
the input program is annotated with a function v “ χpvq

for each variable v that may be defined by the store. When
converted to SSA form, each µpvq is treated as a use of v
and each v “ χpvq is treated as both a def and use of v.

To understand this asymmetric treatment of µ and χ, sup-
pose v “ χpvq (associated with ˚x “ y) becomes vm “ χpvnq
after SSA conversion. If x uniquely points to v, which repre-
sents a concrete memory location, then vm can be strongly
updated. In this case, vm receives whatever y points to and
the information in vn is ignored. Otherwise, vm must incor-
porate the pointer information from both vn and y.

2.2 A Motivating Example
Let us use an example in Figure 2 to highlight why Saber

can detect its two leaks with a full-sparse value-flow analysis
while Fastcheck can find only one of them. This example
is adapted from a real scenario in wine as depicted in Fig-
ure 7(d). In Figure 2(a), readBuf is called in a for loop
in SeriealReadBuf. Every time when readBuf is called,
a single-char buffer formed by two objects is created: o at
line 13 and o1 at line 14. There are two cases. If the buffer
contains a char that is not ’\n’, the char is printed and then
both o and o1 are freed. Otherwise, both objects leak.

To avoid cluttering, we do not show how the flow of values
is tracked into *tmp, i.e., into o1 (with µ and χ functions).
This is irrelevant to the leak detection for o and o1.

Phase 1: Pre-Analysis We compute pointer information
using (flow- and context-insensitive) Andersen-style
pointer analysis. The issues regarding field sensitiv-
ity and heap cloning are not relevant in this example;
they will be discussed in Section 2.3. The following
points-to sets are found:

ptrpoq “ o1

ptrpbufq “ ptrpmbufq “ ptrpfbufq “ o
(1)

Phase 2: Full-Sparse SSA For this example, one region
R is introduced to represent the singleton tou, where o
represents an abstract heap object created at line 13.



According to (1), R is aliased with *buf, *mbuf and
*fbuf. Then loads, stores and callsites are annotated
with µ and χ to make all indirect defs and uses explicit.
For the store at line 14, R “ χpRq is added as R may
be defined at the store. The loads at lines 4 and 19
are annotated with µpRq since R may be read there.
The callsite at line 3 is associated with R “ χpRq as R
may be modified in readBuf. Similarly, µpRq is added
for the callsite at line 9 as R may be read in freeBuf.
Note that we have added R0 “ . . . in freeBuf as an
implicit def as it receives its values from outside.

Any SSA algorithm can be used to derive the SSA form
for each function individually, given in Figure 2(b).

Phase 3: SVFG This can be built on the SSA form. As
shown in Figure 2(c), the graph captures the def-use
edges and value flows via assignments for o and o1.

Phase 4: Leak Detection Proceeding similarly as in
Fastcheck, Saber checks if o and o1 leak or not by
solving a graph reachability on the SVFG separately
in each case. Each def-use edge has a guard that cap-
tures branch conditions between the def and use in
the interprocedural CFG of the program (given in Fig-
ure 2(b)). All such guards are generated on-demand.
As both o and o1 reach a free site along the if-branch
Cond ” *tmp ! “ ’\n’. So Saber reports the leak
warnings for both objects along the else branch.

Fastcheck can find the leak of o but not o1 since o flows
into top-level pointers only but o1 does not.

2.3 Pre-Analysis
Initially, we perform a pre-analysis to compute the point-

er/aliasing information in a program reasonably quickly and
accurately. We use Andersen’s inclusion-based pointer anal-
ysis, because it is the most precise among all flow- and
context-insensitive pointer analyses and because it is scal-
able to millions of lines of code in minutes.

To improve precision further, our pre-analysis is offset-
based field-sensitive. All different fields of a struct are distin-
guished. However, arrays are considered monolithic. Heap
objects are modeled with context-sensitive heap cloning for
allocation wrappers. All wrappers are identified and treated
as allocation sites. Then the objects originating from at an
allocation site are represented by one single abstract object.

After the pre-analysis is done, the points-to set ptrpvq for
each pointer v is available. Each pointed-to target is either
an abstract stack location or an abstract heap object. The
points-to sets in Figure 2(a) are given in (1).

2.4 Building Full-Sparse SSA Form
Since our pre-analysis is flow- and context-insensitive,

Saber starts to exploit flow- and context-sensitivity from
this point to improve its accuracy. To eliminate some spuri-
ous def-use chains for local variables in a function, we per-
form an intraprocedural sparse flow-sensitive pointer anal-
ysis. The resulting def-use information remains sound for
both single- and multi-threaded programs, because (1) pre-
analysis is flow-insensitive and thus sound for single- and
multi-threaded code, and (2) this sparse flow-sensitive re-
finement is intraprocedural and thus eliminates a spurious
def-use only if both endpoints are in the same function.

Algorithm 1 Generating the regions for a program.

Procedure GenRegions
1 for each function f do
2 Locf ÐÝ ttvu | v is a local variable declared in fu;
3 Vf ÐÝ set of pointer dereferences of the form ˚v in f ;
4 Nonf p˚vq ÐÝ subset of ptrpvq, where ˚v P Vf , representing

all the nonlocal locations in f ;
5 Rf ÐÝ Locf Y p

Ť

˚vPVf
tNonf p˚vquq;

6 REFc pMODcq ÐÝ set of regions read (modified) at some
loads (stores) at any callee function invoked directly/indi-
rectly at a callsite c in f and visible in f ;

7 Cf ÐÝ set of all callsites in f ;
8 Regf ÐÝ Rf Y p

Ť

cPCf
pREFc YMODcqq;

Algorithm 2 Building full-sparse SSA form for a program.

Procedure BuildFullSparseSSA
9 GenMuChi;

10 BuildSSA;
Procedure GenMuChi

11 for each function f do
12 for each load x “ ˚y (store ˚y “ x) M in f do
13 for each local region L“tvu,where vPptrpyqzNonf p˚yq do
14 add µpLq (L “ χpLqq for M ;

15 add µpNonf p˚yqq (Nonf p˚yq“χpNonf p˚yqq) for M ;

16 for each callsite c in f (i.e., in Cf ) do
17 for each region R P REFc (R PMODc) do
18 add µpRq (R “ χpRqq for c;

19 for each function f do
20 for each µpR1q (R1“χpR1qq added for a statement S1 in f do
21 for each R “ χpRq (R “ χpRq or µpRqq added for a

different statement S in f such that R1 XR ‰ H do
22 add µpRq (R “ χpRqq for S1;

The conversion to SSA requires nonlocal memory loca-
tions accessed by a pointer dereference expression ˚v to be
approximated. As a result, the uses at a load ¨ ¨ ¨ “ ˚v and
the defs at a store ˚v “ . . . are exposed by adding µ and
χ functions. This must be done so that the resulting def-
use chains are both accurate enough and amenable to fast
traversal to satisfy the design objectives of Saber.

There are many solutions depending on how the mem-
ory is partitioned. At one extreme, Fastcheck [2] assumes
that all dereference expressions are essentially aliased with
one special region. This coarsest partitioning makes it fast
but too inaccurate to analyze allocation sites whose values
flow into this special region. At the other extreme, distinct
locations in ptrpvq for a pointer v are distinct regions aliased
with ˚v. This finest partitioning would make an analysis ac-
curate but traverse too many def-use chains to be efficient.

Saber adopts a balanced memory model to partition the
locations accessed in a function f . Every local variable de-
clared in f is in its own local region. It is assumed that
all variables are distinctly named across the entire program.
For every dereference expression ˚v in f , all the nonlocal
locations of f in ptrpvq are “collapsed” and denoted by one
nonlocal region. These are dynamically created in f or its
callees or declared in direct/indirect callers of f . Further-
more, Saber handles global variables like many static detec-
tors such as Fastcheck [2] and Sparrow [9]. All globals
are represented by one single GLOBAL region. Heap ob-
jects that flow into GLOBAL directly or indirectly are not
considered to leak, as further discussed in Section 2.6.



We apply GenRegions in Algorithm 1 to implement our
memory model. Initially, for a given function f , Rf con-
tains all the regions with its callsites ignored. Based on the
pointer information discovered in pre-analysis, the interpro-
cedural reference set REFc and modification set MODc at
a callsite c can be found in the standard manner, iteratively
until a fixed-point is reached. Finally, Regf contains all re-
gions accessed directly/indirectly in the function f .

Once all regions are identified, indirect defs and uses at
loads/stores and callsites are added and the conversion to
SSA can take place. As shown in BuildFullSparseSSA
in Algorithm 2, GenMuChi introduces the µ and χ for
loads, stores and callsites (lines 11 – 18), making sure that
all aliased regions are included (lines 19 – 22). BuildSSA
converts every function into SSA by using a standard SSA
algorithm. For each µpRq added at a callsite to a function,
a store of the form R “ . . . is assumed to be available at the
entry of the function. After the SSA conversion is done, R at
the store has version 0 as it expects to “receive” values from
its callers. This is illustrated using freeBuf in Figure 2(b).

In our memory model, aliases are recognised as overlap-
ping regions and accounted for explicitly via µ’s and χ’s.

Consider our example in Figure 2. Based on (1), only one
nonlocal region relevant to leak detection is found: R “ tou.
Thus, the SSA form for the program is obtained as shown.

2.5 Building SVFG
Once a function is in SSA, the def-use chains in it are

available, but these are insufficient for Saber to check leaks
caused interprocedurally. In this section, we describe how
to build our SVFG to capture def-use chains and value flows
by assignments across the procedural boundaries.

The SVFG of a program is kept simple. The only state-
ments reachable directly or indirectly from all allocation
sites being analyzed need to be considered. Its nodes rep-
resent variable definitions, except for one caveat regarding
indirect uses added as µ functions to a callsite explained
below. We write ppi for the def site of an SSA variable pi.

Table 2: Rules for building SVFG.
Rule Statement (SSA) Value-Flow Edges

ASN pi = qj ppi Ð pqj

MU
µ(vt)

ppi Ð pvt
pi = ˚qj

CHI
˚pi “ qj

pvs Ð pqj , pvs Ð pvt
vs = χ(vt)

PHI pi=φ(qj ,qk) ppi Ð pqj , ppi Ð pqk

CALL

(at a

callsite

c for a

callee g)

µ(vm) p1qUg
c pvmq Ð {µpvmq, (2) {µpvmq

pgc
ÐÝ xvm

ri=g(. . . , ak, . . . ) p3qFP pakq
pgc
ÐÝ xak, (4) pri

qgc
ÐÝ RET priq

vs = χ(vt) (5) pvs
qgc
ÐÝ Dg

c pvsq, (6) pvs Ð pvt

The bulk of the task involved in building the SVFG lies
in adding its edges to capture def-use chains and value flows
via assignments. The rules used are given in Table 2. By ap-
plying ASN, MU, CHI and PHI to a function, its intrapro-
cedural def-use chains are added. In ASN, instead of linking
pqj to the use qj at an assignment and then linking the use to
ppi, we add one single edge ppi Ð pqj directly. We do the same
in the other rules. In CHI, pvs Ð pvt signifies a weak update

to vs using the old information in vt and can be ignored if a
strong update is possible (as described in Section 2.1). If v0
is read in a function but passed from a callsite, then a µpv0q
has been added to the callsite (Section 2.4).

Rule CALL, which looks complex, is also conceptually
simple. There are six sub-rules. The middle two capture the
value flows for the standard parameter passing and return
for top-level pointers. The last one is there just like the case
for CHI if a weak update on vs is performed. The second
last accounts for the“implicit”value returns for address-not-
taken variables. Similarly, the first two model the “implicit”
parameter passing for address-taken variables by treating

the site of µpvmq, denoted by {µpvmq, as a pseudo formal
parameter (def) site. This is crucial because we must record
the control-flow paths under which the value flow happens
in order to reason about memory leaks interprocedurally.

Note that malloc and free are special functions. An al-
location site is marked as a source and a free site as a sink.

Let us now explain the technical details behind the first
two and the second last sub-rules of CALL. FP pakq stands
for the corresponding formal parameter of ak in SSA (ver-
sion 0) and RET priq identifies the unique return SSA vari-
able in g. Based on line 5 in Algorithm 1, REF g

c and MODg
c

denote the reference and modification sets made by this par-
ticular callee g, respectively, except that the variables con-
tained are now in SSA. By construction, each SSA variable
in REF g

c has version 0 as it expects to “receive” values from
its callers. Similarly, each SSA variable in MODg

c has the
largest version for the underlying variable as it contains the
final value defined in g. In Figure 2, serialReadBuf has two
callsites at lines 3 and 9. We have MODreadbuf

line 3 “ tR1u and
REF freebuf

line 9 “ tR0u. The def “R0 “ . . . ” added in freeBuf

serves to receive its values from outside. The same is not
done for readBuf since it is irrelevant in this example.

For a vs “ χpvtq, we defineDg
c pvsq “ tR | R PMODg

c , RX
vs ‰ Hu to identify all regions in MODg

c that alias with
region vs. According to the second last sub-rule, an edge
is added from every region in Dg

c pvsq to vs (to realize the
implicit value returns for address-taken variables). Similarly,
for a µpvmq, we define Ug

c pvmq “ tR | R P REF
g
c , RX vm ‰

Hu. We regard µpvmq as a pseudo formal parameter, {µpvmq,

so that xvm is first propagated to {µpvmq and then to each
region in Ug

c pvmq, by the first two sub-rules. This realizes
the implicit parameter passing for address-taken variables.

To achieve context-sensitive reachability analysis during
leak detection, call and return edges are labelled with call-
site information in the standard manner. In Rule CALL, the
call edges are labelled with the open parenthesis pgc and the
return edges with the close parenthesis qgc . During leak de-
tection, realizable interprocedural value flows correspond to
paths containing properly nested parentheses and context-
sensitivity is achieved by solving a context-free language
(CFL) reachability problem [15, 16, 17].

Let us see how the SVFG in Figure 2(c) is built. The part
corresponding to the source 1 tracks the flow of o through
the top-level pointers only into the sink 10 , as is the case
in Fastcheck [2]. The other part that tracks the flow of o1

through the address-taken pointers, starting from the source
2 and ending at the sink 9 . Its edges are constructed as
follows: 4 Ð 2 by the fifth sub-rule of CALL, 7 Ð 5 Ð
4 by the first two sub-rules of CALL, 8 Ð 7 by Rule MU,
and 9 Ð 8 by the third sub-rule of CALL.



2.6 Leak Detection
Once the SVFG is built, the guards on its edges are com-

puted on-demand to capture path conditions under which
the value flow happens in the program. The guard informa-
tion is used to reason about sink reachability on all paths.
Saber proceeds similarly as Fastcheck except that Saber
uses BDDs (Binary Decision Diagrams) to encode paths
while Fastcheck uses a SAT solver to reason about them.

Given a source object, src, created at an allocation site,
the sink reachability algorithm proceeds in two stages:

Some-Path Analysis We find the set of nodes, denoted
Fsrc and called a forward slice, reachable from src in
the SVFG. This is context-sensitive by matching call
and return edges to rule our unrealizable interproce-
dural flows of values as described in [15, 16, 17].

Let Ssrc be the set of sinks, i.e., free sites reached in
Fsrc. If Ssrc “ H, then src definitely leaks. In this
case, src is known not to reach a sink (free site) along
some control-flow paths. If src reaches GLOBAL along
some control-flow paths, the leak detection phase stops
(for src), assuming that src does not leak.

All-Path Analysis We refine Fsrc into a backward slice,
denoted Bsrc, that consists of only nodes on paths
connecting src to a sink in Ssrc. Then we perform
an all-path analysis to check that src reaches at least
a sink in Ssrc on every control-flow path that src flows
to. We report a leak warning if src does not reach a
sink in Ssrc on some (one or more) control-flow paths.
Such bugs are called conditional leaks.

We now describe how to solve our all-path graph reacha-
bility problem. For a sink tgt in Ssrc, let vfpathspsrc, tgtq be
the set of all value-flow paths from src to tgt in the SVFG.
Recursion is bounded so that recursive callsites are invoked
at most once. For each value-flow path P P vfpathspsrc, tgtq,
vfguardpP q is a Boolean formula that encodes the set of
control-flow paths that the underlying value reaches in the
program, from src to tgt. By convention, true denotes the
set of all control-flow paths between a pair of points. Like
recursion, loops are bounded to at most one iteration. Thus,

FREEDpsrcq “
ł

tgtPSsrc

ł

PPvfpathspsrc,tgtq

vfguardpP q (2)

signifies the set of control-flow paths reaching a sink in Ssrc

from src. If FREEDpsrcq ı true, a leak warning is issued, in-
dicating that src leaks along the control-flow paths specified
by  FREEDpsrcq.

To compute vfguardpP q, let vfedgespP q be the set of all
value-flow edges in P . For each ppp, pqq P vfedgespP q, we write
cfguardppp, pqq as a Boolean formula to represent the set of
control-flow paths in the program on which the def pp reaches
the use (site) pq, denoted by cfpathsppp, pqq. Thus,

vfguardpP q “
ľ

ppp,pqqPvfedgespP q

cfguardppp, pqq (3)

There are two cases. If ppp, pqq is a call or return edge as
marked in CALL given in Table 2, then cfguardppp, pqq “ true
trivially since |cfpathsppp, pqqq| “ 1. Otherwise, pp and pq are
two program points in the same function. There can be
many control-flow paths in cfpathsppp, pqq. Let each path Q P

void fun(...) {
...

B0 v0 = ...;
B1 for (k=0; kă10; k++) {
B2 if (n ă 2)
B3 w1 = v0;

else
B4 return;

}
B5 w2 = v0;

...
B6 }

C1
encode
ÐÝÝÝÝÝ (k ă 10)

C2
encode
ÐÝÝÝÝÝ (n ă 2)

B0

true

xv0 : v0 “ . . .

B1

B5

B2

C1
 C1

true

C2 C2

B4

true

B3xw2 : w2 “ v0

xw1 : w1 “ v0

B6

cfguardpxv0, xw1q = C1 ^ C2

cfguardpxv0, xw2q =  C1 _ pC1 ^ C2q

Figure 3: Encoding paths with Boolean guards.

cfpathsppp, pqq be uniquely identified by pguardpQq. Thus,

cfguardppp, pqq “
ł

QPcfpathsppp,pqq

pguardpQq (4)

To compute pguardpQq, we assign a Boolean condition to
every edge in a CFG. If a node is a branch point, a unique
Boolean guard C is generated. The true branch is assigned
C and the false branch  C. Otherwise, the unique outgoing
edge is given true. Let EpQq be the set of all edges in Q and
eguardpeq the guard on edge e P EpQq. Finally, we have:

pguardpQq “
ľ

ePEpQq

eguardpeq (5)

There is one caveat as illustrated in Figure 3 using a por-
tion of a backward slice regarding how the exit of a loop
is handled. Note that cfguardp pv0, xw1q “ C1 ^ C2 because

there is only one path from pv0 to xw1: Q :“ B0
true
ÝÝÝÑ B1

C1
ÝÝÑ

B2
C2
ÝÝÑ B3. So cfguardp pv0, xw1q “ pguardpQq “ C1 ^ C2.

To compute cfguardp pv0, xw2q, there are two to consider: (1)

Q1 :“ B0
true
ÝÝÝÑ B1

 C1
ÝÝÝÑ B5 and (2) Q2 :“ B0

true
ÝÝÝÑ B1

C1
ÝÝÑ

B2
C2
ÝÝÑ B3

true
ÝÝÝÑ B1

 C1
ÝÝÝÑ B5. Recall that the analysis

bounds a loop to at most one iteration. For Q2, enter-
ing the loop is described by C1 but exiting it is by  C1.
As in Fastcheck, Saber drops the exit condition  C1

in order to make Q2 feasible. Thus, pguardpQ1q “  C1

and pguardpQ2q “ C1 ^ C2. Finally, cfguardp pv0, xw2q “

pguardpQ1q _ pguardpQ2q “  C1 _ pC1 ^ C2q.
Consider Figure 2(c). There are two objects o and o1 to be

analyzed. For each source, there is one value-flow path con-
necting it to one sink. Cond represents the guard assigned
to the true if-branch. So cfguardp 3 , 6 q “ cfguardp 4 , 5 q “
Cond, capturing the branch condition in each case. Thus,
FREEDpoq “ FREEDpo1q “ Cond. So both are considered to
leak on paths  Cond since Cond ı true.

3. THE SABER IMPLEMENTATION
We have implemented Saber in Open64, an open-source

industry-strength compiler, at its IPA (interprocedural anal-
ysis) phase, as shown in Figure 4. IPA performs global anal-
ysis by combing information from its IPL (Local part of its
Interprocedural phase, which collects summary information
local to a function). Saber operates on its High WHIRL in-
termediate representation, which preserves high-level control
flow constructs, such as DO LOOP and IF, and is ideal for
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Figure 4: An implementation of Saber in Open64.

value-flow analysis. In the latest Open64 release, its WHIRL
SSA form is still intraprocedural and used mainly to support
intraprocedural optimizations. We have extended it by us-
ing the Alias Tags provided in Open64 to represent memory
regions, thereby obtaining an SVFG for leak detection.

Unlike Fastcheck, which reasons about paths using a
SAT solver, Saber encodes paths using BDDs. There are
some advantages for doing so. First, the number of BDD
variables used (for encoding branch conditions) is kept to
a minimum. Second, it plays up the strengths of BDDs
by exposing opportunities for path redundancy elimination.
Third, the paths combined at a join point are effectively
simplified (e.g., with C1 _ C1 being reduced into true).

Following [2], a test comparing the allocated value against
NULL is replaced with an appropriate truth value. For ex-
ample, if p = malloc() is analyzed, p == null is replaced
by false since the analysis considers only the cases where the
allocation is successful. This simplification is generalized to
tests of the form q == e, where e is an expression [2].

To guarantee efficiency without losing much accuracy, the
size of a backward slice is bounded by 100 nodes. A source
is ignored if the limit is exceeded by its backward slice.

4. EXPERIMENTAL EVALUATION
We evaluate Saber using the 15 SPEC2000 C programs

(620 KLOC) and five open-source applications (1.7 MLOC).
We compare Saber with Contradiction [14] (data-flow
analysis), Sparrow [9] (abstract interpretation), Clang,
which stands here for its static analyzer (version checker-
259) [8] (symbolic execution) and Fastcheck [2] (sparse
value-flow analysis). Of these tools, only Fastcheck and
Clang are publicly available. By using SPEC2000, a com-
parison between Saber and some other tools is made possi-
ble based on the data available in their papers.

When assessing Saber, we consider three criteria: (1)
practicality (its competitiveness against other detectors), (2)
efficiency (its analysis time) and (3) accuracy (its ability to
detect memory leaks with a low false positive rate).

Our results presented and analyzed below show that Saber
has achieved its design objectives outlined earlier. All Our
experiments were done on a platform consisting of a 3.0 GHZ
Intel Core2 Duo processor with 16 GB memory, running
RedHat Enterprise Linux 5 (kernel version 2.6.18).

4.1 Practicality
Table 1 compares Saber with several other static leak

detectors using the 15 SPEC2000 C programs. The data for
Clang and Saber are produced in this work and the data
for the others are obtained from their cited papers. Thus,

Table 3: Saber’s bug counts and analysis times.

Program
Size Time Bug #False

(KLOC) (secs) Count Alarms

ammp 13.4 0.55 20 0
art 1.2 0.01 1 0
bzip2 4.7 0.04 1 0
crafty 21.2 0.83 0 0
equake 1.5 0.04 0 0
gap 71.5 4.00 0 0
gcc 230.4 20.88 40 5
gzip 8.6 0.08 1 0
mcf 2.5 0.03 0 0
mesa 61.3 10.10 7 4
parser 11.4 0.28 0 0
perlbmk 87.1 18.52 8 4
twolf 20.5 2.12 5 0
vortex 67.3 2.90 0 4
vpr 17.8 0.31 0 3

bash 100.0 22.03 8 2
httpd 128.1 10.65 0 0
icecast 22.3 5.54 12 5
sendmail 115.2 32.97 2 0
wine 1338.1 390.7 106 21

Total 2324.1 522.58 211 48

speed numbers should be regarded as rough estimates.
Saber reports 83 bugs among 103 leak warnings while

Sparrow reports 81 among 96 warnings (without being able
to compile perlbmk [9]). Fastcheck detects 59 bugs among
67 warnings. Both Contradiction and Clang find much
fewer leaks. Saber detects consistently more bugs than the
others while keeping its false positive rate at about 19%
for SPEC2000. In addition, Saber achieves this level of
accuracy by maintaining the same magnitude of speed with
Fastcheck (at only a 3.7X slowdown) but is one order of
magnitude faster than Sparrow (14.2X), Clang (25.6X)
and Contradiction (34.1X). Overall, Saber is as accurate
as Sparrow but is only slightly slower than Fastcheck.

To compare Saber further with Fastcheck and Clang,
which are open-source tools, we have manually checked all
their leak warnings and ours. In the case of Fastcheck, one
of its authors graciously provided us their bug report. Saber
succeeds in finding a superset of the bugs reported by each.
Saber always detects no fewer bugs than Fastcheck be-
cause Saber’s value-flow graph is more precise. Saber per-
forms better than Clang because Clang is intraprocedu-
ral. During our experiments, its “experimental.unix.Malloc”
checker is used to enable leak detection. By analysing a func-
tion individually without considering its callers and callees,
the information from outside (via its parameters and re-
turns at callsites) is conservatively assumed to be unknown
or symbolic. Thus, any objects created inside callees cannot
be analyzed, thereby causing Clang to miss many bugs.

In addition to SPEC2000, we have also evaluated Saber
using five open-source C applications. wine-0.9.24 (a tool
that allows windows applications to run on Linux),
icecast-2.3.1 (a streaming media server), bash-3.1 (a
UNIX shell), httpd-2.0.64 (an Apache HTTP server) and
sendmail-8.14.2 (a general-purpose internet email server).
These five applications consist of 1.7 MLOC in total.

Table 3 summarises the accuracy and analysis times for
the 15 SPEC2000 C programs and five applications. In wine,
the largest in our suite, Saber finds 106 bugs with 21 false
positives in about 390 secs, i.e., which is roughly the amount
of time taken in compiling wine under“-O2”. Overall, Saber
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Figure 5: Comparing Saber’s analysis times and
Open64’s compile times (under “-O2”).

finds a total of 211 leaks at a false positive rate of 18.5%. To
the best of our knowledge, Saber is the fastest memory leak
detector scalable to millions of lines of code at this accuracy.

4.2 Efficiency
Saber is fully implemented in the Open64 compiler. We

investigate and analyze its efficiency further by comparing
the analysis times used by Saber with the compile times
consumed by Open64 under “-O2” for our test suite. As
shown in Figure 5, both are similar across all the programs,
indicating that Saber is promising to be incorporated into
an industry-strength compiler for static leak detection.

For some small and medium programs such as gzip, vpr,
art, mcf, equake, ammp and parser, Saber’s analysis times
are significantly less than Open64’s compile times. For some
large programs like perlbmk, wine and sendmail, Saber’s
analysis times are slightly longer since these programs each
have a relatively large number of abstract heap objects to
be analyzed as shown in Table 4. For gcc, the largest in
SPEC2000, Saber can analyze it faster than Open64 com-
piles it. This is the case because the most of the backward
slices Bsrc considered during full-path analysis are small.

Saber analyzes a program by going through its four phases
in Figure 4. To understand their relative costs, Table 4 gives
some statistics about the programs being analyzed. For each
program, Columns 2 – 6 give the number of functions, point-
ers, loads/stores, abstract objects (i.e., allocation sites) and
free sites in the program. The presence of these many load-
s/stores indicates the importance of tracking the values flow-
ing into address-taken variables in this work. The last five
columns give the information concerning the leak detection
phase, including the number of nodes in the SVFG and the
sizes of its forward slices Fsrc built during some-path anal-
ysis and backward slices Bsrc built during all-path analysis
(Section 2.6). Recall that it is on Bsrc that Saber reasons
about sink reachability on all paths. Most of the backward
slices are smaller, not exceeding 10 SVFG nodes.

From Figure 6, we can examine Saber’s analysis times
distributed among its four phases in our test suite. In to-
tal, their percentage distributions are pre-analysis (31.1%),
full-sparse SSA (14.1%), SVFG (35.1%) and leak detection
(19.7%). The pre-analysis and SVFG phases together domi-
nate the analysis times for all the programs. The SSA phase
seems to take some noticeable fractions of the total times in
some large programs, such as gcc, httpd and wine, which
have relatively a large number of loads/stores (and callsites).
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Figure 6: Percentage distribution of Saber’s analysis
times among its four phases.

In the case of ammp, bzip2, gzip, mcf, vpr and parser, few
pointers and allocation sites are found (Table 4) and their
analysis times are all within 1 sec (Table 3). So the percent-
age distributions should be interpreted in this context.

Finally, the leak detection phase is relatively fast since,
as shown in Table 4, the portions of the SVFGs being con-
sidered during all-path analysis are small. On average, only
5.75% of the functions and 4.31% of the nodes in the SVFGs
are traversed. In the case of gap, parser and httpd, which
are medium programs with many pointers, little times are
consumed in this phase. A glance at Table 4 reveals that
these programs each have few abstract heap objects to be
checked. In gap, most of its computations are done on global
data structures. In parser and httpd, a large pool of mem-
ory is allocated at the beginning and used frequently after.
In twolf and vpr, there are many allocation sites but most
of the objects created reach GLOBAL as discovered during
some-path analysis. In contrast, mesa, perlbmk, bash and
icecast stay longer than the other programs in the leak
detection phase, because their backward slices Bsrc are rela-
tively large (Table 4). Some programs such as gcc, sendmail
and wine have many allocation sites but are relatively fast
to analyze in this phase. This is because many of their ob-
jects are found to be either never freed or to reach GLOBAL
during some-path analysis. In the case of wine, for example,
Saber starts with 515 abstract objects. After the some-path
analysis is done, there are 71 that are never freed and 268
that reach GLOBAL. So only 176 objects need to be further
checked relatively more costly during all-path analysis.

4.3 Accuracy
We examine the causes for some interesting leaks reported

by Saber to assess and understand further its accuracy. In
the Fastcheck paper [2], the 15 SPEC2000 C programs
and bash are also considered. When comparing Saber with
Fastcheck, we refer to the bug report on these programs
communicated to us by one of its authors. We also examine
four representative scenarios with some leaks detected by
Saber but missed by Fastcheck to highlight the impor-
tance of tracking value flows into address-taken variables.

As shown in Table 3, Saber finds 211 bugs with 48 false
positives, achieving a false positive rate of 18.5% for our test
suite. Let us consider SPEC2000 first. All the bugs (20) in
ammp are conditional leaks, caused when functions do not
free memory when returning on errors. All these bugs can
also be found by Fastcheck as they require only value-flow



Table 4: Benchmark statistics (F 1src and Bsrc’s stand for all forward and backward slices in a program, resp.).

Program
Characteristics Leak Detection

#Functions #Pointers
#Loads #Allocation #Free #Nodes #Functions Included (%) #SVFG’s Nodes Included (%)
/Stores Sites Sites in SVFG Fsrc’s Bsrc’s Fsrc’s Bsrc’s

ammp 182 9829 1636 37 30 72362 11.54% 6.04% 2.38% 0.48%

art 29 600 103 11 1 2061 17.24% 3.45% 1.92% 0.20%

bzip2 77 1672 434 10 4 4943 5.19% 0.08% 0.43% 0.01%

crafty 112 11883 3307 12 16 56750 10.71% 2.89% 3.79% 1.07%

equake 30 1203 408 29 0 3071 13.33% 0.00% 1.57% 0.00%

gap 857 61435 16841 2 1 277614 0.23% 0.12% 0.01% 0.00%

gcc 2256 134380 51543 161 19 838373 14.43% 3.35% 8.59% 4.63%

gzip 113 3004 586 3 3 6048 6.19% 4.42% 4.55% 1.25%

mcf 29 1317 526 4 3 8160 48.28% 0.06% 2.42% 0.83%

mesa 1109 44582 17302 82 76 1427669 38.36% 8.66% 22.67% 10.10%

parser 327 8228 2597 1 0 29016 0.31% 0.00% 0.01% 0.00%

perlbmk 1079 54816 16885 148 2 698646 63.12% 21.07% 40.12% 16.18%

twolf 194 20773 8657 185 1 193074 48.45% 14.19% 30.38% 9.01%

vortex 926 40260 11256 9 3 146047 14.47% 0.41% 3.16% 1.05%

vpr 275 7930 2160 130 68 24814 41.82% 16.09% 7.18% 1.67%

bash 2700 17830 6855 112 58 32129 9.11% 2.33% 19.87% 11.23%

httpd 3000 60027 18450 21 18 176528 3.50% 0.17% 0.31% 0.05%

icecast 603 15098 9779 235 235 41474 37.25% 12.67% 33.07% 13.23%

sendmail 2656 107242 22191 296 136 824181 27.42% 15.49% 35.67% 8.90%

wine 77829 1330840 137409 515 231 2928148 8.75% 3.44% 10.59% 6.36%

Average 20.99% 5.75% 11.43% 4.31%

analysis for top-level pointers. All bugs reported in gcc are
due to mishandling of strings. Most of these (with three in-
side loops) are related to calls to concat. For mesa, all the
seven bugs found by Saber but missed by Fastcheck re-
quire value-flow analysis for address-taken variables. Some
conditional leaks at a switch statement and some never-
freed leaks are discussed below. Among the eight bugs re-
ported for perlbmk by Saber, only two are also reported by
Fastcheck. The remaining six involve heap objects being
passed into a field of a local struct variable or passed outside
from a callee via dereferenced formal parameters.

Let us move to the five applications, of which only bash

is also analyzed by Fastcheck [2]. In bash, Fastcheck
finds two of the eight bugs found by Saber. For the other
six bugs, two share a similar pattern. A function allocates
two objects, one to a base pointer p and one to ˚p. If the
second allocation for ˚p fails, it returns without freeing the
object allocated for p. In the case of icecast, with 12 bugs
reported, three are related to mishandling of strings and the
other nine (with some analyzed below) all happen when a
function does not free objects that are allocated but unsuc-
cessfully inserted into a list. Saber detects two conditional
leaks in sendmail at switch statements. Saber finds 106
bugs in wine, with 71 never freed and the remaining ones as
conditional leaks (caused for a variety of reasons). A sce-
nario similar to our motivating example is discussed below.

The false positives happened for several different reasons:
not recognising infeasible paths (in mesa, bash and wine),
treating multi-dimensional arrays monolithically (in vpr),
bounding the number of loop iterations (in vortex, icecast

and wine) and approximating aliases conservatively with re-
gions (in perlbmk and wine).

Below we examine four representative scenarios, two from
SPEC2000 (in mesa) and two from open-source programs
(in icecast and wine). There are eight leaks, which all
happen interprocedurally: six require value-flow analysis for
address-taken variables and the remaining two can be found

by analysing top-level pointers only.
Consider the code region from mesa given in Figure 7(a).

At lines 362 and 385, two heap objects are allocated and
assigned to textImage and its field Data, respectively. How-
ever, both objects are conditional leaks when the format of
testImage created does not match any listed at the switch
statement. In this case, the function returns directly at line
478, without freeing the two heap objects allocated earlier.

Consider the code region from mesa in Figure 7(b). At line
276, gl_create_context is invoked to create the three heap
objects and assign them to three fields of osmesa->gl_ctx

(lines 489 – 491). If the test !osmesa->gl_buffer at line 285
evaluates to true, these three objects leak since they are not
freed in the call to gl_destroy_context at line 287.

Let us look at the two leaks in icecast as shown in Fig-
ure 7(c). At lines 174 and 176, entry and its field name

are assigned a heap object each. Subsequently at line 180,
avl_insert is called to insert entry into the new_users list.
However, the insertion fails when the test at line 121 in
avl_insert succeeds. Then the two objects leak. There are
nine occurrences of this leak pattern in icecast.

Finally, we discuss the two leaks in wine in Figure 7(d),
which are similar to the two illustrated earlier in our moti-
vating example. In function OLEPictureImpl_LoadGif,
GifOpen is called at line 1021 so that two heap objects are
allocated at lines 898 and 905. One of the two objects is
passed to gif and the other to the field private of GifFile.
At the end of OLEPictureImpl_LoadGif, there is a call to
DGifCloseFile to free the two objects. However, there is
a test at line 1030 sitting between the two calls. The two
objects are never freed when this test evaluates to true.

4.4 Limitations
Like nearly all static memory leak detectors, Saber is nei-

ther sound (by missing bugs) nor complete (by issuing false
positives). Like Fastcheck, Saber bounds loops and re-
cursion to at most one iteration and does not capture path



//teximage.c
344: static struct gl_texture_image *

image_to_texture( GLcontext *ctx,
const struct gl_image *image){

349: struct gl_texture_image *texImage;
362: texImage = gl_alloc_texture_image();

...
385: texImage->Data = (GLubyte *)malloc

( numPixels * components );
...

451: switch (texImage->Format) {
452: case GL_ALPHA:

...
454: break;
455: case GL_LUMINANCE:

...
457: break;
476: default:
478: return NULL;

}
...

786: return texImage;
}

//context.c
476: struct gl_shared_state *alloc_shared_state(){
489: ss->Default1D = gl_alloc_texture_object();
490: ss->Default2D = gl_alloc_texture_object();
491: ss->Default3D = gl_alloc_texture_object();
510: return ss;
511: }

1164: GLcontext *gl_create_context(...){
1211 ctx->Shared = alloc_shared_state();

...
1249: return ctx;
1250: }

158: OSMesaContext OSMesaCreateContext(...){
276: osmesa->gl_ctx = gl_create_context(...);
284: osmesa->gl_buffer = gl_create_framebuffer(...);
285: if (!osmesa->gl_buffer) {
286: gl_destroy_visual(osmesa->gl_visual);
287: gl_destroy_context(osmesa->gl_ctx);
289: return NULL;
290: }

...
309: }

(a) Relevant leaky code in mesa (b) Relevant leaky code in mesa

//avl.c
42: avl_node *avl_node_new (void *key,avl_node *parent)

{
45: avl_node * node = alloc (sizeof (avl_node));
47: if (!node) {
48: return NULL;
49: }else {
50: node->parent = parent;
51: node->key = key;
58: return node;

}
}

116: int avl_insert (avl_tree * ob, void * key){
120: avl_node* node = avl_node_new(key, ob->root);
121: if (!node) {
122: return -1;
123: } else {

...
127: }
128: }

//auth_htpasswd.c
120: static void htpasswd_recheckfile

(htpasswd_auth_state *htpasswd){
123: avl_tree *new_users;
157: new_users = avl_tree_new (compare_users, NULL);

...
159: while (get_line(passwdfile, line, MAX_LINE_LEN))

{
161: int len;
162: htpasswd_user *entry;

...
174: entry = calloc (1, sizeof (htpasswd_user));
176: entry->name = malloc (len);

...
180: avl_insert (new_users, entry); .

}
}

//ungif.c
890: GifFileType *
891: DGifOpen(void *userData,

InputFunc readFunc) {
898: GifFile = malloc(sizeof(GifFileType));

...
905: Private = malloc(sizeof(GifFilePrivateType));
911: GifFile->Private = (void*)Private;

...
938: return GifFile;

}

944: int
945: DGifCloseFile(GifFileType * GifFile) {
947: GifFilePrivateType *Private;

...
952: Private = GifFile->Private;
964: free(Private);
972: free(GifFile);
974: return GIF_OK;

}

//olepicture.c
1002: static HRESULT OLEPictureImpl_LoadGif

(OLEPictureImpl *This, BYTE *xbuf)
{

1006: GifFileType *gif;
...

1021: gif = DGifOpen((void*)&gd, _gif_inputfunc);
...

1030: if (gif->ImageCount<1){ .
1031: FIXME("GIF stream does

not have images inside?\n");
1032: return E_FAIL;

}
...

1194: DGifCloseFile(gif);
1195: HeapFree(GetProcessHeap(),0,bytes);
1196: return S_OK;

}

(c) Relevant leaky code in icecast (d) Relevant leaky code in wine

Figure 7: Four scenarios with conditional leaks requiring value-flow analysis for address-taken variables.

correlations (except for tests against NULL). Thus, Saber
shares the same limitations as Fastcheck in these aspects.
In addition, both tools, like many others, are not sound
in handling pointer arithmetic by treating, for example, an
occurrence of x ` e as an occurrence of x. Saber may
also miss bugs due to imprecision in modelling the heap.
Saber handles global variables similarly as in Fastcheck
and Sparrow. This is not sound since the leaks reachable
by GLOBAL are not tracked.

Pre-analysis performed by using Andersen-style pointer

analysis is fast but conservative. Its imprecision is improved
with our intraprocedural flow-sensitive refinement during
SSA construction and context-sensitive reachability analysis
during leak detection. However, how to build more precise
SVFGs more quickly is an ongoing effort.

5. RELATED WORK
There are a number of reported attempts on memory leak

detection using static analysis [2, 7, 8, 9, 14, 20] or dynamic
analysis [1, 4, 13, 22, 23]. The Saber approach can speed



up existing static techniques by using a full-sparse represen-
tation to track the flow of values through assignments.

Static Memory Leak Detection There has been a lot
of research devoted to checking memory leaks statically [2, 7,
9, 11, 14, 19]. Saturn [20] reduces the problem of memory
leak detection to a boolean satisfiability problem and then
uses a SAT solver to identify errors. Its analysis is context-
sensitive and intraprocedurally path-sensitive. So Saturn
can find some leaks missed by Saber. By solving essen-
tially a constraint formulation of a data-flow analysis prob-
lem, however, Saturn scales to around 50 LOC/sec when
analysing some common programs [20]. BDDs are also used
previously to represent and reason about program paths [18,
21]. Clang [8] is a source-code analysis tool that can find
memory leaks in C and Objective-C programs based on sym-
bolic execution. Being intraprocedural, it assumes unknown
or symbolic values for the formal parameters of a function
and the returned values from its callsites. Sparrow [9] relies
on abstract interpretation to detect leaks in C programs. It
models a function using a parameterized summary and uses
the summary to analyze all the call sites to the function.
Fastcheck [2] detects memory leaks by using a semi-sparse
representation to track the flow of values through top-level
pointers only. It is fast but limited to analysing allocation
sites whose values flow into top-level pointers only. Con-
tradiction [14] performs a backward data-flow analysis to
disprove the presence of memory leaks. Clouseau [7] is a
flow- and context-sensitive memory leak detector, based on
an ownership model. Compared to the other tools, Contra-
diction and Clouseau issue relatively more false positives.
Saber as presented in this paper is the first static tool for
detecting memory leaks using a full-sparse value-flow graph.

Dynamic Memory Leak detection Such tools [1, 4,
12] detect leaks by instrumenting and running a program
based on test inputs. However, dynamic detectors tend to
miss bugs although their false positive rates can be kept low.
For example, we ran valgrind [12] on the same 15 SPEC2000
C programs using the reference inputs provided. More than
90% leaks reported by Saber cannot be detected.

Sparse Pointer Analysis Unlike iterative data-flow
pointer analyses, their recent sparse incarnations [5, 6, 10,
18, 24] avoid propagating information unnecessarily guided
by pre-computed def-use chains. Earlier, Hardekopf and
Lin presented a semi-sparse flow-sensitive analysis [6]. By
putting top-level pointers in SSA, their def-use chains can
be exposed directly. Recently, they have generalized their
work by making it full-sparse [5]. This is done by using
Andersen-style flow-insensitive pointer analysis to compute
the required def-use information in order to build SSA for
all variables. Yu et al. [24] introduced LevPA, a flow-
and context-sensitive pointer analysis on full-sparse SSA.
Pointer resolution and SSA construction are performed to-
gether, level by level, in decreasing order of their points-to
levels.

6. CONCLUSION
Memory leaks are common errors affecting many programs

including OS kernels, desktop applications and web services.
Some memory leaks can cause serious software reliability
problems. In this paper, we have introduced Saber, a static
detector for finding memory leaks in C programs. By us-
ing a full-sparse value-flow graph to track the flow of val-
ues from allocation to free sites through both top-level and

address-taken variables, Saber is effective at finding leaks in
SPEC2000 and five open-source applications, by detecting a
total of 211 leaks at a false positive rate of 18.5%.
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