
Why Do Deep Learning Projects Differ in
Compatible Framework Versions? An Exploratory

Study
Huashan Lei∗, Shuai Zhang∗, Jun Wang∗, Guanping Xiao∗⋆, Yepang Liu†§, Yulei Sui‡

∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
†Department of Computer Science and Engineering, Southern University of Science and Technology, China

‡School of Computer Science and Engineering, University of New South Wales, Australia
{leihuashan, shuaizhang, junwang, gpxiao}@nuaa.edu.cn, liuyp1@sustech.edu.cn, y.sui@unsw.edu.au

Abstract—Deep learning (DL) is becoming increasingly
important and widely used in our society. DL projects are
mainly built upon DL frameworks, which frequently evolve
due to the introduction of new features or bug fixing.
Consequently, compatibility issues are commonly seen in DL
projects. The compatible framework versions may differ across
DL projects, i.e., for a specific framework version, one project
runs normally while the other crashes, even if the client code
uses the same framework API. Existing studies mainly focus on
analyzing the API evolution of Python libraries and the related
compatibility issues. However, the difference in framework
version compatibility (DFVC) among DL projects has rarely been
systematically studied. In this paper, we conduct an empirical
study on 90 PyTorch and 50 TensorFlow projects collected
from GitHub. By upgrading and downgrading the framework
versions, we obtain compatible versions for each project and
further investigate the root causes of the different compatible
framework versions across projects. We summarize seven root
causes: Python version, absence of using the same breaking API,
import path, parameter, third-party library, resource, and API
usage constraint. We further present six implications based on
our empirical findings. Our study can facilitate DL practitioners
to gain a better understanding of the DFVC among DL projects.

Index Terms—deep learning, framework version compatibility,
empirical study

I. INTRODUCTION

Deep learning (DL) is flourishing in a wide range of
our daily lives, such as speech recognition [1], natural
language processing [2], robotics [3], and many tasks in
software engineering [4]–[8]. DL projects can be easily built
upon DL frameworks due to their ease of use, flexibility,
and extensive community support [9], [10]. The versions
of DL frameworks are frequently changing in fast-paced
development. For example, according to the Python-PyPI
repository [11], TensorFlow [9] and PyTorch [10], two of the
most popular DL frameworks [12], release an average of 13
and 5 versions per year, respectively (as of December 2022).

Such characteristics of DL frameworks have led to prevalent
compatibility issues in DL projects. For example, suppose

⋆Guanping Xiao is the corresponding author.
§Yepang Liu is also affiliated with the Research Institute of Trustworthy

Autonomous Systems at Southern University of Science and Technology.

hwalsuklee/tensorflow-fast-style-transfer:
1 import tensorflow as tf
...
197 sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
...
Traceback (most recent call last):
 File "run_train.py", line 224, in <module>
 main()
 File "run_train.py", line 197, in main
 sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
AttributeError: module 'tensorflow' has no attribute 'Session'

2.0.0

Crash

(a) tensorflow-fast-style-transfer
githubharald/SimpleHTR: model.py
…
6 import tensorflow as tf
...
153 sess = tf.compat.v1.Session() # TF session
...
...
Init with stored values from ../model/snapshot-1
Recognized: "word"
Probability: 0.9937934279441833

2.0.0

Normal

(b) SimpleHTR
Fig. 1. Execution results of tensorflow-fast-style-transfer [14] and
SimpleHTR [15] in TensorFlow-2.0.0.

a framework API undergoes a breaking change in a newly
released version, i.e., changing the parameter position. In this
case, an old API version-based project will inevitably crash
after upgrading to the new version [13]. Similarly, a new API
version-based project will throw exceptions running in an old
framework version environment.

Due to differences in the programming experiences of
developers and the configuration of runtime environments,
the number of compatible framework versions may differ
across DL projects. This means that given a specific
framework version, some projects may execute normally
while others crash, i.e., difference in framework version
compatibility (DFVC) among DL projects. Studying the
underlying causes of DFVC is valuable as it enables us
to identify the root issues and develop best practices and
guidelines to mitigate compatibility risks associated with
specific framework versions. This, in turn, can significantly
improve the framework version compatibility of DL projects.

Intuitively, if DL projects employ distinct framework
APIs, it is reasonable to expect they could have different
compatible framework versions. For example, there are
two open-source projects on GitHub, RetinexNet [16]
utilizing TensorFlow-1.5.0 and cnn captcha [17] built upon
TensorFlow-1.7.0. When downgrading the TensorFlow version
to 1.4.1, RetinexNet crashes at runtime, while cnn captcha
runs normally. By analyzing the traceback message, it is
found that RetinexNet calls reduce_max(), which is used
to compute the maximum of elements across dimensions of a

githubharald/SimpleHTR: model.py
…
6 import tensorflow as tf
...
72 conv = tf.nn.conv2d(input=pool, filters=kernel, padding='SAME', strides=(1, 1, 1, 1))
...
Traceback (most recent call last):
 File "main.py", line 202, in <module>
 main()
 File "main.py", line 197, in main
 model = Model(char_list_from_file(), decoder_type, must_restore=True, dump=args.dump)
 File "/home/.../SimpleHTR/src/model.py", line 43, in __init__
 self.setup_cnn()
 File "/home/.../SimpleHTR/src/model.py", line 72, in setup_cnn
 conv = tf.nn.conv2d(input=pool, filters=kernel, padding='SAME', strides=(1, 1, 1, 1))
TypeError: conv2d() got an unexpected keyword argument 'filters'

1.13.2

Crash

(a) SimpleHTR
nickliqian/cnn_captcha: network.py
5 import tensorflow as tf
...
65 conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, wc1, strides=[1, 1, 1, 1],
 padding='SAME'), bc1))
...
...
>>> convolution 3: (?, 8, 13, 128)
>>> input batch predict shape: (?, 144)
>>> End model test
...

1.13.2

Normal

(b) cnn captcha
Fig. 2. Execution results of SimpleHTR [15] and cnn captcha [17] in
TensorFlow-1.13.2.

tensor. The keepdims parameter of the API was renamed to
keep_dims in TensorFlow-1.5.0 [18], resulting in the crash
of RetinexNet in a TensorFlow-1.4.1 environment. Conversely,
cnn captcha does not use reduce_max(), continued to
work normally under TensorFlow-1.4.1.

Interestingly, despite utilizing the same APIs, some DL
projects still have DFVC. For example, tensorflow-fast-
style-transfer [14] crashes when Session() is called in
TensorFlow-2.0.0, but SimpleHTR [15] works fine when
invoking Session() in the same framework version, as
depicted in Fig. 1. The API is used to manage and execute
well-defined operations. Further comparing the client code
shows that different import paths of Session() cause
the DFVC. For tensorflow-fast-style-transfer, Session() is
imported from tensorflow directly, i.e., tf.Session().
However, for SimpleHTR, Session() is imported from
tf.compat.v1. Along with the evolution of TensorFlow,
several APIs in 1.X versions have been renamed or
removed since TensorFlow-2.0 [19]. To support the backward
compatibility, TensorFlow-1.X-based projects need to change
the API import path, i.e., APIs should be imported
from tensorflow.compat.v1. Thus, tensorflow-fast-
style-transfer will raise the following error during runtime:
AttributeError: module ’tensorflow’ has no attribute ’Session’.

Besides, Fig. 2 shows another two projects that invoke
the same API but have DFVC. SimpleHTR crashes when
calling 2D convolutional neural network conv2d() under
TensorFlow-1.13.2. However, cnn captcha [17], invoking
the same conv2d(), works fine with this version. By
investigating the client code, unlike the example shown in
Fig. 1, the DFVC is induced by the difference in the parameter
usage of conv2d(). SimpleHTR uses the keyword parameter
filters, while cnn captcha directly uses the positional
parameter. Note that the filters parameter was introduced
in version 1.14 as an alias for the keyword parameter filter,
the setting of the convolution layer output dimension [20].
Therefore, invoking conv2d() with the keyword parameter
filters before TensorFlow-1.14 (e.g., 1.13.2), will lead to
the following error: TypeError: conv2d() got an unexpected
keyword argument ’filters’.

On the other hand, if DL projects are developed using
different Python versions, they could also have DFVC. For
instance, KiU-Net-pytorch [21] was built using Python-3.6.

However, the PyPI repository does not provide the installation
package for PyTorch-1.11.0. Consequently, attempting to
install PyTorch-1.11.0 using the pip command in a Python-
3.6 environment will result in the failure of PyTorch
installation: ERROR: No matching distribution found for
torch==1.11.0. This means that the project is incompatible
with PyTorch-1.11.0. In contrast to KiU-Net-pytorch, SNE-
RoadSeg [22] was developed by Python-3.7, which is officially
compatible with PyTorch-1.11.0. As a result, the project can
be executed successfully in this specific framework version.

From the aforementioned real-world examples, it is evident
that even when utilizing the same framework APIs in the
client code, DL projects may still have DFVC. However, the
occurrence of such phenomena and the underlying causes have
received limited research attention. Existing work focuses on
analyzing the evolution of Python library APIs [23], [24],
automated detecting and repairing deprecated APIs during
evolution [25]–[27].

Therefore, it is crucial to study the DFVC of DL projects,
which can facilitate DL practitioners to improve the framework
version compatibility of client-side code from the lesson
learned. To bridge this knowledge gap, in this paper, we
conduct a large-scale empirical study on 90 PyTorch-based
projects and 50 TensorFlow-based projects collected from
GitHub. To test the framework version compatibility of each
project, we upgrade/downgrade DL framework versions. Then,
we examine the pairs of DL projects with DFVC to investigate
the root causes. Our study mainly addresses the following two
research questions (RQs):

• RQ1. How prevalent is it for DL projects to exhibit
differences in compatible framework versions?

• RQ2. What are the root causes for the difference in
framework version compatibility among DL projects?

Through the examination of RQ1, we can ascertain the
prevalence of the DFVC phenomenon in DL projects and
conduct a comparative analysis of DFVC between PyTorch
and TensorFlow. This RQ guides DL practitioners in selecting
the framework with superior version compatibility. By
investigating RQ2, we can uncover the fundamental reasons
behind DFVC and distill actionable strategies for enhancing
the framework version compatibility of DL projects. In this
paper, we make the following key contributions:

• To the best of our knowledge, we conduct the first
empirical study on the DFVC among DL projects, which
could assist DL practitioners in improving framework
version compatibility of DL projects.

• We identify seven root causes of the DFVC among DL
projects, i.e., Python version, absence of using the same
breaking API, import path, parameter, third-party library,
resource, and API usage constraint. Our empirical study
presents six implications for DL practitioners.

• We make the dataset publicly available at https://doi.org/
10.5281/zenodo.8266949.

II. BACKGROUND

DL projects are projects that employ DL techniques to solve
real-world problems. The development of DL projects relies
on a large number of software and hardware dependencies.
The software and hardware requirements for DL projects
vary depending on the specific project and task. We briefly
describe some common requirements of software and hardware
environments as follows.

Software Dependency. The following are some common
software packages that DL projects depend on:

(1) Operating System: Windows, macOS, and Linux can
all run DL projects. Several practitioners prefer to use the
Linux operating system because it is more compatible with
production environments [28].

(2) Programming Language: Python [29] is the dominant
programming language in developing DL projects.

(3) DL Framework: DL frameworks provide the key
techniques for building neural networks and optimizing
techniques. TensorFlow and PyTorch are the two most popular
DL frameworks nowadays [12], [30].

(4) Third-party Library: Third-party libraries include data
processing libraries (e.g., Numpy [31] and Pandas [32]),
graphics processing libraries (e.g., OpenCV [33] and
Pillow [34]), visualization libraries (e.g., Matplotlib [35] and
Seaborn [36]).

(5) Low-level Library: CUDA and cuDNN are low-level
libraries in DL systems. They provide efficient parallel
computing and DL computation acceleration tools that can
significantly improve model training and inference speed.

Hardware Dependency. The following are some common
hardware that DL projects depend on:

(1) CPU: DL projects can run on CPUs, but because
DL is computationally intensive, it requires high-performance
CPUs [37], such as CPU cluster architectures [38].

(2) GPU: GPUs, typically the Nvidia GPUs, are widely used
in DL projects since they can perform parallel computing and
dramatically increase the speed of training and inference of
DL models.

(3) Memory: DL projects usually require a lot of memory
during the training phase, especially graphics card memory.

III. METHODOLOGY

Fig. 3 illustrates the overview of our empirical study. Details
of each part are described as follows.

A. Data Collection

Tested DL Projects. The tested DL projects are collected
from GitHub. We used two keywords (“pytorch” and
“tensorflow”) to search projects with more than 200 stars
and the programming language set as “Python”. Based on
the filtering conditions, we initially obtained 1,967 and 1,086
projects related to PyTorch and TensorFlow, respectively. All
data were collected up to March 31, 2022. Since testing
all the projects is very time-consuming, we performed data
cleaning and excluded the following types of projects from
our dataset: (1) The project has been archived or deprecated

TABLE I
TESTED DL PROJECTS AND VERSIONS OF DL FRAMEWORKS

DL Framework #Projects #Versions Range Time Frame

TensorFlow 50 66 0.12.0-2.8.0 up to 03/31/22

PyTorch 90 20 1.0.0-1.11.0 up to 03/31/22

by the developers (PyTorch: 33, TensorFlow: 38). (2) The
project does not mention the used version of the DL
framework (PyTorch: 812, TensorFlow: 427). (3) The project
is based on Keras framework, which provides high-level
APIs with a TensorFlow backend (PyTorch: 0, TensorFlow:
222). The projects collected using “tensorflow” may use
both TensorFlow and Keras to build their programs. Keras
is a high-level DL library, which mainly uses TensorFlow
as the backend to implement its functionality. This leads
to tight version constraints between Keras and TensorFlow,
i.e., changing the Keras version often requires changing
the TensorFlow version. (4) The project is difficult to be
configured (PyTorch: 1,032, TensorFlow: 349). For example,
the link to the dataset provided is no longer available.
Following the instructions in README.md, the project still
can not be configured for execution. Finally, we have tested
90 PyTorch and 50 TensorFlow projects, as shown in Table I.

Tested Versions of DL Frameworks. We collected DL
framework versions in the Python-PyPI repository, the official
distribution site. Similarly, the collected time frame is up to
March 31, 2022. As a result, a total of 20 PyTorch versions
(1.0.0-1.11.0) and 66 TensorFlow versions (0.12.0-2.8.0) have
been collected, as depicted in Table I. Note that all these
framework versions can be obtained using the pip command,
e.g., pip install torch==1.11.0.

B. Execution Environment

For each DL project, we deployed the same runtime
environment as follows:

• Host Machine: The host machine is a workstation with
two Intel Xeon Gold 6230R CPUs @ 2.10 GHz (26 cores
with 52 threads), 160 GB memory, 256 GB SSD, 8 TB
HDD storage, and three Nvidia RTX 2080Ti GPU cards.

• Host OS: The OS of the host machine is Ubuntu 18.04.5
LTS Desktop version, a popular Linux distribution.

• Virtual Environment: Virtual environments are created
using Conda. The version of Conda is 4.4.10.

Then, we configured the dependencies of each project, i.e.,
Python version, DL framework, other third-party libraries, and
the required low-level libraries (e.g., CUDA/cuDNN). To avoid
dependency conflicts (e.g., compatibility issues in third-party
libraries) impacted by different projects, we used Conda to
create a virtual environment for each project and restored the
execution environment in it, according to the requirements
mentioned in the project.

• Python Version: The Python version is determined
by the requirements provided in a project. However,
many projects in the collected dataset do not provide
such information. As aforementioned in the introduction,
the Python version will impact the DFVC among DL
projects. Thus, to test as many framework versions as

Vi
+1

Compatible
Versions

Upgrade

(a) Data Collection (b) Execution Environment (c) Upgrade and Downgrade Runs (d) Pairing and Analysis

Incompatible
Upgraded Version

Incompatible
Downgraded Version

Downgrade

Failed?

Failed?

Yes

P1 P2

P2 P1

Analysis

Vi

Incompatible
Downgraded Version

Incompatible
Downgraded Version

Incompatible
Upgraded Version

Incompatible
Upgraded Version

Vi
+2

Vi
+2

V
4

Vi
+1

Vi

Compatible
Versions

Compatible
Versions

P1

P2

Analysis

Hardware
(e.g., CPU, GPU）

Operating System
（Linux）

Programming Languages
（Python）

Third-party Library
(e.g., Numpy, Pandas)

DL Framework
PyTorch/TensorFlow

Low-level Library
（e.g., cuDNN, CUDA）

Yes

No

No

V
4

V
2

V
3

V
3

V
1

V
2

V
1

Conda Venv

Deep Learning (DL)
Framework Versions

Deep Learning (DL)
Projects

PyTorch/TensorFlow

Fig. 3. Overview of our empirical study.

possible, we specified Python-3.6 and Python-3.7 as
the Python interpreter environments for the TensorFlow
projects and the PyTorch projects, respectively. This is
because Python-3.6 is compatible with 60 TensorFlow
versions and Python-3.7 is compatible with all the 20
PyTorch versions.

• DL Framework Version: The starting version of DL
frameworks is set according to requirements.txt, setup.py,
or README.md provided in a project. Note that all the
tested projects have starting versions, since projects that
do not mention the used DL framework version have been
excluded from our dataset.

• Third-party Library: To ensure the tested projects can
be run normally, we also need to install the third-party
libraries that the project depends on. We first checked the
third-party libraries and their versions in requirements.txt,
setup.py, or README.md. If the project does not provide
such information, we relied on the runtime error message,
particularly the ImportError, to identify the missing
dependencies and resolved them until the project can be
executed successfully.

C. Upgrade and Downgrade Runs

To test the framework version compatibility of one project,
we upgraded and downgraded the framework versions and
re-executed the project until it crashed after upgrading or
downgrading. In the following, we used an example to describe
the details of this part.

We followed the steps described in Sec. III-B to
configure the runtime environment for the project cnn-text-
classification-tf [39] with a starting version of the DL
framework, i.e., TensorFlow-1.0.0. Besides, to avoid potential
dependency conflicts between the upgrading and downgrading
environments, we used Conda to generate two virtual
environments for upgrading and downgrading, respectively.

For the upgrade runs, we first updated the starting
version (1.0.0) to the next version (1.0.1) in the virtual
environment using the pip command (e.g., pip install
tensorflow==1.0.1). Then, we recorded the third-party libraries
and their versions provided by conda list command in
the virtual environment. Note that we only upgraded the
DL framework version. Since the DL framework also has
dependencies with other third-party libraries, upgrading the
framework version could also change the versions of some

third-party libraries. After upgrading the framework version,
we continued to run the project and recorded the screen print
information. Repeating the above steps until the project fails
to run properly in two consecutive upgrades, we stopped
the experiments. For example, cnn-text-classification-tf works
fine in versions ranging from 1.0.0 to 1.4.1 but crashes in
versions 1.5.0 and 1.5.1. Similarly, for the downgrade runs,
the procedure is the same as the abovementioned descriptions
for the upgrade runs. For cnn-text-classification-tf, it works
fine in the starting version, i.e., 1.0.0, but fails in versions
0.12.0 and 0.12.1.

It should be noted that the upgrading and downgrading
experiments will be terminated after the project cannot be
executed in both the two consecutive framework versions.
This is because the installation package of PyTorch-1.8.0 in
the Python-PyPI repository lacks the CUDA/cuDNN runtime
libraries for the Nvidia GPU architecture sm-75 (e.g., the
Nvidia RTX 2080Ti cards in our experiment environment)
[40]. As a result, all the PyTorch projects cannot be executed
normally in version 1.8.0. Thus, to mitigate this impact,
the experiment would be terminated if the project cannot
normally run in two consecutive framework versions after
upgrading/downgrading. Another thing worth noting is that
a project does not work properly could also due to the
incompatibility between the Python version specified in
the project and the corresponding upgraded or downgraded
framework versions.

Besides, due to factors such as large training datasets or
complex neural networks with multiple layers, executing these
projects can be time-consuming. For instance, testing a single
framework version may require several hours of computation.
To accelerate the experiments, we made adjustments to
the projects by reducing the number of training epochs or
iterations (e.g., modifying epoch settings) or dividing the
training dataset into smaller subsets. For example, for the cnn-
text-classification-tf project, we modified the default epoch
value of 200 to 1.

Moreover, since DL projects often consist of multiple
source files and invoke various framework APIs, the
compatible framework versions determined by running a
single command may not be representative of the overall
framework compatibility of the entire project. Therefore, to
cover more framework APIs, we executed all the commands

mentioned in README.md that are related to DL training,
testing, and evaluation. For example, for the cnn-text-
classification-tf project, we executed the two commands listed
in README.md for training and testing.

After finishing the above steps, we recorded the framework-
specific version information for the upgrade and downgrade
process, as illustrated in Fig. 3(d):

• Incompatible Upgraded Version (IUV): We refer to
the initial framework version among two consecutive
updates, where the project did not execute properly, as
the incompatible upgraded version (IUV). The project is
unable to execute successfully under both the IUV and
the subsequent newer version during the upgrade process.
However, it functions properly when operating under
an older version that is prior to the IUV. For instance,
TensorFlow-1.5.0 is identified as the IUV of cnn-text-
classification-tf.

• Incompatible Downgraded Version (IDV): Likewise,
we refer to the initial framework version among two
consecutive downgrades, where the project did not
operate as intended, as the incompatible downgraded
version (IDV). During the downgrade process, the project
did not work properly under both the IDV and the older
released version. In contrast, it performs well with a
newer version that is more recent than the IDV. For
example, TensorFlow-0.12.1 is the IDV of cnn-text-
classification-tf.

• Compatible Versions: The framework versions in
which projects can run smoothly are considered
compatible versions. For instance, cnn-text-classification-
tf is compatible with a range of TensorFlow versions from
1.0.0 to 1.4.1, encompassing a total of 8 versions.

D. Pairing and Analysis

Identification of DFVC Pairs. To investigate the root
causes of DFVC, we first identified all the project pairs,
where one project can run successfully with a specific version
while the other project fails to do so. The pairing process
is described as follows. For the example shown in Fig. 3(d),
given two projects P1 and P2, the IUV of P1 belongs to the
compatible versions of P2, and the IDV of P2 is compatible
with P1. Thus we obtain two pairs (P1, P2) and (P2, P1),
respectively. Note that for the pair (x, y), x represents the
project is incompatible with a specific framework version,
while y denotes the project is compatible with that version.

We finally obtained 6,926 pairs and further classified them
into three categories (Table II): (1) project y and project x
use different Python versions, (2) project y does not call the
framework API involved in project x’s error message, and (3)
project y calls the framework API involved in project x’s error
message. The labeling details are presented as follows:

• Step 1: For a pair (x, y), if the Python version of project
x is incompatible with its IUV or IDV, the pair will
be classified as category (1); otherwise, we investigated
the traceback message of project x to determine the
framework API that causes project x to crash. For

 Traceback (most recent call last):
 File "train.py", line 197, in <module>
 tf.app.run()
 File "/home/.../site-packages/tensorflow/python/platform/app.py"...
 sys.exit(main(sys.argv[:1] + flags_passthrough))
 File "train.py", line 194, in main
 train(x_train, y_train, vocab_processor, x_dev, y_dev)
 File "train.py", line 92, in train
 l2_reg_lambda=FLAGS.l2_reg_lambda)
 File "/home/.../cnn-text-classification-tf/text_cnn.py"...
 self.h_pool = tf.concat(pooled_outputs, 3)
 File "/home/.../site-packages/tensorflow/python/ops/array_ops.py"...
 dtype=dtypes.int32).get_shape(
 File "/home/.../site-packages/tensorflow/python/framework/ops.py"...
 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
 File "/home/.../site-packages/tensorflow/python/framework/constant_op.py"...
 return constant(v, dtype=dtype, name=name)
 File "/home/.../site-packages/tensorflow/python/framework/constant_op.py"...
 tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
 File "/home/.../site-packages/tensorflow/python/framework/tensor_util.py"...
 _AssertCompatible(values, dtype)
 File "/home/.../site-packages/tensorflow/python/framework/tensor_util.py"...
 (dtype.name, repr(mismatch), type(mismatch).__name__))
 TypeError: Expected int32, got list containing Tensors of type '_Message' instead.

Client

Client

Framework

Error

Framework

API

Fig. 4. Traceback of cnn-text-classification-tf executed in TensorFlow-0.12.1.

TABLE II
DISTRIBUTION OF DFVC PAIRS

Category (1) Python (2) w/o. the same API (3) w. the same API

#Pairs 1,415 4,627 884

%Percentage 20.4% 66.8% 12.8%

example, Fig. 4 shows the traceback message of cnn-
text-classification-tf. We can see that the TensorFlow API
concat() is called in the client code, which is the
closest to the TypeError message. Thus, the framework
API that caused the project to crash is concat().

• Step 2: After obtaining the framework API in step 1, we
wrote a script to match the API in the source code of
project y automatically to determine whether the API is
also used by project x. If the API does not match, the
pair is classified as category (2); otherwise, we proceed
with the following step for further analysis.

• Step 3: Although project y uses the framework API that
caused project x to crash, it does not necessarily imply
that the API is invoked during runtime. The upgrade
and downgrade runs may not cover the API invocations.
Therefore, we manually inserted a print statement, i.e.,
print(“compatibility”), before the API calling statement
in project y. We then executed project y to determine
whether the inserted token was printed during runtime. If
the token was printed, the pair will be labeled as category
(3); otherwise, it is classified as category (2).

Investigation of Root Causes. Since the reasons behind the
types (1) and (2) DFVC pairs are relatively apparent (i.e., the
Python version and the absence of using the same breaking
API), our focus shifted towards analyzing the root causes of
type (3) pairs.

First, we divided 884 pairs of category (3) into 54 groups
based on the unique x in pair (x, y), i.e., 54 projects. For
each group, we analyzed the cause of the compatibility issue
of the project x. Then, we compared the client code of project
y that calls the same framework API, as well as the third-
party libraries and their versions, as described in Sec. III-C,
to investigate why projects x and y have DFVC, i.e., project
x crashes but project y works normally under the same
framework version.

Then, by modifying the client code of project y or the
related third-party libraries and versions, we determined
whether project y also has the same compatibility issue with
the framework version that project x does not execute properly.
For cross-validation, we also modified the calling framework
API in the client code or third-party libraries and versions of
project x according to why project y can run properly (e.g.,
API import path and the installed third-party library). This can

(a) Within-Framework (b) Cross-Frameworks
Fig. 5. Distribution of compatible versions of PyTorch and TensorFlow
projects.

further verify whether project x can run properly and validate
the identified root cause of the DFVC pair.

IV. RESULTS AND ANALYSIS

A. RQ1: Prevalence of Difference in Framework Version
Compatibility Among DL Projects

To analyze the prevalence of DFVC, we compared
the framework version compatibility from two aspects:
compatibility differences within the same framework and cross
frameworks, as shown in Fig. 5.

Compatibility Differences Within the Same DL
Framework. Fig. 5(a) shows the distribution of the number
of compatible framework versions of PyTorch and TensorFlow
projects, respectively. It can be seen that both PyTorch
and TensorFlow projects differ in the number of framework
versions that they are compatible with. The result is expected,
as mentioned in the introduction section, the differences in
the framework API used by each project and the version of
Python used for project development can lead to DFVC.

Compatibility Differences Cross DL Frameworks. Since
the number (66) of TensorFlow versions tested is larger
than the number (20) of PyTorch versions, the number of
compatible framework versions for the TensorFlow projects
shown in Fig. 5(a) is larger than those of the PyTorch
projects. However, this can not imply that the framework
version compatibility of TensorFlow is better than that of
PyTorch. Therefore, we normalized the number of compatible
framework versions of projects, i.e., the number of compatible
versions/total number of framework versions, to evaluate the
compatibility of TensorFlow and PyTorch framework versions.
As depicted in Fig. 5(b), the PyTorch projects have better
framework version compatibility than the TensorFlow projects.

Answer to RQ1: The difference in framework version
compatibility is prevalent among DL projects. The
number of compatible framework versions for the tested
PyTorch projects ranges from 1 to 20, while the number
for the tested TensorFlow projects ranges from 2 to
38. The framework version compatibility of PyTorch
projects is better than that of TensorFlow projects.

B. RQ2: Root Causes of Difference in Framework Version
Compatibility Among DL Projects

We summarized the root causes of DFVC into seven types:
including Python version, absence of using the same breaking
API, import path, parameter, third-party library, resource, and

Root Causes of Compatibility
Differences (6,926)

[RC4]
Parameter

[RC3]
Import Path

[RC4.1]
Keyword and

Positional Parameter

[RC4.3]
Parameter Type

[RC7]
API Usage Constraint

[RC4.4]
Parameter Value

[RC4.2]
Optional Parameter

[RC4.5]
PyTorch and Numpy

Parameter

[RC6]
Resource

[RC5]
Third-party Library

23 24 81 36 17

49 181 494 48 112

[RC1]
Python Version

[RC2]
Absence of Using the

Same Breaking API

1,415 4,627

Fig. 6. Root causes of compatibility differences.
Collecting torch==1.6.0
 Could not find a version that satisfies the requirement torch==1.6.0 (from versions: 1.0.0,
1.0.1, 1.0.1.post2, 1.1.0, 1.2.0, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.5.1)
No matching distribution found for torch==1.6.0

Python 3.5

(a) AttentionWalk
loading pretrained model from ./data/crnn.pth
a-----v--a-i-l-a-bb-l-e--- => available NormalPython 3.7

(b) crnn.pytorch
Fig. 7. Execution results of AttentionWalk [41] and crnn.pytorch [42] in
PyTorch-1.6.0.

API usage constraint, as depicted in Fig. 6. Note that the
five root causes import path, parameter, third-party library,
resource, and API usage constraint are identified through
analyzing all the category (3) DFVC pairs, as described in
Sec. III-D. In the following, we will discuss each type in detail.

1) Root Cause 1: Python Version: Definition: the
difference in the framework version compatibility for DL
projects is related to the Python version. As described
in the Introduction, DL projects may have DFVC if they
were developed using different Python versions. Fig. 7 shows
another example. The PyTorch project AttentionWalk [41] was
created by Python-3.5. However, PyTorch-1.6.0’s installation
package is not available in the PyPI repository for Python-
3.5. Thus, attempting to install PyTorch-1.6.0 with the pip
command in a Python-3.5 environment will lead to the failure
of PyTorch installation: ERROR: No matching distribution
found for torch==1.6.0. In contrast to AttentionWalk, project
crnn.pytorch [42] was developed using Python-3.7, which is
compatible with PyTorch-1.6.0. As a result, the project can
execute successfully in PyTorch-1.6.

2) Root Cause 2: Absence of Using the Same Breaking
API: Definition: the difference in the framework version
compatibility for DL projects is related to the absence of
using the same breaking API. If two DL projects utilized
different APIs, it is intuitive that they are likely to have
DFVC. For instance, Group-Normalization-Tensorflow [43]
and cnn captcha [17], two projects based on TensorFlow-
1.3.0 and TensorFlow-1.7.0, respectively. The project
Group-Normalization-Tensorflow crashes at runtime when
downgrading the TensorFlow version to 1.0.1, but cnn captcha
continues to function as intended. By analyzing the traceback
message, it is found that Group-Normalization-Tensorflow
invokes the optimizing loss function optimize_loss()
with parameter increment_global_step, which was
introduced in TensorFlow version 1.1 [44]. Therefore,
Group-Normalization-Tensorflow cannot work properly in a
TensorFlow-1.0.1 environment. Conversely, cnn captcha runs
normally under TensorFlow-1.0.1, since it does not call the
optimize_loss() function.

myungsub/CAIN: main.py
...
11 from torch.utils.tensorboard import SummaryWriter
...
Traceback (most recent call last):
 File "main.py", line 11, in <module>
 from torch.utils.tensorboard import SummaryWriter
 File "/home/.../torch/utils/tensorboard/__init__.py", line 4, in <module>
 LooseVersion = distutils.version.LooseVersion
AttributeError: module 'distutils' has no attribute 'version'

1.9.0

Crash

(a) CAIN

...

...

lufficc/SSD: trainer.py
...
64 try:
65 from torch.utils.tensorboard import SummaryWriter
66 except ImportError:
67 from tensorboardX import SummaryWriter
...

1.9.0

Normal

(b) SSD
Fig. 8. Execution results of CAIN [45] and SSD [46] in PyTorch-1.9.0.

3) Root Cause 3: Import Path: Definition: the difference
in the framework version compatibility for DL projects is
related to the API import path. APIs in a DL framework
could be added, removed, or relocated with the framework’s
evolution. Therefore, importing APIs from different paths may
lead to DFVC, as the example illustrated in Fig. 1.

Fig. 8 shows another case where the project CAIN [45]
crashes in PyTorch-1.9.0 because it uses the following line
of code: from torch.utils.tensorboard import SummaryWriter.
However, the project SSD [46] also uses this code but runs
properly. By comparing the client-side code, it is found
that SSD implements an exception catch statement to catch
the error raised by from torch.utils. tensorboard import
SummaryWriter and replaces it with from tensorboardX import
SummaryWriter to avoid the error. CAIN is incompatible
with PyTorch-1.9.0 because the module Distutils is no longer
imported from Python since PyTorch-1.9.0, but instead, it is
imported from Setuptools [47]. However, the implementation
of the Distutils in Setuptools is different from the one
in the Python standard library. For example, the Distutils
module in Setuptools does not contain the version attribute.
Consequently, AttributeError will occur (Fig. 8(a)).

4) Root Cause 4: Parameter: Definition: the difference
in the framework version compatibility for DL projects is
related to API parameters. API Parameters are frequently
changing during the evolution of DL frameworks, leading to
parameter-related compatibility issues that are prevalent in DL
projects [13]. In particular, we observed the following five
subtypes of root cause 4:

• Keyword and Positional Parameter. Definition: the
difference in the framework version compatibility for
DL projects is related to the use of keyword and
positional parameters. In Python programs, APIs can
be called with both keyword and positional parameters.
As the framework evolves, compatibility issues may
appear if keyword parameters have been added, renamed,
or removed. Therefore, using keywords or parameter
positions for parameter passing may lead to DFVC.
For the examples shown in Fig. 2 and Fig. 9,
SimpleHTR [15] crashes when calling conv2d() in
TensorFlow-1.13.2, while projects cnn captcha [17] and
neural-style [48] works normally. The commonality of the
two projects is that they all use the positional parameter
to pass the output dimension of the convolutional
layer. Still, SimpleHTR uses the keyword parameter

githubharald/SimpleHTR: model.py
…
6 import tensorflow as tf
...
72 conv = tf.nn.conv2d(input=pool, filters=kernel, padding='SAME', strides=(1, 1, 1, 1))
...
Traceback (most recent call last):
 File "main.py", line 202, in <module>
 main()
 File "main.py", line 197, in main
 model = Model(char_list_from_file(), decoder_type, must_restore=True, dump=args.dump)
 File "/home/.../SimpleHTR/src/model.py", line 43, in __init__
 self.setup_cnn()
 File "/home/.../SimpleHTR/src/model.py", line 72, in setup_cnn
 conv = tf.nn.conv2d(input=pool, filters=kernel, padding='SAME', strides=(1, 1, 1, 1))
TypeError: conv2d() got an unexpected keyword argument 'filters'

1.13.2

Crash

(a) SimpleHTR
anishathalye/neural-style: vgg.py
…
5 import tensorflow.compat.v1 as tf
...
97 conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1), padding="SAME")
...
...
Iteration 1/ 1
content loss: 2.0134e+06
 style loss: 6.78778e+07
 tv loss: 23257.1
 total loss: 6.99145e+07

1.13.2

Normal

(b) neural-style
Fig. 9. Execution results of SimpleHTR [15] and neural-style [48] in
TensorFlow-1.13.2.

weichen582/RetinexNet: model.py
...
8 import tensorflow as tf
...
17 input_max = tf.reduce_max(input_im, axis=3, keepdims=True)
...
...
Traceback (most recent call last):
 File "/home/.../RetinexNet/model.py", line 17, in DecomNet
 input_max = tf.reduce_max(input_im, axis=3, keepdims=True)
TypeError: reduce_max() got an unexpected keyword argument 'keepdims'

1.4.1

Crash

(a) RetinexNet
wizyoung/YOLOv3_TensorFlow: model.py
...
7 import tensorflow as tf
...
230 best_iou = tf.reduce_max(iou, axis=-1)
...

...
Init with stored values from ../model/snapshot-1
Recognized: "word"
Probability: 0.9937934279441833

1.4.1

Normal

(b) YOLOv3 TensorFlow
Fig. 10. Execution results of RetinexNet [16] and YOLOv3 TensorFlow [49]
in TensorFlow-1.4.1.

(i.e., filters), which is added as an alias of the
keyword parameter filter in TensorFlow-1.14.0 [20].
Therefore, SimpleHTR is incompatible with TensorFlow-
1.13.2, while projects cnn captcha and neural-style are
compatible with the framework version.

• Optional Parameter. Definition: the difference in the
framework version compatibility for DL projects is
related to whether the optional parameter is used. Some
parameters of DL framework APIs often have default
values, i.e., optional parameters, which can be used
without passing values when invoking the APIs. Along
with the framework’s evolution, optional parameters of
APIs may be removed or renamed. Therefore, employing
keyword-based value passing for optional parameters
may lead to DFVC. As depicted in Fig. 10, the project
RetinexNet [16] calls reduce_max() in TensorFlow-
1.4.1 causing the project to crash. reduce_max()
is used to compute the maximum of elements across
the dimensions of a tensor. However, the project
YOLOv3 TensorFlow [49] also calls reduce_max()
under TensorFlow-1.4.1, but it works normally. The
reason is that the two projects use the optional parameter
differently. RetinexNet uses the keyword parameter
keepdims, while YOLOv3 TensorFlow utilizes the
default value (None) for this optional parameter. In
the evolution of TensorFlow, the keyword keepdim
was renamed to keepdims in 1.5.0 [18]. Therefore,
using the keyword keepdims before version 1.5.0 (e.g.,
1.4.1) will result in the following error: TypeError:
reduce max() got an unexpected keyword argument
’keepdims’, as shown in Fig. 10.

lengstrom/fast-style-transfer: transform.py
1 import tensorflow as tf, pdb
...
66 weights_init = tf.Variable(tf.random.truncated_normal(weights_shape,
 stddev=WEIGHTS_INIT_STDEV, seed=1), dtype=tf.float32)
...

...
Traceback (most recent call last):
 ...
 File "src/transform.py", line 66, in _conv_init_vars
 weights_init = tf.Variable(tf.random.truncated_normal(weights_shape,
 stddev=WEIGHTS_INIT_STDEV, seed=1), dtype=tf.float32)
 File "/home/l.../site-packages/tensorflow/python/ops/random_ops.py", line 173, in
 truncated_normal
 ...
TypeError: Failed to convert object of type <class 'list'> to Tensor. Contents: [9, 9,
Dimension(3), 32]. Consider casting elements to a supported type.

1.14.0 [9, 9, Dimension(3), 32]

Crash

(a) fast-style-transfer
githubharald/SimpleHTR: model.py
...
6 import tensorflow as tf
...
69 kernel = tf.Variable(
70 tf.random.truncated_normal([kernel_vals[i], kernel_vals[i], feature_vals[i], feature_vals[i + 1]],
71 stddev=0.1))
...

...
Recognized: "word"
Probability: 0.9936366677284241

1.14.0 [1, 1, 512, 80]

Normal

(b) SimpleHTR
Fig. 11. Execution results of fast-style-transfer [50] and SimpleHTR [15] in
TensorFlow-1.14.0.

• Parameter Type. Definition: the difference in the
framework version compatibility for DL projects is
related to parameter types. When calling the API,
different value types passing to parameters could
lead to DFVC. Fig. 11 shows that the project fast-
style-transfer [50] crashes in TensorFlow-1.14.0 when
calling truncated_normal(), a function used to
generate truncated normally distributed random numbers.
However, the project SimpleHTR [15] also calls
truncated_normal() but is compatible with the
same framework version. Further investigation reveals
that the type of input value assigned to the parameter
shape is different. In the case of fast-style-transfer, the
input for the shape parameter is [9, 9, Dimension(3),
32], where the third index corresponds to the type
tensorflow.python.framework.Dimension. On the other
hand, SimpleHTR utilizes [1, 1, 512, 80] as the input for
the shape parameter, with the third index being type
int. The dimension type is not supported in TensorFlow-
1.14.0, which was fixed in 1.15.0 [51].

• Parameter Value. Definition: the difference in the
framework version compatibility for DL projects is
related to parameter values. As depicted in Fig. 12,
the projects ConSinGAN [52] and KiU-Net-pytorch [21]
exhibit different framework version compatibility with the
tensor interpolation operation interpolate() when
using PyTorch-1.0.1. This is because the two projects
invoke interpolate() with distinct input values for
the mode parameter. Specifically, ConSinGAN inputs
bicubic, while KiU-Net-pytorch inputs bilinear.
Note that the bicubic feature was introduced in
PyTorch-1.1.0 [53]. As a result, employing bicubic as
the value for the mode parameter before version 1.1.0
leads to the NotImplementedError in Fig. 12(a).

• PyTorch and Numpy Parameter. Definition: the
difference in the framework version compatibility for
DL projects is related to using the PyTorch and Numpy
parameters. DL projects often involve a large number of
tensor operations. Both PyTorch and Numpy define many
functions for tensor operations, such as sum(), max(),
etc. Parameter names between the tensor operations
functions defined in PyTorch and Numpy are slightly

tohinz/ConSinGAN: models.py
…
2 import torch
...
29 x_up = torch.nn.functional.interpolate(x, size=size, mode='bicubic', align_corners=True)
...

Traceback (most recent call last):
 ...
 File "/home/.../ConSinGAN/ConSinGAN/models.py", line 29, in upsample
 x_up = torch.nn.functional.interpolate(x, size=size, mode='bicubic', align_corners=True)
 File "/home/.../site-packages/torch/nn/functional.py", line 2459, in interpolate
 " (got {})".format(input.dim(), mode))
NotImplementedError: Input Error: Only 3D, 4D and 5D input Tensors supported (got 4D) for
the modes: nearest | linear | bilinear | trilinear (got bicubic)

1.0.1

Crash

(a) ConSinGAN
jeya-maria-jose/KiU-Net-pytorch: ae.py
…
11 import torch.nn.functional as F
...
41 out = F.relu(F.interpolate(self.decoder3(out),scale_factor=(2,2),mode ='bilinear'))
...

...
Total_params: 291234
epoch [0/1], loss:0.6605

1.0.1

Normal

(b) KiU-Net-pytorch
Fig. 12. Execution results of ConSinGAN [52] and KiU-Net-pytorch [21] in
PyTorch-1.0.1.

polarisZhao/PFLD-pytorch: loss.py
1 import torch
...
13 weight_angle = torch.sum(1 - torch.cos(angle - euler_angle_gt), axis=1)
...

Traceback (most recent call last):
 ...
 File "/home/.../torch/nn/modules/module.py", line 493, in __call__
 result = self.forward(*input, **kwargs)
 File "/home/.../PFLD-pytorch/pfld/loss.py", line 13, in forward
 weight_angle = torch.sum(1 - torch.cos(angle - euler_angle_gt), axis=1)
TypeError: sum() received an invalid combination of arguments - got (Tensor, axis=int), but
...

1.1.0

Crash

(a) PFLD-pytorch
lukasruff/Deep-SAD-PyTorch: distributions.py
…
2 import torch
...
39 cross_entropy = -torch.sum(p * torch.log(prior + eps), dim=1)
...

...
INFO:root:Finished training.
INFO:root:Starting testing...
INFO:root:Test Loss: 1.576255
INFO:root:Test AUC: 82.45%
INFO:root:Test Time: 0.678s
INFO:root:Finished testing.

1.1.0

Normal

(b) Deep-SAD-PyTorch
Fig. 13. Execution results of PFLD-pytorch [56] and Deep-SAD-PyTorch [57]
in PyTorch-1.1.0.

different. To facilitate user convenience [54], automatic
translations of parameter names in Numpy to the
corresponding PyTorch APIs were introduced in PyTorch-
1.2.0 [55]. For example, the parameter axis in Numpy
is automatically translated to dim in PyTorch APIs.
Therefore, if one project uses the Numpy parameter
in PyTorch APIs with a version before 1.2.0, it will
encounter a crash. Conversely, if the project uses PyTorch
parameters, it will work normally, as shown in Fig. 13.

5) Root Cause 5: Third-party Library: Definition: the
difference in the framework version compatibility for
DL projects is related to third-party libraries and
their versions. Due to the dependency constraints of DL
frameworks on third-party libraries, the version of these
third-party libraries could be changed when upgrading or
downgrading the framework versions. This may lead to
version conflicts between these libraries and other third-party
libraries. Fig. 14 shows that the project siamese tf mnist [58]
fails to import Matplotlib in TensorFlow-1.10.0, while
cnn captcha [17] imports Matplotlib normally with the same
framework version. By comparing the record of conda list
in the starting version’s virtual environment, we found that
the installed Matplotlib versions for siamese tf mnist and
cnn captcha are 3.3.4 and 2.1.0, respectively. Note that
TensorFlow-1.10.0 requires the compatible Numpy version
satisfying (>=1.13.3,<=1.14.5). When TensorFlow-1.10.0
is installed, it will change the Numpy version to 1.14.5.
However, the compatible Numpy versions for Matplotlib
versions 2.1.0 and 3.3.4 are (>= 1.7.1) and (>=1.15),
respectively. Consequently, the dependency conflict between

ywpkwon/siamese_tf_mnist: visualize.py
1 from tensorflow.examples.tutorials.mnist import input_data
...
4 import matplotlib.pyplot as plt
...

Traceback (most recent call last):
 File "run.py", line 22, in <module>
 import visualize
 File "/home/.../tensorflow/1.5/siamese_tf_mnist/visualize.py", line 4, in <module>
 import matplotlib.pyplot as plt
 File "/home/.../site-packages/matplotlib/__init__.py", line 174, in <module>
 _check_versions()
 File "/home/.../site-packages/matplotlib/__init__.py", line 171, in _check_versions
 .format(modname, minver, module.__version__))
ImportError: Matplotlib requires numpy>=1.15; you have 1.14.5

1.10.0 3.3.4

Crash

(a) siamese tf mnist
nickliqian/cnn_captcha: train_model.py
…
4 import tensorflow as tf
...
6 import matplotlib.pyplot as plt
...
...
...loss 0.1267512441
...loss 0.1267512441
...

1.10.0

2.1.0

Normal

(b) cnn captcha
Fig. 14. Execution results of siamese tf mnist [58] and cnn captcha [17] in
TensorFlow-1.10.0.

AlexHex7/Non-local_pytorch: non_local_embedded_gaussian.py
1 import torch
...
85 f = torch.matmul(theta_x, phi_x)
...
Traceback (most recent call last):
 File "demo_MNIST_train.py", line 40, in <module>
 predict = net(img_batch)
 ...
 File "/home/.../torch/nn/modules/module.py", line 493, in __call__
 result = self.forward(*input, **kwargs)
 File "/home/.../Non-local_pytorch/lib/non_local_embedded_gaussian.py", line 85, in forward
 f = torch.matmul(theta_x, phi_x)
RuntimeError: cublas runtime error : the GPU program failed to execute at /pytorch/aten/src/
THC/THCBlas.cu:450

1.1.0

Crash

(a) Non-local pytorch
benedekrozemberczki/SimGNN: demo.py
…
3 import torch
...
37 global_context = torch.mean(torch.matmul(embedding, self.weight_matrix), dim=0)
...
...
Baseline error: 0.41597.Model test error: 0.99222.

Model test error: 0.99222.

1.1.0

Normal

(b) SimGNN
Fig. 15. Execution results of Non-local pytorch [59] and SimGNN [60] in
PyTorch-1.1.0.

Numpy and Matplotlib occurs in the siamese tf mnist project.
6) Root Cause 6: Resource: Definition: the difference

in the framework version compatibility for DL projects
is related to computing resources. During the evolution
of DL frameworks, there is a continuous effort to optimize
APIs, which often leads to reduced computing resources
required for completing operations. Therefore, when two
DL projects require different computing resources, they may
experience DFVC after downgrading the framework version.
Fig. 15 shows that the project Non-local pytorch [59] calls
matmul() (matrix product of two tensors) with an error in
PyTorch-1.1.0, while SimGNN [60] runs normally. Further
investigation revealed that the Non-local pytorch project
requires more computing resources than SimGNN when
performing the matrix product operation. PyTorch optimized
the implementation code of matmul() in version 1.2.0 [61],
which makes the matrix product operation of tensors with
improved performance running on both CPU and GPU
platforms [61]. Therefore, when the PyTorch version was
downgraded from 1.2.0 to 1.1.0, Non-local pytorch would
encounter the RuntimeError, as depicted in Fig. 15(a).

7) Root Cause 7: API Usage Constraint: Definition: the
difference in the framework version compatibility for DL
projects is related to API usage constraints. Several APIs in
DL frameworks have specific requirements for the data to be
processed, such as view() in PyTorch for transforming the
shape of a tensor. The API requires that the processed tensor
is stored contiguously in memory; otherwise, a runtime error
occurs [62]. As shown in Fig. 16, both MixMatch-pytorch [63]
and crnn.pytorch [42] invoke view() in PyTorch-1.7.0, but

YU1ut/MixMatch-pytorch: eval.Py
1 impot torch
...
16 correct_k = correct[:k].view(-1).float().sum(0)
...
Traceback (most recent call last):
 File "train.py", line 417, in <module>
 main()
 File "train.py", line 147, in main
 _, train_acc = validate(labeled_trainloader, ema_model, criterion, epoch, use_cuda,
mode='Train Stats')
 File "train.py", line 329, in validate
 prec1, prec5 = accuracy(outputs, targets, topk=(1, 5))
 File "/home/.../MixMatch-pytorch/utils/eval.py", line 16, in accuracy
 correct_k = correct[:k].view(-1).float().sum(0)
RuntimeError: view size is not compatible with input tensor's size and stride (at least one
dimension spans across two contiguous subspaces). Use .reshape(...) instead.

1.7.0

Crash

(a) MixMatch-pytorch
meijieru/crnn.pytorch: demo.py
1 import torch
…
34 preds = preds.transpose(1, 0).contiguous().view(-1)
...
loading pretrained model from ./data/crnn.pth
a-----v--a-i-l-a-bb-l-e--- => available

1.7.0

Normal

(b) crnn.pytorch
Fig. 16. Execution results of MixMatch-pytorch [63] and crnn.pytorch [42]
in PyTorch-1.7.0.

the latter project works properly. This is because MixMatch-
pytorch calls view(-1) with a non-continuous tensor,
whereas crnn.pytorch employs the contiguous() function
to convert the tensor into a continuous one before invoking
view(-1).

Answer to RQ2: The root causes of the difference in
framework version compatibility among DL projects
include Python version, absence of using the same
breaking API, import path, parameter, third-party
library, resource, and API usage constraint.

V. IMPLICATIONS

Based on our empirical analysis, we summarized six
implications for DL practitioners.

• Implication #1: PyTorch exhibits better framework
version compatibility compared to TensorFlow. For
achieving better framework version compatibility of DL
projects, PyTorch can be chosen as the development
framework. Besides, it is recommended to choose
a specific Python version, which is compatible with
more framework versions. For example, Python-3.6 for
TensorFlow projects (compatible with most versions from
0.12.1 to 2.6.2), while Python-3.7 for PyTorch projects
(compatible with versions from 1.0.0 to 1.11.0). This is
because these versions demonstrate better compatibility
with their respective frameworks.

• Implication #2: Developers should be mindful of
potential changes in API import paths when switching
between different framework versions. It is important
to update the API import paths accordingly to ensure
compatibility and avoid runtime errors. For example,
to improve the framework version compatibility
of TensorFlow-1.X projects against TensorFlow-
2.X versions, the APIs should be imported from
tensorflow.compat.v1.

• Implication #3: To enhance the forward and backward
compatibility of DL framework versions, developers
are suggested to utilize a try and except statement to
catch exceptions when encountering compatibility issues
after upgrading or downgrading the framework version.
Rather than directly modifying the problematic code, this

approach allows for fault tolerance, enabling the project
to handle compatibility issues caused by framework
version changes gracefully.

• Implication #4: When upgrading or downgrading a DL
framework, it is crucial to carefully examine whether
the APIs used comply with the requirements of the
new framework version. In particular, developers should
pay attention to the parameters, including keyword and
positional parameters, parameter types, and parameter
values. It is essential to ensure that the API calls align
with the specifications and changes introduced in the
updated or downgraded framework version.

• Implication #5: When upgrading or downgrading DL
framework versions, developers should pay attention
to the changes in associated third-party libraries.
To avoid dependency conflicts between third-party
libraries, developers can leverage various tools, such
as PyEGo [64], smartPip [65], and Watchman [66],
which can assist in automatically managing and resolving
version conflicts between different third-party libraries.

• Implication #6: To improve the framework version
compatibility of DL projects, developers should be
mindful of API usage constraints or use static value-
flow analysis [67] to reason about the constraints.
For example, when using the view() operation to
manipulate a tensor in PyTorch projects, it is suggested to
invoke contiguous() function beforehand to ensure
that the data is stored contiguously in memory. By
adhering to recommended usage patterns and considering
the constraints imposed by specific APIs, developers
can minimize compatibility issues and ensure smoother
transitions between framework versions.

Note that, since the DL projects examined in this paper
are all based on Python development, some findings and
implications might also hold relevance for non-DL Python
projects. Particularly, implications #1, #2, and #6 are
specifically proposed for DL projects.

VI. THREATS TO VALIDITY

Internal Threat. The threat to internal validity mainly comes
from our experiments. First, the tested compatible framework
versions were obtained by executing the commands provided
in the projects. However, the used API in the project may not
be covered by the testing. To reduce this threat, we performed
all the commands of the project. Besides, the determination of
the error-induced API for DFVC pairing is considered another
threat. For example, for some DL projects, it is difficult to trace
the error-induced API, such as a variable assigned by an API
invoking. This could impact the identification of DFVC pairs
that used the same API. Moreover, Our methodology focuses
on investigating the DFVC induced by software-related issues
rather than hardware-related issues.
External Threat. The threat to external validity mainly comes
from the generalization of our finding results. To reduce this
threat, we tested 140 DL projects based on the two most
representative DL frameworks (i.e., TensorFlow and PyTorch)

with all officially released framework versions in the Python-
PyPI repository. However, the choice of only two frameworks
may limit the generalization of our finding results. In the
future, we plan to investigate more projects and frameworks
to enhance our empirical results.

VII. RELATED WORK

Python is a popular programming language that offers a
wide range of third-party libraries. Over time, the APIs of
third-party libraries may undergo changes, which can result
in compatibility issues when upgrading/downgrading library
versions in client code. Existing research has primarily focused
on analyzing API evolution trends and detecting breaking
changes [13], [23], [24], detecting and fixing deprecated
APIs [25]–[27], [68], [69]. Zhang et al. [13] analyzed the API
evolution patterns by extracting APIs from six typical Python
frameworks (i.e., TensorFlow, Keras, Scikit-Learn, Pandas,
Flask, and Django) and found that breaking changes caused by
Python API evolution are distinct from Java APIs. Haryono et
al. [26] characterized the deprecated APIs by conducting an
empirical study of 112 deprecated APIs from three popular
machine learning libraries (i.e., Scikit-Learn, TensorFlow, and
PyTorch). They found that the deprecated APIs are updated
mainly from three dimensions: operation, API mapping, and
context dependency. They further proposed MLCatchUp [27]
to can automate the update of deprecated API usages by
inferring the transformation between deprecated and updated
API signatures. Our study differs from the aforementioned
literature in that it is the first empirical study of the difference
in framework version compatibility among DL projects.

VIII. CONCLUSION

In this paper, we conducted the first empirical study to
investigate the difference in framework version compatibility
among DL projects. We tested 90 PyTorch and 50 TensorFlow
projects with 20 PyTorch and 66 TensorFlow framework
versions. By analyzing the experiment results, we summarized
seven root causes, i.e., Python version, absence of using the
same breaking API, import path, parameter, third-party library,
resource, and API usage constraint, to answer why DL projects
differ in compatible framework versions. We further provided
six implications for DL practitioners. We believe this study can
provide a better understanding of the difference in framework
version compatibility for DL projects.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments. This work was supported in part by National
Natural Science Foundation of China under Grant 62002163,
Natural Science Foundation of Jiangsu Province under Grant
BK20200441, Australian Research Council under Grant
DP210101348, and National Key Research and Development
Program of China under Grant 2019YFE0198100. Any
opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the above sponsoring
entities.

REFERENCES

[1] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: An
overview,” in Proceedings of 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 8599–
8603.

[2] Y. Goldberg, “A primer on neural network models for natural language
processing,” Journal of Artificial Intelligence Research, vol. 57, pp. 345–
420, 2016.

[3] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705–724, 2015.

[4] Y. Sui, X. Cheng, G. Zhang, and H. Wang, “Flow2vec: Value-flow-based
precise code embedding,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–27, 2020.

[5] C. Watson, N. Cooper, D. N. Palacio, K. Moran, and D. Poshyvanyk,
“A systematic literature review on the use of deep learning in software
engineering research,” ACM Transactions on Software Engineering and
Methodology, vol. 31, no. 2, pp. 1–58, 2022.

[6] G. Xiao, X. Du, Y. Sui, and T. Yue, “Hindbr: Heterogeneous information
network based duplicate bug report prediction,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE),
2020, pp. 195–206.

[7] X. Du, Z. Zheng, G. Xiao, Z. Zhou, and K. S. Trivedi, “Deepsim: Deep
semantic information-based automatic mandelbug classification,” IEEE
Transactions on Reliability, vol. 71, no. 4, pp. 1540–1554, 2021.

[8] J. Zhu, G. Xiao, Z. Zheng, and Y. Sui, “Enhancing traceability
link recovery with unlabeled data,” in 2022 IEEE 33rd International
Symposium on Software Reliability Engineering (ISSRE), 2022, pp. 446–
457.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: a system
for {Large-Scale} machine learning,” in Proceedings of 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2016, pp. 265–283.

[10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[11] pypi.org, “Pypi,” Retrieved May 10, 2023 from https://pypi.org/, 2023.
[12] Y. Deng, C. Yang, A. Wei, and L. Zhang, “Fuzzing deep-learning

libraries via automated relational api inference,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2022, pp. 44–56.

[13] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and Y. Xiong, “How do
python framework apis evolve? an exploratory study,” in Proceedings
of 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2020, pp. 81–92.

[14] GitHub.com, “hwalsuklee/tensorflow-fast-style-transfer,”
Retrieve May 10, 2023 from https://github.com/hwalsuklee/
tensorflow-fast-style-transfer, 2023.

[15] ——, “githubharald/simplehtr,” Retrieve May 10, 2023 from https:
//github.com/githubharald/SimpleHTR, 2023.

[16] ——, “weichen582/retinexnet,” Retrieve May 10, 2023 from https:
//github.com/weichen582/RetinexNet, 2023.

[17] ——, “nickliqian/cnn captcha,” Retrieve May 10, 2023 from https://
github.com/nickliqian/cnn captcha, 2023.

[18] ——, “commit b1d8c59 of tensorflow,” Retrieved May 10,
2023 from https://github.com/tensorflow/tensorflow/commit/
b1d8c59e9b014b527fb2fbef9ce9afc14dbc4938, 2023.

[19] ——, “Tensorflow 2.0.0,” Retrieved May 10, 2023 from https://github.
com/tensorflow/tensorflow/releases/tag/v2.0.0, 2023.

[20] ——, “commit 13679b8 of tensorflow,” Retrieve May 10,
2023 from https://github.com/tensorflow/tensorflow/commit/
13679b875aa87a3d28cf224388ee6a255d3f8844, 2023.

[21] ——, “jeya-maria-jose/kiu-net-pytorch,” Retrieve May 10, 2023 from
https://github.com/jeya-maria-jose/KiU-Net-pytorch, 2023.

[22] ——, “hlwang1124/sne-roadseg,” Retrieve May 10, 2023 from https:
//github.com/hlwang1124/SNE-RoadSeg, 2023.

[23] Z. Zhang, Y. Yang, X. Xia, D. Lo, X. Ren, and J. Grundy, “Unveiling
the mystery of api evolution in deep learning frameworks: a case study
of tensorflow 2,” in Proceedings of 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2021, pp. 238–247.

[24] X. Du and J. Ma, “Aexpy: Detecting api breaking changes in python
packages,” in Proceedings of 2022 IEEE 33rd International Symposium
on Software Reliability Engineering (ISSRE), 2022, pp. 470–481.

[25] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated python
library apis are (not) handled,” in Proceedings of the 28th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020, pp. 233–244.

[26] S. A. Haryono, F. Thung, D. Lo, J. Lawall, and L. Jiang,
“Characterization and automatic updates of deprecated machine-learning
api usages,” in Proceedings of 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2021, pp. 137–147.

[27] ——, “Mlcatchup: Automated update of deprecated machine-learning
apis in python,” in Proceedings of 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2021, pp. 584–588.

[28] slant.co, “which-is-the-best-os-for-deep-learning,” Retrieve
May 10, 2023 from https://www.slant.co/topics/9702/
∼which-is-the-best-os-for-deep-learning, 2023.

[29] python.org, “python,” Retrieved May 10, 2023 from https://www.python.
org/, 2023.

[30] X. Du, G. Xiao, and Y. Sui, “Fault triggers in the tensorflow framework:
An experience report,” in 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE), 2020, pp. 1–12.

[31] C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith
et al., “Array programming with numpy,” Nature, 2020.

[32] W. McKinney et al., “Pandas: A foundational python library for data
analysis and statistics,” PyHPC, 2011.

[33] G. Bradski, “The opencv library.” Dr. Dobb’s Journal: Software Tools
for the Professional Programmer, vol. 25, no. 11, pp. 120–123, 2000.

[34] python pillow.org, “Pillow,” Retrieve May 10, 2023 from https://
python-pillow.org, 2023.

[35] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
science & engineering, vol. 9, no. 03, pp. 90–95, 2007.

[36] seaborn.pydata.org, “Seaborn,” Retrieve May 10, 2023 from https://
seaborn.pydata.org, 2023.

[37] G. Xiao, J. Liu, Z. Zheng, and Y. Sui, “Nondeterministic impact of cpu
multithreading on training deep learning systems.” in 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE),
2021, pp. 557–568.

[38] L. Yin, Y. Zhang, Z. Zhang, Y. Peng, and P. Zhao, “Parax: Boosting
deep learning for big data analytics on many-core cpus,” Proceedings
of the VLDB Endowment, pp. 864–877, 2021.

[39] GitHub.com, “dennybritz/cnn-text-classification-tf,” Retrieve May 10,
2023 from https://github.com/dennybritz/cnn-text-classification-tf, 2023.

[40] discuss.pytorch.org, “runtimeerror-cudnn-error-cudnn-status-not-
initialized,” Retrieve May 10, 2023 from https://discuss.pytorch.org/t/
runtimeerror-cudnn-error-cudnn-status-not-initialized, 2023.

[41] GitHub.com, “benedekrozemberczki/attentionwalk,” Retrieve May 10,
2023 from https://github.com/benedekrozemberczki/AttentionWalk,
2023.

[42] ——, “meijieru/crnn.pytorch,” Retrieve May 10, 2023 from https://
github.com/meijieru/crnn.pytorch, 2023.

[43] ——, “shaohua0116/group-normalization-tensorflow,” Retrieve
May 10, 2023 from https://github.com/shaohua0116/
Group-Normalization-Tensorflow, 2023.

[44] ——, “commit 35a4183 of tensorflow,” Retrieve May 10,
2023 from https://github.com/tensorflow/tensorflow/commit/
35a4183cf261a3893549c7877f63fc415e8287ed, 2023.

[45] ——, “myungsub/cain,” Retrieve May 10, 2023 from https://github.com/
myungsub/CAIN, 2023.

[46] ——, “lufficc/ssd,” Retrieve May 10, 2023 from https://github.com/
lufficc/SSD, 2023.

[47] setuptools.pypa.io, “Setuptools,” Retrieved May 10, 2023 from https:
//setuptools.pypa.io/, 2023.

[48] GitHub.com, “anishathalye/neural-style,” Retrieve May 10, 2023 from
https://github.com/anishathalye/neural-style, 2023.

[49] ——, “wizyoung/yolov3 tensorflow,” Retrieve May 10, 2023 from https:
//github.com/wizyoung/YOLOv3 TensorFlow, 2023.

[50] ——, “lengstrom/fast-style-transfer,” Retrieve May 10, 2023 from https:
//github.com/lengstrom/fast-style-transfer, 2023.

[51] ——, “commit c4f40ae of tensorflow,” Retrieved May 10,
2023 from https://github.com/tensorflow/tensorflow/commit/
c4f40aea1d4f916aa3dfeb79f024c495ac609106, 2023.

[52] ——, “tohinz/consingan,” Retrieve May 10, 2023 from https://github.
com/tohinz/ConSinGAN, 2023.

[53] ——, “commit 59d71b9 of pytorch,” Retrieved May
10, 2023 from https://github.com/pytorch/pytorch/commit/
59d71b9664b57b0ea0de0d87cea87b21daa4dd7b, 2023.

[54] ——, “pull 20451 of pytorch,” Retrieved May 10, 2023 from https:
//github.com/pytorch/pytorch/pull/20451, 2023.

[55] ——, “commit 51eba78 of pytorch,” Retrieved May
10, 2023 from https://github.com/pytorch/pytorch/commit/
51eba7824cc39ac58859d81de4ac3fdf10ae7fae, 2023.

[56] ——, “polariszhao/pfld-pytorch,” Retrieve May 10, 2023 from https:
//github.com/polarisZhao/PFLD-pytorch, 2023.

[57] ——, “lukasruff/deep-sad-pytorch,” Retrieve May 10, 2023 from https:
//github.com/lukasruff/Deep-SAD-PyTorch, 2023.

[58] ——, “ywpkwon/siamese tf mnist,” Retrieve May 10, 2023 from https:
//github.com/ywpkwon/siamese tf mnist, 2023.

[59] ——, “Alexhex7/non-local pytorch,” Retrieve May 10, 2023 from https:
//github.com/AlexHex7/Non-local pytorch, 2023.

[60] ——, “benedekrozemberczki/simgnn,” Retrieve May 10, 2023 from
https://github.com/benedekrozemberczki/SimGNN, 2023.

[61] ——, “Pytorch 1.2.0,” Retrieved May 10, 2023 from https://github.com/
pytorch/pytorch/releases/tag/v1.2.0, 2023.

[62] ——, “Pytorch 1.6.0,” Retrieved May 10, 2023 from https://github.com/
pytorch/pytorch/releases/tag/v1.6.0, 2023.

[63] ——, “Yu1ut/mixmatch-pytorch,” Retrieve May 10, 2023 from https:
//github.com/YU1ut/MixMatch-pytorch, 2023.

[64] H. Ye, W. Chen, W. Dou, G. Wu, and J. Wei, “Knowledge-based
environment dependency inference for python programs,” in Proceedings
of the 44th International Conference on Software Engineering (ICSE),
2022, pp. 1245–1256.

[65] C. Wang, R. Wu, H. Song, J. Shu, and G. Li, “smartpip: A
smart approach to resolving python dependency conflict issues,”
in Proceedings of the 37th International Conference on Automated
Software Engineering (ICSE), 2022, pp. 1–12.

[66] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C. Cheung,
C. Xu, and Z. Zhu, “Watchman: Monitoring dependency conflicts for
python library ecosystem,” in Proceedings of the 42nd International
Conference on Software Engineering (ICSE), 2020, pp. 125–135.

[67] Y. Sui and J. Xue, “Value-flow-based demand-driven pointer analysis
for c and c++,” IEEE Transactions on Software Engineering, vol. 46,
no. 8, pp. 812–835, 2018.

[68] C. Zhu, R. K. Saha, M. R. Prasad, and S. Khurshid, “Restoring the
executability of jupyter notebooks by automatic upgrade of deprecated
apis,” in Proceedings of 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2021, pp. 240–252.

[69] A. Vadlamani, R. Kalicheti, and S. Chimalakonda, “Apiscanner-
towards automated detection of deprecated apis in python libraries,”
in Proceedings of 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
2021, pp. 5–8.

