
Enhancing Traceability Link Recovery with
Unlabeled Data

Jianfei Zhu∗, Guanping Xiao∗†⋆, Zheng Zheng‡, Yulei Sui§
∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

†State Key Laboratory of Novel Software Technology, Nanjing University, China
‡School of Automation Science and Electrical Engineering, Beihang University, China

§School of Computer Science, University of Technology Sydney, Australia
{zjf, gpxiao}@nuaa.edu.cn, zhengz@buaa.edu.cn, yulei.sui@uts.edu.au

Abstract—Traceability link recovery (TLR) is an important
software engineering task for developing trustworthy and reli-
able software systems. Recently proposed deep learning (DL)
models have shown their effectiveness compared to traditional
information retrieval-based methods. DL often heavily relies on
sufficient labeled data to train the model. However, manually
labeling traceability links is time-consuming, labor-intensive, and
requires specific knowledge from domain experts. As a result,
typically only a small portion of labeled data is accompanied by
a large amount of unlabeled data in real-world projects. Our
hypothesis is that artifacts are semantically similar if they have
the same linked artifact(s).

This paper presents TRACEFUN, a new approach to enhance
traceability link recovery with unlabeled data. TRACEFUN first
measures the similarities between unlabeled and labeled artifacts
using two similarity prediction methods (i.e., vector space model
and contrastive learning). Then, based on the similarities, newly
labeled links are generated between the unlabeled artifacts and
the linked objects of the labeled artifacts. Generated links
are further used for TLR model training. We have evaluated
TRACEFUN on three GitHub projects with two state-of-the-art
DL models (i.e., Trace BERT and TraceNN). The results show
that TRACEFUN is effective in terms of a maximum improvement
of F1-score up to 21% and 1,088%, respectively for Trace BERT
and TraceNN.

Index Terms—traceability link recovery, unlabeled data, vector
space model, contrastive learning

I. INTRODUCTION

Traceability link recovery (TLR) is a software engineering
task that recovers links between different types of software
artifacts, such as requirements, source code, bug reports, test
cases, and user documentation. Traceability plays an important
role in software development and maintenance, providing
useful support for various software activities, e.g., program
comprehension [1], compliance verification [2], change impact
analysis [3], and regression analysis of test cases [4].

Manually recovering traceability links is time-consuming,
labor-intensive, and error-prone. Over the past decades, several
TLR approaches have been proposed to ease the burden of
developers through automated or semi-automated recovering
traceability links [5]–[21]. Recently, deep learning (DL) tech-
niques have been widely adopted in many TLR methods with a
substantial performance improvement compared to traditional
methods based on information retrieval (IR) [22]–[27].

⋆Corresponding author: Guanping Xiao.

Observations and Insights. DL-based methods often require
a large amount of labeled data. However, it is challenging
to obtain such data in real-world projects. This is because
manual labeling of a large number of ground-truth links from
software repositories requires domain knowledge, which is
cost-ineffective, especially for large projects. Moreover, even
some heuristic rules (e.g., regular expression [28]) are used to
retrieve links automatically. Only a small portion of links can
be built and many links are still missing [16]. For example,
we found that in the Flask dataset collected from GitHub [27],
only 752 labeled links related to 1,490 artifacts are established,
but there still exist 6,233 unlabeled artifacts.

Typically, such unlabeled artifacts would be excluded from
the training dataset for DL-based models. If we can use the
abundant source of unlabeled data for model training, it is
expected to improve the performance. It is known that multiple
source artifacts can link to the same target artifact and vice
versa, i.e., many-to-one relationships. Due to the same linked
artifact, these source artifacts usually have semantically similar
relationships. For example, three duplicate bug reports may
relate to one bug-fixing commit. These bug reports described
the same failure phenomenon with similar contents. If a newly
submitted report also has similar descriptions of the failure,
it is highly possible that the report has the same bug-fixing
commit.

Our Solution. Inspired by these insights, this paper presents
TRACEFUN, a traceability links recovery framework en-
hanced with unlabeled data. Fig. 1 shows the overview of
TRACEFUN. First, to measure the similarity between un-
labeled and labeled artifacts (both can be source artifacts
or target artifacts), we introduce two similarity prediction
methods, i.e., vector space model (VSM) and contrastive
learning (CL), as shown in Fig. 1(a). VSM is a commonly
used IR method to predict text similarity [29], while CL is a
DL method for classifying similar and dissimilar data samples
without labels [30]. By these methods, TRACEFUN calculates
the similarities between unlabeled and labeled artifacts. Next,
new link(s) is (are) generated by connecting the unlabeled
artifact to the linked artifact(s) of the labeled one, according
to the selected highly similar artifact pairs, as depicted in
Fig. 1(b). Last, the newly labeled links are integrated into the
training dataset with original labeled data to train DL-based

Similarity

(b) Unlabeled Data
Labeling

(Se, Sc) 0.552

0.661(Se, Sb)

0.902(Sd, Sc)

Similarity (CL)Source Pair
(Sd, Sa)

(Se, Sa)

(Sd, Sb)

0.961

0.729

0.591

0.893

0.851(Td, Tb)

(Tc, Tb)

Similarity (CL)Target Pair

(Tc, Ta) 0.865

0.999(Td, Ta)

Labeled Data TLR Methods

Sa

Sb

Sc

Ta

Tb

Sd

Se

Tc

Labeled
Data

Td

Unlabeled
Data

Unlabeled
Data

(a) Similarity Prediction

Td

Ta

Tb
Sd

Similarity Prediction Method

Contrastive Learning
(CL)

Vector Space Model
(VSM)

Source
Artifacts

Target
Artifacts

(Sd, Sa) (Tc, Ta)

Testing

Validation

Training

New Links

(c) TLR Evaluation

Pairs of unlabeled
and labeled artifacts

Adding

T-BERT

TNN

Sa

Sb

Prediction

Fig. 1. Overview of TRACEFUN.

TLR methods, as illustrated in Fig. 1(c). We chose two recent
state-of-the-art methods, i.e., Trace BERT (T-BERT) [27] and
TraceNN (TNN) [26], as the baseline TLR methods. To eval-
uate TRACEFUN, we compared the performance of these two
methods before and after using unlabeled data collected from
three open-source GitHub projects, including Flask, Pgcli, and
Keras. The impact on TLR performance regarding different
similarity prediction methods and sizes of newly labeled data
is also investigated.

In summary, the paper has the following key contributions:
• To the best of our knowledge, this paper presents the first

attempt to use unlabeled data for TLR.
• TRACEFUN, for the first time, introduces VSM and CL

methods to measure the similarity between unlabeled and
labeled artifacts for generating new training samples.

• We have evaluated TRACEFUN by comparing it with
two state-of-the-art methods using 5-fold cross-validation
on three GitHub projects. Results show that TRACEFUN
boosts T-BERT and TNN with a maximum improvement
of F1-score up to 21% and 1,088%, respectively.

• We made the source code of TRACEFUN publicly avail-
able at https://github.com/TraceFUN.

II. A MOTIVATING EXAMPLE

Fig. 2 shows a real-world traceability link example in
the eTOUR project. Four use cases (i.e., UC1, UC2, UC3,
and UC4) are connected to class DBBeneCulturale, which
performs the addition, deletion, modification and search oper-
ations of the BeanBeneCulturale list. UC29 is linked to class
GestioneTagOperatoreAgenzia, which serves as the common
tag management. We can find that all four use cases describe
the operations on the same object (i.e., cultural), while UC29

describes operations related to different objects.
We use VSM to calculate the similarity between two use

cases, as shown in TABLE I. The similarities of pairs related

UC1
… Delete a cultural
object in the system …

UC2
… Inserts a new cultural
object in the system …

UC3
… Change data of a
cultural object in
the system …

UC4
… Returns the list of cultural objects
in the system according to certain
parameters.
…

UC29
… E 'was asked to enter a search tags already in the system …

DBBeneCulturale

GestioneTag
OperatoreAgenzia

Use Cases Classes

UC1

UC2

UC3

UC4

UC29

Fig. 2. Traceability links between use cases and classes in the eTOUR project.
TABLE I

SIMILARITIES BETWEEN USE CASES

Has Common Target Artifact No Common Target Artifact
Use Case Similarity Use Case Similarity

(UC1, UC3) 0.646 (UC4, UC29) 0.162

(UC2, UC3) 0.556 (UC3, UC29) 0.142

(UC1, UC2) 0.419 (UC1, UC29) 0.138

(UC3, UC4) 0.347 (UC2, UC29) 0.123

(UC2, UC4) 0.328

(UC1, UC4) 0.257

to the four use cases (i.e., UC1, UC2, UC3, and UC4) are
around 0.25 to 0.65, which are significantly higher than those
pairs related to UC29 (about 0.15). The result is expected,
since UC1, UC2, UC3, and UC4 are connected to the same
target class. If one unlabeled use case is similar to the use cases
1 to 4, this use case may have a link to class DBBeneCulturale.
Therefore, we can leverage such similar relationships to tag
the unlabeled data, hence generating more labeled links to
training TLR models.

III. OUR TRACEFUN APPROACH

There are two major challenges (C) in handling unlabeled
data for TLR.

• C1: How to measure the similarity between unlabeled
and labeled artifacts?

Siamese Network
GloVe

(c) Siamese LSTM(a) Training Data Generation

Pair
Generation

(S1, S2)

(S1, S3) (S2, S3)

P: with common T

N: no common T

S1

S2

S3

T1

T2

(b) Encoding

=

LSTM LSTM

Contrastive Loss

Manhattan
Distance

 (d) Contrastive Loss

CoEST

Fig. 3. Detailed structure of contrastive learning in TRACEFUN.

• C2: How to label unlabeled data based on the calculated
similarities?

To address the two challenges, this section introduces our
TRACEFUN, which consists of three parts, i.e., similarity
prediction (C1), unlabeled data labeling (C2), and TLR eval-
uation, as shown in Fig. 1.

A. Similarity Prediction

TRACEFUN measures the similarity between unlabeled and
labeled artifacts from the same type of software artifacts, i.e.,
source or target artifacts. To obtain all the possible pairs,
a Cartesian product calculation for unlabeled and labeled
artifacts is performed. The Cartesian product of two sets X
and Y , denoted in set theory as X×Y , is the set of all possible
ordered pairs:

X × Y = {(x, y) | x ∈ X&y ∈ Y } , (1)

where X is the set of unlabeled artifacts and Y denotes
the set of labeled artifacts. For example, after performing
Cartesian product calculation on the unlabeled source artifacts
{Sd, Se} and the labeled source artifacts {Sa, Sb, Sc}, the set
of all possible pairs {(Sd, Sa), (Sd, Sb), (Sd, Sc), (Se, Sa),
(Se, Sb), (Se, Sc)} is obtained for further similarity prediction,
as depicted in Fig. 1(a). The Cartesian product calculation on
the unlabeled and labeled target artifacts is performed in the
same way.

Since there are no (similar or dissimilar) labels between un-
labeled and labeled artifacts, TRACEFUN introduces two un-
supervised similarity prediction methods: vector space model
(VSM) and contrastive learning (CL). CL specializes in clas-
sifying unlabeled data, which makes similar samples close to
each other while dissimilar ones are far apart. For comparison,
we use a standard measurement VSM, which is considered
the best compared with other traditional similarity prediction
methods like LDA and LSI [27]. Note that the similarity
prediction methods are not limited to these two models. We
can add more methods in TRACEFUN. The details of VSM
and CL are described as follows.

1) Vector Space Model: VSM has a document space in
which text content is represented as a vector [5]. The doc-
ument space is represented by an m × n matrix, where m
is the number of terms, and n is the number of documents,
aka “term-by-document matrix”. An entry di,j of the matrix
represents the weight of the i-th term in the j-th document.
In the simplest case, this weight is a boolean value of 1 if
the i-th term occurs in the j-th document, or 0 otherwise.

A more commonly used measurement is to use the term
frequency-inverse document frequency (TF-IDF) method [31].
TF-IDF combines term frequency (TF) and inverse document
frequency (IDF). The vector element di,j is denoted as:

di,j = tfi,j × idfi, (2)

where tfi,j is the frequency of the i-th term in the j-th
document and idfi is defined as:

idfi = log
|D|

|{d : ti ∈ d}|
, (3)

where |D| is the total number of documents and |{d : ti ∈ d}|
denotes the number of documents containing term ti.

We regard all documents as corpus V . A new query Q is
represented as a vector in the same way. Then the similarity
between query Q and document Dj is as follows:

Similarity(Dj , Q) =

∑V
i=1 di,j ∗ qi√∑V

h=1(dh,j)
2 ∗

∑V
k=1(qk)

2

, (4)

where di,j is a one-dimensional vector of the document
Dj , and qi is a one-dimensional vector of the query Q. In
TRACEFUN, a query Q represents one unlabeled artifact while
Dj denotes the j-th labeled artifact. Both Q and Dj are from
the same type of artifacts (i.e., source or target).

2) Contrastive Learning: CL is unsupervised learning to
learn a representation function without labels, with the aim
to make similar samples closer and dissimilar samples further
apart [30].

Fig. 3 shows the process of CL to predict the similarity of
the same type of software artifacts. First, due to the absence
of labels, some attributes of the data are used to generate
pseudo-labels as training data (depicted in Fig. 3(a)). The
purpose is to teach the model know which data samples
are similar. To obtain such a contrastive representation of
artifacts, we use CoEST data [22], [32]–[40], which provides
ground-truth traceability links from several projects. Then,
the generated pseudo-labeled samples are encoded as vectors
through GloVe [41], which are further fed into Siamese long
short-term memory (LSTM) neural network [42], as shown in
Fig. 3(b) and (c). Last, the contrastive loss function is used
to learn a contrastive representation of the data, as shown in
Fig. 3(d). Details of each part are described as follows.

Training Data Generation. A key issue in CL is to gen-
erate meaningful training data, i.e., a set of paired examples

{(xi, x
+
i)}mi=1 indicates that xi and x+

i are semantically related
artifacts. In TRACEFUN, source artifacts with the same linked
target artifact are regarded as similar samples (i.e., positive
samples). By contrast, dissimilar samples (i.e., negative sam-
ples) are generated from source artifacts that are not connected
to the same target artifact.

We use a s × s matrix to record semantically similar
relationships between source artifacts, where s is the total
number of source artifacts. The element ri,j in the matrix
represents the relationship between the i-th source artifact
and the j-th source artifact. ri,j = 1 represents these two
artifacts are semantically similar (i.e., with common target
artifacts), while ri,j = 0 denotes dissimilar (i.e., no common
target artifacts). To generate such a matrix, we traverse the
labeled traceability links. The source artifacts linked to the
same target artifact are assigned to the same group. The total
number of groups is t, which equals the total number of the
target artifacts. If there is at least one group has the occurrence
of two source artifacts, they are regarded as a positive pair
sample, i.e., r = 1; if two source artifacts did not occur in the
same group, they are regarded as a negative case, i.e., r = 0.

Next, we use itertools.combinations(), a Python function
for Cartesian product [43], to sort the source artifacts in
positional order of combinations without duplicate elements,
e.g., elements {a, b, c, d} generate combinations (a, b), (a, c),
(a, d), (b, c), (b, d), and (c, d). Then, the relationship between
the two source artifacts is queried from the aforementioned
similarity relationship matrix, in order to generate the training
data of CL.

Encoding. The text of software artifacts is regarded as an
unstructured feature. Each word in the text is assigned a unique
index, and the text of the artifact is represented as a sequence
of word indices. A word is encoded into a vector representation
by GloVe [41] and later forms the word embedding matrix
by filling each row of the matrix with the vector in the index
order. Next, the word embedding matrix is fed into the Siamese
network as weights of the embedding layer, where each word
of the sentence finds its vector representation.

Siamese LSTM. Contrastive learning requires a DL model
to capture the latent semantic relations of similar and dissimi-
lar data points. In TRACEFUN, we build a Siamese LSTM
network to predict similar relationships between software
artifacts of the same type. As shown in Fig. 3(c), the network
consists of two identical LSTMs.

Assuming that the text of one artifact is transformed into a
sequence of word embedding vectors a = {w1, w2, . . . , wNT

},
where wi is the embedding representation of the i-th word in
this piece of text with a length of NT . The wi entering the
LSTM at time t is denoted by xt, as shown in Fig. 4. The
output ht of LSTM at each time step depends on the input
xt at the current time step, the output tt−1 at the previous
time step (i.e., the short-term memory unit), and the long-term
memory C of the network (i.e., the long-term memory unit).
LSTM controls how information in a sequence of data enters,
stores, and leaves the network using a series of “gates”.

xt

ht

s

×

tanh s

tanh

×

+

goutgingforgot
Ct
~

s

×

Ct-1

ht-1

Ct

ht

Fig. 4. The structure of LSTM.

First, through the forget gate gforgot decides to forget
unnecessary information:

gforget (t) = σ (Wf ∗ xt + Uf ∗ ht−1) (5)

Then, a new memory update vector C̃t is generated accord-
ing to the short-term memory unit ht−1 at the previous time
step, and the input xt at the current time step. LSTM uses the
input gate gin to select the information to be remembered and
adds it to the last long-term memory unit Ct−1 filtered by the
forget gate, and updates it to a new long-term memory unit
Ct:

gin (t) = σ (Wi ∗ xt + Ui ∗ ht−1) , (6)

C̃t = tanh (Wc ∗ xt + Uc ∗ ht−1) , (7)

Ct = gforget ∗ Ct−1 + gin ∗ C̃t. (8)

Finally, the output gate gout selects the information related
to the current task at the current time step to generate the
output ht:

gout (t) = σ (Wo ∗ xt + Uo ∗ ht−1) , (9)

ht = gout ∗ tanh (Ct) . (10)

In Equations (5)-(10), W and U are weight matrices, σ is
the sigmoid function, and tanh is the activation function.

The LSTM outputs the final hidden state to represent the
semantic information of the sentence. Therefore, unstructured
features are represented as n-dimensional vector h (n is the
number of hidden units in the LSTM). In our Siamese LSTM
model, we use Manhattan distance to measure the similarity
of two vectors, which is defined as:

Similarity (h1, h2) = exp (− ∥ h1 − h2 ∥1) , (11)

where h1 and h2 are the vectors of two software artifacts and
exp(.) normalizes the distance value between 0 and 1.

Contrastive Loss. Contrastive loss is the training objective,
which makes similar samples closer and different samples
farther [44]. Contrastive loss is defined as:

L = (1− y) ∗ ŷ2 + y ∗max(0,m− ŷ)2, (12)

where m is a hyperparameter that defines the lower bound
distance between dissimilar samples. In TRACEFUN, m is set
to 1. y and ŷ are the true and predicted labels (Manhattan
distance) of a pair of two artifacts ai and aj , respectively. If
two artifacts are not similar (y=0), Equation (12) minimizes
their predicted value ŷ; otherwise it minimizes max(0,m −
ŷ)2, i.e., maximizing their predicted value ŷ.

B. Unlabeled Data Labeling

After performing similarity prediction on unlabeled and
labeled artifacts through each method mentioned above, we
have two lists of similarities sorted in descending order,
respectively for source and target artifacts. The number (N)
of newly generated links from unlabeled data is tuned by the
proportion p (e.g., 20% or 50%) of the total number of the
original labeled links used for training.

To label the unlabeled artifacts, TRACEFUN traverses pair
items in the two similarity lists one by one. For each iteration,
SSi (the similarity of the i-th item in the list of source
artifacts) and STj (the similarity of the j-th item in the list of
target artifacts) are compared to select the higher similar pair,
where i and j start from index 0 (i.e., from top to down). For
example, if SSi is greater than STj , the i-th source artifact
pair (Sp, Sq) is selected for further labeling, where Sp is the
unlabeled source artifact with an ID p and Sq is the labeled
source artifact with an ID q. New link(s) is (are) generated
from Sp to the linked target artifact(s) of Sq . Otherwise, the
new link(s) will be generated from unlabeled target artifacts.
After generating new labeled links in this iteration, the index
i increases by one while the index j remains unchanged for
the next comparison. The loop will be terminated when the
sum of newly labeled links is larger or equal to N .

Note that since one labeled artifact may have more than
one linked object, the cumulative number of generated links
in the last iteration may be greater than N . Besides, since
two (or more) labeled artifacts may have the same linked
artifact. The pairs between one unlabeled artifact and the two
labeled artifacts could both have high similarities in the ranked
list, thus generating duplicate labeled pairs, which need to be
further eliminated.

In this way, TRACEFUN will only select the highly similar
source or target artifact pairs to generate links between unla-
beled artifacts and the linked object(s) of the labeled ones.

C. TLR Evaluation

As shown in Fig. 1(c), all the newly generated links are
added to the training set together with the original labeled
links. The validation (if needed) and the testing data samples
are only divided from the labeled links. TRACEFUN integrates
two recent state-of-the-art DL-based models, i.e., T-BERT [27]
and TNN [26]. T-BERT uses the bidirectional language model
BERT (Bidirectional Encoder Representations from Trans-
formers) [45], which has richer contextual information. T-
BERT includes three implementation stages: pre-training and

TABLE II
COLLECTED COEST DATASETS FOR CL TRAINING

Project
Source Artifact Target Artifact

#Links
Type #Artifacts Type #Artifacts

Albergate Requirements 17 Code 55 54

CCHIT Requirements 116 Code 1,064 587

CM1 High Requirements 22 Low Requirements 53 45

eANCI Use Cases 140 Code 55 567

EasyClinic Multi-type 160 Multi-type 160 1,618

EBT Requirements 41 Code 50 98

eTOUR Use Cases 58 Code 116 308

GANNT High Requirements 17 Low Requirements 69 68

HIPAA Requirements 10 Technical Safeguards 1,891 243

Ice Breaker Requirements 201 UML Classes 73 457

Infusion Pump Requirements 126 Components 21 131

iTrust Requirements 131 Code 367 534

Kiosk Requirements 178 Processes 178 1,951

SMOS Use Cases 67 Code 100 1,044

WARC Requirements 63 Requirements 89 136

TABLE III
COLLECTED DATASETS FOR TRACEFUN EVALUATION

Project Source Artifact Target Artifact #Links
Flask 3,715 4,008 752

Pgcli 1,197 2,189 529

Keras 4,811 5,349 552

intermediate training of the T-BERT model using a different
source of training data and fine-tuning TLR tasks on real-
work projects. TNN uses a tracing network that combines word
embedding and recurrent neural network (RNN) to restore the
traceability link of software artifacts.

TRACEFUN is a flexible framework and capable of using
unlabeled data to train any supervised TLR methods (not
limited to T-BERT and TNN) that require labeled data.

IV. EXPERIMENT SETUP AND EVALUATION

A. Data Collection and Aggregation

Dataset for CL Training. The training data for CL is
collected from 15 datasets provided by CoEST [46], as
shown in TABLE II. These datasets include different types
of traceability links, e.g., requirements and code, use cases
and classes, high-level and low-level requirements. The Co-
EST data facilitates our exploration of semantically similar
relationships between software artifacts.

Dataset for TRACEFUN Evaluation. The labeled datasets
for evaluating TRACEFUN are collected from [27], including
three open-source GitHub projects, i.e., Flask, Pgcli, and
Keras, as depicted in TABLE III. Their artifact types are bug
reports and bug-fixing commits. Following the evaluation in T-
BERT [27], the trace links are from issues to commits, whose
granularity is at the file level. Besides, the similarities are
calculated between the unlabeled and labeled issues, and also
between the unlabeled and labeled commits.

To evaluate TRACEFUN, we used 5-fold stratified cross-
validation, i.e., the collected labeled dataset of each project
is divided into five-folds, four of which are used for training
and the remaining one fold is used for testing. The ratio of
the validation set split from the four folds of data samples
is 0.2, i.e., 20% of the training set is used for validation.

The number of newly generated links is determined by the
proportion p over the number of labeled links in the remaining
training set. In our experiments, five proportions, i.e., 5%,
20%, 50%, 80%, and 110% are selected for TRACEFUN’s
evaluation. TABLE IV shows the number of generated links
through two similarity prediction methods, i.e., VSM and CL.
Note that since the similarities of source and target pairs are
different, the numbers of links generated from source and
target artifacts are also different. For example, the ranges
of similarities predicted by CL for the top 200 most similar
artifacts are [0.68, 1] and [0.99, 1] for the Flask source and
target artifacts, respectively.

Data Preprocessing. The collected datasets are cleaned and
processed in the following three steps. (1) Word tokenization:
the text extracted from artifacts is first divided into a stream
of words; (2) stop-word and punctuation removal: stop-words,
numbers, and punctuation are further removed; (3) word
normalization: word tokens are converted to their lower cases.

B. Implementation Details

Settings for VSM. All the source artifacts and target artifacts
from the evaluation datasets (TABLE III) are used as the
corpus for VSM. The similarity between the two artifacts is
calculated by their vectors through Cosine similarity.

Settings for CL. The training parameters of CL are as
follows: number of epochs is 100; the batch size is 64; the
number of hidden units n in the LSTM network is 50; the
ratio of the train over test split is 0.2, and 20% of samples are
split from training samples as the validation set.

Settings for TLR Methods. We evaluate two state-of-the-
art TLR methods, i.e., T-BERT and TNN, as described in
Sec. III-C. The training parameters of T-BERT are as follows:
the number of epochs is 400; batch size is 4; learning rate
is 0.00004; network architecture is faster SIAMESE. Besides,
the training parameters of TNN are as follows: the number of
epochs is 1000; batch size is 1; the number of hidden units n
is 60; maximum sequence length is 80; learning rate is 0.0001;
network model is GRU.

Experiment Environments. The development environment
of TRACEFUN is as follows: Python 3.8, TensorFlow 2.6.0,
and Keras 2.6.0. All the experiments of TRACEFUN are con-
ducted on the cloud servers equipped with Intel(R) Xeon(R)
CPU E5-2678 v3 @ 2.50GHz, 62GB memory, and NVIDIA
GeForce RTX 2080Ti GPU.

C. TRACEFUN Evaluation

Research Questions (RQs). Our evaluation aims to answer
the following three RQs:

• RQ1: Can TRACEFUN improve TLR performance?
• RQ2: What’s the impact of different similarity prediction

methods used in TRACEFUN on TLR performance?
• RQ3: What’s the impact of different sizes of newly

labeled links generated by TRACEFUN on TLR perfor-
mance?

Evaluation Metrics. The metrics for evaluating TRACEFUN
are as follows:

TABLE IV
NUMBER OF NEWLY LABELED LINKS BY TRACEFUN

Project Original p%
VSM CL

Source Target Source Target

Flask 480

5% 6 18 4 20
20% 6 90 4 92
50% 6 234 4 236
80% 18 366 5 379
110% 43 482 18 510

Pgcli 338

5% 0 16 0 16
20% 0 67 0 67
50% 0 169 14 155
80% 0 270 104 166
110% 3 368 198 173

Keras 352

5% 6 11 5 12
20% 48 22 22 48
50% 137 39 92 84
80% 235 46 162 119
110% 333 54 233 154

• F-scores: F-scores are the harmonic mean of precision
and recall:

Fβ =
(1 + β2) ∗ precision ∗ recall

β2 ∗ precision+ recall
, (13)

where β is a positive real factor such that recall is
considered β times as important as precision. When
β=1 (i.e., F1-score), precision and recall are given the
same weight. When β=2 (i.e., F2-score), recall is more
important than precision. In our experiment, we used F1-
score and F2-score for evaluation.

• Mean Average Precision (MAP): Average precision
(AveP) refers to the average of the maximum precision
values at different recall rates. For each source artifact
Q, the AveP is calculated according to the position of
all n relevant target artifacts in the ranking. MAP is
then calculated by averaging the values of AveP. We use
MAP@3, i.e., only artifacts ranked (ranki) in the top 3
positions contribute to AveP :

AveP@3 =

∑n
i P

n
, P =

{
P@i, if ranki ⩽ 3
0, otherwise , (14)

MAP@3 =
1

Q

Q∑
q=1

AveP@3. (15)

V. RESULTS AND ANALYSIS

This section presents and discusses the evaluation results of
TRACEFUN. Tables V, VI, and VII display the performance
of T-BERT in terms of F1-score, F2-score, and MAP, respec-
tively, while those results for TNN are given in Tables VIII, IX,
and X, respectively.

A. RQ1: Can TRACEFUN improve TLR performance?

RQ1 aims to investigate whether our TRACEFUN can
improve the performance of TLR. We averaged the results
obtained from 5-fold stratified cross-validation and calculated
the improvement, to compare the performance of T-BERT and

TABLE V
F1-SCORE OF T-BERT TRAINED WITH NEWLY LABELED DATA GENERATED BY TRACEFUN (VSM AND CL), AND RANDOM SELECTION

Project Fold Original VSM (5%) CL (5%) VSM (20%) CL (20%) VSM (50%) CL (50%) VSM (80%) CL (80%) VSM (110%) CL (110%) Random (50%)
1 0.632 0.648 0.654 0.672 0.684 0.713 0.706 0.789 0.813 0.783 0.783 0.582
2 0.658 0.699 0.678 0.675 0.687 0.727 0.727 0.762 0.753 0.772 0.771 0.589
3 0.617 0.613 0.598 0.669 0.642 0.701 0.700 0.699 0.701 0.767 0.728 0.506
4 0.679 0.713 0.667 0.698 0.679 0.725 0.721 0.789 0.752 0.788 0.751 0.629
5 0.636 0.660 0.672 0.694 0.664 0.725 0.713 0.756 0.768 0.779 0.783 0.572

Flask

Avg. (Impro.) 0.644 0.667 (4%) 0.654 (2%) 0.682 (6%) 0.671 (4%) 0.718 (12%) 0.713 (11%) 0.759 (18%) 0.757 (18%) 0.778 (21%) 0.763 (19%) 0.576 (-11%)

1 0.735 0.715 0.720 0.758 0.790 0.760 0.767 0.810 0.751 0.806 0.720 0.620
2 0.733 0.725 0.714 0.755 0.753 0.747 0.756 0.805 0.687 0.829 0.677 0.629
3 0.757 0.730 0.794 0.794 0.769 0.761 0.792 0.819 0.736 0.778 0.742 0.651
4 0.693 0.735 0.681 0.726 0.697 0.751 0.728 0.798 0.685 0.821 0.663 0.640
5 0.767 0.780 0.759 0.802 0.777 0.808 0.800 0.816 0.709 0.851 0.684 0.648

Pgcli

Avg. (Impro.) 0.737 0.737 (0%) 0.734 (0%) 0.767 (4%) 0.757 (3%) 0.765 (4%) 0.769 (4%) 0.810 (10%) 0.714 (-3%) 0.817 (11%) 0.697 (-5%) 0.638 (-13%)

1 0.938 0.916 0.914 0.940 0.927 0.877 0.914 0.871 0.914 0.853 0.883 0.892
2 0.950 0.941 0.945 0.900 0.932 0.874 0.922 0.883 0.877 0.878 0.858 0.890
3 0.953 0.940 0.959 0.943 0.943 0.938 0.935 0.916 0.911 0.841 0.882 0.906
4 0.926 0.932 0.927 0.943 0.925 0.941 0.897 0.887 0.912 0.859 0.912 0.827
5 0.960 0.964 0.954 0.955 0.963 0.919 0.933 0.920 0.935 0.900 0.910 0.895

Keras

Avg. (Impro.) 0.945 0.939 (-1%) 0.940 (-1%) 0.936 (-1%) 0.938 (-1%) 0.910 (-4%) 0.920 (-3%) 0.895 (-5%) 0.910 (-4%) 0.866 (-8%) 0.889 (-6%) 0.882 (-7%)

TABLE VI
F2-SCORE OF T-BERT TRAINED WITH NEWLY LABELED DATA GENERATED BY TRACEFUN (VSM AND CL), AND RANDOM SELECTION

Project Fold Original VSM (5%) CL (5%) VSM (20%) CL (20%) VSM (50%) CL (50%) VSM (80%) CL (80%) VSM (110%) CL (110%) Random (50%)
1 0.650 0.612 0.638 0.639 0.659 0.668 0.690 0.760 0.787 0.781 0.774 0.562
2 0.683 0.675 0.680 0.702 0.700 0.744 0.746 0.776 0.768 0.779 0.788 0.615
3 0.604 0.603 0.580 0.638 0.623 0.684 0.675 0.707 0.711 0.795 0.740 0.488
4 0.665 0.696 0.669 0.709 0.698 0.719 0.721 0.805 0.751 0.797 0.771 0.628
5 0.663 0.683 0.694 0.705 0.681 0.724 0.722 0.797 0.791 0.791 0.777 0.557

Flask

Avg. (Impro.) 0.653 0.654 (0%) 0.652 (0%) 0.679 (4%) 0.672 (3%) 0.708 (8%) 0.711 (9%) 0.769 (18%) 0.762 (17%) 0.789 (21%) 0.770 (18%) 0.570 (-13%)

1 0.747 0.749 0.750 0.769 0.790 0.782 0.777 0.826 0.730 0.822 0.695 0.627
2 0.757 0.755 0.742 0.756 0.743 0.782 0.783 0.839 0.680 0.850 0.677 0.641
3 0.808 0.780 0.821 0.814 0.810 0.806 0.807 0.838 0.721 0.810 0.744 0.672
4 0.701 0.724 0.711 0.748 0.719 0.758 0.749 0.788 0.712 0.842 0.661 0.620
5 0.777 0.812 0.784 0.810 0.802 0.809 0.807 0.822 0.729 0.856 0.702 0.668

Pgcli

Avg. (Impro.) 0.758 0.764 (1%) 0.762 (0%) 0.779 (3%) 0.773 (2%) 0.787 (4%) 0.785 (4%) 0.823 (9%) 0.714 (-6%) 0.836 (10%) 0.696 (-8%) 0.646 (-15%)

1 0.943 0.927 0.938 0.936 0.941 0.906 0.924 0.895 0.884 0.886 0.868 0.897
2 0.944 0.946 0.942 0.892 0.924 0.874 0.930 0.886 0.892 0.889 0.893 0.880
3 0.937 0.932 0.951 0.927 0.938 0.915 0.925 0.919 0.897 0.855 0.870 0.887
4 0.948 0.950 0.954 0.961 0.946 0.939 0.918 0.897 0.905 0.871 0.903 0.833
5 0.967 0.973 0.959 0.957 0.966 0.919 0.950 0.940 0.939 0.916 0.927 0.893

Keras

Avg. (Impro.) 0.948 0.946 (0%) 0.949 (0%) 0.935 (-1%) 0.943 (-1%) 0.911 (-4%) 0.929 (-2%) 0.907 (-4%) 0.903 (-5%) 0.883 (-7%) 0.892 (-6%) 0.878 (-7%)

TNN before and after adding newly labeled data via TRACE-
FUN (i.e., VSM and CL). In addition, the performance trained
by randomly generating labeled links is also investigated.
Note, for the random selection, we combine the pair lists of
source and target artifacts together, and then randomly shuffle
one pair from them without considering the similarities. New
links are generated in the same way as described in Sec. III-B.
This process stops until the number of newly labeled links is
larger or equal to a given size (i.e., 50% of the original labeled
data used for training).

It can be seen from Table V to Table X that, for the
Flask and Pgcli datasets, the scores of all the three evaluation
metrics (i.e., F1-score, F2-score, and MAP) of T-BERT and
TNN significantly improve after adding newly labeled links by
VSM and CL (i.e., TRACEFUN). For T-BERT, the maximum
improvements of F1-score, F2-score, and MAP of the Flask
dataset, are 21%, 21%, and 19%, respectively, while those re-
sults of the Pgcli dataset are 11%, 10%, and 11%, respectively.
Similarly, the performance of TNN on these two datasets
also has a dramatic improvement after adding newly labeled
links generated by TRACEFUN. For example, the maximum
improvements in terms of F1-score, F2-score, and MAP are

1,088%, 555%, 1,091%, and 719%, 322%, 733%, respectively
for the Flask and Pgcli datasets.

In addition, for the Keras dataset, the performance im-
provements of T-BERT and TNN after adding new links by
TRACEFUN are different. For T-BERT, the evaluation scores
are slightly degraded compared to the results obtained from
the original training set. For example, the F1-score of Keras
using the original labeled dataset is 0.945, while the best result
by TRACEFUN is 0.940. However, for TNN, the performance
is increased with the best improvements of 109%, 41%, and
146%, respectively for F1-score, F2-score, and MAP, although
such improvements are lower than those of the Flask and
Pgcli datasets, as shown in Tables VIII, IX, and X. Note,
similar to the results reported in [27], the performance of TNN
using original labeled data is extremely low, e.g., F1-scores of
TNN on the Flask, Pgcli, and Keras datasets are 0.033, 0.036,
and 0.032, respectively. This is because TNN requires a large
amount of labeled data to achieve good performance [27]. The
original labeled data from the three datasets is quite small, thus
causing poor performance.

Furthermore, for random selection, except for TNN on the
Pgcli datasets regarding F1-score and MAP, the scores of all

TABLE VII
MAP OF T-BERT TRAINED WITH NEWLY LABELED DATA GENERATED BY TRACEFUN (VSM AND CL), AND RANDOM SELECTION

Project Fold Original VSM (5%) CL (5%) VSM (20%) CL (20%) VSM (50%) CL (50%) VSM (80%) CL (80%) VSM (110%) CL (110%) Random (50%)
1 0.713 0.731 0.720 0.732 0.772 0.798 0.779 0.836 0.841 0.863 0.860 0.630
2 0.733 0.756 0.743 0.768 0.786 0.800 0.832 0.845 0.849 0.848 0.859 0.657
3 0.688 0.684 0.672 0.737 0.693 0.758 0.773 0.787 0.812 0.861 0.849 0.558
4 0.741 0.769 0.768 0.784 0.797 0.800 0.820 0.862 0.852 0.880 0.854 0.687
5 0.756 0.760 0.790 0.790 0.767 0.818 0.814 0.846 0.869 0.883 0.863 0.639

Flask

Avg. (Impro.) 0.726 0.740 (2%) 0.739 (2%) 0.762 (5%) 0.763 (5%) 0.795 (9%) 0.804 (11%) 0.835 (15%) 0.845 (16%) 0.867 (19%) 0.857 (18%) 0.634 (-13%)

1 0.803 0.819 0.797 0.833 0.836 0.847 0.825 0.869 0.797 0.890 0.770 0.690
2 0.803 0.846 0.813 0.810 0.846 0.863 0.860 0.895 0.770 0.918 0.775 0.695
3 0.849 0.847 0.862 0.863 0.869 0.865 0.866 0.898 0.792 0.869 0.846 0.734
4 0.737 0.767 0.789 0.775 0.802 0.830 0.803 0.851 0.781 0.885 0.745 0.656
5 0.865 0.876 0.873 0.894 0.894 0.884 0.887 0.905 0.873 0.938 0.821 0.748

Pgcli

Avg. (Impro.) 0.811 0.831 (2%) 0.827 (2%) 0.835 (3%) 0.849 (5%) 0.858 (6%) 0.848 (5%) 0.884 (9%) 0.803 (-1%) 0.900 (11%) 0.791 (-2%) 0.705 (-13%)

1 0.973 0.962 0.977 0.965 0.949 0.973 0.935 0.955 0.946 0.940 0.902 0.940
2 0.967 0.964 0.973 0.935 0.973 0.958 0.968 0.946 0.946 0.934 0.967 0.917
3 0.948 0.973 0.961 0.955 0.973 0.945 0.948 0.959 0.933 0.930 0.895 0.950
4 0.986 0.973 0.964 0.977 0.959 0.973 0.950 0.959 0.955 0.939 0.944 0.905
5 0.977 0.977 0.977 0.977 0.982 0.962 0.986 0.982 0.971 0.971 0.973 0.964

Keras

Avg. (Impro.) 0.970 0.970 (0%) 0.970 (0%) 0.962 (-1%) 0.967 (0%) 0.926 (-1%) 0.957 (-1%) 0.960 (-1%) 0.950 (-3%) 0.943 (-3%) 0.936 (-3%) 0.935 (-4%)

TABLE VIII
F1-SCORE OF TNN TRAINED WITH NEWLY LABELED DATA GENERATED BY TRACEFUN (VSM AND CL), AND RANDOM SELECTION

Project Fold Original VSM (5%) CL (5%) VSM (20%) CL (20%) VSM (50%) CL (50%) VSM (80%) CL (80%) VSM (110%) CL (110%) Random (50%)
1 0.031 0.021 0.037 0.060 0.061 0.130 0.157 0.232 0.310 0.287 0.398 0.027
2 0.025 0.051 0.025 0.071 0.074 0.182 0.181 0.211 0.347 0.331 0.384 0.020
3 0.043 0.025 0.023 0.048 0.046 0.115 0.102 0.153 0.292 0.244 0.346 0.015
4 0.028 0.026 0.037 0.090 0.088 0.187 0.189 0.253 0.355 0.357 0.423 0.026
5 0.036 0.032 0.054 0.046 0.052 0.130 0.190 0.202 0.349 0.313 0.410 0.020

Flask

Avg. (Impro.) 0.033 0.031 (-6%) 0.035 (7%) 0.063 (91%) 0.064 (95%) 0.149 (351%) 0.164 (396%) 0.210 (537%) 0.331 (902%) 0.306 (828%) 0.392 (1,088%) 0.022 (-35%)

1 0.036 0.042 0.038 0.087 0.081 0.142 0.231 0.255 0.260 0.380 0.252 0.031
2 0.035 0.030 0.033 0.058 0.048 0.168 0.154 0.245 0.125 0.288 0.178 0.038
3 0.039 0.047 0.049 0.100 0.083 0.164 0.169 0.240 0.176 0.292 0.215 0.050
4 0.031 0.032 0.033 0.053 0.055 0.091 0.154 0.184 0.165 0.238 0.146 0.035
5 0.040 0.083 0.068 0.110 0.105 0.174 0.198 0.241 0.186 0.277 0.222 0.040

Pgcli

Avg. (Impro.) 0.036 0.047 (30%) 0.044 (23%) 0.082 (127%) 0.074 (107%) 0.148 (311%) 0.181 (403%) 0.233 (547%) 0.182 (407%) 0.295 (719%) 0.203 (463%) 0.039 (8%)

1 0.029 0.033 0.041 0.064 0.040 0.088 0.043 0.090 0.041 0.091 0.039 0.029
2 0.041 0.026 0.048 0.030 0.029 0.037 0.039 0.031 0.022 0.041 0.036 0.033
3 0.027 0.078 0.026 0.085 0.031 0.108 0.037 0.109 0.030 0.104 0.045 0.034
4 0.029 0.035 0.043 0.030 0.062 0.045 0.059 0.052 0.052 0.053 0.058 0.023
5 0.033 0.031 0.031 0.051 0.028 0.052 0.034 0.025 0.021 0.046 0.027 0.021

Keras

Avg. (Impro.) 0.032 0.041 (27%) 0.038 (18%) 0.052 (63%) 0.038 (19%) 0.066 (106%) 0.042 (33%) 0.061 (92%) 0.033 (4%) 0.067 (109%) 0.041 (28%) 0.028 (-13%)

evaluation metrics of both T-BERT and TNN are worse than
those results trained by the original labeled data. For example,
the F1-score, F2-score, and MAP of T-BERT on the Flask
dataset dropped by 11%, 13%, and 13%, respectively. The
result is expected because random selection has a better chance
of introducing mislabeled links, which could negatively impact
the model training.

Answer to RQ1: TRACEFUN can significantly improve
TLR performance. TRACEFUN is able to capture the seman-
tically similar relationships between unlabeled and labeled
artifacts, thereby generating effective newly labeled links for
TLR model training.

B. RQ2: What’s the impact of different similarity prediction
methods used in TRACEFUN on TLR performance?

In this RQ, we evaluate the impact of VSM and CL used in
TRACEFUN on TLR performance. For T-BERT, as illustrated
in Tables V, VI, and VII, VSM is better at measuring the
similarities between unlabeled and labeled artifacts than CL.
For example, the best improvement of the F1-score on the
Flask dataset by VSM is 21%, while that by CL is 19%.
On the Pgcli dataset, the discrepancy in the performance
improvement between VSM and CL is significantly large, e.g.,

the best improvements in terms of F1-score are 11% and 4%,
respectively for VSM and CL.

However, for TNN shown in Tables VIII, IX, and X, using
CL is better than using VSM on the Flask dataset. The best
performance improvement of the F1-score by CL is 1,088%,
while VSM only achieves an improvement of 828%. Such a
situation is changed on the Pgcli dataset. VSM obtains the
best improvement of 719% of the F1-score, while CL only
improves the metric by 463% in the best case.

Answer to RQ2: The performance improvements by VSM
and CL used in TRACEFUN are different regarding different
TLR methods and datasets. It is necessary to select a suitable
similarity prediction method according to specific TLR meth-
ods and datasets to improve the performance better. For the
TLR task on issues and commits, users are suggested to use
VSM and CL.

C. RQ3: What’s the impact of different sizes of newly labeled
links generated by TRACEFUN on TLR performance?

In this experiment, we generate different sizes of newly
labeled links, i.e., 5%, 20%, 50%, 80%, and 110% of the
original labeled links used for training, to evaluate their impact
on TLR performance.

TABLE IX
F2-SCORE OF TNN TRAINED WITH NEWLY LABELED DATA GENERATED BY TRACEFUN (VSM AND CL), AND RANDOM SELECTION

Project Fold Original VSM (5%) CL (5%) VSM (20%) CL (20%) VSM (50%) CL (50%) VSM (80%) CL (80%) VSM (110%) CL (110%) Random (50%)
1 0.050 0.040 0.059 0.071 0.066 0.125 0.162 0.198 0.250 0.234 0.334 0.038
2 0.048 0.048 0.049 0.072 0.077 0.152 0.175 0.197 0.282 0.291 0.297 0.040
3 0.046 0.038 0.042 0.057 0.063 0.120 0.108 0.156 0.216 0.220 0.252 0.036
4 0.043 0.043 0.045 0.069 0.072 0.161 0.161 0.217 0.298 0.313 0.353 0.048
5 0.051 0.051 0.054 0.075 0.068 0.125 0.166 0.206 0.279 0.278 0.335 0.043

Flask

Avg. (Impro.) 0.048 0.044 (-8%) 0.050 (4%) 0.069 (43%) 0.069 (44%) 0.137 (185%) 0.154 (222%) 0.195 (306%) 0.265 (452%) 0.267 (457%) 0.314 (555%) 0.041 (-15%)

1 0.059 0.071 0.066 0.110 0.100 0.140 0.195 0.220 0.215 0.295 0.204 0.055
2 0.067 0.055 0.065 0.059 0.066 0.138 0.126 0.194 0.131 0.255 0.145 0.053
3 0.050 0.067 0.062 0.077 0.097 0.149 0.152 0.198 0.193 0.232 0.169 0.063
4 0.054 0.060 0.053 0.070 0.073 0.119 0.123 0.186 0.142 0.231 0.129 0.052
5 0.064 0.064 0.079 0.107 0.099 0.166 0.178 0.192 0.176 0.232 0.171 0.056

Pgcli

Avg. (Impro.) 0.059 0.063 (7%) 0.065 (10%) 0.085 (43%) 0.087 (47%) 0.142 (141%) 0.155 (162%) 0.198 (236%) 0.171 (191%) 0.249 (322%) 0.164 (177%) 0.056 (-5%)

1 0.047 0.062 0.052 0.061 0.074 0.072 0.068 0.077 0.058 0.087 0.066 0.054
2 0.065 0.054 0.071 0.059 0.053 0.054 0.047 0.066 0.049 0.068 0.054 0.061
3 0.054 0.073 0.055 0.081 0.051 0.104 0.053 0.078 0.054 0.080 0.050 0.055
4 0.050 0.050 0.061 0.053 0.091 0.074 0.050 0.061 0.051 0.073 0.052 0.046
5 0.048 0.056 0.047 0.049 0.050 0.054 0.046 0.047 0.044 0.065 0.044 0.049

Keras

Avg. (Impro.) 0.053 0.059 (11%) 0.057 (8%) 0.061 (14%) 0.064 (20%) 0.072 (35%) 0.053 (0%) 0.066 (24%) 0.051 (-3%) 0.075 (41%) 0.053 (0%) 0.053 (0%)

TABLE X
MAP OF TNN TRAINED WITH NEWLY LABELED DATA GENERATED BY TRACEFUN (VSM AND CL), AND RANDOM SELECTION

Project Fold Original VSM (5%) CL (5%) VSM (20%) CL (20%) VSM (50%) CL (50%) VSM (80%) CL (80%) VSM (110%) CL (110%) Random (50%)
1 0.031 0.020 0.032 0.063 0.049 0.118 0.155 0.198 0.257 0.243 0.326 0.025
2 0.010 0.034 0.017 0.052 0.085 0.147 0.163 0.178 0.290 0.286 0.321 0.009
3 0.040 0.022 0.026 0.048 0.053 0.114 0.099 0.149 0.238 0.220 0.270 0.013
4 0.024 0.013 0.039 0.069 0.072 0.160 0.167 0.204 0.302 0.318 0.354 0.026
5 0.030 0.029 0.058 0.047 0.053 0.131 0.171 0.216 0.301 0.281 0.337 0.018

Flask

Avg. (Impro.) 0.027 0.024 (-13%) 0.034 (27%) 0.056 (107%) 0.062 (131%) 0.134 (396%) 0.151 (459%) 0.189 (600%) 0.278 (928%) 0.270 (899%) 0.322 (1,091%) 0.018 (-33%)

1 0.038 0.042 0.031 0.082 0.099 0.137 0.222 0.225 0.201 0.310 0.208 0.041
2 0.041 0.014 0.027 0.042 0.044 0.135 0.121 0.186 0.123 0.236 0.149 0.050
3 0.022 0.052 0.038 0.075 0.085 0.140 0.149 0.215 0.181 0.250 0.167 0.028
4 0.017 0.014 0.041 0.047 0.058 0.090 0.112 0.168 0.134 0.206 0.132 0.039
5 0.032 0.062 0.070 0.097 0.097 0.156 0.195 0.210 0.170 0.248 0.183 0.032

Pgcli

Avg. (Impro.) 0.030 0.037 (23%) 0.041 (38%) 0.069 (129%) 0.077 (155%) 0.132 (339%) 0.160 (433%) 0.201 (569%) 0.162 (439%) 0.250 (733%) 0.168 (459%) 0.038 (27%)

1 0.027 0.014 0.026 0.038 0.038 0.063 0.050 0.050 0.035 0.071 0.039 0.027
2 0.021 0.017 0.038 0.035 0.029 0.033 0.038 0.030 0.018 0.044 0.045 0.026
3 0.023 0.067 0.026 0.062 0.036 0.085 0.032 0.086 0.023 0.076 0.036 0.021
4 0.021 0.039 0.039 0.033 0.080 0.041 0.036 0.058 0.056 0.052 0.048 0.015
5 0.026 0.017 0.024 0.036 0.023 0.062 0.044 0.023 0.003 0.052 0.027 0.009

Keras

Avg. (Impro.) 0.024 0.031 (28%) 0.031 (28%) 0.041 (70%) 0.041 (72%) 0.057 (137%) 0.040 (67%) 0.049 (106%) 0.027 (13%) 0.059 (146%) 0.039 (63%) 0.020 (-18%)

For T-BERT, as depicted in Tables V, VI, and VII, regarding
the Flask dataset, T-BERT’s performance goes up along with
the increasing proportion up to 110% of newly labeled links
by VSM and CL, i.e., the more links used the better the
performance. For the Pgcli dataset, VSM presents the same
trend, i.e., the performance can be improved by adding more
newly labeled links. However, the performance achieved by
CL first increases and then decreases with the increasing size
of new links. The best proportion for CL on the Pgcli dataset
is 50%. For TNN, as shown in Tables VIII, IX, and X, the
performances on the Flask and Pgcli datasets all increase with
the increasing number of newly labeled links.

In addition, the performance is worse in some proportions
after adding newly labeled links by TRACEFUN than the
original one. For example, T-BERT’s performance on the Pgcli
dataset obtained by CL drops at 80% and 110%. For the Keras
dataset, regardless of the similarity prediction method used,
the performance decreases with the increasing proportion of
newly labeled links. The best performance achieved by VSM
and CL is 5%, where the performance is slightly lower than
the original one. Such performance degradation that appeared
on the Keras dataset may be caused by the following reason.
The original labeled data is sufficient to train a good T-

BERT model, i.e., F1-score, F2-score, and MAP have already
achieved up to 0.945, 0.948, and 0.970, respectively. There is
little room for improvement.

Answer to RQ3: Generally, TLR performance can be
improved by adding more labeled links via TRACEFUN. How-
ever, for different TLR methods and datasets, the size of newly
labeled links greatly impacts the performance. Therefore, it
is necessary to fine-tune the size of new links labeled by
TRACEFUN to obtain a better result according to specific TLR
methods and datasets.

D. Limitations of TRACEFUN

TRACEFUN has two limitations. First, the optimal number
of newly added links cannot be determined at one time. For
example, the performance achieved by CL first increases and
then decreases with the increasing size of new links for the
Pgcli dataset. Tuning the proportion of newly added links is
necessary.

Second, TRACEFUN may cause performance degradation.
For some projects with relatively well-labeled data, TRACE-
FUN may have performance degradation, as the noise data
would be introduced along with the newly labeled links from
unlabeled data, e.g., the Keras dataset.

VI. THREATS TO VALIDITY

Threats to Internal Validity. The used similarity prediction
method in TRACEFUN is the main threat to internal validity.
To reduce this threat, we introduced two different methods,
i.e., VSM and CL, to measure the similarity between unlabeled
and labeled artifacts. For training the CL model, we only used
natural language text extracted from source artifacts as features
embedded by Word2Vec-like techniques (e.g., GloVe [41])
to capture the semantically similar relationship. The simi-
larity prediction can be improved by using code embedding
techniques [47] (e.g., code2seq [48], code2vec [49], and
Flow2Vec [50]) as features for artifacts that majorly contain
source code. As a result, TRACEFUN’s performance can be
further improved because more similar artifact pairs can be
captured to generate new links to training TLR models.

Threats to External Validity. The generalization of TRACE-
FUN is the main threat to external validity. First, the integrated
TLR methods in TRACEFUN and the evaluated datasets of
traceability links are threats to external validity. To reduce this
threat, we select two state-of-the-art DL-based TLR methods,
i.e., T-BERT [27] and TNN [26], in which T-BERT is the latest
method and shows excellent performance on small datasets
compared to TNN. Besides, to evaluate T-BERT and TNN, we
use the same datasets, i.e., Flask, Pgcli, and Keras, provided
by [27] for evaluation. TRACEFUN is applicable for any
supervised TLR methods that need labeled data. In the future,
we will integrate more TLR methods and use more types of
traceability link datasets to evaluate TRACEFUN.

Threats to Construct Validity. The choice of evaluation
metrics for predictive performance can pose a threat to con-
struct validity. To reduce this threat, we use F-scores and MAP,
which are the same evaluation metrics used in T-BERT [27].

VII. RELATED WORK

Deep Learning for TLR. Over the past decades, researchers
have proposed various TLR methods [5]–[21]. Recently, deep
learning techniques have been applied to TLR given their
good performance [22]–[27]. Mills et al. [22] propose the
TRAIL method, which uses the traceability links to train
machine learning models to verify whether the links between
new software artifacts are correct. Ruan et al. [24] propose
DeepLink for recovering links between issues and commits
using word embedding and RNN. The semantic relationships
between issues and commits are learned. Guo et al. [26]
propose TraceNN (TNN) that uses word embedding to solve
the problem of vocabulary mismatch. The semantic relation-
ship between words is represented by the linear relationship
between word embedding vectors. Vectors of artifacts are
then fed into an RNN network to predict traceability links
between software artifacts. Lin et al. introduce Trace BERT
(T-BERT) [27], a TLR framework combined with the BERT
model. T-BERT effectively transfers knowledge learned from
code search problems into TLR using pre-trained language
models and transfer learning. The problem of insufficient
pre-training data is alleviated, and the accuracy of restored
links is improved. To the best of our knowledge, our work

first investigates the method for leveraging readily available
unlabeled data via generating newly labeled links to further
enhance TLR model training.

Contrastive Learning. Contrastive learning (CL) is an ap-
proach to formulate the task of finding similar and dissimilar
data samples. It can classify data into similar and different
without labels. CL has been successfully applied in computer
vision [51]–[53]. Chen et al. [30] propose the SimCLR method
to learn representations by maximizing the consistency be-
tween different augmented views of the same data example
through a contrastive loss in the latent space, outperforming
previous self-supervised and semi-supervised learning meth-
ods by a large margin. Recently, CL also has some applications
in software engineering. Bui et al. [54] propose the Corder
method, which identifies similar and different code fragments
through CL, and uses a large amount of unlabeled source
code data to train a neural network to identify semantically
equivalent code fragments. Corder significantly outperforms
models without CL in the code retrieval task. Cheng et
al. [55] propose ContraFlow, a selective yet precise contrastive
value-flow embedding approach to statically detect software
vulnerabilities. Our paper introduces CL to the field of TLR
for the first time. We used CL to capture the semantically
similar relationship between unlabeled and labeled artifacts,
aiming to supplement the limited training data with abundant
unlabeled data by generating newly labeled links.

VIII. CONCLUSION

This paper presents TRACEFUN, a novel TLR framework
enhanced with unlabeled data. In TRACEFUN, the seman-
tically similar relationships between unlabeled and labeled
artifacts are first predicted by VSM and CL. Then, highly
similar artifact pairs are selected to generate links between
the unlabeled artifacts and the linked artifacts of the labeled
ones. These newly labeled links are later added to the training
set with the original labeled data for TLR model training.
We have comparatively evaluated TRACEFUN with two state-
of-the-art TLR models (i.e., T-BERT and TNN) on three
GitHub projects, including Flask, Pgcli, and Keras. We have
also investigated the impact of different similarity prediction
methods used in TRACEFUN and sizes of newly generated
labeled links on TLR performance. Our results show that
TRACEFUN effectively improves TLR performance by lever-
aging unlabeled data. Our source code and data are available
at https://github.com/TraceFUN.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments and suggestions. This work was supported in part
by the National Natural Science Foundation of China under
Grants 62002163 and 61772055, Natural Science Foundation
of Jiangsu Province under Grant BK20200441, Open Research
Fund of State Key Laboratory of Novel Software Technology
(Nanjing University) under Grant KFKT2020B20, and Aus-
tralian Research Council under Grant DP210101348.

REFERENCES

[1] M. Grechanik, K. S. McKinley, and D. E. Perry, “Recovering and using
use-case-diagram-to-source-code traceability links,” in Proceedings of
the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE), 2007, pp. 95–104.

[2] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Transactions on Software Engineering, vol. 27, no. 1,
pp. 58–93, 2001.

[3] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” Journal of Systems and Software,
vol. 80, no. 6, pp. 918–934, 2007.

[4] L. Naslavsky and D. J. Richardson, “Using traceability to support
model-based regression testing,” in Proceedings of the 22th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2007, pp. 567–570.

[5] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
2002.

[6] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proceedings of the
25th International Conference on Software Engineering (ICSE). IEEE,
2003, pp. 125–135.

[7] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Transactions on Software Engineering and
Methodology, vol. 16, no. 4, pp. 13–es, 2007.

[8] X. Chen, “Extraction and visualization of traceability relationships
between documents and source code,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2010, pp. 505–510.

[9] X. Chen and J. Grundy, “Improving automated documentation to code
traceability by combining retrieval techniques,” in Proceedings of the
26th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). IEEE, 2011, pp. 223–232.

[10] B. Dagenais and M. P. Robillard, “Recovering traceability links between
an api and its learning resources,” in Proceedings of the 34th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2012, pp.
47–57.

[11] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Trustrace: Mining software
repositories to improve the accuracy of requirement traceability links,”
IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 725–741,
2012.

[12] N. Ali, F. Jaafar, and A. E. Hassan, “Leveraging historical co-change
information for requirements traceability,” in Proceedings of the 20th
Working Conference on Reverse Engineering (WCRE). IEEE, 2013,
pp. 361–370.

[13] J. Guo, N. Monaikul, C. Plepel, and J. Cleland-Huang, “Towards
an intelligent domain-specific traceability solution,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering (ASE), 2014, pp. 755–766.

[14] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto,
D. Poshyvanyk, and A. De Lucia, “When and how using structural infor-
mation to improve ir-based traceability recovery,” in Proceedings of the
17th European Conference on Software Maintenance and Reengineering
(CSMR). IEEE, 2013, pp. 199–208.

[15] A. Panichella, A. De Lucia, and A. Zaidman, “Adaptive user feedback
for ir-based traceability recovery,” in Proceedings of the 8th IEEE/ACM
International Symposium on Software and Systems Traceability (SST).
IEEE, 2015, pp. 15–21.

[16] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein, “The
missing links: bugs and bug-fix commits,” in Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2010, pp. 97–106.

[17] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering links
between bugs and changes,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE), 2011, pp. 15–25.

[18] A. Sureka, S. Lal, and L. Agarwal, “Applying fellegi-sunter (fs)
model for traceability link recovery between bug databases and version
archives,” in Proceedings of the 18th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2011, pp. 146–153.

[19] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering (FSE), 2012, pp. 1–11.

[20] T.-D. B. Le, M. Linares-Vásquez, D. Lo, and D. Poshyvanyk, “Rclinker:
Automated linking of issue reports and commits leveraging rich con-
textual information,” in Proceedings of the IEEE 23rd International
Conference on Program Comprehension (ICPC). IEEE, 2015, pp. 36–
47.

[21] Y. Sun, Q. Wang, and Y. Yang, “Frlink: Improving the recovery of
missing issue-commit links by revisiting file relevance,” Information and
Software Technology, vol. 84, pp. 33–47, 2017.

[22] C. Mills, J. Escobar-Avila, and S. Haiduc, “Automatic traceability
maintenance via machine learning classification,” in Proceedings of the
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2018, pp. 369–380.

[23] C. Mills, J. Escobar-Avila, A. Bhattacharya, G. Kondyukov,
S. Chakraborty, and S. Haiduc, “Tracing with less data: active learning
for classification-based traceability link recovery,” in Proceedings of the
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2019, pp. 103–113.

[24] H. Ruan, B. Chen, X. Peng, and W. Zhao, “Deeplink: Recovering issue-
commit links based on deep learning,” Journal of Systems and Software,
vol. 158, p. 110406, 2019.

[25] A. C. Marcén, R. Lapeña, O. Pastor, and C. Cetina, “Traceability
link recovery between requirements and models using an evolutionary
algorithm guided by a learning to rank algorithm: Train control and
management case,” Journal of Systems and Software, vol. 163, p.
110519, 2020.

[26] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in Proceedings of
the 39th IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 3–14.

[27] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, “Traceability
transformed: Generating more accurate links with pre-trained bert mod-
els,” in Proceedings of the 43th IEEE/ACM International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 324–335.

[28] A. Bachmann and A. Bernstein, “Software process data quality and
characteristics: a historical view on open and closed source projects,” in
Proceedings of the Joint International and Annual ERCIM Workshops
on Principles of Software Evolution (IWPSE) and Software Evolution
(Evol) Workshops, 2009, pp. 119–128.

[29] D. Harman, “Ranking algorithms,” in Information Retrieval: Data Struc-
tures and Algorithms. Prentice-Hall, Inc., 1992, pp. 363–392.

[30] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proceedings of the
37th International Conference on Machine Learning (ICML). PMLR,
2020, pp. 1597–1607.

[31] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information Processing & Management, vol. 24, no. 5,
pp. 513–523, 1988.

[32] T. Zhao, Q. Cao, and Q. Sun, “An improved approach to traceability
recovery based on word embeddings,” in Proceedings of the 24th Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 2017, pp.
81–89.

[33] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “On inte-
grating orthogonal information retrieval methods to improve traceability
recovery,” in Proceedings of the 27th IEEE International Conference on
Software Maintenance (ICSM). IEEE, 2011, pp. 133–142.

[34] A. Mahmoud, N. Niu, and S. Xu, “A semantic relatedness approach for
traceability link recovery,” in Proceedings of the 20th IEEE International
Conference on Program Comprehension (ICPC). IEEE, 2012, pp. 183–
192.

[35] D. Diaz, G. Bavota, A. Marcus, R. Oliveto, S. Takahashi, and A. De Lu-
cia, “Using code ownership to improve ir-based traceability link recov-
ery,” in Proceedings of the 21th International Conference on Program
Comprehension (ICPC). IEEE, 2013, pp. 123–132.

[36] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and D. Poshyvanyk,
“Enhancing software traceability by automatically expanding corpora
with relevant documentation,” in Proceedings of the IEEE International
Conference on Software Maintenance (ICSM). IEEE, 2013, pp. 320–
329.

[37] S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland-Huang,
“Improving trace accuracy through data-driven configuration and com-
position of tracing features,” in Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering (FSE), 2013, pp. 378–388.

[38] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Applying a smoothing filter to improve ir-based traceability recovery
processes: An empirical investigation,” Information and Software Tech-
nology, vol. 55, no. 4, pp. 741–754, 2013.

[39] A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” Requirements Engineering, vol. 20, no. 3, pp.
281–300, 2015.

[40] K. Moran, D. N. Palacio, C. Bernal-Cárdenas, D. McCrystal, D. Poshy-
vanyk, C. Shenefiel, and J. Johnson, “Improving the effectiveness of
traceability link recovery using hierarchical bayesian networks,” in Pro-
ceedings of the 42th ACM/IEEE International Conference on Software
Engineering (ICSE), 2020, pp. 873–885.

[41] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543.

[42] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity,” in Proceedings of the AAAI conference
on artificial intelligence (AAAI), vol. 30, no. 1, 2016.

[43] “itertools — functions creating iterators for efficient looping,” https:
//docs.python.org/3/library/itertools.html, 2022.

[44] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 2. IEEE, 2006, pp. 1735–1742.

[45] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” ArXiv
Preprint ArXiv:1810.04805, 2018.

[46] “Coest — center of excellence for software & systems traceability,”
http://coest.org, 2022.

[47] Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin, “What do they

capture?–a structural analysis of pre-trained language models for source
code,” in Proceedings of the 44th International Conference on Software
Engineering (ICSE). IEEE, 2022.

[48] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018.

[49] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” in Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL. ACM New York, NY,
USA, 2019, pp. 1–29.

[50] Y. Sui, X. Cheng, G. Zhang, and H. Wang, “Flow2vec: value-flow-based
precise code embedding,” in Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA. ACM New York, NY, USA, 2020,
pp. 1–27.

[51] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 9729–9738.

[52] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” Advances in Neural Information Processing Systems, vol. 33,
pp. 9912–9924, 2020.

[53] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in Neural Information Processing Systems, vol. 33, pp.
18 661–18 673, 2020.

[54] N. D. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning for
code retrieval and summarization via semantic-preserving transforma-
tions,” in Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), 2021,
pp. 511–521.

[55] X. Cheng, G. Zhang, H. Wang, and Y. Sui, “Path-sensitive code em-
bedding via contrastive learning for software vulnerability detection,” in
Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), 2022, pp. 519–531.

