
Nondeterministic Impact of CPU Multithreading on
Training Deep Learning Systems

Guanping Xiao∗†?, Jun Liu∗, Zheng Zheng‡, Yulei Sui§
∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

†State Key Laboratory of Novel Software Technology, Nanjing University, China
‡School of Automation Science and Electrical Engineering, Beihang University, China

§School of Computer Science, University of Technology Sydney, Australia
{gpxiao, 161730324}@nuaa.edu.cn, zhengz@buaa.edu.cn, yulei.sui@uts.edu.au

Abstract—With the wide deployment of deep learning (DL)
systems, research in reliable and robust DL is not an option but a
priority, especially for safety-critical applications. Unfortunately,
DL systems are usually nondeterministic. Due to software-level
(e.g., randomness) and hardware-level (e.g., GPUs or CPUs)
factors, multiple training runs can generate inconsistent models
and yield different evaluation results, even with identical settings
and training data on the same implementation framework and
hardware platform. Existing studies focus on analyzing software-
level nondeterminism factors and the nondeterminism introduced
by GPUs. However, the nondeterminism impact of CPU multi-
threading on training DL systems has rarely been studied. To
fill this knowledge gap, we present the first work of studying
the variance and robustness of DL systems impacted by CPU
multithreading. Our major contributions are fourfold: 1) An
experimental framework based on VirtualBox for analyzing the
impact of CPU multithreading on training DL systems; 2) Six
findings obtained from our experiments and examination on
GitHub DL projects; 3) Five implications to DL researchers and
practitioners according to our findings; 4) Released the research
data (https://github.com/DeterministicDeepLearning).

Index Terms—Deep learning systems, CPU multithreading,
nondeterminism factors, training variance, empirical study

I. INTRODUCTION

Deep learning (DL) is widely used in various domains, such
as computer vision [1], natural language processing [2], virtual
assistants [3], and many tasks in software engineering [4]–[10].
A reliable DL system is crucial, especially for safety-critical
applications, such as self-driving cars [11]–[13] and medical
diagnosis [14]–[16].

For reproducibility and stability purposes of using DL sys-
tems, it is expected that DL systems can have a deterministic
behavior in identical training runs, where each training is
conducted using identical data, experimental settings, neu-
ral networks on the same implementation framework and
hardware platform. Such deterministic behavior is defined
as follows: under a fixed software-level and hardware-level
experimental condition, multiple training runs produce the
same model and result in identical evaluation results.

Unfortunately, DL systems are usually nondeterministic,
i.e., multiple identical training runs can generate inconsistent
models and yield different evaluation results. This is due to
the factors introduced by software-level and hardware-level

?Corresponding author: Guanping Xiao.

e = a + (b + c)
result: 1.2619047

e = (a + b) + c
result: 1.2619048

1 import tensorflow as tf
2
3 a = tf.constant(1./6.)
4 b = tf.constant(2./3.)
5 c = tf.constant(3./7.)
6
7 e = a + b + c
8 sess = tf.Session()
9 result = sess.run(e)

No Yes

Multithreaded?

Fig. 1. Floating-point difference impacted by different computing orders.

nondeterminism [17], [18]. For software-level factors, model
training settings (e.g., weight initialization [19], shuffled batch
ordering [20]) and implementation frameworks (e.g., Tensor-
Flow [21], PyTorch [22], and Keras [23]) are the primary two
factors. For example, training settings in user code and several
operations in DL frameworks often rely on random generators
(e.g., Python random and Numpy random) [19], [24]–[26]. The
variance introduced by such randomness has a major impact
on the software-level nondeterminism.

In addition to software-level factors, hardware environ-
ments, such as GPU or CPU platforms for training DL sys-
tems, can also introduce nondeterminism [17], mainly due to
parallel computations. The nondeterminism factor introduced
by GPU to the training of DL systems has been investigated
by existing work [17], [18].

Although GPUs have a powerful concurrent computations
ability, CPUs have several advantages such as high memory
capacity [27], [28], usefulness in mobile systems [29] and
some extreme environments, e.g., space and defense indus-
tries [30]. Therefore, training DL systems on CPUs is increas-
ingly popular in research and industry fields [31]. For example,
using HPC with CPU cluster to training DL systems [32], [33].

Fig. 1 shows an example of floating point difference in
TensorFlow on a CPU platform. If we perform execution under
the CPU multithreaded environment1, the expression such as
e = a + b + c can be computed in two different ways: (1)
a + b is computed first following a sequential order, obtaining
the result 1.2619048 or (2) b + c is computed first under
the multithreading scenario, which produces a different result
1.2619047, due to floating point imprecision. Multithreading is
quite common in modern DL systems. TensorFlow by default

1This simple example is used to illustrate different results calculated by
different orders, and it is not necessarily executed in parallel under a real
setting.

DL App #1

Virtual
Machine #2

(e.g., 12 Threads)

Host Machine
(e.g., 16 Threads)

Host OS
(e.g., Windows 10)

Hypervisor (VirtualBox)
(e.g., 1, 2, 6, and 12 Threads)

(a) Environment Generation

...

(b) DL App Execution Environments

...

Fixed Seed Setting

(c) Identical Model Training

Training Testing

DL App #1

Metrics
(e.g., Accuracy)

Time

n runs
Accuracy

(d) Variance Analysis

Time

DL App #1

Virtual
Machine #1

(e.g., 1 Thread)

Model
Selection

Guest OS
(e.g., Linux)

Virtual
Machine #m

Guest OS
(e.g., Linux)

Virtual
Machine #1

Guest OS
(e.g., Linux)

Guest OS
(e.g., Linux)

Fig. 2. Overview of our experimental framework.

uses multiple threads to execute independent operations [34].
The parallel execution of independent operations enables users
to exploit CPU parallelism to conduct fast model training [35].

Existing studies focus on optimizing DL training efficiency
on CPU platforms [36]. However, the nondeterministic impact
of CPU multithreading on training DL systems has rarely been
studied. The adverse impact of CPU multithreading on the
nondeterminism (i.e., effectiveness variance) in training DL
systems remains unknown. Floating-point rounding errors are
well known by practitioners, but their impact on training DL
systems is often overlooked. For example, one answer from
StackOverflow stated that [37], “However those differences
are extremely small and will not effect the overall result in
most cases.”

In this paper, we aim to conduct a systematic study to
understand the nondeterministic impact on training DL sys-
tems under CPU multithreading. We evaluated five GitHub
DL projects (TABLE IV), covering two types of funda-
mental neural network architectures (CNNs and RNNs),
and three popular DL frameworks (TensorFlow, PyTorch,
and Keras). After controlling software-level nondeterminism
factors by setting fixed seed for random generators, for
the TensorFlow projects (voicy-ai/DialogStateTracking [38],
zjy-ucas/ChineseNER [39]) and PyTorch project (cas-
torini/honk [40]), multiple identical training runs are able
to produce deterministic evaluation results under the same
number of CPU threads (Section IV-A). However, the results
become nondeterministic when performing identical train-
ing using a different number of CPU threads. Moreover,
for fixed-seed identical training runs without model selec-
tion (i.e., using the model trained after each epoch), CPU
multithreading causes accuracy variance as large as 8.56%.
Such accuracy variance can be minimized by using model
selection techniques (e.g., select the model with the best
validation accuracy). This implies that the impact of CPU
multithreading on the effectiveness variance in training DL
systems is substantial and not negligible. It is necessary to
develop some mitigation techniques to minimize or eliminate
the nondeterminism during model training.

In addition, our findings (Section IV-B) on time variance in
training DL systems show that imposing more CPU threads
does not necessarily mean we can train the model faster.
For the examined five projects, four projects achieved the
fastest training efficiency with only 2 CPU threads. Increasing
more threads will not get faster training. Only one project

(awni/ecg [41]) shows that the training time can be shortened
when increasing the number of threads (e.g., from 1 to 12).
This reveals that optimizing training efficiency on CPU plat-
forms can not simply rely on the number of threads used [35].

To study whether DL developers are aware of hardware
requirements for training and evaluating their DL projects,
we examined 245 open-source DL projects from GitHub
(Section II) to investigate the proportions of projects that have
specified software requirements (e.g., dependency libraries and
versions) and hardware requirements (e.g., detailed GPU or
CPU models). The results (Section IV-C) show that among
the 245 examined projects, 90.6% of them provide software
requirements, while only 22.0% mention hardware require-
ments for model training and effectiveness evaluation.

Therefore, it is important to study the nondeterministic im-
pact of hardware CPU multithreading on training DL systems.
On the one hand, when developing DL systems, practitioners
should not only focus on a model’s performance during
training, but also need to pay attention to the effectiveness vari-
ance under different CPU multithreaded environments, e.g.,
training with different numbers of CPU threads. On the other
hand, since CPU multithreading may impact the effectiveness
variance in training DL systems, researchers should mention
CPU models used for the training when releasing their DL
projects, if the training is performed on CPU platforms.

Attempts to fill this gap, we design an experimental frame-
work (Fig. 2) based on Oracle VM VirtualBox [42], to generate
four types of virtual machines (VMs) with different numbers
of CPU threads (i.e., 1, 2, 6, and 12). We conduct three
categories of identical training runs: (1) the default runs with
model selection, (2) fixed-seed runs with model selection and
(3) runs without model selection, under different multithreaded
environments (VMs). Our study mainly focuses on answering
the following three research questions (RQs).

• RQ1: What’s the impact of CPU multithreading on the
effectiveness variance (e.g., accuracy) in training DL
systems?

• RQ2: What’s the impact of CPU multithreading on the
time variance in training DL systems?

• RQ3: How many collected DL projects in GitHub clearly
mentioned software and hardware requirements?

In summary, the paper has the following key contributions:
• To the best of our knowledge, it is the first work to

systematically study the nondeterministic impact of CPU
multithreading on training DL systems.

TABLE I
NUMBER OF SEARCHED PROJECTS IN GITHUB

Keyword #Stars #Projects Time Frame

deep learning >200 985 up to 19/01/21
neural network >200 625 up to 03/02/21

• We develop an experimental framework to understand
and evaluate a wide range of CPU multithreaded environ-
ments based on VirtualBox. We characterize and quantify
the impact on the training of DL systems. The experiment
results show that our framework can effectively measure
variances under different CPU multithreaded environ-
ments.

• We present six empirical findings and summarize five
implications for DL researchers and practitioners.

II. DATA COLLECTION AND AGGREGATION

To collect our research data, we manually search projects
with more than 200 stars in GitHub using two keywords,
i.e., deep learning and neural network. After initial filtering,
we gather a total of 1,610 projects, as shown in TABLE I.
Then, we manually examine each project to select only the DL
projects. Later, we examine the neural network architectures,
implementation frameworks, and programming languages used
in each DL project. The data collection and aggregation are
described as follows.

Data Clean. We first check whether a project is a collection
of source code and documents for educational purposes. Such
a project is removed from the dataset. The projects that have
been archived or deprecated by the developers are also re-
moved. Moreover, we remove library projects, such as Python
packages which can be installed using pip install command,
since these projects are mainly developed as frameworks for
further development. Furthermore, if a project only contains
source code for loading pre-trained models but does not
include training code, it will also be excluded from our dataset.

Examine DL Projects. To survey the popularity of neural
networks, implementation frameworks, and programming lan-
guages used in DL development, we manually examine the
README.md files, source code files, and external references
(e.g., papers) in each repository. Note that we only record basic
neural networks and the language used for model construc-
tion and training. For example, VGG16 [43] is multi-layered
convolutional neural networks (CNNs). For the project that
uses VGG16, we will treat its basic neural networks as CNNs.
Besides, for recurrent neural networks (RNNs), we label all the
variant RNN architectures as RNNs, such as long short-term
memory (LSTM) and gated recurrent units (GRUs).

Examine Requirements. We manually examine the spec-
ified software and hardware requirements for each project.
For software requirements, DL developers usually provide
the “requirements.txt” file in their repositories or mention
the required dependencies in the README.md file. If the
prerequisite of software dependencies is found in a project, we
consider the project has software requirements. For hardware
requirements, we relax the conditions such that the hardware
requirements of a project is considered as provided if the
project mentions the tested hardware devices (e.g., a specific

TABLE II
DISTRIBUTION OF NEURAL NETWORKS, FRAMEWORKS AND LANGUAGES

IN THE 245 COLLECTED PROJECTS
Network #Projects %Projects Framework #Projects %Projects Language #Projects %Projects

CNN 143 58.4 TensorFlow 92 37.5 Python 220 89.8
RNN 50 20.4 PyTorch 58 23.7 Lua 8 3.3
CNN/RNN 15 6.1 Keras (TensorFlow) 34 13.9 C++ 7 2.9
GAN 13 5.3 Caffe 20 8.2 JavaScript 3 1.2
Others 24 9.8 Theano 11 4.5 Others 7 2.8

Others 30 12.2

CPU or GPU model) or a minimum required size of DRAM
or GPU RAM needed for execution.

Two authors independently conduct the manual data clean-
ing and examination. To ensure the consistency of results,
we perform cross-checks to reach a consensus for conflict-
ing cases. The examination and discussion process spent
us two months. After these steps, we finally collected 245
DL projects. The statistic results of neural networks, DL
frameworks, and languages used in these projects are shown
in TABLE II. We can see that CNNs and RNNs are the
dominant networks in DL development. These two neural
networks account for 84.9% among all the examined projects.
For DL frameworks, TensorFlow (including Keras using Ten-
sorFlow backend) and PyTorch are the most popular frame-
works (75.1%). Moreover, Python (89.8%) is the most popular
programming language used during DL development. The
dataset of the collected DL projects is available at https:
//github.com/DeterministicDeepLearning.

III. OUR EXPERIMENTAL FRAMEWORK

A. Overview

Fig. 2 shows our experimental framework, which consists
of four parts, i.e., environment generation, DL app execution
environments, identical model training, and variance analysis.
The details of each part are described as follows.

Environment Generation. To emulate x86 hardware en-
vironments with different numbers of CPU threads, we use
VirtualBox, an open-source type-2 hypervisor [44]. Virtual-
Box is executed within a host operating system (OS), which
provides full virtualization for x86 virtualization. This means
that guest OSs can be run in isolation within their own
environment. Such virtualization can be seen as almost a
complete simulation of the real hardware system, because it
allows unmodified guest OSs to be run upon it [45]. Details
of the infrastructures are as follows.

• Host Machine: The host machine is a workstation with an
Intel Core i9-9900K CPU @ 3.60GHz (8 cores with 16
threads), 64 GB memory, 512 GB SSD and 2 TB HDD
storage, and an Nvidia RTX 2080Ti GPU card.

• Host OS: The OS of the host machine is Windows 10
Pro (20H2).

• Hypervisor: We installed VirtualBox version 6.1.18 in the
host OS to generate VMs.

• Guest OS: The guest OS installed in VMs is Ubuntu
18.04.5 LTS Desktop version [46], a popular Linux
distribution.

We use VirtualBox to generate four types of VMs, all of
which have the same memory size (i.e., 24 GB) and the same

Fig. 3. A VM setting with 6 threads, 24 GB memory, and 500 GB storage.

storage size (i.e., 500 GB stored in the HDD), but different in
the number of threads (i.e., 1, 2, 6, and 12). Fig. 3 shows an
example setting of the VM with 6 threads. Note that the host
CPU (i9-9900K) has 8 physical cores. If hyper-threading is
enabled in BIOS, VirtualBox can manage a maximum number
of 16 threads (logical CPUs).

DL App Execution Environments. To provide an isolated
and independent execution environment, each DL project and
its dependencies are installed and run within its own VM.
To obtain a clean installation of a guest OS for each DL
project, we create one VM and install Ubuntu 18.04.5. Then,
we use the importing and exporting Virtual Machines feature
to create a new VM with a clean installed Ubuntu 18.04.5
for the examined DL project. Therefore, one DL project will
have at least one VM, and the number of CPU threads can be
adjusted by VirtualBox.

Besides, to speed up the experiments, we execute two
VMs at the same time. The resource allocation criterion of
concurrent execution is that the total resources of concurrently
executed VMs are less than those of the host machine. For
example, two VMs (i.e., one has 2 CPU threads, and another
has 6 CPU threads) can be run in parallel. When the VMs are
executing, we do not perform any CPU-bound operations in
the host machine.

Moreover, following the same setting in [18] and [47], we
use fixed seed (i.e., same random generator and the same
seed) to control software-level nondeterministic factors, as
shown in TABLE III. Fixed-seed settings can disable the
nondeterminism introduced in places such as initial weights,
dropout layers, data augmentation, and batch ordering [18].

Identical Model Training. To study the impact of CPU
multithreading (i.e., 1, 2, 6, and 12 threads) on the nonder-
minism in training DL systems, we perform three categories
of identical training runs as follows.

• Default identical training with model selection (Default
w/ MS) that does not enforce software-level determinism
(i.e., none of the random generators are controlled). The
training runs are done under different multithreading
environments with the model selection method used in
the examined project.

TABLE III
FIXED-SEED SETTINGS FOR TENSORFLOW AND PYTORCH PROJECTS

TensorFlow (CPU) PyTorch (CPU)

Setting SEED Setting SEED

os.environ[’PYTHONHASHSEED’]=str(SEED) 1 torch.manual seed(SEED) 1
random.seed(SEED) 1 random.seed(SEED) 1
np.random.seed(SEED) 1 np.random.seed(SEED) 1
tf.set random seed(SEED) 1

• Fixed-seed identical training with model selection (Fixed
w/ MS) that is set to fixed seed to control software-level
nondeterminism factors. The training runs are done un-
der different multithreaded environments with the model
selection method.

• Fixed-seed identical training without model selection
(Fixed w/o MS) that has a fixed-seed setting under dif-
ferent multithreaded environments but without any model
selection technique.

For each experiment set (i.e., one type of identical training
runs of one DL project in one CPU multithreaded environ-
ment), we perform n runs (n >= 30), according to the time
spent on training a model. Since we are performing training
runs in a single-CPU platform, some DL projects are too
slow to be trained in such an environment. Thus, it is hard
to perform more identical runs for such projects.

The evaluation metrics mainly used are accuracy and train-
ing time. The accuracy is defined as the proportion of correct
inferring cases by the model among the total number of cases
input to the model. For the training time, we measure the time
interval from the beginning of program execution to the end of
model testing. The time used for data loading and processing
should also be considered. Since we are performing training
runs in different multithreaded environments, data operations
may consume much time such as those in a single-threaded
environment. Note that the evaluation metrics include but are
not limited to the above metrics. According to specific DL
projects, we can also use other metrics, e.g., recall, precision,
and F1-score.

Variance Analysis. Multiple identical training runs of one
DL project under one CPU multithreaded environment gen-
erate multiple models. In this part, we analyze the vari-
ance of the results produced by the trained models by us-
ing statistical methods, such as boxplots and statistics test,
i.e., Mann–Whitney U test [49]. We study the variance by
comparing the results obtained from different multithreaded
environments to quantify the nondeterminism impact of CPU
multithreading on training DL systems. For example, when
comparing two sets of runs (S1 and S2), the null hypothesis
is that the accuracies of sets S1 and S2 have similar distri-
butions. Suppose we got a p-value which is less than a given
significance level α = 0.05. In that case, we can reject the null
hypothesis with 95% confidence and infer that the alternative
hypothesis is true, i.e., the accuracies of sets S1 and S2 are
statistically different. In this study, we use R language [50] to
perform the Mann–Whitney U test.

B. Projects for Experiments and Training Settings

To cover the most popular neural networks (i.e., CNNs
and RNNs) and DL frameworks (i.e., TensorFlow, Keras,

TABLE IV
EXAMINED GITHUB DL PROJECTS

No. Project Framework Framework Version Neural Network Application Domain Commit #Stars

#1 saurabhmathur96/clickbait-detector [48] Keras (TensorFlow) 1.2.1 (0.12.1) CNN Clickbait Headlines Detection 1b6ab1b 467
#2 awni/ecg [41] Keras (TensorFlow) 2.1.6 (1.8.0) CNN Medical (Heart) Diagnosis c97bb96 403
#3 voicy-ai/DialogStateTracking [38] TensorFlow 1.14.0 RNN (MemN2N) Chat Bot a102672 228
#4 zjy-ucas/ChineseNER [39] TensorFlow 1.2.0 RNN Chinese Named Entity Recognition 48e1007 1,470
#5 castorini/honk [40] PyTorch 1.4.0 CNN Keyword Spotting c3aae75 389

and PyTorch) described in Section II, five DL projects in
the collected dataset are selected for our experiments, as
shown in TABLE IV. A project is selected if (1) it provides
training and testing samples; (2) the project is developed
using any DL framework with a CPU backend. Thus, we can
perform the experiments with minimal changes in source code.
Otherwise, we have to change the used library APIs, due to
differences between CPU and GPU backends (e.g., Keras); and
(3) the project has different framework versions and diverse
application domains. In our evaluation, we only select five
projects because it is very time-consuming to perform more
experiments. The training settings of these projects, including
the details of training samples, epochs, optimizations, model
selection methods, evaluation metrics, and the number of iden-
tical training runs, are shown in TABLE V. In the following,
we briefly introduce the examined DL projects.

• Project #1: clickbait-detect is a CNN-based model for
detecting clickbait headlines [48]. Its implementation
framework is Keras (using TensorFlow backend). For this
project, we use the default training dataset and settings,
such as settings of epochs and early stopping (ES, with a
patience of 2), as shown in TABLE V. Since the time to
train one model is about 30 seconds, we perform 1,000
identical training runs for each experiment set.

• Project #2: ecg is a medical (heart) diagnosis tool for
cardiologist-level arrhythmia detection and classification
in ambulatory electrocardiograms [41]. To accelerate the
experiments, we create a smaller dataset from the original
one and perform 30 identical training runs.

• Project #3: DialogStateTracking is a dialog system (chat-
bot) [38]. It implements two types of network archi-
tectures, i.e., hybrid code networks (HCN [51]) and
end-to-end memory networks (MemN2N [52], an RNN
architecture). We choose the MemN2N model for the
experiment and perform task 3 (options in the model).
All the training settings (TABLE V) are the same as the
default settings in the project and 30 identical training
runs are performed.

• Project #4: ChineseNER is a tool for Chinese named
entity recognition based on RNNs [39]. Unlike other ex-
amined projects, the default evaluation metric is F1-score,
since the recognition is a multi-label classification task.
Similarly, we create a small dataset by reducing samples
from the original dataset to accelerate the experiments
and perform 30 identical training runs.

• Project #5: honk is a PyTorch reimplementation of CNNs
for keyword spotting [40]. The model is used to recognize
“command triggers” in speech-based interfaces [53], such
as “Hey Siri”. In the experiments, we use three words

TABLE V
TRAINING SETTINGS OF EXAMINED PROJECTS

No. #Train #Val #Test #Epochs Optimizer Model Selection Metric #Runs

#1 8,787 2,930 2,930 20 Adam ES (2) Accuracy 1,000
#2 205 51 64 30 Adam ES (5) + Best Validation Loss Accuracy 30
#3 9,855 9,978 10,018 200 Adam Best Validation Accuracy Accuracy 30
#4 10,439 1,188 2,386 30 Adam Best Validation F1-score F1-score 30
#5 4,617 477 596 30 SGD Best Validation Accuracy Accuracy 30

1 2 6 1 20 . 8 0

0 . 8 4

0 . 8 8

0 . 9 2

N u m b e r o f C P U T h r e a d s

Ac
cu

rac
y

(a) Default w/ MS (#1)

1 2 6 1 20 . 8 0

0 . 8 4

0 . 8 8

0 . 9 2

N u m b e r o f C P U T h r e a d s

Ac
cu

rac
y

(b) Fixed w/ MS (#1)

1 2 6 1 20 . 8 0

0 . 8 4

0 . 8 8

0 . 9 2

N u m b e r o f C P U T h r e a d s

Ac
cu

rac
y

(c) Fixed w/o MS (#1)

1 2 6 1 20 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

N u m b e r o f C P U T h r e a d s

Ac
cu

rac
y

(d) Default w/ MS (#2)

1 2 6 1 20 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

N u m b e r o f C P U T h r e a d s

Ac
cu

rac
y

(e) Fixed w/ MS (#2)

1 2 6 1 20 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

N u m b e r o f C P U T h r e a d s

Ac
cu

rac
y

(f) Fixed w/o MS (#2)

Fig. 4. Boxplots of accuracy variance of projects #1 and #2.

follow, learn, and visual, as the keywords for training
the model and we perform 30 runs.

Note that all the training settings presented in TABLE V can
produce models with the convergence of training loss. Since
our goal is to evaluate the variance (i.e., nondeterminism)
in identical training runs of DL systems impacted by CPU
multithreading, our training settings may not generate the
best training results. Besides, for reproducing and further
investigation, we publicly release all the corresponding VMs
of these projects, which can be accessed at https://github.com/
DeterministicDeepLearning.

IV. RESULTS AND ANALYSIS

A. RQ1: Impact of CPU Multithreading on Effectiveness Vari-
ance (e.g., accuracy) in Training DL Systems

We first give the experiment results of projects #1 and #2,
which are developed using Keras with the TensorFlow backend
(TABLE IV). As shown in Fig. 4, for these two projects,
we use boxplots to illustrate the accuracy distributions of
the final testing results from the three categories of identical
training runs (described in Section III-A). The results of
Mann–Whitney U test between two accuracy variances from
two different environments are presented in TABLE VI.

We can observe from Fig. 4 (a) and (d) that when per-
forming default identical training runs with model selec-
tion (i.e., without controlling software-level nondeterminism
factors), both projects have large accuracy variances across

TABLE VI
p-VALUES OF MANN–WHITNEY U TEST FOR FIG. 4

Project #1

Default w/ MS Fixed w/ MS Fixed w/o MS

#Threads 2 6 12 #Threads 2 6 12 #Threads 2 6 12

1 0.686 0.337 0.237 1 0.751 0.945 0.156 1 <0.001 <0.001 <0.001
2 0.573 0.452 2 0.858 0.133 2 0.912 0.031
6 0.851 6 0.178 6 0.048

Project #2

Default w/ MS Fixed w/ MS Fixed w/o MS

#Threads 2 6 12 #Threads 2 6 12 #Threads 2 6 12

1 0.717 0.455 0.174 1 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001
2 0.595 0.344 2 <0.001 <0.001 2 <0.001 <0.001
6 0.674 6 <0.001 6 <0.001

Note: values shown in bold represent the p-value is less than a give significance level α = 0.05.

0 2 5 0 5 0 0 7 5 0 1 0 0 00 . 8 0

0 . 8 4

0 . 8 8

0 . 9 2

Ac
cu

rac
y

S e q u e n c e N u m b e r

 1
 2
 6
 1 2

(a) Default w/ MS

0 2 5 0 5 0 0 7 5 0 1 0 0 00 . 8 0

0 . 8 4

0 . 8 8

0 . 9 2

Ac
cu

rac
y

S e q u e n c e N u m b e r

 1
 2
 6
 1 2

(b) Fixed w/ MS

0 2 5 0 5 0 0 7 5 0 1 0 0 00 . 8 0

0 . 8 4

0 . 8 8

0 . 9 2

Ac
cu

rac
y

S e q u e n c e N u m b e r

 1
 2
 6
 1 2

(c) Fixed w/o MS

Fig. 5. Sorting of accuracy variance of project #1.

four environments, i.e., nondeterminism exists in multiple
identical training runs. The results are intuitive, since different
runs generate different randomness. This implies that when
reporting the effectiveness of one DL system, multiple runs
are necessary to be performed to obtain an average score. The
maximum accuracy difference of project #1 is 9.97% in a 2-
threaded environment, while that of project #2 is 11.43% under
a 12-threaded environment.

Although nondeterminism exists in default identical runs
across all the environments, the Mann–Whitney U test results
show that such variances have no statistically significant differ-
ence, i.e., the p-value is larger than a given significance level
α = 0.05. Thus, we can not reject the null hypothesis that the
accuracy variances of default runs have similar distributions
in different environments. It seems that under software-level
nondeterminism factors, the impact of CPU multithreading on
the effectiveness variance in training DL systems can not be
observed.

However, these two projects manifest differently for fixed-
seed identical training runs, i.e., the 2nd and the 3rd categories
of runs (with and without model selection). For project #1,
Fig. 4 (b) and (c) demonstrate that accuracy variances still
exist during multiple runs, although such variances are smaller
than those from default runs. The Mann–Whitney U test results
(TABLE VI) show that the accuracy variances generated from
fixed-seed identical runs with model selection (early stopping)
have no significant difference in different CPU multithreaded
environments. Without model selection, the accuracy in a
single-threaded environment is statistically different from that
under multithreaded environments (i.e., 2, 6, and 12 threads).
Note that the average accuracy scores (Fig. 4 (c)) obtained
from different environments are very similar, i.e., 88.65%,
88.79%, 88.77%, and 88.72%, respectively. Although the
accuracy scores are similar in different environments, it can
be observed from Fig. 5 that for the fixed-seed runs, a few ac-
curacy scores keep occurring in single-threaded environments.

0 5 0 1 0 0 1 5 0 2 0 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5

 1
 2
 6
 1 2

Ac
cu

rac
y

E p o c h s
(a) Default w/ MS (#3)

0 5 0 1 0 0 1 5 0 2 0 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5

Ac
cu

rac
y

E p o c h s

 1
 2
 6
 1 2

(b) Fixed w/ MS (#3)

0 5 0 1 0 0 1 5 0 2 0 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5

Ac
cu

rac
y

E p o c h s

 1
 2
 6
 1 2

(c) Fixed w/o MS (#3)

0 5 1 0 1 5 2 0 2 5 3 00 . 6

0 . 7

0 . 8

0 . 9

 1
 2
 6
 1 2

F1
 Sc

ore

E p o c h s
(d) Default w/ MS (#4)

0 5 1 0 1 5 2 0 2 5 3 00 . 6

0 . 7

0 . 8

0 . 9

F1
 Sc

ore

E p o c h s

 1
 2
 6
 1 2

(e) Fixed w/ MS (#4)

0 5 1 0 1 5 2 0 2 5 3 00 . 6

0 . 7

0 . 8

0 . 9

F1
 Sc

ore

E p o c h s

 1
 2
 6
 1 2

(f) Fixed w/o MS (#4)

0 5 1 0 1 5 2 0 2 5 3 0
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

 1
 2
 6
 1 2

Ac
cu

rac
y

E p o c h s
(g) Default w/ MS (#5)

0 5 1 0 1 5 2 0 2 5 3 0
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ac
cu

rac
y

E p o c h s

 1
 2
 6
 1 2

(h) Fixed w/ MS (#5)

0 5 1 0 1 5 2 0 2 5 3 0
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ac
cu

rac
y

E p o c h s

 1
 2
 6
 1 2

(i) Fixed w/o MS (#5)

Fig. 6. Accuracy variance of projects #3-5 (F1-score for project #4). Shaded
areas represent values within one standard deviation of the average score. The
absence of a shaded area illustrates identical results across all identical runs.

For example, as shown in Fig. 5 (b) and (c), the accuracy
scores 89.39% and 88.33%, have occurred 334 and 358 times,
respectively in the 1,000 fixed-seed identical training runs with
and without model selection.

For project #2, Fig. 4 (e) and (f) present that after con-
trolling random generators with fixed seeds (TABLE III),
the accuracy scores obtained from multiple runs in single-
threaded and 2-threaded environments are deterministic. For
example, for fixed-seed runs with model selection (Fig. 4
(e)), the accuracy scores in single-threaded and 2-threaded
environments are 84.08% and 85.16%, respectively. However,
accuracy variances occurred when increasing the number of
CPU threads (e.g., 6 and 12). The training result can not be
reproduced in a deterministic manner with multiple training
runs. The statistic testing results in TABLE VI show that the
accuracy scores from fixed-seed identical runs (both with and
without model selection) are statistically different in different
environments. This implies that CPU multithreading can cause
accuracy variance in training DL systems.

Finding #1: For the examined two Keras (with TensorFlow
backend) projects, the accuracy variances obtained from
default identical training runs (without controlling random
generators) have no significant difference in different CPU
multithreaded environments. The nondeterminism factors
cause accuracy differences as large as 11.43%. However,
after controlling random generators, we can observe the
impact of CPU multithreading on the accuracy variance
(e.g., different training accuracy). Besides, although variance
still exists in fixed-seed identical runs, some accuracy scores
keep occurring in a single-threaded environment.

0 5 0 1 0 0 1 5 0 2 0 0
0

5

1 0

1 5
Lo

ss
SD

E p o c h s

x 1 0 - 2

(a) #3

0 5 1 0 1 5 2 0 2 5 3 0
0

2

4

6

Lo
ss

SD

E p o c h s

x 1 0 - 6

(b) #4

0 5 1 0 1 5 2 0 2 5 3 0
0
8

1 6
2 4
3 2

Lo
ss

SD

E p o c h s

x 1 0 - 2

(c) #5

Fig. 7. Standard deviation (SD) calculated from training loss of fixed-seed
runs of projects #3-5.

Next, we present the experimental results for projects #3-4
and #5, which are developed using TensorFlow and PyTorch,
respectively. Fig. 6 presents accuracy variance obtained from
three categories of identical training runs under different CPU
multithreaded environments. Note that for TensorFlow and
PyTorch projects, we present the evaluation results by the
model trained after each epoch.

Similar to the default runs of the Keras projects, we can
see from Fig. 6 (a), (d), and (g) that without setting fixed
seeds, the training results are nondeterministic, i.e., multiple
runs generate multiple models with different results. It seems
that there is no difference in the accuracy variances obtained
from different environments, because the shaded areas (i.e.,
values within one standard deviation (SD) of the average
score) obtained from different environments are overlapped.

Moreover, it can be observed from Fig. 6 that when per-
forming fixed-seed identical training runs, all three projects
produce deterministic evaluation results within the same CPU
multithreaded environment. It is interesting that for project
#4, the evaluation results (F1-score) are identical (at a certain
precision, i.e., six decimal places) in the four multithreaded
environments. However, after examining the training loss of
models generated from different environments, it is found that
although the evaluation results of project #4 are identical,
the loss values trained in single-threaded and multithreaded
environments (i.e., 2, 6, and 12 threads) are different. The
SD value of training loss of project #4 is not zero but is
significantly smaller than that of projects #3 and #5 (i.e., differ
by 4 orders of magnitude), as depicted in Fig. 7.
Finding #2: Similar to the Keras projects, for the examined
TensorFlow and PyTorch projects, default identical training
runs produce multiple models with different evaluation
results. However, fixed-seed identical training runs produce
deterministic evaluation results in the environment with the
same number of CPU threads. The deterministic evaluation
results of one project can be different across different
environments.

To analyze which program functions introduce value dif-
ferences, we manually trace the value of training loss in the
source code. Fig. 8 (a), (b), and (c) show the tracing results in
the first training epoch for projects #3-5, respectively. Note that
the functions of TensorFlow’s Python library between projects
#3 and #4 are different, due to different TensorFlow versions.
All the tracing results dive into the C++ library functions of
TensorFlow and PyTorch. The training loss values generated

#Thread = 1 #Thread = 2
8.56838989
8.50176239
8.42222214
8.33638000
8.35218811
8.29192734
8.21493816
8.25994015
8.22954941

Step
8.56838989
8.50176239
8.42222214
8.33638000
8.35218811
8.29192734
8.21493816
8.25994015
8.22954845

1
2
3
4
5
6
7
8
9

main.py:
main()

memn2n.py:
MemN2NDialog.batch_fit()

session.py:
BaseSession.run()

session.py:
BaseSession._run()

session.py:
BaseSession._do_run()

session.py:
BaseSession._call_tf_sessionrun()

pywarp_tensorflow.py:
tf_session.TF_SessionRun_wrapper()

(a) #3

#Thread = 1 #Thread = 2
86.26031494
108.74924469
126.57118225
270.82260132

Step
86.26031494
108.74924469
126.57118225
270.82257080

1
2
3
4

main.py:
train()

model.py:
Model.run_step()

session.py:
BaseSession.run()

session.py:
BaseSession._run()

session.py:
BaseSession._do_run()

pywarp_tensorflow.py:
tf_session.TF_Run()

(b) #4

#Thread = 1 #Thread = 2
2.50923109
2.49720478

Step
2.50923109
2.49720502

1
2

main.py:
train()

loss.py:
CrossEntropyLoss.forward()

functional.py:
cross_entropy()

functional.py:
nll_loss()

torch._C._nn.nll_loss()

(c) #5

Fig. 8. Loss value differences in user and framework code for projects #3-5.

5 0 1 0 0 1 5 0 2 0 0
0 . 7 4 7 9 5

0 . 7 4 8 3 0

0 . 7 4 8 6 5

0 . 7 4 9 0 0

Ac
cu

rac
y

E p o c h s

 1
 2
 6
 1 2

(a) Fixed w/ MS (#3)

5 0 1 0 0 1 5 0 2 0 0
0 . 6 6

0 . 6 9

0 . 7 2

0 . 7 5

Ac
cu

rac
y

E p o c h s

 1
 2
 6
 1 2

(b) Fixed w/o MS (#3)

2 0 2 2 2 4 2 6 2 8 3 0
0 . 8 4

0 . 8 7

0 . 9 0

0 . 9 3

Ac
cu

rac
y

E p o c h s

 1
 2
 6
 1 2

(c) Fixed w/ MS (#5)

2 0 2 2 2 4 2 6 2 8 3 0
0 . 8 4

0 . 8 7

0 . 9 0

0 . 9 3

Ac
cu

rac
y

E p o c h s

 1
 2
 6
 1 2

(d) Fixed w/o MS (#5)
Fig. 9. Accuracy variance of project #3 from 50-200 training epochs and
project #5 from 20-30 training epochs.

from different environments are identical in a few beginning
steps within the first training epoch but become different after
more execution steps. It should be noted that the input samples
for each step are identical in different environments. This
implies that the rounding error (i.e., floating point imprecision)
would be accumulated along with the training time.

Finding #3: The rounding errors of floating-point numbers
come from low-level implementations of DL frameworks,
i.e., the C++ library. Under different CPU multithreaded
environments, the rounding errors are accumulated during
the training process. After some training steps, the values
of training loss become different.

In the following, we focus on the projects (i.e., #3 and
#5) that have different evaluation results in different CPU
multithreaded environments, as shown in Fig. 9. For project

TABLE VII
MAXIMUM ACCURACY DIFFERENCE OF PROJECTS #3 AND #5

#Threads
Fixed w/ MS Fixed w/o MS

#3 (Epochs 61–74) #5 (Epoch 25) #3 (Epoch 132) #5 (Epoch 23)

1 0.748852066 0.907718122 0.748852066 0.921140969
2 0.748852066 0.932885885 0.664703534 0.835570455
6 0.748951887 0.932885885 0.748951887 0.835570455

12 0.748053504 0.922818780 0.748652426 0.895973146

Max Diff 0.000898383 0.025167763 0.084248353 0.085570514

#3, the accuracy scores from 50 to 200 epochs are presented,
while the epoch range for project #5 is from 20 to 30.
We can observe that fixed-seed identical training runs with
model selection (i.e., best validation accuracy) can produce a
more stable accuracy than the fixed-seed runs without model
selection. The result is expected since the accuracy will only
be updated after an epoch with a better validation accuracy.

To further examine the maximum accuracy difference in
the training process, we calculate the SD of the accuracy
scores obtained from different environments. TABLE VII
shows the maximum accuracy difference and the correspond-
ing epoch(s) of projects #3 and #5. For fixed-seed runs with
model selection, the max accuracy difference of project #3
obtained from different CPU multithreaded environments is
very small (i.e., 0.0898%). In contrast, the max accuracy
difference of project #5 is 2.52%. However, both projects have
large accuracy differences without model selection, i.e., 8.42%
and 8.56%, respectively. The result implies that the impact of
CPU multithreading is substantial and not negligible.

Finding #4: For fixed-seed identical training runs with-
out model selection, CPU multithreading causes accuracy
differences as large as 8.56%. Using model selection can
minimize the impact of CPU multithreading on training
DL systems. The max accuracy differences are range from
0.0898% to 2.52% with model selection.

B. RQ2: Impact of CPU Multithreading on Time Variance in
Training DL Systems

In this RQ, we present the results of time variance in training
DL systems under different CPU multithreaded environments.
Note that as described in Section III-A, the training time in
our experiments is measured as the time interval from the
beginning of program execution to the end of model testing.

Fig. 10 shows the time variance of projects #1 and #2
obtained from three categories of identical training runs. The
Mann–Whitney U test results between two time-variances
from two different environments are presented in TABLE VIII.
For project #1, the testing results show that the time variances
are significantly different in different environments for all three
categories of identical training runs. We can observe from
Fig. 10 (a) and (c) that for default runs and fixed-seed runs
without model selection, using 2 CPU threads can achieve
a faster training time, while for fixed-seed runs with model
selection, using 6 threads would be better. However, for project
#2, the training time of all the three categories of identical runs
decreases with the increasing number of threads up to 12, i.e.,
the more CPU threads, the faster training efficiency.

1 2 6 1 2
1 5
3 0
4 5
6 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(a) Default w/ MS (#1)

1 2 6 1 2
1 5
3 0
4 5
6 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(b) Fixed w/ MS (#1)

1 2 6 1 20
6 0

1 2 0
1 8 0
2 4 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(c) Fixed w/o MS (#1)

1 2 6 1 20
2 5 0 0
5 0 0 0
7 5 0 0

1 0 0 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(d) Default w/ MS (#2)

1 2 6 1 20
2 5 0 0
5 0 0 0
7 5 0 0

1 0 0 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(e) Fixed w/ MS (#2)

1 2 6 1 20
2 5 0 0
5 0 0 0
7 5 0 0

1 0 0 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(f) Fixed w/o MS (#2)

Fig. 10. Boxplots of training time variance of projects #1 and #2.
TABLE VIII

p-VALUES OF MANN–WHITNEY U TEST FOR FIG. 10
Project #1

Default w/ MS Fixed w/ MS Fixed w/o MS

#Threads 2 6 12 #Threads 2 6 12 #Threads 2 6 12

1 <0.001 0.004 <0.001 1 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001
2 <0.001 <0.001 2 <0.001 <0.001 2 <0.001 <0.001
6 <0.001 6 <0.001 6 <0.001

Project #2

Default w/ MS Fixed w/ MS Fixed w/o MS

#Threads 2 6 12 #Threads 2 6 12 #Threads 2 6 12

1 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001
2 <0.001 <0.001 2 <0.001 <0.001 2 <0.001 <0.001
6 0.044 6 <0.001 6 <0.001

Note: values shown in bold represent the p-value is less than a give significance level α = 0.05.

Fig. 11 shows the training-time variances of projects #3-
5. The results of Mann–Whitney U test are presented in
TABLE IX. Note that the time spent for fixed-seed identical
training runs with and without model selection is the same.
Since there is no early stopping used in these projects, all
the epochs would be executed. We can observe from Fig. 11
that for the three projects, different environments generate
different training times. Besides, using 2 CPU threads can
achieve the best training efficiency. For projects #4 and #5,
using 12 threads for model training produce the worst training
efficiency.

More threads used for training may lead to the
thread over-subscription issue, which can significantly af-
fect the training time [35]. For example, threading set-
tings can increase the training time of TensorFlow work-
loads running on CPUs in a substantial way [54]. In
TensorFlow 1.x, training time of a model on a CPU
backend relies on the threading model parameters in
class ConfigProto, i.e., (inter_op_parallelism_threads,
intra_op_parallelism_threads) [35], [54]. The first pa-
rameter (inter-op) denotes the number of threads used for
parallelism between independent operations, while the second
parameter (intra-op) specifies the number of threads used
within an individual op for parallelism. If these parameters
are unset by users, they will be initialized as the number of
logical CPU cores by default. Therefore, in our experiments,
we have four default threading parameters, i.e., (1,1), (2,2),
(6,6), and (12,12). However, the recommended setting for the
inter-op parameter is 2 [55], or a small value, e.g., ranging
from 1 to 4 [35], depending on specified DL projects.

1 2 6 1 21 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

2 0 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(a) Default (#3)

1 2 6 1 2
2 0 0 0
2 4 0 0
2 8 0 0
3 2 0 0
3 6 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(b) Default (#4)

1 2 6 1 21 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(c) Default (#5)

1 2 6 1 21 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

2 0 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(d) Fixed (#3)

1 2 6 1 2
2 0 0 0
2 4 0 0
2 8 0 0
3 2 0 0
3 6 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)

(e) Fixed (#4)

1 2 6 1 21 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

N u m b e r o f C P U T h r e a d s

Tim
e (

s)
(f) Fixed (#5)

Fig. 11. Boxplots of training time variance of projects #3-5.

TABLE IX
p-VALUES OF MANN–WHITNEY U TEST FOR FIG. 11

Default

Project #3 Project #4 Project #5

#Threads 2 6 12 #Threads 2 6 12 #Threads 2 6 12

1 <0.001 0.267 <0.001 1 <0.001 0.652 <0.001 1 <0.001 <0.001 <0.001
2 <0.001 <0.001 2 <0.001 <0.001 2 <0.001 <0.001
6 <0.001 6 <0.001 6 <0.001

Fixed

Project #3 Project #4 Project #5

#Threads 2 6 12 #Threads 2 6 12 #Threads 2 6 12

1 <0.001 <0.001 <0.001 1 <0.001 0.223 <0.001 1 <0.001 <0.001 <0.001
2 <0.001 <0.001 2 <0.001 <0.001 2 0.225 <0.001
6 <0.001 6 <0.001 6 <0.001

Note: values shown in bold represent the p-value is less than a give significance level α = 0.05.

Finding #5: For the examined five DL projects, only one
project shows that the training time would decrease along
with the increasing number of CPU threads. For most
projects, using 2 threads would be a better choice to obtain
a faster training efficiency.

C. RQ3: Proportions of DL Projects that Mentioned Software
and Hardware Requirements

After examining software and hardware requirements of the
245 collected GitHub DL projects (described in Section II),
we can see from TABLE X that 222 projects (90.6%) have
listed software requirements. In comparison, only 54 projects
(22.0%) have mentioned hardware requirements. For software
requirements, the results are expected since DL developers
mainly rely on DL libraries/frameworks to implement DL
models [56].

We further conduct statistics of hardware types mentioned
in the 54 projects. Note that some projects mentioned both
tested GPU and CPU environments. Thus there exists an
overlapping between the statistics results of GPU and CPU
environments. It is found that the most frequent type of tested
hardware environments is GPU, i.e., 51 projects (94.4%) have
mentioned GPU devices and GPU-related memory required to
be used for model training. Comparatively, 8 projects (14.8%)
mentioned CPU-related devices. It seems that DL practitioners
are unaware of reporting their tested hardware environments
for model training and evaluation. However, according to our
findings, it is not a good practice since CPU multithreading
can cause effectiveness variance in training DL systems.

TABLE X
PROPORTIONS OF SOFTWARE AND HARDWARE REQUIREMENTS OF THE

245 COLLECTED GITHUB DL PROJECTS

Provided
Software Requirements Hardware Requirements
#Projects %Projects #Projects %Projects

Yes 222 90.6 54 22.0
No 23 9.4 191 78.0

Finding #6: Among the 245 collected GitHub DL projects,
90.6% of them provide software-level requirements, while
only 22.0% mention hardware-level requirements. For the
projects that have hardware requirements (54 projects),
94.4% present tested GPU environments, while 14.8% list
tested CPU environments.

V. IMPLICATIONS FOR DL RESEARCHERS AND
PRACTIONERS

Based on our empirical findings, we provide the following
five implications for DL researchers and practitioners.

• Implication #1: When training DL systems on CPU
platforms, to obtain deterministic training results, de-
velopers should control software-level nondeterminism
factors (e.g., random generators). Besides, practitioners
should pay attention to the effectiveness variance under
different CPU multithreaded environments.

• Implication #2: The effectiveness variance introduced by
CPU multithreading could be huge, in particular when
training DL systems without using model selection tech-
niques. To minimize the impact of CPU multithreading
on the effectiveness variance in training DL systems,
developers are suggested to use model selection methods
(e.g., best validation loss/accuracy). Moreover, to achieve
deterministic DL systems, it is necessary to develop
mitigation techniques to eliminate the inconsistency of
accuracy scores introduced by CPU multithreading.

• Implication #3: Using more CPU threads for model
training does not necessarily indicate that we can achieve
faster training efficiency. DL models with a default setting
(e.g., using all CPU threads) do not often take full
advantage of computing capability of the underlying
hardware [55]. For obtaining a promising training time,
developers are suggested to use some auto-tuning tools
(e.g., TensorTuner [35]) to fine-tune the built-in threading
configuration in DL frameworks (e.g., TensorFlow).

• Implication #4: When optimizing CPU parallelism for
training DL systems, developers should pay attention
to the potential impact on the effectiveness variance
introduced by CPU multithreading. For example, it would
be necessary to consider the task as a multi-objective
optimization problem, i.e., minimize the training time and
maximize the effectiveness (e.g., accuracy).

• Implication #5: Developers are suggested to mention
hardware environments used for model training and eval-
uation when releasing a DL project. In particular, if DL
models are trained on CPU platforms, developers should
provide detailed CPU models, since the number of threads
used can affect model training and evaluation.

VI. THREATS TO VALIDITY

Internal Validity. The empirical data collection and exam-
ination can be considered as a threat to internal validity. To
reduce this threat, we conduct data examination independently
and carefully by two authors. The results are cross-checked to
reach a consensus for the final reporting ones.

The use of virtual machines (i.e., VirtualBox) to emulate
CPU multithreaded environments can be another threat to
internal validity, since VMs may not fully represent the real
multithreaded environments provided by CPUs. Using VMs
to emulate different software and hardware environments
for software testing is quite common in practice [57]–[59].
However, we acknowledge that the potential impact of VMs
on the effectiveness of our findings can not be ignored. For
example, creating VMs in different CPU models or hosting
OSs may produce different environments, thus leading to
different results. Besides, running VMs in parallel for the
experiments could affect the training time.

Moreover, there exist other nondeterminism factors intro-
duced by CPUs, such as instructions in different CPU archi-
tectures [60]. Such nondeterminism factors are interesting to
be explored in the future, e.g., comparing identical training
runs of DL systems on different CPU architectures.

External Validity. The generalization of our findings is the
main threat to external validity. First, to collect DL projects,
we used two keywords (i.e., deep learning and neural network)
to search GitHub projects. Besides, for the experiments, we
examined five DL projects with limited versions of DL frame-
works. Therefore, the finding results are valid for our limited
experiments. Our experimental framework is applicable for
any DL project that can be trained on CPU platforms. We plan
to examine more projects using the experimental framework
to consolidate our findings in the future further.

Construct Validity. The threat to construct validity comes
from the selected metrics (i.e., accuracy and training time) for
the experiments. These two metrics are the commonly-used
metrics for evaluating effectiveness and training efficiency.
However, using other evaluation metrics may have different
finding results. In our future work, we plan to use more
evaluation metrics for the experiments.

VII. RELATED WORK

Variance Analysis in Deep Learning. Nagarajan et al. [17]
analyze some nondeterminism factors (e.g., GPU, environ-
ment, initialization, and minibatch) to the reproducibility in
reinforcement learning. Pham et al. [18] study the variance
in training general DL systems introduced by different non-
determinism factors (e.g., software-level and GPU nondeter-
minism). They conduct a survey and a literature review to
measure the awareness of such variance in identical training
runs. Different from their studies, our work focuses on inves-
tigating the nondeterministic impact of CPU multithreading
on training DL systems. Bahrampour et al. [61] and Kochura
et al. [62] study the training efficiency impacted by different
CPU multithreaded environments. Guo et al. [63] study the
accuracy variance of DL systems impacted by different DL

frameworks and deployment platforms (e.g., web browsers
and mobile devices). Our study investigates the impact of
CPU multithreading on the variance (effectiveness and training
time) in multiple identical training runs of DL systems, i.e.,
to quantify the deterministic or nondeterministic behavior
introduced by CPU multithreading.

Optimizing Deep Learning on CPU Platforms. Hasabnis
et al. [35] propose an auto-tuning tool, i.e., TensorTuner,
to optimize the training efficiency of TensorFlow on CPU
platforms by setting the optimal built-in threading model pa-
rameters. Kalamkar et al. [32] present optimization techniques
for improving DL recommender systems’ training efficiency
on CPU cluster architectures. Awan et al. [64] analyze the
characterization of CPU- and GPU-based DL training on
modern architectures. They find that CPU-based optimizations
(e.g., OpenMP [65]) can significantly improve DL training
efficiency for CPU platforms. Wang et al. [33] analyze the key
design features (e.g., scheduling and operator implementation)
in DL frameworks and further propose guides for tuning DL
framework parameters to maximize parallelism performance
on CPU platforms. Our work focuses on studying the impact
of CPU multithreading on the effectiveness variance in training
DL systems. Our findings show that different CPU multi-
threaded environments can also lead to different effectiveness
variances. Therefore, when optimizing training efficiency on
CPU platforms, the effectiveness variance should also be
considered. We refer this survey [36] to the readers who are
interested in the topic of optimizing DL on CPU platforms.

VIII. CONCLUSION

In this work, we conducted an empirical study to analyze
the nondeterministic impact of CPU multithreading on training
DL systems. We proposed an experimental framework based
on VirtualBox to generate a wide range of CPU multithreaded
environments (i.e., 1, 2, 6, and 12 threads). We performed
experiments on five GitHub DL projects, covering two neural
networks (i.e., CNNs and RNNs) and three DL implementation
frameworks (i.e., TensorFlow, PyTorch, and Keras). Finally,
we investigated the proportions of projects that specified
software and hardware requirements in the collected 245
GitHub DL projects. Based on the experiments, we presented
six empirical findings and summarized five implications for
DL researchers and practitioners. We believe this study can
facilitate understanding the nondeterminism in training DL
systems under CPU multithreaded environments. In the future,
we plan to conduct experiments on more DL projects.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments and suggestions. This work was supported in part
by the National Natural Science Foundation of China under
Grants 62002163 and 61772055, Natural Science Foundation
of Jiangsu Province under Grant BK20200441, Open Research
Fund of State Key Laboratory of Novel Software Technology
under Grant KFKT2020B20, and Australian Research Council
under Grant DP200101328.

REFERENCES

[1] R. Gao and K. Grauman, “On-demand learning for deep image restora-
tion,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 1086–1095.

[2] Y. Goldberg, “A primer on neural network models for natural language
processing,” Journal of Artificial Intelligence Research, vol. 57, pp. 345–
420, 2016.

[3] R. Haeb-Umbach, S. Watanabe, T. Nakatani, M. Bacchiani, B. Hoffmeis-
ter, M. L. Seltzer, H. Zen, and M. Souden, “Speech processing for
digital home assistants: Combining signal processing with deep-learning
techniques,” IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 111–
124, 2019.

[4] X. Du, Z. Zheng, G. Xiao, and B. Yin, “The automatic classification
of fault trigger based bug report,” in Proceedings of the IEEE 28th
International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2017, pp. 259–265.

[5] X. Wan, Z. Zheng, F. Qin, Y. Qiao, and K. S. Trivedi, “Supervised
representation learning approach for cross-project aging-related bug
prediction,” in Proceedings of the IEEE 30th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 2019, pp. 163–172.

[6] G. Xiao, X. Du, Y. Sui, and T. Yue, “Hindbr: Heterogeneous information
network based duplicate bug report prediction,” in Proceedings of the
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2020, pp. 195–206.

[7] Y. Sui, X. Cheng, G. Zhang, and H. Wang, “Flow2vec: value-flow-based
precise code embedding,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–27, 2020.

[8] W. Hua, Y. Sui, Y. Wan, G. Liu, and G. Xu, “Fcca: Hybrid code
representation for functional clone detection using attention networks,”
IEEE Transactions on Reliability, vol. 70, no. 1, pp. 304–318, 2020.

[9] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, and
G. Xu, “Reinforcement-learning-guided source code summarization via
hierarchical attention,” IEEE Transactions on Software Engineering,
2020.

[10] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network,”
ACM Transactions on Software Engineering and Methodology, vol. 30,
no. 3, pp. 1–33, 2021.

[11] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al., “An em-
pirical evaluation of deep learning on highway driving,” arXiv preprint
arXiv:1504.01716, 2015.

[12] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[13] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garcı́a, and D. Scaramuzza,
“Event-based vision meets deep learning on steering prediction for self-
driving cars,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 5419–5427.

[14] R. Fakoor, F. Ladhak, A. Nazi, and M. Huber, “Using deep learning
to enhance cancer diagnosis and classification,” in Proceedings of the
International Conference on Machine Learning (ICML), vol. 28. ACM,
2013.

[15] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image
analysis,” Annual Review of Biomedical Engineering, vol. 19, pp. 221–
248, 2017.

[16] J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev,
S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin et al.,
“Clinically applicable deep learning for diagnosis and referral in retinal
disease,” Nature Medicine, vol. 24, no. 9, pp. 1342–1350, 2018.

[17] P. Nagarajan, G. Warnell, and P. Stone, “Deterministic implementations
for reproducibility in deep reinforcement learning,” arXiv preprint
arXiv:1809.05676, 2018.

[18] H. V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan,
Y. Yu, and N. Nagappan, “Problems and opportunities in training deep
learning software systems: An analysis of variance,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2020, pp. 771–783.

[19] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” arXiv
preprint arXiv:1602.07868, 2016.

[20] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural Networks: Tricks of the Trade. Springer, 2012,
pp. 9–48.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2016, pp.
265–283.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” in Proceedings
of the Advances in Neural Information Processing Systems (NeurIPS),
vol. 32, 2019.

[23] F. Chollet et al., “Keras,” https://keras.io, 2015.
[24] Y. Kim and J. Ra, “Weight value initialization for improving training

speed in the backpropagation network,” in Proceedings of the IEEE
International Joint Conference on Neural Networks (IJCNN). IEEE,
1991, pp. 2396–2401.

[25] K. K. Teo, L. Wang, and Z. Lin, “Wavelet packet multi-layer perceptron
for chaotic time series prediction: effects of weight initialization,” in
Proceedings of the International Conference on Computational Science
(ICCS). Springer, 2001, pp. 310–317.

[26] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proceedings of the
International Conference on Machine Learning (ICML). PMLR, 2013,
pp. 1139–1147.

[27] D. Budden, A. Matveev, S. Santurkar, S. R. Chaudhuri, and N. Shavit,
“Deep tensor convolution on multicores,” in Proceedings of the Inter-
national Conference on Machine Learning (ICML). PMLR, 2017, pp.
615–624.

[28] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking tpu, gpu, and cpu
platforms for deep learning,” arXiv preprint arXiv:1907.10701, 2019.

[29] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning at
facebook: Understanding inference at the edge,” in Proceedings of
the IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2019, pp. 331–344.

[30] P. Blacker, C. Bridges, and S. Hadfield, “Rapid prototyping of deep
learning models on radiation hardened cpus,” in Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
IEEE, 2019, pp. 25–32.

[31] Y. Zou, X. Jin, Y. Li, Z. Guo, E. Wang, and B. Xiao, “Mariana: Tencent
deep learning platform and its applications,” Proceedings of the VLDB
Endowment, vol. 7, no. 13, pp. 1772–1777, 2014.

[32] D. Kalamkar, E. Georganas, S. Srinivasan, J. Chen, M. Shiryaev, and
A. Heinecke, “Optimizing deep learning recommender systems’ training
on cpu cluster architectures,” arXiv preprint arXiv:2005.04680, 2020.

[33] Y. E. Wang, C.-J. Wu, X. Wang, K. Hazelwood, and D. Brooks,
“Exploiting parallelism opportunities with deep learning frameworks,”
ACM Transactions on Architecture and Code Optimization, vol. 18,
no. 1, pp. 1–23, 2020.

[34] “tensorflow/direct session.cc at master · tensorflow/tensorflow,”
2021. [Online]. Available: https://github.com/tensorflow/tensorflow/
blob/master/tensorflow/core/common runtime/direct session.cc

[35] N. Hasabnis, “Auto-tuning tensorflow threading model for cpu backend,”
in Proceedings of the IEEE/ACM Machine Learning in HPC Environ-
ments (MLHPC). IEEE, 2018, pp. 14–25.

[36] S. Mittal, P. Rajput, and S. Subramoney, “A survey of deep learning on
cpus: opportunities and co-optimizations,” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[37] “Understanding tensorflow inter/intra parallelism threads - Stack Over-
flow,” 2021. [Online]. Available: https://stackoverflow.com/questions/
47548145/understanding-tensorflow-inter-intra-parallelism-threads

[38] “Github - voicy-ai/Dialogstatetracking: Dialog State Tracking using
End-to-End Neural Networks,” 2021. [Online]. Available: https:
//github.com/voicy-ai/DialogStateTracking

[39] “Github - zjy-ucas/ChineseNER: A neural network model for
Chinese named entity recognition,” 2021. [Online]. Available: https:
//github.com/zjy-ucas/ChineseNER

[40] “GitHub - castorini/honk: PyTorch implementations of neural network
models for keyword spotting,” 2021. [Online]. Available: https:
//github.com/castorini/honk

[41] “Github - awni/ecg: Cardiologist-level arrhythmia detection and
classification in ambulatory electrocardiograms using a deep neural
network,” 2021. [Online]. Available: https://github.com/awni/ecg

[42] “VirtualBox,” 2021. [Online]. Available: https://www.virtualbox.org/

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[44] E. Bauman, G. Ayoade, and Z. Lin, “A survey on hypervisor-based
monitoring: approaches, applications, and evolutions,” ACM Computing
Surveys, vol. 48, no. 1, pp. 1–33, 2015.

[45] D. Beserra, F. Oliveira, J. Araujo, F. Fernandes, A. Araújo, P. Endo,
P. Maciel, and E. D. Moreno, “Performance evaluation of hypervisors for
hpc applications,” in Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics (SMC). IEEE, 2015, pp. 846–851.

[46] “Enterprise Open Source and Linux — Ubuntu,” 2021. [Online].
Available: https://ubuntu.com/

[47] “Reproducibility — PyTorch 1.8.1 documentation,” 2021. [Online].
Available: https://pytorch.org/docs/stable/notes/randomness.html

[48] “Github - saurabhmathur96/clickbait-detector: Detects clickbait
headlines using deep learning,” 2021. [Online]. Available:
https://github.com/saurabhmathur96/clickbait-detector

[49] N. Nachar et al., “The mann-whitney u: A test for assessing whether
two independent samples come from the same distribution,” Tutorials in
Quantitative Methods for Psychology, vol. 4, no. 1, pp. 13–20, 2008.

[50] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2013. [Online]. Available: http://www.R-project.org/

[51] J. D. Williams, K. Asadi, and G. Zweig, “Hybrid code networks:
practical and efficient end-to-end dialog control with supervised and
reinforcement learning,” arXiv preprint arXiv:1702.03274, 2017.

[52] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory
networks,” arXiv preprint arXiv:1503.08895, 2015.

[53] R. Tang and J. Lin, “Honk: A pytorch reimplementation of con-
volutional neural networks for keyword spotting,” arXiv preprint
arXiv:1710.06554, 2017.

[54] “Guide to TensorFlow* Runtime optimizations for CPU,” 2021. [On-
line]. Available: https://software.intel.com/content/www/us/en/develop/
articles/guide-to-tensorflow-runtime-optimizations-for-cpu.html

[55] “Tips to Improve Performance for Popular Deep Learning Frameworks
on CPUs,” 2021. [Online]. Available: https://software.intel.com/content/
www/us/en/develop/articles/tips-to-improve-performance-for-popular-
deep-learning-frameworks-on-multi-core-cpus.html

[56] J. Han, S. Deng, D. Lo, C. Zhi, J. Yin, and X. Xia, “An empirical study
of the dependency networks of deep learning libraries,” in Proceedings
of the IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2020, pp. 868–878.

[57] I. Chana and A. Rana, “Empirical evaluation of cloud-based testing
techniques: a systematic review,” ACM SIGSOFT Software Engineering
Notes, vol. 37, no. 3, pp. 1–9, 2012.

[58] S. Winter, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo, “No
pain, no gain? the utility of parallel fault injections,” in Proceedings
of the IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE), vol. 1. IEEE, 2015, pp. 494–505.

[59] D. Cotroneo, L. De Simone, and R. Natella, “Run-time detection of
protocol bugs in storage i/o device drivers,” IEEE Transactions on
Reliability, vol. 67, no. 3, pp. 847–869, 2018.

[60] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and
overcount on modern hardware performance counter implementations,”
in Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2013, pp. 215–224.

[61] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Com-
parative study of deep learning software frameworks,” arXiv preprint
arXiv:1511.06435, 2015.

[62] Y. Kochura, S. Stirenko, O. Alienin, M. Novotarskiy, and Y. Gordienko,
“Performance analysis of open source machine learning frameworks for
various parameters in single-threaded and multi-threaded modes,” in
Proceedings of the Conference on Computer Science and Information
Technologies (CSIT), 2017, pp. 243–256.

[63] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,”
in Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 810–822.

[64] A. A. Awan, H. Subramoni, and D. K. Panda, “An in-depth performance
characterization of cpu-and gpu-based dnn training on modern architec-
tures,” in Proceedings of the Machine Learning on HPC Environments
(MLHPC), 2017, pp. 1–8.

[65] “Home - OpenMP,” 2021. [Online]. Available: https://www.openmp.org

