
An Exploratory Study of Bugs in Extended Reality
Applications on the Web

Shuqing Li∗, Yechang Wu∗, Yi Liu∗, Dinghua Wang∗†, Ming Wen‡, Yida Tao§, Yulei Sui†, and Yepang Liu∗
∗Dept. of Comp. Sci. and Engr., Southern University of Science and Technology, Shenzhen, China.

{lisq2017,11711918,11610522,11960002}@mail.sustech.edu.cn, liuyp1@sustech.edu.cn
†Faculty of Engr. and IT, University of Technology Sydney, Sydney, Australia.

13284361@student.uts.edu.au, yulei.sui@uts.edu.au
‡School of Cyber Sci. and Engr., Huazhong University of Science and Technology, Wuhan, China. mwenaa@hust.edu.cn

§College of Comp. Sci. and Soft. Engr., Shenzhen University, Shenzhen, China. yidatao@szu.edu.cn

Abstract—Extended Reality (XR) technologies are becoming
increasingly popular in recent years. To help developers deploy
XR applications on the Web, W3C released the WebXR Device
API in 2019, which enable users to interact with browsers using
XR devices. Given the convenience brought by WebXR, a growing
number of WebXR projects have been deployed in practice.
However, many WebXR applications are insufficiently tested
before being released. They suffer from various bugs that can
degrade user experience or cause undesirable consequences. Yet,
the community has limited understanding towards the bugs in
the WebXR ecosystem, which impedes the advance of techniques
for assuring the reliability of WebXR applications. To bridge
this gap, we conducted the first empirical study of WebXR bugs.
We collected 368 real bugs from 33 WebXR projects hosted on
GitHub. Via a seven-round manual analysis of these bugs, we
built a taxonomy of WebXR bugs according to their symptoms
and root causes. Furthermore, to understand the uniqueness
of WebXR bugs, we compared them with bugs in conventional
JavaScript programs and web applications. We believe that our
findings can inspire future researches on relevant topics and we
released our bug dataset to facilitate follow-up studies.

Index Terms—WebXR, empirical study, bug taxonomy

I. INTRODUCTION

How to design better mechanisms for humans, computers,

and the environment to perceive and interact with each other

has long been an important research topic, especially in the

field of human-computer interaction (HCI). In recent years,
several emerging technologies have become increasingly pop-

ular as they provide new mechanisms for users to embrace im-

mersive experiences while interacting with computers and the

environment [1], [2]. These technologies include: (1) setting

up an artificial world for simulated user experiences (Virtual

Reality, VR), (2) adding digital information or graphics on

top of real-world scenes (Augmented Reality, AR), and (3)

creating virtual objects in the real world and allowing them

to interact with physical objects (Mixed Reality, MR) [3].

They are collectively known as the Extended Reality (XR)

technologies. Users can interact with applications powered by

XR technologies (XR applications) via special devices such as

head-mounted displays, hand-held controllers, and locators.

∗The first three authors contributed equally to this work. Yepang Liu is the
corresponding author.

XR applications have been widely deployed for various

purposes, such as entertainment [4], health care [5], skill

training [6], and vehicle design [7]. Many of the scenarios

require XR applications to be highly reliable. For instance,

doctors may conduct physical treatment [8] with the help of

XR technologies. XR applications to be used in such a scenario

should be thoroughly tested before being deployed.

Conventional XR applications require special devices and

platforms. For example, some XR applications can only be

downloaded from a certain app store and used on the devices

of a particular brand. This increases the barrier for users and

developers to access XR applications. To address this problem,

the World Wide Web Consortium (W3C) has released a group

of standards, collectively known as the WebXR Device API
(WebXR for short), to enable XR applications to be deployed

on the Web [9], [10]. WebXR is built on top of WebGL [11],
a JavaScript API to display 2D or 3D graphics. It provides

developers with the APIs to: (1) recognize and connect to

XR devices, (2) obtain inputs from XR devices, (3) render

scenes to the displaying equipment with a certain frequency

(i.e., frame rate) or send output to special devices, and so
on [12]. This greatly eases the development of XR applica-

tions. Besides facilitating application development, WebXR

also brings convenience to users. With WebXR, users can

access XR applications in any mainstream browsers (e.g.,

Chrome and Firefox) as well as on any devices that are

equipped with basic web browsing capabilities. Given such

benefits for both developers and users, WebXR has become

increasingly popular recently [13], [14]. For example, A-Frame
and Babylon.js, two open-source frameworks for building

WebXR applications, have received thousands of downloads

monthly on npmjs.com [15] and over 10k stars on GitHub [16].

Despite the growing popularity and impact of WebXR,

many WebXR applications may be insufficiently tested and

shipped with unexpected bugs. For example, we observed

hundreds of open issues waiting to be resolved in the GitHub

repository of A-Frame [17]. These bugs can significantly

degrade user experience or cause undesirable consequences

(see Section IV). Unfortunately, since WebXR is still in its

infancy, there is limited understanding of the bugs in the

WebXR ecosystem (WebXR bugs for short), including WebXR

172

2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/20/$31.00 ©2020 IEEE
DOI 10.1109/ISSRE5003.2020.00025

frameworks, libraries, and applications. In particular, there are

no effective techniques for developers to detect, diagnose, and

fix WebXR bugs.

In this work, we conducted the first empirical study of

WebXR bugs to understand their characteristics. For the study,

we collected 368 real bugs by analyzing the issue reports

and release notes of 33 WebXR projects hosted on GitHub.

Via a seven-round manual analysis of these bugs, we learned

the common symptoms and causes of WebXR bugs and built

a bug taxonomy accordingly (see Sections IV and V). This

analysis also led to several interesting findings. For example,

we observed that WebXR applications, built on top of various

frameworks or libraries, can run on diversified platforms with

different browsers, XR devices, operating systems, which may

not be fully compatible and interoperable with each other.

Due to such fragmentation in the ecosystem, compatibility

issues are widely spreading among the WebXR ecosystem. In

addition, due to the complicated human-computer interaction

mechanisms, the input space of WebXR applications can be

much larger than that of traditional software. As many WebXR

bugs require special user interactions to manifest, the large

input space brings challenges to automated bug detection.

To further understand the uniqueness of WebXR bugs, we

compared them with bugs in conventional JavaScript programs

and web applications. We did not compare with bugs in

traditional XR applications (e.g., those deployed on specific

devices/platforms) because we did not find any existing studies

on bugs of such applications. Via the comparison, we identified

several types of bugs that are specific to WebXR applications,

which are worth further studies (see Section VI). To summa-

rize, our work makes the following contributions:

• To the best of our knowledge, we conducted the first empir-
ical study of bugs in real-world WebXR projects and built

the bug taxonomy. Our findings can help better understand

WebXR bugs and shed light on future research.

• We compared WebXR bugs and bugs that often occur

in conventional JavaScript programs and web applications.

This comparison reveals the uniqueness of WebXR bugs.

• To facilitate follow-up studies, we have released our bug
dataset and materials of our manual analysis process at

the site https://sites.google.com/view/webxr-bug-study/ and

Zenodo (https://doi.org/10.5281/zenodo.3992105).

II. BACKGROUND

A. WebXR Device API

How to deploy XR applications on the Web has been

discussed for years. In the beginning, different organizations

and individual developers have their own implementations to

support AR/VR on the Web. This induced huge challenges

to guarantee the compatibility of different applications. To

address the problem, Mozilla’s VR team and Google’s Chrome

team released a specification known as WebVR in March 2016
to help developers build VR applications on the Web [18],

[19]. Since then, the mainstream browsers began to support

WebVR one after another. Multiple WebVR frameworks such

as A-Frame and ReactVR also emerged and quickly received

plenty of attention [20]. However, WebVR could not help

developers build and deploy AR or MR applications on the

Web. To bridge this gap, several Mozilla developers formed a

team, launched the Mixed Reality program, and started a draft

proposal for new standards to support all XR content on the

Web. This team, which was later known as the Immersive Web
Community Group of W3C, released the first public working
draft of WebXR Device API in February 2019 [21]. Since then,

WebVR has been deprecated [22]. Most of the once-popular

WebVR projects have migrated to WebXR (e.g., A-Frame) but
might still support WebVR for backward compatibility.

WebXR combines all XR technologies, standardizes and

integrates them as a whole ecosystem. The standards are under

active development and revisions. So far, W3C has released

four public working drafts of WebXR [21], [23]–[26], and the

API has been widely used in various real-world projects.

B. Interacting with WebXR Applications

For conventional web applications, users usually interact

with them via devices like mice, keyboards and cameras

(usually for mobile applications). Besides these traditional

devices, WebXR supports more devices to provide immersive

user experiences. For ease of presentation, we refer to such

special devices as XR devices, which include but are not
limited to the following ones [12], [24]:

• Head-mounted displays (HMD, also known as headsets),
which play the computer-generated imagery and sound.

• Handheld controllers (also known as gamepads), which are
used to control WebXR applications. Typically, there is a

pair of controllers, one for each hand. Users can interact

with WebXR applications by pressing buttons, altering the

directions they are facing, and so on.

• Position tracking equipment (also known as sensors or
locator devices), which can locate the relative position of the
user. Note that not every XR device has position tracking

equipment. Devices with three degrees of freedom (DoF)

can only track users’ head rotations around three different

axes but do not support position tracking. Devices with six

DoFs support position tracking and are able to recognize the

up-down, left-right, forward-backward movement of users.

Generally, WebXR applications can be accessed in three dif-

ferent modes, namely, non-XR (desktop) mode, full-screen
mode, and XR mode. Non-XR mode refers to the situation,
where the WebXR applications work as embedded components

of web pages. The users can make attempts to activate the XR

mode from the non-XR mode. If the browser fails to detect or

bind to XR devices, the applications will fallback to the full-

screen mode, where the applications’ UI is displayed using the

whole screen.1 Otherwise, the applications will switch to XR

mode successfully, where users can interact with the WebXR

applications using their body languages (e.g., walking in some

1This is the usual case for WebVR applications. Some of WebXR applica-
tions don’t use exactly the whole screen.

173

directions, pressing buttons on the controllers, and turning

their heads around). The XR devices will trace users’ motions,

generate corresponding input sequences, and send them to the

browser. With WebXR, the browsers can recognize hardware

inputs, create and dispatch structured inputs to the relevant

application. Then the application can handle the user inputs

and control the XR devices to display new scenes or play

sounds.

III. METHODOLOGY

A. Research Questions

Our empirical study explores three research questions:

• RQ1 (Bug types and symptoms): What are the common
types of WebXR bugs in real-world projects? What are the

symptoms of these bugs?

• RQ2 (Root causes): What are the common root causes of
WebXR bugs?

• RQ3 (Uniqueness): How do WebXR bugs differ from bugs
in conventional JavaScript programs and web applications?

RQ1 and RQ2 focus on studying bug patterns. The symp-

toms and root causes can help us understand the flaws in

WebXR projects. The causal relationships between symptoms

and root causes are useful for guiding the design of testing

methods in future research. To answer these two research

questions, we first collected a large dataset of real bugs and

their relevant information from open-source WebXR projects,

and then manually analyzed each bug with the aim to con-

struct a bug taxonomy and derive common and meaningful

characteristics of WebXR bugs.

RQ3 concentrates on the differences between WebXR bugs

and traditional software bugs to highlight the originality and

potential significance of our empirical analysis. To answer

this research question, we selected existing studies [38]–[40]

on bugs in JavaScript programs and web applications for

comparison. JavaScript programs are compared since WebXR

applications are mostly written in JavaScript and web applica-

tions are compared since WebXR applications are deployed

on the web and can be considered as a special type of

web applications. We did not compare with traditional XR

applications because we did not find empirical studies on bugs

in such applications.

B. Data Collection

Our data collection process includes three steps:

1) Project Sampling: We collected WebXR projects from
GitHub, which is the most popular open-source project host-

ing site. Specifically, we used the GitHub search engine to

search for projects with the keywords of WebXR, WebVR,
or WebAR. Note that using WebVR and WebAR as keywords

might retrieve projects with old or non-standard specifications.

Yet, as explained in Section II-A, since WebXR superseded

WebVR, more and more old WebVR and WebAR projects

have migrated to the new standards but with their descriptions

unchanged. Hence, we chose these three keywords and used

them collectively to obtain more complete results.

We selected two sets of projects from the search results:

(1) the top 50 projects with the highest number of stars and

(2) the top 50 projects according to the last modified time.

We adopted these criteria because the subjects selected in

this way enable us to find the latest and relevant bugs in

popular projects. To reduce the risk of including old projects

that follow the outdated WebVR and WebAR standards, we

manually inspected the selected projects to check whether

they are WebXR projects. Specifically, for each project’s

GitHub repository, we first checked: (1) if the README and

documentation contain descriptions about which standard the

project used and (2) if the repository depends on popular

WebXR frameworks. We then used a browser extension called

WebXR API Emulator [41] to test each project without using
actual XR devices. Finally, we confirmed that 33 of the above

selected 782 projects are indeed WebXR projects and we used

them as subjects in subsequent analyses.

Note that our work focuses on investigating bugs in the

entire ecosystem of WebXR and we aim to understand as

many types of bugs as possible in this new domain from a

general aspect. Due to this reason, we did not segregate the

WebXR frameworks (or libraries) from WebXR applications

when selecting projects.

2) Collecting Bugs: We collected bugs from the issue

tracking systems and release notes of the 33 WebXR projects.

We explain the process below.

First, from the issue tracking systems of the 33 projects,
we collected the issues using the following three criteria:

• The issue is closed: As issues are often closed after they have
been successfully resolved, we are more likely to identify

the precise root causes from closed issues.

• The issue is linked to patches: This means that the issue has
been fixed and the patches have been merged into the code

repository. These patches provide rich information to help

understand the bugs.

• The fixing patch(es) should contain source code changes:
This helps filter out patches that contain documentation-only

changes (e.g., updating README). The purpose of these

changes is not to fix bugs and thus the issue is not relevant.

It is worth mentioning that issues of the selected projects

rarely have explicit “bug fixing” or related labels. Conse-

quently, the issues extracted using the above criteria might also

be application-specific enhancements or feature requests that

are not relevant to our research questions. Hence, we manually

inspected all of the extracted issues to ensure that they indeed

discuss WebXR bugs. Finally, we identified 171 WebXR bugs

from the issue tracking systems.

Second, release notes summarize the most crucial changes
between releases and typically provide three types of infor-

mation: changes, fixes, and enhancements. Specifically, in the
fixes part, developers would briefly describe the bugs and link
them to the pull requests (or commits) that contain the fixes.

We leveraged this information and collected WebXR bugs by

2The number is not equal to 100 because the search results have overlaps.

174

TABLE I: WebXR projects used in our empirical study

Project Name Stars Releases Commits Files Lines of Code Closed Issues WebXR Bugs
jeromeetienne/AR.js1[27] 13,260 37 1,156 340 487,356 168 2

aframevr/aframe [17] 10,096 25 5,453 450 144,570 398 227

BabylonJS/Babylon.js [28] 9,496 173 19,495 2,000 2,213,376 734 18

playcanvas/engine [29] 4,563 671 8,117 587 78,449 95 29

GoogleWebComponents/model-viewer2[30] 694 20 447 190 27,882 200 38

donmccurdy/aframe-extras [31] 534 122 605 96 35,507 62 4

mozilla/hubs [32] 262 0 6,389 435 65,673 361 37

donmccurdy/aframe-physics-system [33] 236 27 140 51 24,080 28 1

mozilla-mobile/webxr-ios [34] 120 0 591 170 44,501 68 3

immersive-web/webxr-polyfill [35] 109 13 55 70 18,607 18 3

supermedium/moonrider [36] 58 0 324 166 57,916 40 5

engaging-computing/MYR [37] 7 21 1,117 71 8,511 76 1

1 The newly maintained versions have been moved to https://github.com/AR-js-org/AR.js now.
2 This repository has been entirely moved to https://github.com/google/model-viewer.

processing the fixes information of every release note of the
33 projects. Similarly, we filtered out bugs that are not linked

with patches. After removing duplicates with bugs collected

from issue tracking systems, we identified 197 WebXR bugs

from the release notes.

In total, we collected 368 bugs from 12 of the 33 WebXR

projects. There were no WebXR bugs found in the other 21

projects, following our criteria. Table I gives the statistics of

the bugs and projects.
3) Collecting Bug Details: To facilitate our manual anal-

ysis of bugs, we collected useful information for each of

the 368 WebXR bugs, including the URLs of the issue and

patch(es), the creation time of the issue, the merge time of

the patch(es), and the release version (only for bugs collected

through release notes). Such information allows us to access

the patches and understand the timeline of the bug-fixing

activities. We also collected all the textual contents from the

issue threads and pull requests of these bugs. The textual

contents include descriptions of the bugs or pull requests,

as well as the follow-up comments, some of which also

provide the setup information (e.g., OS, device, browser, and

framework version), steps to reproduce, and proof-of-concept

code snippets. These types of information are essential for us

to reliably and effectively study the symptoms and root causes

of WebXR bugs.

C. Data Analysis

To characterize the symptoms and root causes of the 368

WebXR bugs, we analyzed the data following an open coding

procedure [42], which is widely used for qualitative data

analysis. Specifically, we conducted an iterative manual la-

beling process involving three evaluators (i.e., co-authors of

the paper), who all have several years of web development

experience. In the first iteration, we determined an initial draft

of bug taxonomy based on the intuitive knowledge acquired

from the data collection process. We also discussed an initial

labeling strategy with respect to the symptoms and root causes.

In the second iteration, every evaluator independently labeled

all of the collected WebXR bugs based on the taxonomy

and labeling strategy discussed before, by carefully inspecting

the issue threads, pull requests, and the committed patches

of every bug. The three evaluators then gathered together to

compare and discuss the results, with the purpose of clarify-

ing the descriptions and boundaries of different categories,

adding and removing categories, adjusting the hierarchical

structures of categories, and adopting a much more clear-

cut labeling strategy. Then, in the subsequent iterations, the

three evaluators conducted the labeling process again using

the adjusted taxonomy and strategy from the prior iteration.

The evaluators reached a consensus on the taxonomy of both

the bug symptoms and root causes after the seventh iteration.

The resulting taxonomy is shown in Figure 1 and explained

in detail in Sections IV and V. Basically, each bug is labeled

as exactly one leaf category of the symptom taxonomy and

one leaf category of the root cause taxonomy. For bugs with

multiple symptoms or root causes, we classified them into

one category using the following strategy. First, for bugs with

multiple symptoms, we chose the most obvious symptom from

the end-users’ point of view. To this end, we considered

ourselves as end-users that prefer to focus on the graphical

user interface rather than developer tools such as the browser

consoles. If there were still multiple symptoms, we selected

the symptom that appeared the first. Second, for bugs with

multiple root causes, we chose the one from which the bug

initially originates. For example, if a bug occurred due to

argument misuse, and the argument misuse is actually resulted

from an API change of a third-party library, then we consider

the root cause to be incompatible runtime environment rather
than argument misuse. Finally, bugs with too complicated
patches or too limited diagnostic information were labeled

as others, as we were unable to assign them to a matching

category with enough confidence.

IV. RQ1: BUG TYPES AND SYMPTOMS

We studied each of the 368 WebXR bugs and classified the

bugs according to their symptoms. We found that 320 of our

studied bugs can be classified into three types: (1) functional

issues, (2) crashing issues, and (3) performance issues. The

remaining 48 bugs are either rarely observed or difficult to

understand. In this section, we present the three major types

of WebXR bugs in detail.

175

(a) Symptom (b) Root Cause

Fig. 1: The taxonomy of WebXR bugs with respect to symptoms (a) and root causes (b).

(a) Normal (b) Faulty

Fig. 2: An example of application-specific functional issues (the ray
penetrates the right menu but not other menus).

A. Functional Issues (FUNC)

As shown in Figure 1(a), functional issues are the most

common type of WebXR bugs (67.12%). They can be further

classified into the following two subtypes:

Application-Specific Functional Issues (AF): 162 of the
247 functional issues have various application-specific symp-

toms. For example, moonrider is a music playing game. As
shown in Figure 2, at the starting scene, the ray collides with

the center and left menus but penetrates the right menu (issue

#14 [43]).3 This could mislead users to interact with the right

menu in a different way. As another example, when users

exit the VR mode, the application Mozilla Hubs stops playing
sound (issue #1099 [44]). Such unexpected behaviors are often

caused by improper lifecycle event handling and erroneous

design of interactive logic, which we will discuss later.

Finding 1: The majority (247 of 368) of our studied WebXR
bugs are functional issues, around 66% of which have
application-specific symptoms.

Rendering Issues (RENDER): 85 of the 247 functional
issues are related to scene rendering. These rendering issues

can be further classified into: (1) misrendering of objects
(MSRD, 63 issues) and (2) absence of objects (ABRD, 22

3To avoid copyright issues, we reproduced the WebXR bugs and took
screenshots to illustrate the bug examples in Sections IV and V. The original
figures posted by issue reporters can be accessed via the issue links.

(a) On Safari (b) On Chrome

Fig. 3: An example of absence of objects (scenes can be rendered
on Safari but not on Chrome for iOS devices).

issues). WebXR applications render many objects and utilize

various animations to interact with users. The absence or

misrendering of objects will seriously affect the functionality

of the applications and degrade user experiences. For example,

as shown in Figure 3, applications using A-Frame can render
scenes correctly on Safari but not on Chrome for iOS devices

(issue #3846 [45]). Figure 4 gives an example of misrendered

objects. By using A-Frame, the text of an application becomes
blurred when the opacity is set to a value that is smaller than

a specific threshold (issue #3557 [45]).

Finding 2: Misrendering and absence of objects are common
functional issues in WebXR projects.

B. Crashing Issues (CRA)

Crashing issues are also common. There are 37 such issues

in our dataset, three of which caused immediate application
crashes (IC). For example, Google’s model-viewer crashed
when users imported external models with third-party libraries

enabled (issue #742 [46]). The remaining 34 issues caused the

applications to throw exceptions in the console with Error or
Warning (TEW). For instance, the third-party rendering library
Three.js [47] will mock WebXR APIs if the browsers do not
support WebXR. However, due to a bug (issue #3672 [45]),

applications using Three.js will throw exceptions when run-

ning in browsers with native WebXR support.

Finding 3: Around 10% of our studied WebXR bugs caused
runtime exceptions or immediate application crashes.

176

Fig. 4: An example of misrendering of objects (blurred text).

(a) In VR mode (b) After exiting VR mode

Fig. 5: An example of resolution issues (the application’s resolution
drops after exiting VR mode).

C. Performance Issues (PFM)

Besides functional and crashing issues, performance issues

are also common in WebXR projects. In total, we observed 36

performance issues in our dataset. The issues can be further

classified into the following four subtypes according to their

different symptoms:

High Memory Consumption (HMEM): 15 performance
issues caused unexpectedly high memory consumption. For

example, due to an issue in playcanvas engine, the memory
usage keeps growing when games built on the engine recreate

specific entities with customized assets (issue #1299 [48]).

High CPU Utilization (HCPU): 12 performance issues
caused unexpectedly high CPU utilization and slowed down

the applications. For example, an issue in playcanvas engine
caused the floating point rendering to be slow on Windows 10

devices and smartphones (issue #1260 [48]).

Abnormal Hanging of Applications (HANG): Severe per-
formance issues may cause an application to stop responding

to user actions (i.e., the application hangs). We observed seven

such issues in our dataset. For instance, due to an issue in A-
Frame (issue #3617 [45]), the scenes of an application froze
and the gyro stopped functioning in Magic Window Mode.

Such issues are annoying since users will be forced to kill

and restart the application to continue using it.

Low Frame Rate or Resolution (LFR): Besides excessive
resource consumption, performance issues can also reduce

frame rate or resolution, thus compromising user experience.

Figure 5 gives an example. Due to an issue in A-Frame (issue
#3592 [45]), the application’s resolution drops from 1680p to

660p after users exit the VR mode on mobile Chrome.

Finding 4: Performance issues in WebXR projects have
various symptoms including high memory consumption, high
CPU utilization, abnormal hanging of applications, and low
frame rate or resolution.

V. RQ2: ROOT CAUSES

Via analyzing our collected data, we observed six major

root causes of WebXR bugs, including: (1) incompatible

runtime environment, (2) event handling mistakes, (3) im-

proper handling of diversified user interaction mechanisms, (4)

wrong arguments, (5) buggy dependencies, and (6) redundant

operations. In this section, we present each of them in detail.

A. Incompatible Runtime Environment (COMPAT)

As shown in Figure 1(b), 78 (21.20%) WebXR bugs are

caused by incompatible runtime environment, including the
incompatibility of different device models, third-party libraries

and their APIs, browsers, and operating systems. Below we

present examples of each type.

Incompatible Device Models (DEVICE): Oculus Go and
Gear VR are two brands of XR devices. Oculus Go controllers

identified themselves to browsers as Gear VR in previous

time but changed to Oculus Go recently, which makes the

controllers stop working on A-Frame based applications (issue
#3390 [45]). We observed 35 such issues in our dataset.

Incompatible Third-party Libraries and APIs (LIB):
A-Frame provides a panel to show the status of running

applications. However, since a field name of Three.js (one of
A-Frame’s dependencies) changed from faces to triangles in
the newer version, the faces information on the status panel
is shown as NaN (issue #3573 [45]). This issue was fixed by

simply updating that field name as shown in Listing 1. There

are 17 such issues in our dataset.

Listing 1: The fix of a bug caused by 3rd-party library evolution
1 - ’renderer.info.render.faces’: {
2 - caption: ’Faces’,
3 + ’renderer.info.render.triangles’: {
4 + caption: ’Triangles’,
5 over: 1000
6 },

Incompatible Browsers (BROWSER): Users reported that
the “View in AR” button of Google’s model-viewer does not
work as expected on certain versions of the Chrome browser

(issue #693 [46]). For some models, clicking the button makes

certain entities disappear. If the button is clicked again, the

SceneViewer will not be launched normally and the application
will only enter the full-screen mode instead of AR mode. We

observed 13 such issues in our dataset.

Incompatible Operating Systems (OS): When using de-
vices with iOS 10 to access the VR mode of the applications

developed using A-Frame, the whole scene becomes misty and
it is hard for users to recognize the objects (issue #2008 [45]).

As shown in Figure 6, compared to the right image displayed

on Android devices, the stone and plants in the left image

appear to be blurry. We found 11 such issues in our dataset.

As the ecosystem of WebXR is rapidly developing, new

devices and software are emerging and evolving actively.

177

(a) Normal (b) Misty

Fig. 6: Incompatible OS causes the whole scene to be misty.

Consequently, developers may not be familiar with, or even

aware of, the rules, usages, and caveats of certain hardware

and software due to their rapid evolutions. This in turn results

in prevalent compatibility issues in WebXR applications.

Finding 5: Runtime incompatibility is the most common root
cause of WebXR bugs. Around 21% of our studied bugs
occurred due to this reason.

B. Event Handling Mistakes (EVENT)

WebXR applications are highly interactive. A typical We-

bXR application may need to deal with three kinds of events:

(1) lifecycle events, (2) system events, and (3) custom events.

While the sophisticated event-handling mechanisms in WebXR

projects enable flexible message exchanges between modules

and versatile user interactions, they also raise the bar for

developers, who need to be extremely familiar with these

mechanisms in order to handle the event logic correctly.

Unfortunately, in practice, developers of WebXR projects often

make event handling mistakes. As shown in Figure 1(b), 76

(20.65%) of our studied WebXR bugs are caused by such

mistakes. We present some examples in the following.

Mishandling of Lifecycle Events (LIFECYCLE): Lifecy-
cle events arise when a component in a WebXR application

goes through different life stages, such as initialization, update,

destroy, play, suspension, and so on. Mishandling of such

events may lead to various consequences. Take playcanvas en-
gine as an example. The project developers did not “correctly
destroy the skybox model when updating skybox properties in
the scene”, which caused memory leak according to the issue
report (issue #1554 [48]). In our dataset, 56 (15.22%) bugs

are caused by mistakes in handling lifecycle events.

Mishandling of System Events (SYSTEM): System events
in WebXR applications concern multiple application com-

ponents and arise when the status of the system changes.

For instance, an old version Babylon.js dispatches camera-
change events in a wrong way (issue #5881 [49]), and the

applications depending on Babylon.js behaved incorrectly due
to this mistake: if users click on the Enter VR button, the

“active camera change” message will show up over and over

again instead of appearing only once. Bugs caused by mistakes

in handling system events are also common and we observed

17 cases in our dataset.

Listing 2: A bug caused by mishandling of custom events

1 update: function (oldData) {
2 // All sound values set. Load in ‘src‘.
3 if (srcChanged) {
4 var self = this;
5 this.loaded = false;
6 this.audioLoader.load(data.src, function (buffer) {
7 self.loaded = true;
8 // Remove this key from cache, otherwise we

can’t play it again
9 if (self.data.autoplay || self.mustPlay) {

self.playSound(); }
10 + self.el.emit(’sound-loaded’);
11 });
12 }
13 },

Mishandling of Custom Events (CUSTOM): Custom
events are application-specific events that are only emitted

and listened by certain application components. Although bugs

caused by mistakes in handling custom events are rare (we

only observed two cases in our dataset), diagnosing and fixing

such bugs may not be an easy task. For example, A-Frame
suffered from a bug that would make applications based on the

framework keep playing the last sound even after the source

changes. This bug occurred because developers forgot to emit

the custom event sound-loaded when the source changes. It
was fixed by adding an event emission statement as shown in

Listing 2 (pull request #2457 [50]).

Listing 3: A bug caused by DUI
1 onEnterVR: function () { // Save pose.
2 + if (!this.el.sceneEl.checkHeadsetConnected()) {
3 + return;
4 + }
5 this.saveCameraPose();
6 this.el.object3D.position.set(0, 0, 0);
7 this.el.object3D.updateMatrix();
8 },
9 onExitVR: function () { // Restore the pose.
10 + if (!this.el.sceneEl.checkHeadsetConnected()) {
11 + return;
12 + }
13 this.restoreCameraPose();
14 this.previousHMDPosition.set(0, 0, 0);
15 },

Finding 6: Event handling mistakes are the second most
common category of root causes of WebXR bugs, possibly
because WebXR applications often have a large number of
functional components and modules that need to communi-
cate with each other via events.

C. Improper Handling of Diversified User Interactions (DUI)

The interaction space of WebXR applications is huge. Users

could interact with a WebXR application in many different

ways using various devices. Developers should program their

WebXR applications to deal with user interactions correctly.

However, it is difficult for developers to anticipate and handle

all possible interaction scenarios, especially abnormal ones.

We observed that developers often failed to properly handle

diversified user interactions. There are 36 bugs in our dataset

arose due to such mistakes. For example, A-Frame does not
check whether the headset is connected when users try to

enter the VR mode in desktop 2D or non-VR situation (issue

178

#3902 [45]). Such negligence of checking users’ interaction

status caused rendering issues in the applications developed

based on A-Frame. As shown in Listing 3, the bug was fixed
by adding code to check whether the headset is connected in

respective situations.

Finding 7: WebXR applications are highly interactive. De-
velopers often fail to anticipate and handle all possible user
interactions, resulting in many bugs.

D. Wrong Arguments or Configurations (ARG)
In complex software, different modules may be configured

separately and rely on argument passing for communication.

WebXR applications involve many modules and improper ar-

gument usages or configurations can cause bugs. We observed

27 such bugs in our dataset, whose root causes can be further

divided into the following three categories:
Misconfiguration (MISCONFIG): 16 bugs in our dataset

were caused by the wrong configuration of the interfaces

exposed to external browsers and libraries. For example, the z-
index property of CSS is used to configure the elements’ stack
order, indicating which element is on top of the others [51].

Wrong settings of z-index in A-Frame caused an invalid

cascade of the UI components, making the ones in the back

invisible in A-Frame’s dependents (issue #3389 [45]).
Argument Misuse (ARGMISUSE): Seven bugs in our

dataset were caused by argument misuses. For example, in

A-Frame’s dependents, the cursor appears in the wrong place
rather than in the center of the scene (issue #3841 [45]).

This bug occurred because a wrong argument was passed

to THREE.WebGLRenderer.vr.setPoseTarget(), a
function in the Three.js library [47]. Listing 4 shows the fix.

Listing 4: An example of argument misuse
1 setupRenderer: {
2 value: function(){
3 - renderer.vr.setPoseTarget(this.camera);
4 + if (this.camera) {
5 + renderer.vr.setPoseTarget(this.camera.el.object3D);
6 + }
7 this.addEventListener(’camera-set-active’, () => {
8 - renderer.vr.setPoseTarget(self.camera);
9 + renderer.vr.setPoseTarget(self.camera.el.object3D);
10 });
11 },},

Argument Missing (ARGMISS): Four bugs in our dataset
were caused by the absence of certain necessary arguments.

For instance, the application mozilla/hubs missed the touch-
cancel argument for touch events, which led to “menu does
not open after virtual joysticks are activated”, as reported by
users (issue #289 [44]).

Finding 8: Bugs caused by misconfigurations or wrong argu-
ments are frequently observed, possibly because developers
need to deal with the diverse interfaces between the many
modules in WebXR architecture.

E. Buggy Dependencies (DEPEND)
For 15 bugs in our dataset, the developers of the projects,

to which the bugs were reported, explicitly stated in the

issue reports that the bugs were caused by their project’s

dependencies. For example, issue #3623 [45] of A-Frame
described the problem that an individual audio resource in

an A-Frame based application could not be reused by more
than one entity. In particular, if the audio resource had already

been loaded in one entity, developers would fail to load the

same resource in other entities. As pointed out by A-Frame
developers, this bug was caused by the AudioLoader problems
of Three.js, an important dependency of A-Frame.

Finding 9: In practice, WebXR projects may be built on
top of various other projects. Buggy dependencies are also
threats to the reliability of WebXR applications.

F. Redundant Operations (RDDOP)

Lastly, unnecessary or duplicate operations can also cause

bugs. We observed 11 such cases in our dataset. For instance,

in the playcanvas engine project, disabled script components
are iterated twice for every frame in both the update and

postUpdate processes (issue #1265 [48]). Such repetitions

are apparently unnecessary, which would waste computational

resources and lead to performance degradation.

Finding 10: Redundant operations usually result in perfor-
mance issues.

VI. RQ3: UNIQUENESS

This section presents the comparison between WebXR bugs

and bugs in JavaScript programs and web applications.

A. Comparison with Bugs in JavaScript Programs

We compared WebXR bugs with bugs in other JavaScript

programs, including both server-side and client-side ones.

Server-Side JavaScript Programs: We chose BugsJS [38],
which is a benchmark of JavaScript bugs collected from pop-

ular server-side programs, for the comparative study. Specifi-

cally, BugsJS contains 453 real bugs, each of which has been

manually validated. For comparison, we used our taxonomy

to classify bugs in BugsJS by investigating the issue report,

category, and fixing strategy information of each bug. We

made three observations from the comparisons:

• For symptoms, since bugs in BugsJS are found in UI-less
server-side JavaScript programs based on Node.js, they do
not cause rendering, low FPS or resolution problems.

• For root causes, we did not find any bugs in BugsJS

that are caused by incompatible runtime environment or

improper handling of diversified interactions, since server-

side JavaScript programs do not require complicated user

interactions with special devices and do not need to be

adapted to different software/hardware.

• For those types of bugs that appear in both BugsJS and
WebXR projects, their proportion diverges a lot. First, only

0.66% (3/453) bugs in BugsJS are caused by misconfig-

uration (more precisely, incorrect API config) while the

proportion is 4.35% (16/368) in our WebXR dataset. Second,

33.33% (151/453) bugs in BugsJS are caused by argument

179

misuse, however, only 1.90% (7/368) of our studied WebXR

bugs share the same root cause.

Client-Side JavaScript Programs: Ocariza et al. [39]
performed an empirical study on 317 JavaScript bugs at the

client side (to ease presentation, we call these bugs “client JS

bugs”). They reported the characteristics of the bugs in de-

tail, including fault categories, consequences, causes, browser

specificity of bugs, etc. Their reported fault categories and

cause patterns are similar to the root causes summarized in

our work. Therefore, we directly compared their bug taxonomy

with ours and made the following observations.

• There are plenty of client JS bugs caused by improper

handling of user interactions. However, such bugs are mostly

related to incorrect validation of user inputs and have

nothing to do with special user interaction devices. This is

obviously different from WebXR bugs, many of which arise

from diversified user interactions via special XR devices.

• Different browsers have diverse JavaScript engines, which
may interpret JavaScript code differently. About 9% of the

client bugs are caused by incompatible browsers. Similarly,

we observed that WebXR bugs can also be caused by

browsers and such bugs account for 3.53% of our studied

WebXR bugs. However, compared to traditional JavaScript

programs, the runtime environment of WebXR applications

is more complicated. Incompatible XR devices and operat-

ing systems are common root causes of WebXR bugs. Such

root causes are not observed in Ocariza et al.’s study.

• The majority of client JS bugs are caused by incorrect
method parameters (74%). A similar root cause, i.e., wrong
arguments or configurations, is also observed in our study.
However, bugs caused by wrong arguments only account for

7.34% in our dataset. The majority of our studied WebXR

bugs are caused by incompatible runtime environment, event

handling mistakes, and improper handling of diversified user

interactions. We conjecture that this huge difference might

be attributed to two reasons. First, WebXR device API is

a new standard. Browsers and various XR devices do not

fully support the standard yet. Second, developers are not

familiar with WebXR programming and thus make various

mistakes in handling user interactions and events.

As for bug symptoms, Ocariza et al. divided the bug

consequences (symptoms) roughly into two categories: code-
terminating and output-related. Similar bug symptoms are also
observed in our dataset. However, since their bug dataset is not

available, we cannot perform more detailed comparisons.

B. Comparison with Bugs in Web Applications

Marchetto et al. [40] studied 676 bugs in general web appli-

cations. They proposed a three-level taxonomy by analyzing

the root causes and symptoms of the bugs. We compared

our findings with theirs and made the following observations,

which are essentially similar to the observations presented in

Section VI-A:

• Similar to WebXR bugs, there are web application bugs

caused by incompatible browsers. However, no bugs in

general web applications are reported to be caused by

incompatible operating systems or device models.

• Only four of the 676 bugs are caused by event handling
mistakes. Comparatively, in our WebXR bug dataset, the

proportion of such bugs is up to 20.65%. In addition,

Marchetto et al.’s work did not report bugs caused by

improper handling of diversified user interactions, yet bugs

with this root cause are common in our dataset.

As discussed above, the differences are likely attributed

to the immaturity of the WebXR ecosystem and developers’

inexperience of WebXR programming.

Finding 11: WebXR bugs significantly differ from bugs in
conventional JavaScript programs and web applications in
terms of both symptoms and root causes. One prominent
difference is that many WebXR bugs arise from incompatible
devices and improper handling of diversified user interac-
tions. Such bugs are not found in conventional JavaScript
programs or web applications.

VII. DISCUSSIONS

A. Threats to Validity

Internal Validity. The major threat to internal validity is
that our manual analysis process could be error-prone. We

understand that the results of our manual inspection and

labeling could be biased since previous domain knowledge and

experience might influence the human evaluators’ decisions.

In order to reduce the threat, we adopted the open coding

approach [42]. Three co-authors followed a rigorous process to

inspect the bugs separately and then cross-checked the results

and reached consensus after seven rounds of discussions.

External Validity. A threat to the external validity is the

comprehensiveness and representativeness of the WebXR bugs

we collected, which could influence the generality of our

findings. To mitigate the threat, we first collected 33 top-

ranked WebXR projects on GitHub. We then searched both

the issue tracking systems and the release notes of these

projects to collect bugs. We also released our dataset for

public scrutiny. Another threat is that we only compared our

work with several existing pieces of work since it is hard to

compare empirical findings of different studies, which often

adopt different analysis strategies. In future, we will further

study the uniqueness of WebXR bugs by comparing with more

related studies.

B. Implications of Our Findings

Our findings on bug symptoms reveal that WebXR applica-

tions often suffer from abnormal interactions and unexpected

crashes, which could significantly degrade user experiences.

However, testing technologies targeting at conventional soft-

ware may not be adequate for testing WebXR applications due

to the specific features of these applications. To begin with, the

wide-spread fragmentation problem in the WebXR ecosystem

brings an obvious challenge to testing WebXR applications.

Its induced runtime incompatibility is the most common root

cause of WebXR bugs (Finding 5). An effective WebXR

180

testing framework should be adaptive to a variety of browsers,

WebXR frameworks, device models, and operating systems

when handling diverse user interactions via various devices.

Next, a large percentage of WebXR bugs are application-

specific (e.g., 44.02% functional issues and 23.10% rendering

issues according to Findings 1 and 2), making it difficult

to construct general test oracles. Furthermore, we found that

the interaction mechanisms and input types are diversified

(Finding 7). As the search space of WebXR applications’

inputs is huge (e.g., the rotation degree in the three-dimension

space for both the controllers and the headset), achieving

satisfactory test coverage seems to be difficult. We believe that

our study could help WebXR developers make better-informed

decisions on developing and testing their WebXR projects. Our

findings can also guide future research on this topic.

VIII. RELATED WORK

A. Empirical Studies of Bugs in Traditional Software

JavaScript Bugs. JavaScript has been widely used for both
client-side and server-side programming. Many researchers

have studied the characteristics of bugs in JavaScript programs.

Ocariza et al. [39] conducted a thorough study of bugs in

client-side JavaScript programs. They analyzed and catego-

rized the bugs they collected from multiple aspects, includ-

ing fault types, consequences, causes, impacts, etc. As for

consequences, they roughly classified them into two classes,

namely, code-terminating and output-related. In comparison,

our classification of symptoms is more detailed. We classified

the symptoms of WebXR bugs into nine categories and paid

attention to both functional and non-functional issues. Gyimesi

et al. [38] presented a benchmark named BugsJS, which

contains 453 server-side JavaScript bugs. They also analyzed

the characteristics of the bugs in BugsJS. Specifically, they

looked at the bug details at the code level and studied why

did the bugs appear, where did the faults lie in the source

code, and how did developers fix the bugs. Our work classified

root causes of WebXR bugs from a higher-level perspective,

such as which parts developers didn’t handle well or design

correctly. There are also other studies on JavaScript bug

patterns [52]–[54], which are earlier than Gyimeisi et al’s

study [38], and studies on specific topics like code smells [55],

[56], security [57], and performance [58] issues of JavaScript.

Due to the page limit, we do not further discuss them in detail.

Bugs in Web Applications. Web applications are an im-
portant type of software. There is a large body of research on

the defects of general web applications. Marchetto et al. [40],

[59] built a thorough bug taxonomy of web applications. They

constructed an initial taxonomy based on domain knowledge

of web applications’ properties, and then iterated multiple

times to analyze and classify each bug and refined taxonomy

according to the characteristics of real-world bugs. Ma et

al. [60] applied an orthogonal defect classification framework

to analyze and classify web defects according to several

specific fields of server log information. Guo et al. [61]

analyzed real-world fault data and proposed a representative

classification of web application bugs. In our work, we studied

the characteristics of bugs in WebXR applications, which

can be viewed as a special type of web applications. We

compared our findings with those reported in Marchetto et al.’s

work [40]. We found that although WebXR bugs are similar to

web application bugs in some aspects (e.g., both can be caused

by incompatible browsers), they have their own uniqueness

and are worth further studies in the future (see Section VI-B).

B. Testing for Web Applications

In the past decade, researchers have proposed various tech-

niques to test web applications. For example, fuzzing [62]–

[64] is a widely-used web testing method, which randomly

generates inputs and keeps monitoring the executing status of

web applications to detect unexpected behaviors. Considering

that random fuzzing may not be effective in some cases, ex-

isting work also proposed improved strategies such as guided

fuzzing and stateful fuzzing to detect bugs in web applica-

tions [65]. Besides fuzzing, model-based approaches [66]–[68]

were also proposed to test web applications. For instance,

Mesbah et al. [66] designed an automatic testing approach,

named Atusa, to test Ajax-based web applications based on

a pre-inferred state-flow graph. Such states involve all client-
side UI states. Atusa leverages genetic algorithms to extract
paths and generate inputs on the pre-inferred model. In recent

years, with the advances of reinforcement learning (RL) algo-

rithms, researchers also proposed to leverage RL to test web

applications. For example, Liu et al. [69] proposed a method

to guide agents to discover suitable actions and execute tasks

in web scenarios, where action space is huge and rewards for
agents are rare.

As discussed in Section VII-B, testing WebXR applications

faces unique challenges. Whether the above testing methods

could help with WebXR testing needs further investigation.

IX. CONCLUSION

With the rapid development of network infrastructure (5G)

and XR technologies, WebXR may become an important

human-computer interaction mechanism in the next decades.

In this paper, we conducted the first empirical study of WebXR

bugs. We collected a dataset containing 368 bugs from 33

open-source WebXR projects. We studied the symptoms and

root causes of the bugs and built the bug taxonomy from

the two aspects. To understand the uniqueness of WebXR

bugs, we also compared them with bugs in conventional

JavaScript programs and web applications. We hope that our

empirical findings can facilitate future research and provide

useful guidance to practitioners. Our dataset can be found at

both https://sites.google.com/view/webxr-bug-study/ and Zen-

odo (https://doi.org/10.5281/zenodo.3992105).

ACKNOWLEDGMENTS

This work is supported by the National Key Re-

search and Development Program of China (Grant No.

SQ2019YFE010068), the National Natural Science Founda-

tion of China (Grants #61932021 and #61802164), and the

Australian Research Council (Grant No. DP200101328).

181

REFERENCES

[1] “Wikipedia of virtual reality,” https://en.wikipedia.org/wiki/Virtual_
reality, 2020.

[2] “Wikipedia of augmented reality,” https://en.wikipedia.org/wiki/
Augmented_reality, 2020.

[3] “What is mixed reality,” https://docs.microsoft.com/en-us/windows/
mixed-reality/mixed-reality, 2020.

[4] “Oculus VR Games and Apps,” https://www.oculus.com/experiences/
rift/, 2020.

[5] “Virtual Reality Pain Reduction – Human Photonics Laboratory,” http:
//www.vrpain.com/, 2020.

[6] “VirTra,” https://www.virtra.com, 2020.
[7] S. Thompson, “VR Applications: 21 Industries already using Virtual

Reality,” https://virtualspeech.com/blog/vr-applications, 2020.
[8] J. Marchant, “Surgeon gives patients VR,” http://www.bbc.com/future/

story/20170202-the-surgeon-using-virtual-reality-instead-of-sedatives,
2020.

[9] “WebXR Device API,” https://www.w3.org/TR/webxr/, 2020.
[10] “Immersive Web Developer Home,” https://immersiveweb.dev/, 2020.
[11] “WebGL Overview,” https://www.khronos.org/webgl/, 2020.
[12] “Mozilla - WebXR Device API,” https://developer.mozilla.org/en-US/

docs/Web/API/WebXR_Device_API, 2020.
[13] J. Rossi, “Bring Immersive Web Content into VR,” https://developers.

facebook.com/blog/post/v2/2019/04/30/immersive-web-content-vr/,
2020.

[14] C. T. Duque, “These Next-Gen Interactive Content Formats Are Hungry
For A Critical LMS Mass: WebXR, 3D, Maps and More,” https://www.
lmspulse.com/2019/content-formats/, 2020.

[15] “npm - Build amazing things, take your JavaScript development up a
notch,” https://www.npmjs.com/, 2020.

[16] “GitHub - the world’s leading software development platform,” https:
//github.com, 2020.

[17] “GitHub Repository of aframevr/aframe,” https://github.com/aframevr/
aframe, 2020.

[18] “Wikipedia of WebVR,” https://en.wikipedia.org/wiki/WebVR, 2020.
[19] “WebVR - Bringing Virtual Reality to the Web,” https://webvr.info/,

2020.
[20] A. Vrignaud and L. Bergstrom, “Bringing Mixed Reality to the Web,”

https://blog.mozilla.org/blog/2017/10/20/bringing-mixed-reality-web/,
2020.

[21] “W3C First Public Working Draft, 5 February 2019,” https://www.w3.
org/TR/2019/WD-webxr-20190205/, 2020.

[22] “WebVR API - Mozilla MDN web docs,” https://developer.mozilla.org/
en-US/docs/Web/API/WebVR_API, 2020.

[23] “W3C Working Draft, 21 May 2019,” https://www.w3.org/TR/2019/
WD-webxr-20190521/, 2020.

[24] “W3C Working Draft, 10 October 2019,” https://www.w3.org/TR/2019/
WD-webxr-20191010/, 2020.

[25] “W3C Working Draft, 24 July 2020,” https://www.w3.org/TR/2020/
WD-webxr-20200724/, 2020.

[26] “WebXR Device API - Editor’s Draft,” https://immersive-web.github.io/
webxr/, 2020.

[27] “GitHub Repository of AR.js,” https://github.com/jeromeetienne/AR.js,
2020.

[28] “GitHub Repository of BabylonJS/Babylon.js,” https://github.com/
BabylonJS/Babylon.js, 2020.

[29] “GitHub Repository of playcanvas/engine,” https://github.com/
playcanvas/engine, 2020.

[30] “GitHub Repository of google/model-viewer,” https://github.com/
google/model-viewer, 2020.

[31] “GitHub Repository of donmccurdy/aframe-extras,” https://github.com/
donmccurdy/aframe-extras, 2020.

[32] “GitHub Repository of mozilla/hubs,” https://github.com/mozilla/hubs,
2020.

[33] “GitHub Repository of donmccurdy/aframe-physics-system,” https://
github.com/donmccurdy/aframe-physics-system, 2020.

[34] “GitHub Repository of mozilla-mobile/webxr-ios,” https://github.com/
mozilla-mobile/webxr-ios, 2020.

[35] “GitHub Repository of immersive-web/webxr-polyfill,” https://github.
com/immersive-web/webxr-polyfill, 2020.

[36] “GitHub Repository of supermedium/moonrider,” https://github.com/
supermedium/moonrider, 2020.

[37] “GitHub Repository of engaging-computing/MYR,” https://github.com/
engaging-computing/MYR, 2020.

[38] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Á. Beszédes,
R. Ferenc, and A. Mesbah, “Bugsjs: a benchmark of javascript bugs,” in
12th IEEE Conference on Software Testing, Validation and Verification,
ICST 2019, Xi’an, China, April 22-27, 2019. IEEE, 2019, pp. 90–101.
[Online]. Available: https://doi.org/10.1109/ICST.2019.00019

[39] F. S. O. Jr., K. Bajaj, K. Pattabiraman, and A. Mesbah, “An
empirical study of client-side javascript bugs,” in 2013 ACM /
IEEE International Symposium on Empirical Software Engineering
and Measurement, Baltimore, Maryland, USA, October 10-11, 2013.
IEEE Computer Society, 2013, pp. 55–64. [Online]. Available:
https://doi.org/10.1109/ESEM.2013.18

[40] A. Marchetto, F. Ricca, and P. Tonella, “An empirical validation of a
web fault taxonomy and its usage for web testing,” J. Web Eng., vol. 8,
no. 4, p. 316–345, Dec. 2009.

[41] “WebXR emulator extension - a browser extension which helps
to run and test WebXR content.” https://github.com/MozillaReality/
WebXR-emulator-extension, 2020.

[42] J. W. Creswell and C. N. Poth, Qualitative inquiry and research design:
Choosing among five approaches. Sage publications, 2016.

[43] “Issue tracker of supermedium/moonrider on GitHub,” https://github.
com/supermedium/moonrider/issues, 2020.

[44] “Issue tracker of mozilla/hubs on GitHub,” https://github.com/mozilla/
hubs/issues, 2020.

[45] “Issue tracker of aframevr/aframe on GitHub,” https://github.com/
aframevr/aframe/issues, 2020.

[46] “Issue tracker of google/model-viewer on GitHub,” https://github.com/
google/model-viewer/issues, 2020.

[47] “Three.js – JavaScript 3D library,” https://threejs.org/, 2020.
[48] “Issue tracker of playcanvas/engine on GitHub,” https://github.com/

playcanvas/engine/issues, 2020.
[49] “Issue tracker of BabylonJS/Babylon.js on GitHub,” https://github.com/

BabylonJS/Babylon.js/issues/5881, 2020.
[50] “Pull request tracker of aframevr/aframe on GitHub,” https://github.com/

aframevr/aframe/pulls, 2020.
[51] “CSS z-index Property,” https://www.w3schools.com/cssref/pr_pos_

z-index.asp, 2020.
[52] Q. Hanam, F. S. D. M. Brito, and A. Mesbah, “Discovering bug

patterns in javascript,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, T. Zimmermann,
J. Cleland-Huang, and Z. Su, Eds. ACM, 2016, pp. 144–156. [Online].
Available: https://doi.org/10.1145/2950290.2950308

[53] F. S. O. Jr., K. Pattabiraman, and B. G. Zorn, “Javascript errors in
the wild: An empirical study,” in IEEE 22nd International Symposium
on Software Reliability Engineering, ISSRE 2011, Hiroshima, Japan,
November 29 - December 2, 2011, T. Dohi and B. Cukic, Eds.
IEEE Computer Society, 2011, pp. 100–109. [Online]. Available:
https://doi.org/10.1109/ISSRE.2011.28

[54] F. S. O. Jr., K. Bajaj, K. Pattabiraman, and A. Mesbah, “A study of
causes and consequences of client-side javascript bugs,” IEEE Trans.
Software Eng., vol. 43, no. 2, pp. 128–144, 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2586066

[55] D. Johannes, F. Khomh, and G. Antoniol, “A large-scale empirical
study of code smells in javascript projects,” Software Quality
Journal, vol. 27, no. 3, pp. 1271–1314, 2019. [Online]. Available:
https://doi.org/10.1007/s11219-019-09442-9

[56] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, “An empirical
study of code smells in javascript projects,” in IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering, SANER
2017, Klagenfurt, Austria, February 20-24, 2017, M. Pinzger, G. Bavota,
and A. Marcus, Eds. IEEE Computer Society, 2017, pp. 294–305.
[Online]. Available: https://doi.org/10.1109/SANER.2017.7884630

[57] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical
study of privacy-violating information flows in javascript web
applications,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois,
USA, October 4-8, 2010, E. Al-Shaer, A. D. Keromytis, and
V. Shmatikov, Eds. ACM, 2010, pp. 270–283. [Online]. Available:
https://doi.org/10.1145/1866307.1866339

[58] M. Selakovic and M. Pradel, “Performance issues and optimizations
in javascript: an empirical study,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016,

182

Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser, and
L. Williams, Eds. ACM, 2016, pp. 61–72. [Online]. Available:
https://doi.org/10.1145/2884781.2884829

[59] A. Marchetto, F. Ricca, and P. Tonella, “Empirical validation of a web
fault taxonomy and its usage for fault seeding,” in Proceedings of the
9th IEEE International Symposium on Web Systems Evolution, WSE
2009, 5-6 October 2007, Paris, France, S. Huang and M. D. Penta,
Eds. IEEE Computer Society, 2007, pp. 31–38. [Online]. Available:
https://doi.org/10.1109/WSE.2007.4380241

[60] L. Ma and J. Tian, “Web error classification and analysis for reliability
improvement,” J. Syst. Softw., vol. 80, no. 6, pp. 795–804, 2007.
[Online]. Available: https://doi.org/10.1016/j.jss.2006.10.017

[61] Y. Guo and S. Sampath, “Web application fault classification -
an exploratory study,” in Proceedings of the Second International
Symposium on Empirical Software Engineering and Measurement,
ESEM 2008, October 9-10, 2008, Kaiserslautern, Germany, H. D.
Rombach, S. G. Elbaum, and J. Münch, Eds. ACM, 2008, pp.
303–305. [Online]. Available: https://doi.org/10.1145/1414004.1414060

[62] R. Hammersland and E. Snekkenes, “Fuzz testing of web applications,”
2008.

[63] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of
the state: A state-aware black-box web vulnerability scanner,” in
Proceedings of the 21th USENIX Security Symposium, Bellevue, WA,
USA, August 8-10, 2012, T. Kohno, Ed. USENIX Association, 2012,
pp. 523–538. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/doupe

[64] F. Duchene, S. Rawat, J. Richier, and R. Groz, “Kameleonfuzz:
evolutionary fuzzing for black-box XSS detection,” in Fourth
ACM Conference on Data and Application Security and Privacy,
CODASPY’14, San Antonio, TX, USA - March 03 - 05, 2014,
E. Bertino, R. S. Sandhu, and J. Park, Eds. ACM, 2014, pp. 37–48.

[Online]. Available: https://doi.org/10.1145/2557547.2557550

[65] S. McAllister, E. Kirda, and C. Kruegel, “Leveraging user interactions
for in-depth testing of web applications,” in Recent Advances in
Intrusion Detection, 11th International Symposium, RAID 2008,
Cambridge, MA, USA, September 15-17, 2008. Proceedings, ser.
Lecture Notes in Computer Science, R. Lippmann, E. Kirda, and
A. Trachtenberg, Eds., vol. 5230. Springer, 2008, pp. 191–210.
[Online]. Available: https://doi.org/10.1007/978-3-540-87403-4_11

[66] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-based
automatic testing of modern web applications,” IEEE Trans. Software
Eng., vol. 38, no. 1, pp. 35–53, 2012. [Online]. Available:
https://doi.org/10.1109/TSE.2011.28

[67] B. Yu, L. Ma, and C. Zhang, “Incremental web application testing
using page object,” in Third IEEE Workshop on Hot Topics in
Web Systems and Technologies, HotWeb 2015, Washington, DC, USA,
November 12-13, 2015. IEEE Computer Society, 2015, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/HotWeb.2015.14

[68] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based
web test generation,” in Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel,
and A. Russo, Eds. ACM, 2019, pp. 142–153. [Online]. Available:
https://doi.org/10.1145/3338906.3338970

[69] E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang, “Reinforcement
learning on web interfaces using workflow-guided exploration,” in
6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. [Online]. Available:
https://openreview.net/forum?id=ryTp3f-0-

183

