
HINDBR: Heterogeneous Information Network
Based Duplicate Bug Report Prediction

Guanping Xiao∗†�, Xiaoting Du‡, Yulei Sui§, Tao Yue∗
∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

†State Key Laboratory of Novel Software Technology, Nanjing University, China
‡School of Automation Science and Electrical Engineering, Beihang University, China

§School of Computer Science, University of Technology Sydney, Australia

{gpxiao, taoyue}@nuaa.edu.cn, xiaoting 2015@buaa.edu.cn, yulei.sui@uts.edu.au

Abstract—Duplicate bug reports often exist in bug tracking sys-
tems (BTSs). Almost all the existing approaches for automatically
detecting duplicate bug reports are based on text similarity. A
recent study found that such approaches may become ineffective
in detecting duplicates in bug reports submitted after the just-
in-time (JIT) retrieval, which is now a built-in feature of modern
BTSs (e.g., Bugzilla). This is mainly because the embedded JIT
feature suggests possible duplicates in a bug database when a bug
reporter types in the new summary field, therefore minimizing
the submission of textually similar reports. Although JIT filtering
seems effective, a number of bug report duplicates remain
undetected. Our hypothesis is that we can detect them using
a semantic similarity-based approach.

This paper presents HINDBR, a novel deep neural network
(DNN) that accurately detects semantically similar duplicate
bug reports using a heterogeneous information network (HIN).
Instead of matching text similarity alone, HINDBR embeds se-
mantic relations of bug reports into a low-dimensional embedding
space where two duplicate bug reports represented by two vectors
are close to each other in the latent space. Results show that
HINDBR is effective.

Index Terms—heterogeneous information network, duplicate
bug report prediction, deep learning.

I. INTRODUCTION

Bug tracking systems (BTSs), e.g., Bugzilla and JIRA,

inherently suffer from the duplicate problem, i.e., the same bug

is reported multiple times, leading to unnecessary maintenance

effort such as repeatedly discussing the same bug. Quite a few

automatic approaches for detecting duplicate bug reports have

been proposed during the past few years [1]–[7]. Almost all

of them, including the state-of-the-art algorithms BM25F [8]

and REP [9], heavily rely on the text similarity calculated with

information retrieval (IR) techniques such as Term Frequency-

Inverse Document Frequency (TF-IDF), to detect duplicate

bug reports [10].

However, with the advent of the just-in-time (JIT) retrieval

feature in modern BTSs, the above-mentioned textual-based

approaches become ineffective in detecting after-JIT duplicate

bug reports [10]. This is because many recent BTSs (e.g.,

Bugzilla 4.0 [11]) offer the JIT feature for suggesting a bug

reporter possible duplicates when s/he is filing a bug (i.e.,

typing in the summary field), thereby reducing chances for

submitting duplicate reports in the first place. Evidence from

�Corresponding author: Guanping Xiao.

a recently reported empirical study [10] also reveals that the

state-of-the-art practices work well on bug reports submitted

before employing JIT in BTSs, but perform poorly on reports

submitted thereafter. Though employing JIT improves the

quality of bug reporting by avoiding textually similar reports

being submitted to a certain extent, there is still a substantial

proportion of duplicate reports that are more semantically

similar but less textually similar are failed to be detected by

textual-based techniques. For example, after applying the JIT

filtering, there are still 10,312 (18%) 11,931 (10%) and 1,399

(12%) duplicate bug reports in the Mozilla-Firefox, Mozilla-

Core, and Eclipse-Platform projects, remain undetected [10].

This is because the current JIT technique only relies on

contents of the summary field of bug reports, and it does not

consider rich semantic information contained in bug report

attributes such as products, components, versions, and severity

and priority levels.

Observations and Insights. Figure 1a presents the hetero-

geneous information related to bug reporting and processing

in Bugzilla. A bug (BID) reported by a reporter, occurs

(O) in a specific version (VER). The bug can have (H) a

priority (PRI) to be processed and has impacts (I) on users

to a certain severity (SEV) level, e.g., high, low, normal,

or blocking. The bug can be located (L) in a functional

component (COM), which belongs (B) to a product (PRO).

These attributes along with bug reports, like other data or

information objects, are semantically connected [12], [13]. For

example, two bug reports are related if they are attributed with

the same component, version, priority or severity level. Such

relations can be abstracted as a heterogeneous information

network (HIN) [14].

Unlike homogeneous networks that have only one type of

nodes and edges in a network, HIN leverages diverse and

semantically rich information of typed nodes and edges in a

network. Recently, representation learning [15] is a promising

branch of deep learning and shown its power in learning het-

erogeneous information networks. Semantic relations learned

with these models can be used to precisely conduct classi-

fication [16], clustering [17], and link prediction [18] tasks.

Hence, we believe HIN together with representation learning is

a very promising solution for identifying semantically similar

duplicate bug reports in the post-JIT era. By reasoning and

195

2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/20/$31.00 ©2020 IEEE
DOI 10.1109/ISSRE5003.2020.00027

�
�������

�

	

��
�

��	
�

��
��
��

���
�

�������	
����	�

�	��	���������

�
	���������

��
��	������

����
��������

�
�	
�������	

���

����	
��
�������������������� �
��

����

������

���� ���� ����	
�����

����	�

�������	
�

����	

������� �
���������������!����
����

� �! �� ��"��� ���

��� �
����!����
����

�������	
��# �������	
��$

	 	���

� ����

� ����

� ����

� ����� ����

����
�%�&'���	��(
)����	�� ��*�+,�-�"&./

0���
����
��

�� ��
�

�"��#���$�����

��

��

��

��

��

����	
�1��

����	
��
	

����	
��	�

����	
���

����	
����

����	
��
�
����

Fig. 1. Overview of HINDBR.

learning heterogeneous relations in a network, we can improve

existing textual-based approaches by capturing underlying

semantic correlations among different attributes in BTSs.
Our Solution. In this paper, we build an HIN for detecting

semantically similar duplicate bug reports by considering

comprehensive yet heterogeneous information extracted from

BTSs. The HIN has six types of nodes, i.e., product (PRO),

component (COM), version (VER), severity (SEV), priority

(PRI), and bug report (BID), which are connected via five

types of meta relations: BID ↔ COM, BID ↔ SEV, BID ↔
PRI, BID ↔ VER, and COM ↔ PRO. Consequently, five meta-

paths can be formulated to represent correlations between two

bug reports, as illustrated in Figure 1b. Semantic relations of

the bug report HIN are learned by HIN2Vec [19], a network

representation learning model. The text information of a node

BID in the HIN, i.e., the summary field of a bug report,

is extracted as a text sequence. We use a recurrent neural

network (RNN) for text sequence embedding, as depicted in

Figure 1c. To represent bug reports and predict duplicates,

we develop a deep neural network (DNN) by embedding the

learned semantic relations and the text information into a

low-dimensional vector space. In the DNN, the Manhattan

distance is calculated between vectors of two bug reports to

measure their semantic similarity (Figure 1d). We evaluate the

model on 2,038,675 bug reports from nine real-world open-

source projects (i.e., Eclipse, Freedesktop, GCC, GNOME,

KDE, LibreOffice, Linux kernel, LLVM, and OpenOffice),

using both before-JIT and after-JIT reports.
In summary, the paper has the following key contributions:

• We present HINDBR, a new deep representation learning

based approach to detect semantically similar duplicate

bug reports in the post-JIT setting.

• HINDBR, for the first time, introduces HIN as the

backbone representation to facilitate the learning and

prediction of duplicate bug reports;

• We have evaluated HINDBR by using 5-fold cross-

validation with a total of 1,050,175 generated bug re-

port pairs, including both before-JIT and after-JIT du-

plicates. Results show that HINDBR achieves up to

98.83% accuracy and 97.08% F1 score across the open-

source projects, and outperforms the state-of-the-art deep

learning-based classification model [5].

• We made our dataset and source code publicly available

at https://github.com/hindbr.

Fig. 2. An excerpt of a bug report HIN for the GNOME project.

TABLE I
SIMILARITIES OF DUPLICATE AND NON-DUPLICATE PAIRS WITH HIN

VECTORS

Duplicate Similarity
(576763, 575783) 1

(580001, 575783) 0.98

(576763, 572385) 0.96

(572385, 575783) 0.76

(580001, 572385) 0.51

(580001, 576763) 0.41

Non-Duplicate Similarity

(381618, 576763) 2.14E-224

(381618, 580001) 4.51E-225

(381618, 572385) 1.28E-225

(381618, 575783) 0

Organization. The rest of this paper is organized as follows.

Section II shows a motivating example. Section III briefly

introduces the problem definition, HIN and its representation

learning. Section IV presents our HINDBR approach. Sec-

tion V describes data collection and aggregation. Section VI

evaluates the effectiveness of HINDBR, while Section VII dis-

cusses the main threats to the validity. Section VIII introduces

related work. Finally, Section IX concludes the paper.

II. A MOTIVATING EXAMPLE

We present a real-world scenario of duplicate bug reports

in the GNOME project and illustrate how HINDBR precisely

identifies that bug IDs-580001, 572385, 576763, and 575783

are duplicate, while bug ID-381618 is not similar to any of

them using HIN. Figure 2 depicts a part of the HIN constructed

from GNOME bug reports following the relations described

in Figure 1a. We use six different colors and five different

lines to differentiate the six node types and five edge types

on HIN. Bug reports in Figure 2 are formulated with the

five types of meta-paths (Figure 1b), based on which the

employed HIN2Vec [19] learns the latent semantic relations

196

and represent them as a low-dimensional vector space. To

represent a bug report, we concatenate the vectors of the

six nodes: BID, PRO, COM, VER, SEV, and PRI. Then, we

calculate the similarity between two bug reports using their

vectors. TABLE I shows the similarities of the duplicate and

non-duplicate pairs calculated by using a Manhattan distance

with normalization.

Since duplicate bug reports have tight relations in the

constructed HIN, we can see that the duplicate pairs have

significantly higher similarities than those of non-duplicate

ones, e.g., the distance of the HIN vectors of bug IDs-580001,

572385, 576763, and 575783 are very close (the 2nd column of

TABLE I), while they are far from the vector of bug ID-381618

(the 4th column of TABLE I), showing that the constructed

HIN is effective in detecting duplicate bug reports.

III. BACKGROUND

A. Duplicate Bug Report Prediction

Duplicate bug reports are those that describe the same

failure. Figure 3 shows an example of a duplicate bug report in

the Linux kernel project. Once a newly submitted bug report

is identified duplicated to an existing one, the <resolution>
will be marked as DUPLICATE. In the report, the <dup id>
records a reference to an existing bug that the current bug

is duplicate of. Usually, bug reports can be organized into

groups [20]. According to the <dup id>, all reports represent-

ing the same bug are arranged into the same group. In each

group, one bug report that all other duplicate reports refer to

would be considered as the master bug report. Note that if no

duplicate of a new bug report is found, the bug report is the

master bug report and forms a new group. A bug group from

the GNOME project is presented as an example in TABLE

II. In this group, three bugs (i.e., IDs-575783, 576763, and

580001) are duplicates of the master bug report ID-572385.

After obtaining all the bug groups, pairs of duplicate and non-

duplicate bug reports can be generated.

Consequently, the problem of identifying duplicate bug re-

ports can be formulated as a simple binary prediction problem

instead of a supervised ranking problem [5], [10], [20]. When

a new bug report is submitted, it can be paired with all the

master bug reports and a trained prediction model is used to

predict whether these pairs are duplicates.

B. Heterogeneous Information Network

Many real-world complex systems ranging from nature to

human society can be abstracted as information networks [21],

where entities (or relations) are denoted by nodes (or edges).

Such an abstraction not only represents and stores the essential

information about a complex system but also provides a useful

perspective to mine knowledge from it. We define information

networks [14] and related concepts as follows.

Definition 1 (Information Network): An information net-
work is a directed graph G = (V,E) with a node type

mapping function τ : V → A and an edge type mapping

function φ: E → R, where each node v ∈ V belongs to

one particular node type τ(v) ∈ A, each edge e ∈ E belongs

Fig. 3. Linux bug report ID-200389 (XML format).

TABLE II
AN EXAMPLE OF BUG GROUP IN GNOME PROJECT

Type Bug ID Summary
Master 572385 crash in Printing: Just clicked the gnome-c...

Duplicates

575783 crash in Printing:

576763 crash in Printing: launching gnome-cups-man...

580001 crash in Printing: Checking to see why I co...

to a particular relation φ(e) ∈ R. When the types of nodes

|A| > 1 or the types of relations |R| > 1, the network is

called a heterogeneous information network; otherwise, it is a

homogeneous information network.

The meta-structure of an HIN is described as network
schema as follows.

Definition 2 (Network Schema): The network schema TG =
(A,R), is a meta template for a given HIN G = (V,E) with

the node type mapping τ : V → A and the edge type mapping

φ: E → R, which is a directed graph defined over node types

A, with edges as relations from R.

Given a specific network schema, the relations between two

nodes are defined by meta-paths as follows.

Definition 3 (Meta-path): A meta-path P is a path defined

on the graph of network schema TG = (A,R), and is denoted

as:

P = A1
R1→ A2

R2→ . . .
Rl→ Al+1, (1)

which defines a composite relation R = R1·R2·. . .·Rl between

node types A1 and Al+1, where · denotes the composition

operator on relations. Note that a path p, which goes through

nodes v1, v2, . . . , vi+1, is an instance of the meta-path P , if

∀i = 0, . . . , l, Ai = τ(vi) and Ri = φ(vi, vi+1).

C. Representation Learning on HIN

Several representation learning models on network data

have been proposed, such as node2vec [15] and LINE [22].

Here, we focus on introducing a recent representation learning

technique, named HIN2Vec [19], particularly developed for

heterogeneous networks. It is formulated as below.

Definition 4 (Representation learning on HIN): Given an

HIN G = (V,E). The representation learning aims to learn

a function f : V → R
d that projects each node v ∈ V to a

vector in a d-dimensional space R
d, where d � |V |.

Figure 4 shows the internal working of the HIN2Vec model.

It reduces the tasks of predicting the probabilities of rela-

197

�

�

�

!

"

#!

#"

$%� #�

�

Fig. 4. The HIN2Vec neural network model.

tionships between two nodes into new prediction tasks, i.e.,

whether two nodes x and y, have a specific relationship r [19].

The advantage of the model is that it avoids scanning for all

relationships in the data preparation and examining/updating

for all relationships during training. The HIN2Vec model is

a binary classifier, which takes a pair of nodes x and y, and

a relationship r ∈ R as the input to predict whether nodes x
and y have the relationship r.

In the input layer, three one-hot vectors, �x, �y, and �r, are

transformed into latent vectors W
′
X�x, W

′
Y �y, and f01(W

′
R�r),

in the latent layer. Note that the treatment on r is differ-

ent from x and y since they have different semantics and

implications in the learning process. Thus, a regularization

function f01(.) is used to restrict the values of latent vector

for r to be between 0 and 1, aiming to avoid negative

values in WR and to prevent values in WR from becoming

too large. The three latent vectors are aggregated by the

Hadamard function, i.e., element-wise multiplication, denoted

by W
′
X�x�W

′
Y �y�f01(W

′
R�r), and then the identify function is

applied for activation. For the output layer, it takes a Summa-

tion function as input and a Sigmoid function for activation,

computing sigmoid(
∑

W
′
X�x�W

′
Y �y � f01(W

′
R�r)) to realize

logistic classification. Note that WX and WY are made to be

identical, so that WX and WR consist of learned node vectors

and meta-path vectors, respectively.

IV. OUR HINDBR APPROACH

We formulate the duplicate bug report prediction as a

representation learning problem on HIN. This section first

introduces a new method for constructing HIN for bug reports,

then presents detailed of HINDBR.

A. Constructing HIN for Bug Reports

Figure 1a shows the schema of the HIN for bug reports.

It has six types of nodes: bug report (BID), component

(COM), product (PRO), version (VER), priority (PRI), and

severity (SEV). We only consider bug reports from Bugzilla.

Reports from other BTSs may have different attributes. The

text information (e.g., summary) of a bug report is considered

as the content of node BID. To describe relations between bug

reports, the five relations below are preserved in the network:

R1: Bug-Component. Each bug report records a bug that

is located in a specific functional component of a software

project. L and L−1 describe relations between bug reports and

components: BID
L→ COM and COM

L−1

→ BID.

R2: Component-Product. For Bugzilla, a component is

a functional decomposition belonged to a product, which

is further resulted from the functional decomposition of a

software project (e.g., Drivers in the Linux kernel project) or a

specific software product (e.g., gedit in the GNOME project).

We use B and B−1 to denote relations between components

and products, i.e., COM
B→ PRO and PRO

B−1

→ COM .

R3: Bug-Version. To describe the case that a bug occurs

in a specific version as a relation, we use O and O−1 to

represent relations between bug reports and versions, i.e.,

BID
O→ V ER and V ER

O−1

→ BID.

R4: Bug-Priority. Each bug report has a priority to be

processed by developers. Then, we use H and H−1 to denote

relations between bug reports and priorities, i.e., BID
H→

PRI and PRI
H−1

→ BID.

R5: Bug-Severity. Each bug is also characterized with a

severity (e.g., high, low, normal, or blocking) level from the

perspective of its reporter. We use I and I−1 to describe

relations between bug reports and severity, i.e., BID
I→ SEV

and SEV
I−1

→ BID.

Given a network schema with various types of nodes and

relations, we generate five types of meta-paths, i.e., P1 − P5

as depicted in Figure 1b, for capturing their semantic corre-

lations among bug reports in Bugzilla. Different meta-paths

characterize relations between two bug reports from different

aspects. For example, a typical one to formulate relationships

between bug reports in Bugzilla is: P5: BID
L→ COM

B→
PRO

B−1

→ COM
L−1

→ BID, which means that two bug

reports are connected as they are located in the components

of the same product. After constructing the HIN, HIN2Vec

(Section III-C) is then used to learn latent vectors of nodes in

the HIN. The learned node vectors are then used as inputs for

the proposed HIN-based neural network.

B. HINDBR: Representation Learning on HIN

To predict duplicate bug reports, we propose a novel DNN

named HINDBR. Figure 5 shows the detailed structure of

HINDBR. The neural network consists of two parts: a bug

report representation module and a similarity module that

measures the degree of similarity of a bug report pair, which

are described in detail below.

1) Feature Representation and Fusion: Given a constructed

HIN containing semantic relations among all bug reports, the

next step is to extract its features for representation learning.

An input bug report is represented by seven features from

the constructed HIN: BID, PRO, COM, VER, SEV, PRI, and

TextBID. The first six features are the six types of nodes in the

HIN, while TextBID is the text information of node BID, i.e.,

summary. The seven features are divided into two categories:

198

#&

� �! �� ��

"��� ���

���'�

#�!�

����

���	
��

�#

#�!(

��
����
���

�� ��
�

0���
����
���

�� ��
�

#)

#

$&

���'�

#�!�

����

���	
��

�$

#�!(

$)

$

�
������	�

����	�

����	�

�2"#

��+#

�+�#

�*�#

�*�#

��2#

�2"$

��+$

�+�$

�*�$

�*�$

��2$

�
 �!

��

�
������

�!��)���

�	

333

�
 �!

��

�
������

#
�	�*

��

��
����
��

�� ��
�

0���
����
���

�� ��
�

�+

$
�	�*

�������	
��

42�

Fig. 5. Detailed structure of HINDBR.

the structured and unstructured features. Their details are given

below.

Structured Feature. BID, PRO, COM, VER, SEV, and PRI,
are treated as the structured features. HINDBR, first, maps

these features to a d1-dimensional vector hi ∈ R
d1 where

i = BID, PRO, COM , V ER, SEV or PRI learned

by HIN2Vec based on the structure of the HIN. Then, the

six features are concatenated into a whole structured feature,

denoted as H = [hBID, hPRO, hCOM , hV ER, hSEV , hPRI],
H ∈ R

6d1 . Since H has no strict order, it is simply embedded

by a multilayer perceptron (MLP, i.e., the conventional fully

connected layer [23]), denoted as MLPS :

h = tanh(WHH), (2)

where H represents the concatenated structured feature,

WH ∈ R
k1×6d1 is the matrix of trainable parameters in the

MLPS (k1 is the number of hidden units of the MLPS), tanh
is the activation function used in the MLPS , while h ∈ R

k1

is the final vector of the whole structured feature.

Unstructured Feature. In addition to the structured features,

text information TextBID is also embedded in HINDBR. We

use an RNN for the embedding of sentences [24], [25].

Figure 6 shows an example of sequence embedding for the

summary of a bug report using an RNN. It reads the words

in the sentence one by one and outputs the hidden states h1,

h2, and h3. The first word “crash”, denoted as word vector

x1, is read by the RNN. Then, the current hidden state h1

is computed by considering x1 and initial hidden state h0.

Likewise, the RNN reads the second word x2 (i.e., “in”)

and updates the hidden state h1 to h2 using x2. Finally, the

last word x3 (i.e., “printing”) is read and the final state is

updated as the output. Typically, the last state h3 is used as

the embedding vector of the whole sentence.

Given a BID’s summary TBID = {x1, x2, . . . , xNT
}, where

xi is a word token of a sentence with the length of NT ,

!�

)�

)%

#

!+

)�

#

!,

),

)+

#

Fig. 6. Sequence embedding using an RNN.

HINDBR embeds the sequence of split word tokens using an

RNN (denoted as RNNNS):

ti = tanh(WT [xi, ti−1]), ∀i = 1, 2, . . . , NT , (3)

where xi ∈ R
d2 is the embedding vector of word token xi

learned by Word2Vec [26] on bug report corpus, ti ∈ R
n is

the hidden state at time step i (n is the number of hidden

units of the RNNNS), [xi, ti−1] ∈ R
d2+n is the concatenation

of two vectors, WT ∈ R
n×(d2+n) is the matrix of trainable

parameters in the RNNNS , tanh is the activation function. The

unstructured feature is thus embedded as an n-dimensional

vector t (t = tNT
).

Feature Fusion. After obtaining the structured feature vec-

tor h and the unstructured feature vector t, they are fused into

one final vector by an MLP (denoted as MLPF):

b = tanh(WB [h, t]), (4)

where [h, t] ∈ R
k1+n describes the concatenation of two vec-

tors, WB ∈ R
k2×(k1+n) is the matrix of trainable parameters

in the MLPF (k2 is the number of hidden units of the MLPF),

while tanh is the activation function of the MLPF . The final

embedding of the bug report is represented by the output

vector b ∈ R
k2 .

2) Similarity Module: The module is used to measure the

similarity of two bug reports with their vectors obtained by

the representation module. In this work, we use the Manhattan

distance as the measure [27], which is defined as:

S(b1, b2) = exp(−||b1 − b2||1), (5)

where b1 and b2 are the vectors of two bug reports, while

exp(.) normalizes the distance value between 0 and 1.

3) Model Training: To train HINDBR, we construct each

training instance as < B1, B2 >. If bug reports B1 and B2 are

duplicate of each other, label y of the instance is set to 1, and

0 otherwise. When using the set of < B1, B2 > for training,

HINDBR predicts the Manhattan distance similarities ŷ and

minimizes the binary cross entropy loss function [28]:

L(θ) = −(ylog(ŷ) + (1− y)log(1− ŷ)), (6)

ŷ =

{
1, S(B1, B2) ≥ 0.5
0, S(B1, B2) < 0.5

, (7)

199

where θ denotes the model parameters, y is the true label, ŷ is

the predicted label calculated by a given Manhattan distance

similarity threshold (i.e., 0.5).

V. DATA COLLECTION AND AGGREGATION

A. Data Collection

TABLE III shows the detailed information of the collected

dataset, including project types, names, time frames, the

year of employing the JIT feature, and the number of bug

reports. Most previous studies evaluated their approaches only

using before-JIT reports, which have different characteristics

as post-JIT reports [10]. In our experiments, we collected

2,038,675 bug reports from nine popular open-source projects,

i.e., Eclipse, Freedesktop, GCC, GNOME, KDE, LibreOffice,

Linux kernel, LLVM, and OpenOffice, covering both before-

JIT and after-JIT bug reports. We collected all the bug reports

by downloading their XML files (provided by Bugzilla) via a

web crawler that we developed. The collected bug data and

the web crawler are available at https://github.com/hindbr.

B. Feature Extraction

HIN features are extracted from collected bug reports by

following the steps in Figure 7 and discussed in detail below.

HIN Construction. For each bug report, we extract the

nodes and construct bug report HIN by the following pro-

cedure shown in Figure 7a.

Step 1. Node Extraction. As described in Section IV-A, six

types of attributes (e.g., BID, PRO) are extracted by regular

expressions. For example, <product>(.*)</product>
is used to extract PRO (product) from the XML file (e.g.,

the one shown in Figure 3). To avoid potential duplicate

names of nodes, each extracted content is concatenated with a

prefix, e.g., ‘PRO ’ for the product node PRO. Similar regular

expressions are used for extracting other types of HIN nodes.

Step 2. Node ID Assignment & Dictionary Creation.
To store the nodes, we create an empty node dictionary

node_dict, where key is the node’s name and value is a

tuple (nodeid, nodetype). The nodeid is assigned to a number,

i.e., len(node_dict) + 1, while nodetype denotes the

type of the node, e.g., COM. The node dictionary is also served

as an index for mapping the node’s name to its corresponding

vector when constructing the model.

Step 3. Edge Construction. According to the relations

defined in Section IV-A, we construct the edges of the bug re-

port HIN as the following format: node1id node1type node2id
node2type edgetype, separated by “\t”. Note that edgetype is

the relationship between nodes.

After processing all the bug reports of a project by these

steps, an HIN is constructed for the report.

Text Extraction. We extract the text, i.e.,

summary of each bug report, from its XML file by

<short_desc>(.*)</short_desc>. Then, the

sequence of the text is processed by the three steps

shown in Figure 7b.

Step 1. Word Tokenization. The text extracted by the

regular expression is first divided into a stream of words. This

TABLE III
COLLECTED BUG REPORTS

Project Type Project Time Frame JIT Year # of Reports

Development

Tool

Eclipse 10/10/01 - 09/30/18 2011 [29] 528,862

GCC 08/03/99 - 09/30/18 2011 [30] 81,463

LLVM 10/07/03 - 09/30/18 Unknown 38,107

Desktop

Environment

Freedesktop 01/09/03 - 09/30/18 2011 [31] 106,065

GNOME 02/05/99 - 09/30/18 Unknown 673,301

KDE 01/21/99 - 09/30/18 2012 [32] 388,711

Office Suite
LibreOffice 08/03/10 - 09/30/18 Unknown 62,029

OpenOffice 10/16/00 - 09/30/18 2012 [33] 127,797

Operating System Linux kernel 11/06/02 - 09/30/18 2012 [34] 32,340

Total 2,038,675

�������	
��

�������	
���
��
����
�
����	�������������	������	����

��������	���

���
����	�

��������	������

�������������

�����	��
���
����	�

���� �������

�	���
����	�

�������	
���
��
��
���
����	����

�������!	
��

"	#���$���	�

�������
�	�%&	
��

���	'�(

���� ��!	
��

�	
��(�$���	��

Fig. 7. Procedure of constructing HIN and extracting text.

step removes, from the text, all numbers, punctuation, and

other non-alphabetic characters such as “+”, “-”, and “=”, with

spaces. For example, given bug report ID-575783 “crash in

Printing:”, after this step, we obtain [“crash”,“in”,“Printing”].

Step 2. Stop-word Removal. This step removes stop-words

from the tokens of words. Stop-words are frequently used

words containing no information, such as “and”, “the”, and

“to”. These words do not contribute to information retrieval

and text mining. For instance, after removing stop-words of

bug report ID-575783, we obtain [“crash”, “Printing”].

Step 3. Word Normalization. This final step converts each

word token to its lower case. For example, the final output of

the summary of bug report ID-575783 is [“crash”, “printing”].

We also extracted descriptions and comments of bug reports

by <thetext>(.*?)</thetext> to form a text corpus.

Word2Vec [26] then uses it to train word embedding vectors.

C. Bug Pairs Generation

1) Bug Pairs for Model Training and Testing: TABLE IV

shows the generated bug pairs of each project for train-

ing and testing HINDBR. As discussed in Section III-A,

reports representing the same bug are put into the same

bug group. For duplicate pairs, we generate combinations

of duplicate bug pairs from a bug group. As the example

shown in TABLE II, six pairs of bug reports can be gener-

ated: (572385, 575783), (572385, 576763), (572385, 580001),

(575783, 576763), (575783, 580001), and (576763, 580001).

Same as the ratio setting of the duplicate pairs and the non-

duplicate pairs in [20], we randomly generated non-duplicate

pairs, the number of which is four times larger than the total

number of duplicate pairs, by combining two master reports

from different bug groups.

2) Evaluating Bug Pairs under the Before-JIT and After-JIT
Settings: To evaluate the performance of HINDBR in terms

of handling before-JIT and after-JIT duplicates, two kinds of

200

TABLE IV
NUMBER OF BUG PAIRS FOR MODEL TRAINING AND TESTING

Project Duplicate Pair Non-Duplicate Pair Pair
Eclipse 54,742 218,968 273,710

Freedesktop 11,316 45,264 56,580

GCC 7,819 31,276 39,095

GNOME 69,381 277,524 346,905

KDE 41,094 164,376 205,470

LibreOffice 6,771 27,084 33,855

Linux kernel 2,998 11,992 14,990

LLVM 3,093 12,372 15,465

OpenOffice 12,821 51,284 64,105

Total 210,035 840,140 1,050,175

TABLE V
NUMBER OF BUG PAIRS FOR BEFORE-JIT AND AFTER-JIT EVALUATION

Project Before-JIT After-JIT
Duplicate Non-Duplicate Duplicate Non-Duplicate

Eclipse 5,474 21,896 5,474 21,896

Freedesktop 1,131 4,524 1,131 4,524

GCC 781 3,124 781 3,124

KDE 4,109 16,436 4,109 16,436

Linux kernel 299 1,196 299 1,196

OpenOffice 1,282 5,128 1,282 5,128

bug pairs are generated: before and after JIT, as shown in

TABLE V. Note that we ignored reports that were submitted

in the year when the JIT was deployed (e.g., 2012 for Linux

kernel). This is because reporters may need time to get familiar

with the usage of the new JIT retrieval feature [10]. Again, the

number of non-duplicate pairs is also four times larger than

that of the duplicate pairs.

VI. EXPERIMENT SETUP AND EVALUATION

A. Implementation Details

1) Settings of Pre-trained Embeddings: The implementa-

tions of two pre-trained embeddings, i.e., HIN and word em-

beddings, use HIN2Vec [19] and Word2Vec [26], respectively.

HIN Embedding. As recommended in [19], we set the

HIN2Vec parameters as follows: dimension of node represen-

tation d1 is 128; context window w is 4; length of random

walks l is 1280; number of negative samples per positive

sample n is 5. We perform training on each project’s HIN

constructed by the procedures described in Section V-B.

Word Embedding. Parameter settings of the word embed-

ding are as follows: dimension of word vectors d2 is 100;

context window w is 10; training algorithm is Skip-Gram;

min count is 5. Training was conducted on the text corpus

extracted from all the 2,038,675 collected bug reports.

2) Settings of Neural Networks in HINDBR: To investigate

the impact of feature settings on the performance of HINDBR,

we build three models under different bug report representa-

tions, denoted as Text, HIN1 (no Text), and HIN2 (with Text).

Text. In this model, we use the text of node BID to represent

a bug report. Thus, the MLPS and MLPF networks are

removed. The RNNNS is implemented by the bi-directional

long short-term memory (Bi-LSTM) [35], a state-of-the-art

variant of RNN. The number of hidden units of Bi-LSTM is

100 in each direction. So, the embedded unstructured feature

t is a 200-dimensional vector (two directions in Bi-LSTM).

HIN1 (no Text). In this model, we only use the structured

feature for bug report representation. The number of hidden

units in the MLPS is 32.

HIN2 (with Text). For the default feature setting, HINDBR

represents a bug report by fusing structured and unstructured

features. The settings of the RNNNS for the unstructured

feature and the settings of the MLPS for the structured feature

are the same as aforementioned. The fusion layer, i.e., MLPF ,

has 64 hidden units.

3) Settings of Model Training: We built our model on

Keras [36], an open-source deep learning framework based on

TensorFlow. All the experiments were conducted on a DELL

Precision Tower with a 3.60 GHz Intel i9-9900K CPU, 32 GB

memory, 512GB SSD and 2TB HDD storage, and an NVIDIA

RTX 2080Ti GPU, running Ubuntu 18.04.

Training Parameters. Training settings are as follows:

number of epochs is 100; batch size is 128; gradient clipping

value is 1.25; ratio of validation dataset split from training

dataset during training process is 0.2. Optimizations of the

parameters are enabled using the Adadelta method along with

gradient clipping [37], [38].

Stratified Cross-Validation Evaluation. We use stratified 5-

fold cross-validation to evaluate the effectiveness of HINDBR,

i.e., four folds are randomly generated to train HINDBR, while

the remaining one fold is used for testing. To ensure that each

fold can be tested, we perform five iterations. Thus, there

are five values for each evaluation metric and we report their

average values. Note that the ratios of duplicate pairs and non-

duplicate pairs in each fold are the same as those in the original

dataset, when using stratified k-fold cross-validation technique.

Dealing with Imbalanced Data. Due to the imbalanced data

of duplicate and non-duplicate pairs, we perform oversampling

during cross-validation [39], i.e., we only oversampled the

duplicate pairs in the training folds, but keep the ratio of

duplicate and non-duplicate pairs in the testing fold, so that

to avoid overfitting that affects the model’s performance. We

use a popular oversampling algorithm, i.e., Synthetic Ma-

jority Oversampling Technique (SMOTE) with Tomek Links

(SMOTE + TL) as the oversampling technique during the

cross-validation procedure [39].

4) Evaluation Metrics: To evaluate our model, we use the

following four metrics.

Accuracy. It is calculated as the proportion of correctly

predicted duplicate and non-duplicate bug report pairs relative

to the total number of bug report pairs, and defined as:

Accuracy =
TP + TN

TP + FN + FP + TN
, (8)

where TP is true positives (i.e., duplicate pair), TN is true

negatives (i.e., non-duplicate pair), FP is false positives, and

FN is false negatives.

Precision. It is calculated as the proportion of instances

correctly predicted to belong to a class relative to all instances

that are predicted to belong to this class. For duplicate pairs,

precision is defined as:

201

TABLE VI
PREDICTION RESULTS OF HINDBR COMPARED WITH BASELINE APPROACH DLDBR

Project Accuracy Precision Recall F1 Score
DLDBR HINDBR Impro. DLDBR HINDBR Impro. DLDBR HINDBR Impro. DLDBR HINDBR Impro.

Eclipse 0.8910 0.9489 6.51% 0.8196 0.9005 9.87% 0.7930 0.8374 5.60% 0.8037 0.8671 7.89%
Freedesktop 0.9161 0.9621 5.01% 0.8503 0.9184 8.01% 0.8519 0.8891 4.36% 0.8504 0.9035 6.24%
GCC 0.9061 0.9587 5.81% 0.8523 0.9205 8.01% 0.8306 0.8721 5.01% 0.8392 0.8957 6.73%
GNOME 0.9843 0.9883 0.42% 0.9620 0.9709 0.93% 0.9769 0.9707 -0.63% 0.9693 0.9708 0.15%
KDE 0.9639 0.9834 2.02% 0.9363 0.9651 3.08% 0.9312 0.9508 2.11% 0.9333 0.9579 2.64%
LibreOffice 0.8440 0.9277 9.91% 0.7708 0.8538 10.76% 0.7022 0.7703 9.69% 0.7259 0.8096 11.53%
Linux kernel 0.8943 0.9578 7.10% 0.8242 0.8961 8.72% 0.8321 0.8925 7.26% 0.8274 0.8942 8.08%
LLVM 0.8388 0.9296 10.82% 0.7500 0.8423 12.31% 0.7033 0.7903 12.38% 0.7115 0.8154 14.61%
OpenOffice 0.8432 0.9487 12.51% 0.7508 0.8969 19.45% 0.7464 0.8369 12.13% 0.7454 0.8658 16.16%

Precision =
TP

TP + FP
. (9)

Recall. It is the proportion of correctly predicted instances

of a class relative to all actual instance of that class. For the

duplicate pairs, it is calculated as:

Recall =
TP

TP + FN
. (10)

F1 Score. The F1 score combines precision and recall by

the harmonic average, calculated as:

F1 = 2 · Precision ·Recall

Precision+Recall
. (11)

B. Model Evaluation

Our evaluation aims to answer the following three research

questions (RQs):

• RQ1: How does HINDBR perform in predicting dupli-

cate bug reports compared with the state-of-the-art deep

learning-based approach?

• RQ2: How do different feature settings impact

HINDBR’s performance?

• RQ3: How is the performance of HINDBR in handling

duplicate bug reports before and after JIT deployed?

1) Comparison Method: We compare the effectiveness of

HINDBR with a recently-proposed state-of-the-art model (we

named it DLDBR) [5]. DLDBR detects duplicate bug reports

by using DNNs, which learns rich information from text

information of bug reports (e.g., a LSTM for embedding

short descriptions and convolutional neural networks (CNNs)

for embedding long descriptions). DLDBR consists of two

different models, i.e., retrieval model and classification model.

Because our model is designed for the duplicate bug report

prediction problem instead of a supervised ranking prob-

lem, we compare HINDBR with the classification model of

DLDBR. For the experiments, we implemented DLDBR based

its description in [5], and used the same cross-validation and

imbalanced data processing strategy as those in HINDBR.

2) Results and Analysis: RQ1: HINDBR Effectiveness. We

first present the prediction results of HINDBR (i.e., HIN2),

as shown in TABLE VI. In the table, the 1st column lists

all the studied projects; the 2nd column lists the accuracy

and the improvement of HINDBR over DLDBR, calculated

���

���

���

� �� �� �� �� ���
��	

���

��

���

���

���

���

� �� �� �� �� ���

���

���

���

���

���

���

� �� �� �� �� ���
���

���

���

���

���

���

���

� �� �� �� �� ���
���

��

���

���

���

���

���

� �� �� �� �� ���

���

��

���

���

���

���

���

� �� �� �� �� ���
���

���

���

���

�

�

�

�

� �� �� �� �� ���
���

���

���

��

�

�

�

� �� �� �� �� ���
���

���

���

��

���

���

���

���

� �� �� �� �� ���

���

���

���

�
�
��

��������	
�

�
��
�
��
�	

�
���

�
�
��

����
�����
���	

�
��
�
��
�	

�
���

���������� ����� ����� ���������� �!������� ����� ����� �����

�
�
��

�������

�
��
�
��
�	

�
���

�
�
��

���������

�
��
�
��
�	

�
���

�
�
��

�
��
�
��
�	

�
���

�
�
��

�
��
�
��
�	

�
���

���������������

�
�
��

����������������

�
��
�
��
�	

�
���
��������

�
�
��

�
��
�
��
�	

�
���

�
�
��

���� !�

�
��
�
��
�	

�
���
�����	��������

Fig. 8. Comparison of training history under different feature settings.

as (PerHINDBR − PerDLDBR)/PerDLDBR; the 3rd-5th

columns present the precision, recall, and F1 score for the

duplicate class. We can find that HINDBR achieves up to

98.83% accuracy, 97.09% precision, 97.07% recall rate, and

97.08% F1 score across the evaluated projects. For example,

for the GNOME and KDE projects, the model obtains more

than 95% in terms of accuracy and F1 score. The result clearly

demonstrates the practicality of our model.

In addition, it can be observed from TABLE VI that

HINDBR achieves better performance in all the projects than

DLDBR. For example, the improvements in the accuracy

and the F1 score are 10.82% and 14.61% respectively for

the LLVM projects, and 12.51% and 16.16% respectively

for the OpenOffice project. Moreover, HINDBR needs fewer

texts compared with DLDBR. Only the short description (i.e.,

summary) is used in HINDBR. However, both short and long

descriptions (i.e., summaries and descriptions) are needed in

DLDBR.

RQ2: Impacts of Feature Settings. HINDBR represents bug

reports using two categories of features in the constructed HIN,

202

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

��������	
�

�
�
�
��

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

����
�����
���	

�
�
�
��

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

������ ������ ����	

�������

�
�
�
��

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

���������

�
�
�
��

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

�������

�
�
�
��

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

���������������

�
�
�
��

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

����������������

�
�
�
��

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

� ����!�

�
�
�
��

���� �������	 ���� �������	

���
��� ������
�

���

���

���

���

�����	��������

�
�
�
��

Fig. 9. Comparison of performance under different feature settings.

i.e., the structured feature and unstructured feature. To explore

the impacts of different features on HINDBR’s performance,

we compare the training history and predicted performance

of HINDBR under different feature settings, as shown in

Figures 8 and 9 respectively. From the two figures, we have

the following three findings:

(1) HINDBR (i.e., HIN2, using both structured and unstruc-

tured features) achieves the best performance during model

training. Figure 8 shows that the loss and accuracy of the

training and validation for HIN2 are the best (i.e., the smallest

loss and the highest accuracy values) across all projects.

(2) Using the structured feature alone (HIN1) outperforms

the setting when using the unstructured feature alone (Text)

for most projects, i.e., Eclipse, Freedesktop, GNOME, KDE,

Linux kernel, and OpenOffice, as shown in Figure 9 (tested

by the Mann–Whitney U test with α = 0.05 [40]). However,

using the structured feature alone is not effective in some

projects (e.g., LibreOffice). To further investigate this, we

use t-SNE with PCA [41] to visualize the structured feature

vectors of bug report pairs from the GNOME and LibreOffice

projects, as shown in Figure 10. We can see that the duplicate

and non-duplicate pairs are very clearly clustered for the

GNOME project, while it is not clear for the LibreOffice

project. In addition, Figure 9 shows that the interquartile

range (IQR) of the model (HIN1) using the structured feature

alone is significantly larger than that of using unstructured

feature alone (Text). This implies that the performance of

the model using the structured feature alone is not stable.

(3) Considering all the features for bug report representation

learning improves the stability (i.e., a smaller IQR) and the

prediction performance significantly.

RQ3: Impacts of Before-JIT and After-JIT Duplicates.

5#6 5#7 56 7 6 #7 #6

5#6

5#7

56

7

6

#7

#6

5#6 5#7 56 7 6 #7 #6

5#6

5#7

56

7

6

#7

#6

��
�
�5
�
�

6
7
5�
(
	

����5�� 675	��
����%�&#' �"����"��&���
�

"��3�� �
� �	�5"��3�� �
�

��
�
�5
�
�

6
7
5�
(
	

����5�� 675	��

Fig. 10. t-SNE visualization of structured feature vectors of bug pairs.

���������	
�������	 ���������	
�������	

��
���� ��������

���

���

���

���

���

��������	
�

�
�
�
��

���������	
�������	 ���������	
�������	

��
���� ��������

���

���

���

���

���

����
�����
���	

�
�
�
��

���������	
�������	 ���������	
�������	

��
���� ��������

���

���

���

���

����������	� �
�������	

�������

�
�
�
��

���������	
�������	 ���������	
�������	

��
���� ��������

���

���

���

�������

�
�
�
��

���������	
�������	 ���������	
�������	

��
���� ��������

���

���

���

����������������

�
�
�
��

���������	
�������	 ���������	
�������	

��
���� ��������

���

���

���

�����	��������

�
�
�
��

Fig. 11. Comparison of performance on before-JIT and after-JIT datasets.

In this RQ, we evaluate the effectiveness of HINDBR

on duplicates before and after the JIT feature is deployed.

Figure 11 shows the distributions of performance of HINDBR

in the before-JIT and after-JIT datasets in TABLE V. We can

find that for most projects (5/6), the performance of HINDBR

on the after-JIT dataset is significantly higher than that on

the before-JIT dataset (tested by the Mann–Whitney U test

with α = 0.05 [40]). The result is reasonable, as our model

uses learned semantic relations to detect duplicates, although

the after-JIT duplicates have lower text similarity compared

with before-JIT duplicates [10]. In addition, for the GCC

project (Figure 11c), the lower performance of HINDBR on

the after-JIT dataset is due to the reason that the structured

feature of the HIN of GCC bug reports is less effective than

the unstructured feature. It can be observed from Figure 9c

that the model (HIN1) using structured feature alone has the

lowest performance. This may be due to the weakly connected

attribute nodes in the bug report HIN.

VII. THREATS TO VALIDITY

Threats to Internal Validity. The empirical data collection

in our feature extraction and model implementation can be

considered as a threat to the internal validity. To reduce this

threat, we implemented our technique carefully and utilized

state-of-the-art tools and frameworks, such as Keras and Gen-

sim. The field reassignment of bug reports [42], i.e., changing

of bug report fields, is another threat to the internal validity.

When constructing bug report HINs, we followed DLDBR [5]

203

and used the final field values of the bug reports. We found

that the field reassignment of the bug reports may have an

impact on HINDBR’s performance. In the future, we plan to

investigate such an impact, by constructing bug report HINs

through initially submitted fields and final fields, respectively.

Threats to External Validity. First, for simplicity, we ig-

nored the temporal nature of bug reports in the repository when

generating bug report pairs. We acknowledge that this setting

is a main threat to the external validity (i.e., the generalization

of our model). Second, the 5-fold cross-validation setting for

model evaluation is also a threat to the external validity, since

only a small subset of dataset was used for our evaluation.

HINDBR is applicable for any project with BTSs using

Bugzilla, and it is easy to be adopted to other BTSs, such

as JIRA and MantisBT. In the future, we plan to consider the

temporal nature of bug reports and using lager-scale dataset

to evaluate HINDBR.

Threats to Construct Validity. The choice of the evaluation

metrics of prediction performance can be a threat to the

construct validity. To reduce this threat, we used accuracy,

precision, recall, and F1 score, which are widely used in other

studies (e.g., [7] and [43]) to assess the performance of binary

prediction models.

VIII. RELATED WORK

Duplicate Bug Report Detection. Over the past decades,

several approaches have been proposed to automatically detect

duplicate bug reports [4], [8], [9], [44]–[49]. Among them,

BMF25 [8] and REP [9] are two state-of-the-art algorithms.

BM25F calculates the similarity between two bug reports

based on common words shared between the bug reports.

Additionally, REP extends BM25F by also considering bug

report attribute information (e.g., product, priority). There

are also many studies that take into account new techniques

and more document features, such as using topic modeling

with Latent Dirichlet Allocation (LDA) [50], incorporating

software contextual features [51], combining word embedding

technique [52], [53], considering execution information (e.g.,

stack traces) [54], and detecting duplicates just-in-time [55].

Deshmukh et al. [5] proposed a deep learning-based approach

(i.e., DLDBR), which mainly relies on the textual feature

to detect duplicate bug reports. Later, several deep learning-

based approaches have been proposed, such as DBR-CNN [7],

DWEN [56], and DC-CNN [43]. These approaches leverage

text similarity between two bug reports to detect duplicates

with word embeddings and DNNs.

With the advent of the JIT retrieval feature in modern

BTSs (e.g., Bugzilla and JIRA), remaining duplicates in BTSs

may become difficult to be detected with text similarity

techniques [10]. Because many textually similar duplicates

have already been excluded by the built-in JIT in BTSs.

HINDBR differs from existing approaches in that it uses HIN

as the fundamental representation for learning and predicting

duplicate bug reports.

HIN in Software Engineering. Due to the advantages of

storing rich information and representing diverse relations of

objects, HIN and its related techniques have been adopted in

many applications, such as recommendation [57] and anomaly

detection [58]. The adoption of HIN in the software engi-

neering field mainly relates to malware detection [59] and

developer relation analysis [12].

Hou et al. [60] proposed an Android malware detection

by representing relationships between Android malware as

a structured HIN. A meta-path based approach is used to

characterize the semantic relatedness of apps and their APIs.

Each meta-path is used to measure the similarity over Android

apps. The HIN based technique has also been adopted to detect

insecure code snippets in Stack Overflow [61]. Moreover,

HIN has also been used to investigate social relations among

developers during software development, such as developers’

collaboration and contributions in bug repositories [12], [13].

To the best of our knowledge, we are the first to explore the

application of HIN for duplicate bug report prediction.

IX. CONCLUSION

This paper presents HINDBR, a deep representation learn-

ing approach for duplicate bug report prediction based on

HIN. We construct a bug report HIN by the relations of

attributes in bug reports. The latent semantic relations are

revealed through a representation learning method. Bug reports

are represented by embedding the learned structured and

unstructured features into a low-dimensional vector space.

Then, the Manhattan distance is used to calculate the similarity

between the vectors of the two bug reports. We have used

5-fold cross-validation to evaluate our model with a total of

1,050,175 bug report pairs generated from nine popular open-

source projects (i.e., Eclipse, Freedesktop, GCC, GNOME,

KDE, LibreOffice, Linux kernel, LLVM, and OpenOffice),

covering both before-JIT and after-JIT duplicates. Our results

showed that HINDBR is effective in predicting duplicate bug

reports in the post-JIT ear. Our source code and data are

available at https://github.com/hindbr.

Although the performance of HINDBR has been improved

compared with DLDBR, the results are valid for our limited

experiments. Therefore, the results cannot be generalized to

other dataset and other approaches for duplicate bug detection.

In the future, we plan to investigate the performance of

retrieval models built upon HINDBR using more recent real-

world projects which have Bugzilla or JIRA, etc.

ACKNOWLEDGMENT

This work was supported in part by the Start-up Fund for

New Faculty of NUAA under Grant YAH20026, the Open Re-

search Fund of State Key Laboratory of Novel Software Tech-

nology under Grant KFKT2020B20, the National Natural Sci-

ence Foundation of China under Grants 62002163, 61772055,

61872169, and 61872182, the Technical Foundation Project

of Ministry of Industry and Information Technology of China

under Grant JSZL2016601B003, the Equipment Preliminary

R&D Project of China under Grant 41402020102, and the

Australian Research Council under Grant DP200101328.

204

REFERENCES

[1] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in Proc. ASE. ACM, 2012, pp. 70–79.

[2] K. Aggarwal, T. Rutgers, F. Timbers, A. Hindle, R. Greiner, and
E. Stroulia, “Detecting duplicate bug reports with software engineering
domain knowledge,” in Proc. SANER. IEEE, 2015, pp. 211–220.

[3] M. S. Rakha, W. Shang, and A. E. Hassan, “Studying the needed
effort for identifying duplicate issues,” Empirical Software Engineering,
vol. 21, no. 5, pp. 1960–1989, 2016.

[4] S. Banerjee, Z. Syed, J. Helmick, M. Culp, K. Ryan, and B. Cukic,
“Automated triaging of very large bug repositories,” Information and
Software Technology, vol. 89, pp. 1–13, 2017.

[5] J. Deshmukh, S. Podder, S. Sengupta, and N. Dubash, “Towards accurate
duplicate bug retrieval using deep learning techniques,” in Proc. ICSME.
IEEE, 2017, pp. 115–124.

[6] M. S. Rakha, C.-P. Bezemer, and A. E. Hassan, “Revisiting the perfor-
mance evaluation of automated approaches for the retrieval of duplicate
issue reports,” IEEE Transactions on Software Engineering, vol. 44,
no. 12, pp. 1245–1268, 2017.

[7] Q. Xie, Z. Wen, J. Zhu, C. Gao, and Z. Zheng, “Detecting duplicate bug
reports with convolutional neural networks,” in Proc. APSEC. IEEE,
2018, pp. 416–425.

[8] S. Robertson, H. Zaragoza, and M. Taylor, “Simple bm25 extension to
multiple weighted fields,” in Proc. CIKM. ACM, 2004, pp. 42–49.

[9] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in Proc. ASE. IEEE, 2011, pp.
253–262.

[10] M. S. Rakha, C.-P. Bezemer, and A. E. Hassan, “Revisiting the per-
formance of automated approaches for the retrieval of duplicate reports
in issue tracking systems that perform just-in-time duplicate retrieval,”
Empirical Software Engineering, vol. 23, no. 5, pp. 2597–2621, 2018.

[11] “Bugzilla 4.0 Release Notes,” 2019. [Online]. Available: https:
//www.bugzilla.org/releases/4.0/release-notes.html#v40 feat dup

[12] S. Wang, W. Zhang, Y. Yang, and Q. Wang, “Devnet: Exploring
developer collaboration in heterogeneous networks of bug repositories,”
in Proc. ESEM. IEEE, 2013, pp. 193–202.

[13] W. Zhang, S. Wang, Y. Yang, and Q. Wang, “Heterogeneous network
analysis of developer contribution in bug repositories,” in Proc. CSC.
IEEE, 2013, pp. 98–105.

[14] Y. Sun and J. Han, “Mining heterogeneous information networks:
principles and methodologies,” Synthesis Lectures on Data Mining and
Knowledge Discovery, vol. 3, no. 2, pp. 1–159, 2012.

[15] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proc. KDD. ACM, 2016, pp. 855–864.

[16] M. Ji, J. Han, and M. Danilevsky, “Ranking-based classification of
heterogeneous information networks,” in Proc. KDD. ACM, 2011,
pp. 1298–1306.

[17] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social
Networks, vol. 31, no. 2, pp. 155–163, 2009.

[18] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American Society for Information
Science and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[19] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in
heterogeneous information networks for representation learning,” in
Proc. CIKM, 2017, pp. 1797–1806.

[20] A. Lazar, S. Ritchey, and B. Sharif, “Generating duplicate bug datasets,”
in Proc. MSR. ACM, 2014, pp. 392–395.

[21] Z. Zheng and G. Xiao, “Evolution analysis of a uav real-time operating
system from a network perspective,” Chinese Journal of Aeronautics,
vol. 32, no. 1, pp. 176–185, 2019.

[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proc. WWW. WWW
Committee, 2015, pp. 1067–1077.

[23] D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms.” in Proc. IJCAI, vol. 89, 1989, pp. 762–767.

[24] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, “Re-
current neural network based language model,” in Proc. INTERSPEECH.
ISCA, 2010, pp. 1045–1048.

[25] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and
R. Ward, “Deep sentence embedding using long short-term memory
networks: Analysis and application to information retrieval,” IEEE/ACM

Transactions on Audio, Speech and Language Processing, vol. 24, no. 4,
pp. 694–707, 2016.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[27] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity,” in Proc. AAAI, 2016, pp. 2786–2792.

[28] K. P. Murphy, Machine learning: A probabilistic perspective. MIT
press, 2012.

[29] “Eclipse Bugzilla,” 2019. [Online]. Available: https://bugs.eclipse.org/
bugs/show bug.cgi?id=359299

[30] “GCC Bugzilla,” 2019. [Online]. Available: https://gcc.gnu.org/bugzilla/
show bug.cgi?id=49935

[31] “Freedesktop Bugzilla,” 2019. [Online]. Available: https://bugzilla.
freedesktop.org/show bug.cgi?id=30376

[32] “KDE Bugzilla,” 2019. [Online]. Available: https://bugs.kde.org/show
bug.cgi?id=196285

[33] “OpenOffice Bugzilla,” 2019. [Online]. Available: https://bz.apache.org/
ooo/show bug.cgi?id=117266

[34] “Linux Bugzilla,” 2019. [Online]. Available: https://bugzilla.kernel.org/
show bug.cgi?id=30682

[35] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. NIPS, 2014, pp. 3104–3112.

[36] A. Géron, Hands-on machine learning with Scikit-Learn, keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems.
O’Reilly Media, 2019.

[37] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[38] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. ICML, 2013, pp. 1310–1318.

[39] M. S. Santos, J. P. Soares, P. H. Abreu, H. Araujo, and J. A. C. Santos,
“Cross-validation for imbalanced datasets: Avoiding overoptimistic and
overfitting approaches,” IEEE Computational Intelligence Magazine,
vol. 13, no. 4, pp. 59–76, 2018.

[40] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures. crc Press, 2003.

[41] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[42] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study
of bug report field reassignment,” in Proc. CSMR-WCRE. IEEE, 2014,
pp. 174–183.

[43] J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate bug report detection
using dual-channel convolutional neural networks,” in Proc. ICPC, 2020.

[44] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Proc. ICSE. IEEE,
2007, pp. 499–510.

[45] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in Proc. DSN. IEEE, 2008, pp. 52–61.

[46] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proc. ICSE. ACM, 2008, pp. 461–470.

[47] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Proc.
ICSE. ACM, 2010, pp. 45–54.

[48] A. Sureka and P. Jalote, “Detecting duplicate bug report using character
n-gram-based features,” in Proc. APSEC. IEEE, 2010, pp. 366–374.

[49] T. Prifti, S. Banerjee, and B. Cukic, “Detecting bug duplicate reports
through local references,” in Proc. Promise, 2011, pp. 1–9.

[50] J. Zou, L. Xu, M. Yang, X. Zhang, J. Zeng, and S. Hirokawa, “Auto-
mated duplicate bug report detection using multi-factor analysis,” IEICE
Transactions on Information and Systems, vol. 99, no. 7, pp. 1762–1775,
2016.

[51] A. Hindle, A. Alipour, and E. Stroulia, “A contextual approach towards
more accurate duplicate bug report detection and ranking,” Empirical
Software Engineering, vol. 21, no. 2, pp. 368–410, 2016.

[52] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining word embed-
ding with information retrieval to recommend similar bug reports,” in
Proc. ISSRE. IEEE, 2016, pp. 127–137.

[53] A. Budhiraja, R. Reddy, and M. Shrivastava, “Poster: Lwe: Lda refined
word embeddings for duplicate bug report detection,” in Proc. ICSE-
Companion. IEEE, 2018, pp. 165–166.

[54] N. Ebrahimi, A. Trabelsi, M. S. Islam, A. Hamou-Lhadj, and K. Khan-
mohammadi, “An hmm-based approach for automatic detection and

205

classification of duplicate bug reports,” Information and Software Tech-
nology, vol. 113, pp. 98–109, 2019.

[55] A. Hindle and C. Onuczko, “Preventing duplicate bug reports by
continuously querying bug reports,” Empirical Software Engineering,
vol. 24, no. 2, pp. 902–936, 2019.

[56] A. Budhiraja, K. Dutta, R. Reddy, and M. Shrivastava, “Dwen: Deep
word embedding network for duplicate bug report detection in software
repositories,” in Proc. ICSE-Companion. ACM, 2018, pp. 193–194.

[57] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph based
recommendation fusion over heterogeneous information networks,” in
Proc. KDD. ACM, 2017, pp. 635–644.

[58] N. T. Tam, M. Weidlich, B. Zheng, H. Yin, N. Q. V. Hung, and
B. Stantic, “From anomaly detection to rumour detection using data
streams of social platforms,” Proc. VLDB Endowment, vol. 12, no. 9,
pp. 1016–1029, 2019.

[59] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu, “Gotcha-sly
malware!: Scorpion a metagraph2vec based malware detection system,”
in Proc. KDD. ACM, 2018, pp. 253–262.

[60] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Make evasion harder:
An intelligent android malware detection system,” in Proc. IJCAI, 2018,
pp. 5279–5283.

[61] Y. Ye, S. Hou, L. Chen, X. Li, L. Zhao, S. Xu, J. Wang, and Q. Xiong,
“Icsd: An automatic system for insecure code snippet detection in stack
overflow over heterogeneous information network,” in Proc. ACSAC.
ACM, 2018, pp. 542–552.

206

