
Fault Triggers in the TensorFlow Framework: An
Experience Report

Xiaoting Du∗, Guanping Xiao†, Yulei Sui‡
∗School of Automation Science and Electrical Engineering, Beihang University, China

†College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
‡Australian Artificial Intelligence Institute, University of Technology Sydney, Australia

xiaoting 2015@buaa.edu.cn, gpxiao@nuaa.edu.cn, yulei.sui@uts.edu.au

Abstract—TensorFlow is one of the most popular machine
learning frameworks for developing machine learning algorithms.
Because of the popularity and large-scale use of TensorFlow,
even a single bug may lead to severe consequences and impact
a large number of users. With a growing number of safety-
critical systems built upon TensorFlow, its reliability is becoming
increasingly important. An essential step to ensure TensorFlow’s
reliability is to understand the characteristics of bugs that
occurred in TensorFlow.

This paper presents the first comprehensive empirical study
on fault triggering conditions in TensorFlow. 2,285 bug reports
from TensorFlow’s GitHub repository are collected. A bug
classification is performed based on fault triggering conditions,
followed by the frequency distribution of different types of
bugs and the evolution features of varying bug types over
time. Then the relationships between bug types and fixing time
are also investigated. In addition, the root causes of Bohrbugs
and Mandelbugs are studied. Five root causes are discovered.
Furthermore, the analysis of regression bugs in TensorFlow is
conducted. We have revealed 10 important findings based on
our empirical results. There are 8 implications based on these
findings are provided for developers and users.

Index Terms—TensorFlow, machine learning framework, fault
triggers, Mandelbug, empirical study

I. INTRODUCTION

Machine learning projects are popular in various domains

such as data mining [1], image analysis [2], [3], pattern

recognition [4], and many other fields [5]–[7]. Due to the

large-scale use of machine learning projects, even a single

bug with few lines of error code may affect a large number of

users and cause disastrous consequences, especially for safety-

critical applications. For example, a subtle bug in a self-driving

system may cause car accidents [8], [9]. A vulnerability

exploited by an attacker in a credit card system may cause

cracking of bank accounts [10]. A bug in a web application

may lead to web site defacement [11]. In particular, the quality

of many machine learning projects highly depends on the

quality of the frameworks they build on [12]–[15]. Among all

those frameworks, TensorFlow is arguably the most popular

one, which is flexible and can be used to support a variety of

algorithms and has been adopted to build more than 36,000

applications hosted on GitHub [16].

TensorFlow’s reliability is becoming critically important due

to the widely use of TensorFlow in dozens of safety-critical

∗Corresponding author: Xiaoting Du.

applications. To understand the features and characteristics of

bugs in TensorFlow, researchers have conducted several em-

pirical studies on TensorFlow. In particular, Zhang et al. [16]

conducted an empirical study on deep learning applications

built on top of TensorFlow and examined the root causes and

symptoms of bugs. Islam et al. [17] studied 2,716 posts from

Stack Overflow, and 500 bug-fixing commits from Caffe [13],

Keras [18], TensorFlow [12], Theano [15], and Torch [19].

Root causes and impacts of bugs were analyzed. The study

in [20] analyzed 715 questions in Stack Overflow related

to three popular deep learning frameworks, and summarized

them into seven frequently asked questions. Although these

studies have investigated the root causes and symptoms of

bugs in TensorFlow clients and the TensorFlow framework,

none of them has analyzed the factors that trigger a fault

and/or propagate a fault inside TensorFlow. These fault triggers

are expected to provide valuable insights into TensorFlow’s

development and maintenance phases.

Generally, fault triggers are complex, not only including the

timing of inputs and operations, but also involving the interac-

tions with other systems. In [21], Grottke and Trivedi divided

bugs into two categories: Bohrbug (BOH) and Mandelbug

(MAN), according to the complexity of fault activation and/or

error propagation conditions. Among them, Bohrbug is easy to

be isolated, and their manifestation is consistent under a well-

defined set of conditions. In contrast, Mandelbug is a special

kind of faults, whose activation and/or error propagation is

complex and difficult to be discovered by traditional tech-

niques. In addition, a Mandelbug can be further categorized

as a non-aging related Mandelbug (NAM) or an aging-related

bug (ARB). Aging-related bug is a kind of bug that can lead

to the software aging phenomenon, i.e., to an increase in the

failure rate and/or performance degradation [22]. According to

the above classification, the work presented in [23] extended

a more fine-grained classification for aging-related bugs and

non-aging related Mandelbugs.

In this paper, we make the first attempt to explore the bug

characteristics in the TensorFlow framework based on fault

triggering conditions. We have conducted an extensive study of

2,285 bug reports from TensorFlow’s GitHub repository1. Bug

characteristics of TensorFlow are investigated from several

1TensorFlow’s GitHub repository: https://github.com/tensorflow/tensorflow

1

2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/20/$31.00 ©2020 IEEE
DOI 10.1109/ISSRE5003.2020.00010

aspects, including (1) the frequency distribution of different

types of bugs, and the proportions of different bugs during

their evolution over time; (2) the relationship between a bug

type and its bug fixing time; (3) the five root causes of

Bohrbugs and Mandelbugs, including environment and con-

figuration, memory, compatibility, concurrency, and semantic;

and (4) different features of regression bugs in TensorFlow.

For each report, we have examined the bug descriptions,

comments, linked pull requests and the corresponding com-

mits. The contributions of our work provide answers to the

following four research questions.

RQ1: What is the distribution of different bug types in
TensorFlow?

To answer this question, bugs in TensorFlow are classified

based on their fault triggers. In addition, we have investigated

the evolution of different types of bugs over time. Many find-

ings are obtained, for example, 78.17% of bugs in TensorFlow

are Bohrbugs. The detailed results and analysis are reported

in Section III.

RQ2: How much time is spent to fix different types of
bugs?

To answer this question, we calculate the fixing time of

different types of bugs, including the average fixing time and

the median fixing time. We have also analyzed the correlations

between bug types and their fixing time. We obtain several

findings, for example, fixing a Mandelbug costs much more

time than that when fixing a Bohrbug. The detailed results are

shown in Section IV.

RQ3: What are the root causes of Bohrbugs and
Mandelbugs?

In RQ1, bugs are classified into Bohrbugs and Mandelbugs.

Root causes of Bohrbugs and Mandelbugs are further investi-

gated in this section. The root cause of a bug helps us under-

stand the nature of the bug. Through cross-analysis of fault

triggering conditions and root causes, we observed several

important findings. For example, about half of Mandelbugs

in TensorFlow are caused by memory bugs. We introduce the

results in detail in Section V.

RQ4: What is the feature of regression bugs in Tensor-
Flow?

Regression bug is a type of bug that causes a feature, which

worked normally in previous versions but stopped working

after a certain code commit. Investigating the distribution of

regression bugs and the features of these bugs in TensorFlow

could help TensorFlow developers with their debugging and

program repair, thus preventing future regression bugs. De-

tailed analysis is conducted in Section VI. To the best of

our knowledge, this paper is also the first time to explore

the proportion and characteristics of regression bugs in the

TensorFlow framework.

The rest of the paper is structured as follows. Section II

presents the study methodology utilized in this paper, includ-

ing our research data, bug classification approach, bug classifi-

cation procedure and the metric used to analyze the correlation

among different types of bugs. We present the answers for the

four research questions in Sections III-VI. Section VII reports

TABLE I
DETAILS OF DATA SET

Project Time frame Status # of reports

TensorFlow
Nov. 26, 2015-

Nov. 26, 2019
Closed 2,285

the threats to validity of our study. In Section VIII, we review

the related work. Finally, the conclusion is given in Section IX.

II. STUDY METHODOLOGY

In this section, we first introduce the research data and the

bug terminologies used in this paper. Then, we discuss the

root causes of Bohrbugs and Mandelbugs in TensorFlow. Next,

we present the procedure that is conducted to classify bugs.

Lastly, we describe the method used for correlation analysis

of different bug types.

A. Research Data

The bug reports are collected from TensorFlow’s GitHub

repository. There are two steps for collecting data set, i.e.,

report filtering and retracting bug reports and related informa-

tion. Each step is described in detail as follows.

Report filtering. In the TensorFlow’s GitHub repository,

there are two types of bug reports: opened bug report and

closed bug report. To ensure the correctness of the results,

only closed bug reports are studied. Bug reports still under the

opened status are excluded because they are under discussion

between reporters and developers. Thus their types cannot be

determined. To narrow down the scope of bug reports, we

filtered closed bug reports with the label “type: bug”. During

the process of our analysis, bug reports are continuously

closed, so we chose the data ranging over a period from Nov.

26 of 2015 to Nov. 26 of 2019, i.e., four years from the time

when the first bug report was submitted. Finally, 2,285 bug

reports are obtained. The details of the data set are shown in

TABLE I.

Retracting bug reports and related information. We

obtained relevant bug information through the GitHub API,

including the reporters’ descriptions, opened time, closed time,

and comments of a bug. In addition, a bug can be fixed by

one or more pull requests with multiple code commits. We

identified the corresponding pull requests or commits in the

form of links in the bug reports. For further analysis, we also

collected all these relevant pull requests and commits.

B. Bug Classification based on Fault Triggering Conditions

Our bug classification method is adopted from [23]. Ac-

cording to the conditions related to the fault activation and

error propagation, a bug can be classified as a Bohrbug (BOH)

or a Mandelbug (MAN). The definitions of Bohrbug and

Mandelbug are given as follows.

• Bohrbug: a bug whose activation and/or error propaga-

tion are simple and can be reproduced consistently under

a well-defined set of conditions.

• Mandelbug: a bug whose activation and/or error propa-

gation are complex. The following reasons may cause the

2

complexity of the triggering conditions: there is a time lag

between the fault activation and failure occurrence; the

possible influence of indirect factors, such as the inter-

actions between the software application with its system-

internal environment; the timing of inputs and operations;

and the relative sequence of inputs and operations.

According to whether a Mandelbug would cause a software

aging problem, Mandelbug is further divided into two sub-

types, i.e., non-aging related Mandelbugs (NAMs) and aging-

related bugs (ARBs). The definitions of NAM’s subtypes are

listed below.

• LAG: There exists a time lag between fault activation

and the occurrence of its failure;

• ENV: The interaction of the software application with its

system-internal environment would affect the activation

of the bug and/or error propagation;

• TIM: The timing of inputs and operations has impacts

on the fault activation and/or error propagation;

• SEQ: The sequence (i.e., the relative order) of inputs and

operations would influence the fault activation and/or the

propagation of error.

The definitions of ARB’s subtypes are listed below:

• MEM: ARBs caused by the accumulation of errors

because of improper memory management (e.g., memory

leaks, buffers not being flushed);

• STO: ARBs caused by the accumulation of errors as

a result of improper storage space management, for

example, disk space is consumed by the bug;

• LOG: ARBs caused by the leaks of other logical re-

sources, e.g., inodes or sockets that are not freed after

usage;

• NUM: ARBs caused by the accumulation of numerical

errors, for instance, integer overflows and round-off er-

rors;

• TOT: ARBs caused by the increase of the fault activation

or error propagation rate with total system runtime, but

it is not induced by the accumulation of internal error

states.

C. Root Causes of Bohrbugs and Mandelbugs in TensorFlow
In this part, we aim to identify the root causes of Bohrbugs

and Mandelbugs that appeared in TensorFlow. Through ana-

lyzing the bugs in TensorFlow and referring to the definition

of root causes in [24] and [25], we identified five root causes

of bugs in TensorFlow, as listed below:

• Environment and configuration: The error reside the

dependent libraries, underlying operating systems, or the

non-code that affects the function;

• Concurrency: The synchronization problems exist

among the concurrent threads or processes in concurrent

programs;

• Memory: The bugs are caused by improper handling of

memory objects;

• Compatibility: A program cannot normally run on a

specified CPU architecture, operating system, or web

browser, etc.;

�������	�

��
�����

���������

���������

���������

�������
��
�����������
�����

���������

���

�������

��
����
 ��

�������

�	
������

�������

���

�������

���

�������

���

�������!�"

 ��

 ��

 ��

�	

�	

 ��

�	

�	

�	

�����	��
#���������
�	��������

	������
�
����������

�	���
�	��

Fig. 1. Process of bug report filtering.

• Semantic: The bugs that are inconsistent with require-

ments or the programmers’ intention and do not fall into

the above categories.

D. Bug Report Classification Procedure

We analyzed bug reports of TensorFlow’s GitHub repos-

itory, ranging from Nov. 26, 2015, to Nov. 26, 2019. We

focused on closed bug reports labeled with “type: bug” and

manually looked into the description and comments of each

bug report. The descriptions in bug reports were sometimes

ambiguous, so we further exploited related pull requests and

commits. For a given bug report, the classification process

is divided into two steps, as shown in Fig. 1. Each step is

described as follows.

Step 1: Actual bug filtering. A bug report should first

be examined to make sure that it contains an actual bug. In

our study, invalid bug reports were filtered out first, i.e., bug

reports containing too little information to determine whether

it is a bug or not. For example, many bug reports were

closed due to lack of activity, stale, deprecated and out of

the range of TensorFlow’s GitHub repository. Then, a bug

report which did not contain an actual bug was filtered out,

i.e., requests for new features or enhancements, documentation

issues (e.g., missing information, outdated documentation, or

harmless warning outputs), compile-time issues (e.g., cmake

errors or linking errors), operator errors and duplicate bug

reports.

Step 2: Classification based on fault triggering condi-
tions. We carefully checked the descriptions and comments

of bugs, together with linked pull requests and commits, to

find out what is the activation condition of each bug, such as

the operations or inputs before a bug was triggered; how the

bug was propagated, for example, what parameters or states of

the program were changed by the bug, and how the changed

parameters or states were propagated; what the user observed

when a failure occurred.

According to the definition and characteristics of each

bug type, we checked in turn whether the bug belongs to

ARB, NAM, or BOH, respectively. For the classification of

3

TABLE II
EXAMPLES OF BOHRBUGS AND MANDELBUGS

Bug ID Bug Type Description
9012 BOH “While running the above script, despite the device has been specified to be GPU, tensorflow

still try to do the BiasGradOp on CPU and will cause an error because of the data format...”

10954 LAG/NAM “Supervisor: SummaryWriter and Saver stop after some time: ... It works all well for up to

30mins - 1h30mis. But after that time the summary writer stops to write events, and...”

4135 ENV/NAM “...I was able to reproduce this on Mac OS X with the nightly. So this appears to be a Mac only

bug...”

9125 TIM/NAM “...The ordering of ops that are copied is not deterministic so this error pops up somewhat

randomly...Example code snippet (note: you may need to run this multiple times to get a

failure)...”

18266 SEQ/NAM “Cache lockfile already exists: ...I get an error because the evaluation starts before that all cache

is written on the filesystem...If the cache is written before the first evaluation, I don’t get the

error...”

6599 MEM/ARB “memory leak in tensorflow gpu 0.12.1: ...after some upgrade in cuda and tensorflow, I see large

memory leak in our server with 32GB RAM...”

28798 STO/ARB “tf.data.Dataset::cache doesn’t cleanup unused lock and tmp files: ...tf.data.Dataset::cache

doesn’t cleanup unused lock and tmp files...”

5401 LOG/ARB “Creating and fitting a Trainable leaks file descriptors: ...During the run “lsof” is indicating that

the number of file descriptors used is increased on every loop iteration...”

34390 NUM/ARB “[TF2.0] tf.reduce mean crashes Python (Floating point exception) if the count becomes zero

due to overflow: ...Crashes the Python interpreter (e.g. Floating point exception (core dumped)).

(Likely as 256 overflows in uint8 to 0, leading to an uncaught division by zero...”

4820 TOT/ARB “Thread created by SummaryWriter not killed: ...the EventLoggerThread created by summary

writer does not get killed by the close method, which will make the number of threads keep

increasing until it exceeds the system capacity...”

TABLE III
EXAMPLES OF ROOT CAUSES AND THEIR CORRESPONDING BUG TYPES

Bug ID Bug Type Description
12037 Environment/configuration “Missing tf python protos cc library dependency in tf tutorials.cmake: ...can’t

build tf tutorials example trainer due missing library dependency to

tf python protos cc.lib...”

6378 Concurrency “WhereOp: Race condition between counting the number of true elements and

writing them”

33960 Memory “Docker/Kubernetes memory limits not respected? OOMKilled when deployed

to GCP”

6171 Compatibility “tfprof: Python3 incompatibility: ...This line in tfprof logger.py uses

dict.iteritems(), which breaks my Python 3 code...”

9312 Semantic “Typo in seq2seq.attention wrapper.py: ...I think there is a small typo in

contrib.seq2seq.attention wrapper.py, would someone like to check it?...”

ARB subtypes, if a bug was classified as an ARB, but there

was not enough information to determine which subtype it

belongs to, then it was labeled as ARU. Similarly, NAU is

a NAM, but there was insufficient information to decide its

specific subtype. Finally, if a bug report did not have enough

information to be classified as ARB, NAM, or BOH, it was

labeled as UNK.

The classification was implemented manually by two au-

thors who are familiar with machine learning projects and

have experience in developing machine learning applications

based on TensorFlow. We have released our dataset online2.

When encounter suspicious classified cases, a cross-check will

be taken. To clarify the classification, TABLE II shows some

examples of BOHs and MANs and their partial descriptions.

Moreover, after dividing bugs into BOH, ARB, and NAM,

2Classified data: https://github.com/xiaotingdu/TensorFlowFaultTriggers

we aim to find out the root cause of each bug. We identified

the root cause of a bug by manually examining the information

contained in bug reports (i.e., descriptions and comments,

linked pull requests and commits). For the classification, we

first read the description and comments of a bug report,

and then read corresponding code changes in the linked pull

requests and their commits. Finally, we summarized five root

causes of bugs in TensorFlow, including environment and con-

figuration, memory, compatibility, concurrency, and semantic,

and classify each bug report accordingly. In TABLE III,

examples of different root causes and their corresponding bug

types are listed.

E. Correlation Metric

To study the correlation between two types of bugs, we used

a statistical metric called lift [26], [27]. The lift value of

category Ai and category Bj is represented by lift(Ai, Bj),

4

and calculated as P (AiBj)/(P (Ai) ∗ P (Bj)), where P (Ai)
and P (Bj) are the probability of Ai and Bj , respectively.

P (AiBj) is the probability that a bug belongs to both category

Ai and Bj . For instance, if there are 100 actual bugs in total,

80 of which are BOHs, 70 of which are semantic bugs, and

60 of which are BOHs caused by semantic bugs, we can

calculate the lift correlations between BOHs and seman-

tic bugs as lift(Ai, Bj) = P (AiBj)/(P (Ai) ∗ P (Bj)) =
(60/100)/((70/100)∗(80/100)) = 1.07, where Ai is semantic

bug, Bj is BOH.

If lift(Ai, Bj) is equal to 1, it means that P (AiBj) =
P (Ai) ∗ P (Bj), which indicates that category Ai and Bj are

not correlated. If lift(Ai, Bj) is greater than 1, categories Ai

and Bj are positively correlated, that is, a bug belongs to Ai

is more likely to belong to Bj too. Similarly, if lift(Ai, Bj)
is less than 1, it means that category Ai and Bj are negatively

correlated. If a bug belongs to Ai, it is unlikely to belong to

Bj . In the above example, lift(Ai, Bj) is 1.07, which means

that BOHs are more likely to be caused by semantic bugs.

III. BUG CLASSIFICATION

This section answers the RQ1. As depicted in Section II-A,

after filtering out bug reports with label “type:bug”, 2,285

closed bug reports were obtained in the period of 4 years,

from Nov. 26, 2015, to Nov. 26, 2019. In this section, the

distribution of bugs classified based on the fault triggering

conditions is investigated.

A. Distribution of Actual Bugs, Non-bugs and Invalid Bug
Reports among All the Bug Reports

In this section, the distribution of actual bugs, non-bugs, and

invalid bug reports are analyzed, results are shown in Fig. 2.

Finding #1: Among all the classified 2,285 bug reports,
each of the 41.71% reports contains an actual bug, while
44.86% of them do not contain bugs, and the number of invalid
bug reports accounts for 13.44%.

Fig. 2 illustrates the distribution of the extracted bug reports.

After manual examination, it can be observed that actual bugs

account for 41.71% of all extracted bug reports. The per-

centage of non-bugs is 44.86%, and the proportion of invalid

bug reports is 13.44%. It should be noted that in this study,

as described in Section II-D, invalid bug reports were those

that lack of information. Therefore they cannot be determined

whether they contain actual bugs or not. After classification,

307 bug reports were labeled as invalid. There are several

reasons for these invalid bug reports being closed. The most

common reason is inactivity, i.e., the bug reports have not been

discussed for months or even years after the last comment.

In addition to inactivity, there were other situations, such as

bugs corresponding to deprecated features or not within the

scope of the TensorFlow’s GitHub repository. Non-bugs are

whose reports are related to (1) the requests of features or

enhancements, (2) the descriptions of compile-times issue or

documentation issues, or (3) duplicated reports. According to

our examination, most of them are simply requesting new

features or enhancements. The high proportion of non-bugs

�������
�	
 ���
����

�������
��	�� ���
����

������ ���
��� ���

���

������ ���
�������
�������

Fig. 2. Numbers and percentages of actual bug, non-bug and invalid bug
report.

is because developers mistakenly labeled non-bugs, such as

feature requests, performance or builds, as bugs.

Implications: This finding indicates that invalid reports and

non-bugs account for a large proportion of all classified bug

reports. For invalid reports, the inactivity of reporters and

assigned developers is the primary reason that bug reports

falling in inactivity or stale and closed without being handled.

On the one hand, for reporters, once a report is submitted,

reporters should pay attention to the developers’ comments

and promptly assist the developers with reproducing the bug.

On the other hand, for maintainers, automatic mechanisms

could be introduced to identify bug reports’ status to be able

to close inactivity bug reports timely. Moreover, tools that

automatically assign developers can be used as an auxiliary to

reduce the time and resource overhead caused by the repeated

assignment of new developers. For non-bugs, reporters should

be encouraged to label their submitted reports, for example,

labeling [feature request], [build], or [performance] at the

beginning of the bug report. A tool could be integrated to

identify duplicate bug reports. By recommending correlated

bug reports to reporters, it can reduce the repetition rate of

bug reports and the burden of TensorFlow’s maintainers.

B. Distribution of BOH, ARB and NAM among All the Actual
bugs

In this section, actual bugs are divided into Bohrbugs

(BOHs) and Mandelbugs (MANs), and Mandelbugs are further

classified into aging-related bugs (ARBs) and non-aging re-

lated Mandelbugs (NAMs). If there is insufficient information

to divide the actual bug into BOH or MAN, it is labeled as

UNK.

Finding #2: Among 953 actual bugs, the proportions of
BOHs and MANs are 78.17% and 16.47%, respectively. The
proportion of UNK is 5.35%.

Fig. 3 shows the number and percentage of each bug type

(i.e., BOH, ARB, NAM, and UNK). As depicted in Fig. 3,

more than two-thirds (i.e., 78.17%) of the actual bugs in

TensorFlow are BOHs. Compared to other software systems,

the proportion of BOHs in TensorFlow is higher than that of

Linux kernel (i.e., 55.82% [28]), Android (i.e., 65.2% [29]),

and MySQL (i.e., 56.6% [23]). Moreover, MANs, includ-

ing ARBs and NAMs, account for 16.47% of actual bugs.

Compared with traditional software systems, the proportion

5

��
�� ��
�����!"

�� �

����

!#$
�� ��
����

$%&

�� �
�
�
��

$%& !#$
�!" ��

Fig. 3. Numbers and proportions of BOH, ARB and NAM.

of MANs in TensorFlow is lower than that of Linux kernel

system (i.e., 36.34% [28]), Android OS (i.e., 31.4% [29]),

MySQL (i.e., 38% [23]), and space mission on-board software

(i.e., 36.5% [30]). The results show that in TensorFlow, BOH

accounts for a larger proportion even though they can be

easily reproduced and debugged under a well-defined set of

conditions. This phenomenon may be caused by the following

three reasons. First, it is more challenging to test TensorFlow

than traditional software projects [31], [32]. Compared with

traditional software projects, which are relatively more deter-

ministic, machine learning testing is more challenging due to

the fundamentally different nature and construction methods

of machine learning systems. For example, it usually requires

a complicated testing environment and a large testing space.

For these reasons, machine learning systems are sometimes

regarded as “non-testable” software. The second reason is

that in order to adapt to the rapidly increasing functional

requirements, new functions have been constantly added in

TensorFlow, which introduce BOHs at the same time. Another

reason is that the activation and/or propagation conditions of

MANs are more complex than BOHs, making MANs more

difficult for users to discover. As a result, the number of MANs

is much fewer than that of BOHs.

Implications: Since BOH accounts for more than two-

thirds of bugs in TensorFlow, the testing of BOH should

be the focus of TensorFlow testing. We suggest conducting

sufficient testing before releasing a version. For example, static

program analysis [33]–[35] could be used to detect bugs in

code, and automatic program repair tools could be used to

solve typical bugs, such as null pointer dereferences [36].

Considering that TensorFlow has been deployed to a wide

variety of platforms ranging from the mobile devices to large-

scale systems with thousands of GPUs, developers should test

a feature in different environments.

C. Subtype Distribution of Aging-related Bugs

Finding #3: The major subtype of ARBs is MEM (i.e.,
84.09%).

In this section, we further explore the proportion of ARB’s

subtypes. Fig. 4 depicts the numbers and percentages of ARB’s

subtypes, among which MEM accounts for more than four-

fifths (i.e., 84.09%) of the total ARBs. The result is higher

than that of the Linux kernel (i.e., 68.78% [28]) and Android

(i.e., 76.2% [29]). That is because TensorFlow is often used

��"
� ��
	���

'%'
� ��
����

!#�
� ��
����

(%)
� ��
����

*'%
� ��
����

"+"

� ���
	���

"+" *'%
(%) ��"
'%' !#�

Fig. 4. Subtype distribution of aging-related bug.

to process large-scale images or to train complex neural

networks, which consume too much memory and rely heavily

on memory devices. Unreleased resource in the iterative loop

is an important reason for out-of-memory. For example, Bug

ID-14181: “...with the increasing time the whole process starts
consuming more and more RAM although it should clean it
up...”. In this report, TensorFlow has the memory cleanup

issue, and as the loop iteration increases, it will cause excessive

memory consumption.

Implications: We suggest that developers (1) pay special

attention to the release and consumption of resources in

TensorFlow, and (2) provide guidelines for users to config-

ure the parameters and structure of their models to avoid

insufficient memory problems. In addition, tools [37], [38] for

code analysis could be used to debug memory leak bugs in

TensorFlow.

D. Subtype Distribution of Non-aging Related Mandelbugs

Finding #4: The major subtypes of NAMs are TIM (i.e.,
46.38%) and ENV (i.e., 31.88%).

Fig. 5 shows the numbers and proportions of NAM’s

subtypes, among which the percentage of TIM is 46.38%

and the percentage of ENV is 31.88%. These two categories

are the two major subtypes of NAM. This result is close

to that of the Linux kernel (i.e., the proportion of TIM is

37.23%, the percentage of ENV is 36.51% [28]). Due to

the characteristics of TensorFlow, it is reasonable that TIM

and ENV have a higher proportion. TensorFlow inherently

must handle concurrent activities and access shared resources,

which would inevitably cause timing-related problems. Typical

TIM bugs in TensorFlow are deadlock and data race. Deadlock

occurs when two or more threads attempt to access shared

resources held by other threads, and neither is willing to

give them up [39]. Data race occurs when concurrent threads

perform conflicting accesses by trying to update the same

memory location or shared variable [40]. For example, a

deadlock occurs in Bug ID-932: “ThreadPool dtor does not
pop waiters from waiters list... thread pool deadlocks because
some notifications are consumed by the leftover dead waiters
instead of alive threads...”. An environment-related bug oc-

currs during interaction with platforms. The complexity and

diversity of the operating environment of TensorFlow resulting

in the high ratio of ENV bugs. For example, Bug ID-4135 is

6

*+,
� ��
���

'-"
�� ���
���� +�.

�� ���
����

(!)
�� ���
����

(!) +�.
'-" *+,

Fig. 5. Subtype distribution of non-aging related Mandelbugs.

a Mac only bug and does not crash on Linux. Bug ID-4521,

which is a GPU specific bug, works fine on the CPU.

Implications: Testing NAMs in TensorFlow should focus

on TIM and ENV bugs. More specifically, in order to deal

with TIMs, it is recommended to use pairwise testing to

expose concurrency bugs in TensorFlow. Concurrency bug

detectors, such as race free-type technique, static analysis

technique, dynamic analysis technique and hybrid technique,

could be used to detect deadlock and data race. For ENV bug

testing, it should focus on fault-tolerance techniques since the

environment is unpredictable and uncontrollable.

E. Evolution of the Proportion of Bohrbugs and Mandelbugs
over Time

In the following, we analyze the evolution trend of pro-

portion of Bohrbugs and Mandelbugs over time, as shown in

Fig. 6.

Finding #5: With the development of time, in the first two
years, the proportion of BOH tends to decrease, while in the
following two years, the proportion of BOH tends to increase.
For MAN, this ratio tends to grow in the first two years and
then declined in the following two years.

Fig. 6 shows the evolution of BOH and MAN’s ratio in the

four years from Nov. 2015 to Nov. 2019. It can be clearly seen

from Fig. 6 that in the first two years around, the proportion

of BOH dropped obviously, and then slowly increased in the

next two years. Compared with BOH, the proportion of MAN

tended to increase in the first two years and then decreased

gradually. The evolution trend of the proportion was tested

through the Mann-Kendall trend test [41], [42], as shown in

TABLE IV. The Mann-Kendall test results indicate that for a

significance level of α = 0.05, the above conclusions are all

statistically significant. Through further research, we found

that these phenomena may be correlated with the evolution

of TensorFlow. With the development, TensorFlow began to

support distributed operations and multi-platforms in Apr.

2016 and Jun. 2016, respectively, which led to an increase

in the number of MAN, especially TIM and MEM bugs.

After version 1.0, the first official version of TensorFlow

was released in Feb. 2017, TensorFlow’s development became

matured. With the increase and expansion of functions, the

proportion of BOH gradually increased, which in turn caused

the percentage of MAN to decreased progressively.

� �� �� �� �� ��
���

���

���

���

��	

���

�
��
�
�
��
��
�
�

��
���������

�����

�����

Fig. 6. The evolution of proportion of Bohrbugs and Mandelbugs among all
the valid bug reports.

TABLE IV
RESULTS OF MANN-KENDALL TREND DETECTION FOR FIG. 6

Type Time frame p value Trend
BOH Nov. 26 2015-Nov. 26 2017 <0.001 decreasing

BOH Nov. 27 2017-Nov. 26 2019 <0.001 increasing

MAN Nov. 26 2015-Nov. 26 2017 <0.001 increasing

MAN Nov. 27 2017-Nov. 26 2019 <0.001 decreasing

IV. FIXING TIME OF BUGS

This section answers the RQ2. In this part, the relationship

between bug type and the corresponding fixing time is ana-

lyzed. Since the time to fix a bug is not recorded in the bug

report, we estimate the fixing time based on the difference

between the time when the report was submitted and the time

when it was last closed.

Finding #6: It takes more time to close an invalid bug report
than close an actual bug.

From TABLE V, we can observe that it takes the longest

time to close an invalid bug report, whether it is the average

time (i.e., 120.2 days) or the median time (i.e., 63.2 days).

It is followed by the actual bug. Closing an actual bug

takes an average of 96.4 days, with a median time of 37.3

days. The results are further verified by the Wilcoxon-Mann-

Whitney test [43] with a significance level of α = 0.05.

After performing the test, we obtained a p value of 0.000262.

Therefore, it tends to take more time to close invalid reports

than close actual bugs. The reason why it takes more time to

close invalid bug reports is because a large number of them

have not received any response for months or even years,

and finally they have to be closed because of inactivity or

stale. There are two typical reasons for inactivity. One of

them is that after a report is submitted by the reporter and

assigned to a developer, the developer does not respond to

the bug report, causing the report to fall into the crack and be

closed. Another reason is the inactivity of reporters who cannot

provide sufficient information to help the developers reproduce

or locate the bug. Besides, the average time of closing a non-

bug is 76.4 days, and the median time is 27.3 days. It is a

great waste of developers’ time to dealing with invalid bug

reports or answering questions that should be submitted in the

Q&A platform (e.g., Stack Overflow).

Implications: To improve the efficiency of fixing bugs,

users should provide high-quality bug reports. Provide suffi-

cient debugging information so that developers can reproduce

7

TABLE V
FIXING TIME OF ACTUAL BUGS, NON-BUGS, AND INVALID REPORTS

Fixing time (day) Actual bug Non-bug Invalid
Average 96.4 76.4 120.2

Median 37.3 27.3 63.2

the bug as soon as possible. For example, a reporter submitted

two reports (Bug ID-4651 and Bug ID-5394). Neither of them

provided reproduce instructions and was eventually closed.

TensorFlow’s maintainers should assign bug reports to devel-

opers more accurately and update the status of bug reports in

a timely manner. Developers should always respond to bug

reports assigned to them, or reassign them to other relevant

developers.

Finding #7: In TensorFlow, it tends to take more time to
fix a Mandelbug than fix a Bohrbug.

TABLE VI shows the average fixing time and median fixing

time of Bohrbugs and Mandelbugs. As can be seen from

the results, the average time to fix a Mandelbug is 129.1

days. In comparison, the average time to fix a Bohrbug is

91.0 days. As for median fixing time, Mandelbug’s median

fixing time is 69.2 days, over twice that of Bohrbug’s median

fixing time (i.e., 33.6 days). We further verify the results

by performing the Wilcoxon-Mann-Whitney test. For a given

criteria (α = 0.05), the p value is 0.000687, which means it

is more likely to take a longer time to fix a Mandelbug than

to fix a Bohrbug. The results is consistent with traditional

software systems, such as MySQL [23], Linux kernel [28],

and Android [29]. The definition of Bohrbug and Mandelbug

can explain this phenomenon. Due to the complexity of error

activation and/or error propagation conditions, Mandelbug is

challenging to reproduce, while Bohrbug is easy to reproduce.

To reproduce a Mandelbug, developers usually need more

information to understand the underlying root cause in the

code. Besides, the non-deterministic feature of Mandelbug

requires a strict replication environment, and the construction

of the reproduction environment is also an important reason

for the long fixing time of Mandelbug. Moreover, it may need

to run the code multiple times, or it takes a long period of

time to trigger a Mandelbug.

Implications: Since Mandelbugs seem to be more difficult

to reproduce and fix, specific strategies should be developed to

deal with Mandelbugs. Mitigation approaches could be used

in TensorFlow to prevent the appearance of Mandelbugs, such

as fault tolerance [44] and software rejuvenation [45].

V. ROOT CAUSES

The root cause of a bug is important for understanding

and fixing the bug. In this section, we aim to identify the

root cause of Bohrbugs and Mandelbugs inside TensorFlow.

Through manual examination, five root causes are discovered,

including environment and configuration, memory, compatibil-

ity, concurrency, and semantic. The definitions of these root

causes have described in Section II-C. Here, we investigate

the root causes of BOHs, ARBs, and NAMs, respectively. The

results are shown in the TABLE VII.

TABLE VI
FIXING TIME OF BOHRBUGS AND MANDELBUGS

Fixing time (day) BOH MAN
Average 91.0 129.1

Median 33.6 69.2

Finding #8: 98.93% of BOHs are caused by semantic bugs,
84.09% of ARBs are caused by memory bugs, and 39.13% of
NAMs are caused by concurrency bugs.

TABLE VII shows the root cause distribution among BOHs,

ARBs, and NAMs. For BOHs, the major root cause is se-

mantic bug, accounting for 98.93%. Compared with BOHs,

only 14.77% of ARBs and 21.74% of NAMs are caused

by semantic bugs. The reason for this phenomenon is that

semantic bug is a kind of bug that corresponds to the inconsis-

tencies with requirements or the programmers’ attention. Quite

a few semantic bugs are caused by incorrect functionality

implementation or typos, which are prone to introduce BOHs.

The major root cause of ARBs is memory bug, accounting

for 84.09%, followed by the semantic bug, accounting for

14.77%. However, only 0.4% of BOHs and 7.25% of NAMs

are caused by memory bug. It is reasonable that most ARBs

are memory bugs since memory bug indicates the improper

handling of memory objects. For example, a memory bug in

Bug ID-16163, after closing a session and creating a new one,

the memory of the previous session is not freed. As a result,

memory consumption increases after each call of session.run().
Improper processing of memory objects leads to the accumu-

lation of memory consumption, consistent with the definition

of ARB. It should be noted that not all memory bugs would

cause ARBs, only memory bugs that result in accumulation of

memory consumption are ARBs. The primary root cause of

NAM is concurrency bug, accounting for 39.13%, followed by

environment/configuration bug and semantic bug, accounting

for 27.54% and 21.74%, respectively. In contrast, concurrency

bugs do not result in BOHs and ARBs. In order to further

understand the correlation between root causes and bug types,

we show the lift correlation (defined in Section II-E) in TABLE

VIII. Numbers greater than 1 indicate positive correlation and

are shown in bold.

Finding #9: A NAM is prone to be an environ-
ment/configuration bug or a concurrency bug; an ARB is more
likely to be a memory bug; a BOH is more likely to be a
compatibility bug or a semantic bug.

As presented in TABLE VIII, a NAM is more likely to be

an environment/configuration bug or concurrency bug. NAM

bug is a type of bug embodied in the four subtypes: LAG,

ENV, TIM, and SEQ. Among them, TIM bug is mainly caused

by concurrency bug, especially deadlock and data race. ENV

bug is mainly caused by environment bug, i.e., errors in

dependent libraries, underlying operating systems, or non-code

that affects functionality. An ARB is preferably a memory bug.

The reason why ARB is positively related to memory bug is

that the major subtype of ARB is MEM, which is related to

the accumulation of errors as a result of improper memory

management. A BOH is more likely to be a compatibility

8

TABLE VII
DISTRIBUTION OF ROOT CAUSES AMONG DIFFERENT BUG TYPES

Root cause BOH ARB NAM
Environment/configuration 0 0 19

Memory 3 74 5

Compatibility 5 0 0

Concurrency 0 0 27

Semantic 737 13 15

UNK 0 1 3

Total 745 88 69

TABLE VIII
CORRELATION BETWEEN BUG TYPES AND ROOT CAUSES

Root cause BOH ARB NAM
Environment/configuration 0 0 13.07

Memory 0.04 9.25 0.80

Compatibility 1.21 0 0

Concurrency 0 0 13.07
Semantic 1.17 0.17 0.26

bug or a semantic bug. The reason is that a large number

of semantic bugs are wrong functionality implementation or

typos, and compatibility bug is a kind of bug that causes

software cannot normally run on a particular CPU architecture,

operating system, or Web browser, etc. Both of them are

easy to trigger and can always be reproduced under certain

conditions. Therefore, semantic bugs and compatibility bugs

are more likely to be BOHs.

Implications: For NAMs, attention should be paid to envi-

ronment/configuration bugs and concurrency bugs. The main

point to prevent the appearance of ARBs is to solve memory

bugs. For BOHs, developers could reference the solutions for

semantic bugs and compatibility bugs.

VI. REGRESSION BUGS IN TENSORFLOW

In this section, we present the results of the RQ4. A

regression bug in TensorFlow means that a bug causes a

feature, which worked normally in previous versions, but

stopped working after a certain event, such as fixing a bug

or adding a new feature [46], [47]. A regression bug can be

caused by a commit fixing an existing bug or implementation

for a new system feature [48]. In this part, we make a statistic

on the number of regression bugs and the distribution of bug

types among regression bugs.

Regression bugs are determined according to examining

the textual information contained in bug reports (e.g., the

description of bug and discussion comments) based on the

definition of the regression bug. One of the most common

situations of regression in TensorFlow is that a regression bug

is introduced by a commit which is used to fix an existing

bug. For example, TensorFlow regression bug ID-3035 (“The
following fails with UnboundLocalError after b80a4a8”) was

introduced by commit ID-b80a4a8, which is used to resolve

improper exception handling problems of TensorFlow. Differ-

ent from a bug fix, another situation is that after implementing

some new features, a feature stops working, e.g., TensorFlow

��
� ��
�����!"

� ��
����

!#$
� ��
���

$%&
�
 �

����

$%&
!#$
�!"
��

Fig. 7. Bug type distribution among regression bugs.

TABLE IX
CORRELATION BETWEEN BUG TYPES AND REGRESSION BUGS

Correlation BOH MAN
Regression 1 0.92

Non-regression 1 1.01

Bug ID-9708: “tf.random crop exception after upgrading to
tf1.1 from tf1.0”.

Finding #10: Among the 953 TensorFlow actual bugs we
classified in this paper, 86 of them are regression bugs, ac-
counting for 9.02%. In all regression bugs, BOHs, MANs and
UNKs account for 77.91%, 15.12%, and 6.98%, respectively.

We first calculate statistics for the number of regression bugs

and non-regression bugs, which are 86 and 867, respectively.

In TensorFlow, 9.02% of actual bugs are regression bugs, i.e.,

a feature of software stopped working after some changes.

Among all the regression bugs, the number of BOHs account

for 77.91%, ARBs and NAMs account for 9.30% and 5.81%,

respectively, as shown in Fig. 7. Compared to traditional

software projects, the proportion of regression bugs in Ten-

sorFlow is lower than that in Linux (50.1% [48]), and Google

Chromium (51.09% [47]). To further study the correlation

between bug types and regression bugs, we calculate the lift
correlation to determine the bug types that regression bugs

are more likely to occur. As shown in TABLE IX, the results

indicate that non-regression bugs tend to be MANs.

Implications: For users, it is annoying to encounter regres-

sion bugs when upgrading to a new version of TensorFlow.

It would make users lose confidence in the new version and

refuse to upgrade. It is also a massive task for developers to

locate commits that introduce regression bugs from dozens

of changes. We recommend developers implement more re-

gression testing before releasing a new TensorFlow version to

reduce the occurrence of regression bugs. For regression bugs

that have occurred, tools can be used to help programmers

locate regression bugs. For example, CodePsychologist, a tool

developed in [46] to assist the programmers in locating the

lines of code that caused a regression bug.

VII. THREATS TO VALIDITY

As other empirical studies, our study is naturally subject to

limitations. We identify the following threats:

Threats to Construct Validity. This paper focuses on

actual bugs, i.e., only bug reports with the label “type:bug”

9

are analyzed. There may be some bug reports but are not

labeled as “type:bug” by TensorFlow’s maintainers. Besides,

we only analyze fixed and closed bug reports since unfixed

and unclosed reports may contain incomplete information. Bug

types could be very different if unfixed and unclosed reports

are considered.

Threats to Internal Validity. For each bug report, we

have examined carefully all the related information, involving

reporters’ descriptions, comments, linked pull requests, and

commits. We tried our best to avoid classification mistakes. To

mitigate this threat, we use experienced developers to classify

the bugs. Moreover, to ensure the consistency of the results

obtained by different authors, cross-checks were performed,

and conflicting cases were resolved through discussion to

reach a consensus among the developers.

Threats to External Validity. Research objects in this

paper are collected from TensorFlow’s GitHub repository:

tensorflow/tensorflow, some findings and implications may

not hold in other machine learning frameworks or systems.

To reduce this threat, we try not to expand the conclusions

that apply only to TensorFlow to other machine learning

frameworks.

VIII. RELATED WORK

There are several existing studies focus on the empirical

research of machine learning systems. These work can be

divided into two categories. Some of them performed studies

on machine learning applications, that is, clients programmed

on top of machine learning frameworks. The others researched

machine learning frameworks, i.e., the library or platform

being used when building a machine learning model, such as

TensorFlow, PyTorch, and Scikit-learn [49].

Zhang et al. [16] present an empirical study on bugs of deep

learning applications programmed on top of TensorFlow. They

collected 175 TensorFlow coding bugs from GitHub issues and

Stack Overflow questions and examined their symptoms and

root causes according to Q&A pages, commit messages, pull

request messages, and issue discussions. They also studied

the strategies deployed by TensorFlow users for bug detection

and localization. Islam et al. [17] analyzed the clients of more

deep learning frameworks such as Caffe, Keras, Theano, and

Torch. They categorize bugs into 11 bug types, ten root causes,

and seven impacts. According to their findings, data bug and

logic bug are the most severe bug types in deep learning

projects. While these works studied machine learning clients,

our research object is machine learning framework.

Authors in [20] analyzed 715 questions in Stack Overflow

related to three popular deep learning frameworks, including

TensorFlow, PyTorch, and Deeplearning4j. The Datasets used

in this paper were collected from Stack Overflow, a large-

scale Q&A community dedicated to users’ individual support.

Compared to [20], our dataset comes from the TensorFlow’s

GitHub repository and have been labeled by developers as

“type:bug”, which are actual bug information. Besides, their

findings focus on the frequency distribution of asked questions

in Stack Overflow, whereas our results are mainly relevant to

actual bugs in TensorFlow.

In [24], Sun et al. performed a categorization based on the

occurring reasons for bugs with 329 bugs classified into seven

categories and twelve fix patterns. According to their findings,

nearly 70% of machine learning bugs were resolved within a

month, and around 40% of machine learning bugs used micro-

repair model. Compare to [24], which performed an empirical

study on Scikit-learn, Paddle, and Caffe, our research object is

TensorFlow, one of the most popular frameworks [16]. Also,

instead of analyzing the occurring reasons, we perform our

research from the perspective of fault triggering conditions.

Our work differs from the above studies. It is the first

empirical study on fault triggering conditions of the actual

bugs in machine learning framework. By fault triggers, we

mean the set of conditions activating a fault and propagat-

ing the resulting error into a failure [50]. To examine fault

triggers comprehensively, Grottke and Trivedi [22] developed

the definitions of Bohrbug and Mandelbug. There is a further

subtype of Mandelbug, which is aging-related bug [51], [52].

An aging-related bug appears when software systems running

continuously for a long time and tend to show a degraded

performance and increased failure occurrence rate. In [23],

Cotroneo et al. performed an extended analysis of triggers.

According to fault triggering conditions, Qin et al. [29] and

Xiao et al. [28] conducted empirical research on the Android

and Linux kernel, respectively.

IX. CONCLUSION

We present the first empirical study on the fault trigger-

ing conditions in the TensorFlow framework. By examining

2,285 bug reports, our analysis aims to answer four research

questions: bug type distribution, fixing time, root causes, and

regression bugs. It is found that more than two-thirds of bugs

in TensorFlow are Bohrbugs. In addition, we have analyzed

the distribution of ARB’s subtypes and NAM’s subtypes, and

the evolution of bug types. To better understand the features

of Bohrbugs and Mandelbugs, we have also investigated the

bug-fixing time and the five root causes in Bohrbugs and

Mandelbugs. Through correlation analysis, we have found that

a NAM is prone to be an environment/configuration bug or a

concurrency bug; an ARB is likely to be a memory bug; and

a BOH is likely to be a compatibility bug or a semantic bug.

Finally, the characteristics of regression bugs in TensorFlow

were extensitively discussed.

ACKNOWLEDGMENT

This work was supported in part by the National Nat-

ural Science Foundation of China under Grants 61772055,

61872169, and 62002163, in part by the Technical Foundation

Project of Ministry of Industry and Information Technology of

China under Grant JSZL2016601B003, in party by Equipment

Preliminary R&D Project of China under Grant 41402020102,

in part by the Start-up Fund for New Faculty of NUAA under

Grant YAH20026, and in part by the Australian Research

Council under Grant DP200101328.

10

REFERENCES

[1] L. De Raedt, T. Guns, and S. Nijssen, “Constraint programming for data
mining and machine learning,” in Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[2] E. Menasalvas and C. Gonzalo-Martin, “Challenges of medical text and
image processing: Machine learning approaches,” in Machine Learning
for Health Informatics. Springer, 2016, pp. 221–242.

[3] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez,
“A survey on deep learning in medical image analysis,” Medical image
analysis, vol. 42, pp. 60–88, 2017.

[4] N. Subrahmanya, P. Xu, A. El-Bakry, C. Reynolds et al., “Advanced
machine learning methods for production data pattern recognition,” in
SPE Intelligent Energy Conference & Exhibition. Society of Petroleum
Engineers, 2014.

[5] X. Sun, X. Liu, B. Li, Y. Duan, H. Yang, and J. Hu, “Exploring topic
models in software engineering data analysis: A survey,” in 2016 17th
IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing. IEEE,
2016, pp. 357–362.

[6] L. Wang, X. Sun, J. Wang, Y. Duan, and B. Li, “Construct bug knowl-
edge graph for bug resolution,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion. IEEE, 2017, pp.
189–191.

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, pp. 1725–1732.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[9] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1–18.

[10] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, and M. Young, “Machine learning: The high interest
credit card of technical debt,” 2014.

[11] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, vol. 48, pp. 2007–2, 2007.

[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675–678.

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[15] R. Alrfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau,
N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky et al.,
“Theano: A python framework for fast computation of mathematical
expressions,” arXiv: Symbolic Computation, 2016.

[16] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 129–140.

[17] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 510–
520.

[18] M. Lux and M. Bertini, “Open source column: deep learning with keras,”
2019.

[19] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular machine
learning software library,” Tech. Rep., 2002.

[20] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim, “An empirical
study of common challenges in developing deep learning applications,”
in 2019 IEEE 30th International Symposium on Software Reliability
Engineering. IEEE, 2019, pp. 104–115.

[21] M. Grottke and K. S. Trivedi, “A classification of software faults,”
Journal of Reliability Engineering Association of Japan, vol. 27, no. 7,
pp. 425–438, 2005.

[22] ——, “Software faults, software aging and software rejuvenation (spe-
cial survey: New development of software reliability engineering),” The
Journal of Reliability Engineering Association of Japan, vol. 27, no. 7,
pp. 425–438, 2005.

[23] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault triggers in open-source software: An experience report,” in 2013
IEEE 24Th international symposium on software reliability engineering.
IEEE, 2013, pp. 178–187.

[24] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li, “An empirical study
on real bugs for machine learning programs,” in 2017 24th Asia-Pacific
Software Engineering Conference. IEEE, 2017, pp. 348–357.

[25] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: a large-scale empirical study,” in 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories. IEEE, 2017, pp.
413–424.

[26] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-
tics in open source software,” Empirical software engineering, vol. 19,
no. 6, pp. 1665–1705, 2014.

[27] G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du, and K. Cai, “Expe-
rience report: Fault triggers in linux operating system: From evolution
perspective,” in 2017 IEEE 28Th international symposium on software
reliability engineering (ISSRE). IEEE, 2017, pp. 101–111.

[28] G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du, and K.-Y. Cai, “An
empirical study of fault triggers in the linux operating system: An
evolutionary perspective,” IEEE Transactions on Reliability, vol. 68,
no. 4, pp. 1356–1383, 2019.

[29] F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. S. Trivedi, “An empirical
investigation of fault triggers in android operating system,” in 2017 IEEE
22Nd pacific rim international symposium on dependable computing.
IEEE, 2017, pp. 135–144.

[30] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault types in space mission system software,” in 2010 IEEE/IFIP
international conference on dependable systems & networks. IEEE,
2010, pp. 447–456.

[31] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

[32] I. Goodfellow and N. Papernot, “The challenge of verification and testing
of machine learning,” Cleverhans-blog, 2017.

[33] Y. Sui and J. Xue, “SVF: interprocedural static value-flow analysis
in LLVM,” in Proceedings of the 25th International Conference on
Compiler Construction (CC). ACM, 2016, pp. 265–266.

[34] Y. Lei and Y. Sui, “Fast and precise handling of positive weight cycles
for field-sensitive pointer analysis,” in International Static Analysis
Symposium. Springer, 2019, pp. 27–47.

[35] M. Barbar, Y. Sui, and S. Chen, “Flow-sensitive type-based heap
cloning,” in 34th European Conference on Object-Oriented Program-
ming (ECOOP 2020).

[36] X. Xu, Y. Sui, H. Yan, and J. Xue, “Vfix: value-flow-guided precise
program repair for null pointer dereferences,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 512–523.

[37] Y. Sui, D. Ye, and J. Xue, “Static memory leak detection using full-
sparse value-flow analysis,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, 2012, pp. 254–264.

[38] ——, “Detecting memory leaks statically with full-sparse value-flow
analysis,” IEEE Transactions on Software Engineering, vol. 40, no. 2,
pp. 107–122, 2014.

[39] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems, 2008, pp.
329–339.

[40] S. A. Asadollah, H. Hansson, D. Sundmark, and S. Eldh, “Towards
classification of concurrency bugs based on observable properties,” in
2015 IEEE/ACM 1st International Workshop on Complex Faults and
Failures in Large Software Systems. IEEE, 2015, pp. 41–47.

[41] H. B. Mann, “Nonparametric tests against trend,” Econometrica: Journal
of the Econometric Society, pp. 245–259, 1945.

[42] M. G. Kendall, “Rank correlation methods.” 1948.

11

[43] M. Cortina-Borja, “Handbook of parametric and nonparametric statisti-
cal procedures, 5th edn,” Journal of the Royal Statistical Society, vol.
175, no. 3, 2012.

[44] K. S. Trivedi, R. Mansharamani, D. S. Kim, M. Grottke, and M. Nam-
biar, “Recovery from failures due to mandelbugs in it systems,” in
2011 IEEE 17th Pacific Rim International Symposium on Dependable
Computing. IEEE, 2011, pp. 224–233.

[45] Y. Qiao, Z. Zheng, Y. Fang, F. Qin, K. S. Trivedi, and K.-Y. Cai, “Two-
level rejuvenation for android smartphones and its optimization,” IEEE
Transactions on Reliability, vol. 68, no. 2, pp. 633–652, 2018.

[46] D. Nir, S. S. Tyszberowicz, and A. Yehudai, “Locating regression bugs,”
in Hardware and Software: Verification and Testing, Third International
Haifa Verification Conference, HVC 2007, Haifa, Israel, October 23-25,
2007, Proceedings, 2007, pp. 218–234.

[47] M. Khattar, Y. Lamba, and A. Sureka, “Sarathi: Characterization study
on regression bugs and identification of regression bug inducing changes:
A case-study on google chromium project,” in Proceedings of the 8th
India Software Engineering Conference, 2015, pp. 50–59.

[48] G. Xiao, Z. Zheng, B. Jiang, and Y. Sui, “An empirical study of
regression bug chains in linux,” IEEE Transactions on Reliability,
vol. 69, no. 2, pp. 558–570, 2020.

[49] A. Swami and R. Jain, “Scikit-learn: Machine learning in python,”
Journal of Machine Learning Research, vol. 12, no. 10, pp. 2825–2830,
2012.

[50] Russo, Stefano, Cotroneo, Domenico, Pietrantuono, Roberto, Trivedi,
and Kishor, “How do bugs surface? a comprehensive study on the
characteristics of software bugs manifestation,” Journal of Systems &
Software, vol. 113, pp. 27–43, 2016.

[51] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, pp. p.107–109, 2007.

[52] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in 2008 IEEE International Conference on Software Reliability
Engineering Workshops, 2009, pp. 1–6.

12

