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Abstract—Unlike Java, Android provides a rich set of APIs
to support a hybrid concurrency system, which consists of both
Java threads and an event queue mechanism for dispatching
asynchronous events. In this model, concurrency errors often
manifest themselves in the form of order violations. An order
violation occurs when two events access the same shared object
in an incorrect order, causing unexpected program behaviors
(e.g., null pointer dereferences).

This paper presents SARD, a static analysis tool for detecting
both intra- and inter-thread use-after-free (UAF) order violations,
when a pointer is dereferenced (used) after it no longer points
to any valid object, through systematic modeling of Android’s
concurrency mechanism. We propose a new flow- and context-
sensitive static happens-before (HB) analysis to reason about the
interleavings between two events to effectively identify precise
HB relations and eliminate spurious event interleavings. We
have evaluated SARD by comparing with NADROID, a state-of-
the-art static order violation detection tool for Android. SARD
outperforms NADROID in terms of both precision (by reporting
three times fewer false alarms than NADROID given the same
set of apps used by NADROID) and efficiency (by running two
orders of magnitude faster than NADROID).

Index Terms—use-after-free, order violation, data race detec-
tion, pointer analysis, static analysis

I. INTRODUCTION

The significant growth of multi-core smart phone devices
provides unprecedented opportunities for mobile apps to per-
form sophisticated tasks that are comparable to software
applications running on desktop/laptop computers. In order
to explore the full capability of multi-core mobile phones,
Android provides a rich set of APIs to support a hybrid
concurrency system consisting of both traditional Java threads
and an event queue mechanism for dispatching asynchronous
events. However, such a system introduces both intra-thread
concurrency bugs (caused by asynchronous events) and inter-
thread concurrency bugs (caused by both events and Java
threads), which are difficult to detect, in practice.

Android execution is driven by asynchronous events in event
queues. Initially, an Android event can be posted into an event
queue externally via UI interactions (e.g., click and swipe) and
system notifications (e.g., activity create) or internally via call-
ing event-posting related APIs (e.g., handler.post(...)
and handler.sendMessage(msg)) in application code.
Later, Android’s Looper will fetch the event from the queue
and dispatches it by executing its asynchronous method.
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Fig. 1: Asynchronous event dispatching in Android.

Android Event Queues. An event queue follows the FIFO
principle for dispatching events in a sequential order. However,
due to the event-driven nature, both posting an event to and
dispatching an event from the queue are non-deterministic,
driven by user interactions. Worse still, apart from the main
UI thread, Android allows Java multithreading. Every thread
can create and maintain its own (unique) event queue, allowing
events in different queues to be executed in parallel under an
unbounded number of event interleavings. This makes it hard
to reason about the execution orders of Android events.

Figure 1 demonstrates the non-determinism when dispatch-
ing asynchronous events from the event queue of the UI thread.
The four events and their corresponding code snippets are
distinguished with four different colors. The five rectangle
boxes represent the five states of the event queue. An arrow
between two states represents a (possible) state transition.

When an Android activity (e.g., MyActivity in Figure 1)
starts, the onCreate() event is automatically posted into the
UI thread’s queue in order to launch the activity. Consequently,
Android’s Looper dispatches this event from the queue and
then executes its corresponding onCreate() method (line
2-7) as highlighted in yellow. At line 5, a new user-defined
event run() of a Runnable class is added into the queue via
handler.post(...) in blue. Since every asynchronous
event is dispatched in the FIFO order and executed atomically,
run() is only dispatched after the onCreate() method has
run to completion. The UI thread’s queue is allowed to receive
other events after the onCreate() event has been processed.
After dispatching run(), the queue becomes empty and waits
for new events. As highlighted in red and green, the order
of executing events onClick() and onStop() is non-
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Fig. 2: Two examples illustrating happens-before relations in Android. In each example, highlights an event where a field
is used, highlights an event where a field is freed, and denotes the happens-before relation between the two events.

deterministic. onClick() will be first executed if a user
clicks the corresponding GUI button. On the other hand,
onStop() will be executed first if the ‘home‘ button is
pressed to return back to the home screen.

Order Violations in Android. Unlike the case in the Java
thread-based concurrency model, Android concurrency bugs
often manifest themselves in the form of order violations [1,
2]. An order violation occurs when two events access the
same shared object in an incorrect order, causing unexpected
program behaviors (e.g., null pointer dereferences). For exam-
ple, given a pair of memory accesses, e.g., L1 : p = null
and L2 : .. = p.use(), where L1 in an event e1 should
always happen after L2 in another event e2. An use-after-
free (UAF) order violation occurs when e1 happens before
e2, resulting in a null dereference. UAF order violations in
Android severely affect the user experience of an app, e.g.,
unexpectedly terminating an app or being leveraged by an
attacker to launch a security attack [3].

Challenges. It is challenging to find order violations in
Android due to its complex concurrency mechanism involv-
ing both Java threads and event queues. In addition to the
normal order violations caused by Java threads, where the
two statements L1 and L2 mentioned above reside in two
different Java threads, Android has two unique types of order
violations. Given that L1 in e1 happens before L2 in e2, (1)
an intra-thread violation occurs if e1 and e2 are in the same
event queue, or (2) an inter-thread violation happens if e1
and e2 are in the two distinct queues associated with two
different threads. Reasoning about these two types of order
violations is challenging, since Android allows an individual
thread to maintain its own event queue, which can accept
asynchronous events posted from the queues of other threads.
Furthermore, a thread can also be created via an asynchronous
event, which can also significantly complicate the analysis of
event interleavings.

Existing Work and Limitations. Most of the existing Java-
based concurrency bug detection tools [4–22] are unaware
of Android events. Simply applying these tools for detecting
order violations in Android works poorly due to the complex
concurrency model used for dispatching non-deterministic

events. Existing efforts in detecting UAF order violations
mostly focus on dynamic analysis [23, 24, 1], which first
collects execution traces by exercising an app at runtime
through fuzzing [23, 24] or manual exploration [1]. Then an
off-line detection on the collected traces is performed. Due
to the nature of dynamic analysis, dynamic race detection
approaches suffer from limited code coverage in the presence
of an unbounded number of event interleavings. In addition,
these tools usually require multiple runs in order to generate
more traces to enable an effective bug detection, resulting
potentially in large runtime overheads.

Static detection of order violations will not suffer from
the above mentioned limitations. However, static techniques
for UAF detection [2, 25] are relatively unexplored due to
the difficulty in modeling abstract asynchronous events under
infinite event interleavings. SIERRA [25] includes an event-
based race detection, but does not consider inter-thread order
violations. NADROID [2] represents a recent approach to de-
tecting order violations by converting asynchronous events into
threads and then applying a traditional data race detection tool
for analyzing Java programs [4]. However, NADROID relies on
coarse-grained flow- and context-insensitive event modeling,
which may miss some happens-before (HB) relations among
the events in one event queue or in different event queues
residing in multiple threads, causing a large number of false
alarms to be issued. In addition, NADROID may also introduce
spuriously HB relations unsoundly (due to its one event queue
assumption), causing some bugs to be missed (Section II).

Figure 2(a) gives an intra-thread false alarm reported by
NADROID, which fails to capture the HB relation from event
a.run() (blue) to b.run() (red) due to ignoring the
program control-flows that affect the event dispatching orders.
Lines 11 and 12 in onCreate() post two events a.run()
and b.run() to the event queue with their method bodies
containing a field use p.use() and a field nullifying statement
p = null, respectively. The UAF violation (lines 5 and 8)
reported by NADROID is a false alarm since b.run() is
always dispatched after a.run() due to the control-flow
execution order (lines 11 and 12) inside the atomic method
onCreate() for posting the two events.
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Figure 2(b) demonstrates an inter-thread false alarm re-
ported by NADROID, which ignores calling contexts when
inferring inter-thread HB orders. The HB order among
onCreate(), a.run() and b.run() is the same as that
in Figure 2(a). The only difference is that b.run() posts a
new event c.run() at line 13 to the event queue of a parallel
thread child created at lines 9-11. NADROID conservatively
assumes that c.run() can happen in parallel with a.run()
without performing any analysis and reports a false order
violation. However, c.run() in the child thread is posted
via the callsite at line 13 in b.run(), which must be executed
after a.run(). On the contrary, SARD is able to infer this
strict inter-thread HB relation from a.run() to c.run()
by analyzing the program control-flow from line 16 to line
17, thereby eliminating the false alarm reported by NADROID.

Our Solution. To address the afore-mentioned limitations,
this paper presents SARD, a static approach to detecting
UAF order violations, the most common type of races in
Android [2]. SARD systematically models Android’s asyn-
chronous events to detect both intra- and inter-thread order
violations. A new flow- and context-sensitive static happens-
before analysis is proposed to reason about the interleavings
between events in a single and/or multiple event queues to
identify precise HB relations and significantly remove spurious
event interleavings. Our static happens-before relations can
also be used to accelerate dynamic analysis by avoiding
exercising event orders that are statically proved to be safe.

SARD performs context-sensitive analysis by distinguishing
the calling contexts leading to an API call that creates or
dispatches an event. Our flow-sensitive analysis precisely rea-
sons about the control-flow execution order inside an atomic
method for determining event-posting orders. In addition,
NADROID assumes that only one event queue for all events
across all threads during their static modeling, i.e., yielding
spurious HB relations. In contrast, SARD’s modeling is more
sound as it can discover more UAFs than NADROID.

We have evaluated SARD using 27 real-world Android
apps. Our results show that SARD significantly outperforms
NADROID, a state-of-the-art static Android order violation
detection tool, in terms of both precision (by reporting three
times fewer false alarms and three more true alarms given
the same set of apps used by NADROID) and efficiency (by
running two orders of magnitude faster).

This paper makes the following key contributions:
• We present a new static order violation detection ap-

proach by precisely reasoning about the happens-before
relations between asynchronous events in Android apps.

• We introduce a new flow- and context-sensitive approach
to modeling Android events in single and multiple event
queues to reason about event interleavings.

• We evaluate our tool SARD with a set of 27 real-
world Android apps. SARD significantly outperforms
NADROID, a state-of-art static analysis tool for detecting
UAF order violations, in terms of both precision (by
reporting 1058 fewer false positives and 3 more true
alarms) and efficiency (by running 175 times faster).

II. MOTIVATING EXAMPLE

This section revisits the example in Figure 2(b) to demon-
strate how SARD precisely extracts the intra- and inter-
thread happens-before relations that are missed conservatively
or inferred unsoundly (i.e., incorrectly) by NADROID [2].
As shown in Figure 3(b), SARD can precisely identify the
five HB relations, onCreate() ≺ a.run(), onCreate() ≺
b.run(), onCreate() ≺ c.run(), a.run() ≺ b.run(), and
a.run() ≺ c.run(), among which a.run() ≺ b.run() and
a.run()≺ c.run() are missed by NADROID (in yellow) and
b.run()≺c.run() is incorrectly introduced (in green).

A. Existing Work

NADROID may miss some HB relations conservatively due
to its imprecise flow- and context-insensitive modeling for the
event interleavings and introduce some spurious HB relations
unsoundly due to an unsound assumption about the existence
of only one event queue for all events across all the threads.

NADROID first converts all the asynchronous events into tra-
ditional threads in order to leverage CHORD, a traditional race
detector for Java [4]. NADROID builds a harness main method
for an Android app and creates artificial threads to invoke
methods of asynchronous events in the harness main. After
running CHORD, NADROID then prunes the results obtained
with its own modeling of HB relations, which is conservative
as it assumes only that onCreate() happens before all
other Android events (including callbacks and runnable events)
of an activity and onDestroy() happens after all other
callbacks. As shown in Figure 3(b), onCreate() happens
before a.run(), b.run() and c.run() as expected but
the two HB relations (in yellow) are missed.

In addition, as highlighted in green, NADROID is also
unsound as it may introduce spurious HB relations between
two events in two different queues of two parallel threads.
NADROID infers an incorrect HB relation between b.run()
and c.run(), since NADROID assumes a single unique event
queue. However, the two events actually reside in the parallel
event queues in two different threads, i.e., UI and child threads.

B. SARD

SARD performs a flow- and context-sensitive analysis that
correctly handles the calling contexts and program control-
flows when analyzing the event-posting and event-dispatching
related Android APIs. SARD precisely models an abstract
event via a calling context under an abstract thread.

SARD first performs a pre-analysis to model the four ab-
stract events with its corresponding context information given
in Figure 3(c). The context of each abstract event is a stack
represented by a sequence of call statements leading to that
event. For example, the context of an abstract event c.run()
is represented as [l17, l13] created via invocations l17 and l13.

SARD provides fine-grained modeling of events by distin-
guishing event queues in different threads. Abstract threads
including the default UI thread and child threads at a thread
creating site (e.g., l9 - l10) are modeled. SARD determines
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Fig. 3: A motivating example. 〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty means that event x with context cx in the event queue of thread tx

posts event y with context cy to the event queue at thread ty with statement s. If s and s′ are two statements that appear in
the inter-procedural CFG starting from a common method, then s dom s′ signifies that s dominates s′ in the CFG.

the thread where an event resides in by analyzing the An-
droid Handler object. For example, event c.run() is
in the child thread since c.run() is posted to child
via the handler created at line l12. Figure 3(c) gives the
four abstract events and their corresponding contexts, from
which we can directly obtain their event-posting relations.
We write 〈onCreate(), []〉@UI

l16−−→ 〈a.run(), [l16]〉@UI to
indicate that onCreate() in the event queue of the UI thread
posts a.run() to the UI’s event queue under the invoking
statement at line l16. Similarly, the other two event-posting re-
lations are 〈onCreate(), []〉@UI

l17−−→ 〈b.run(), [l17]〉@UI and
〈b.run(), [l17]〉@UI

l13−−→ 〈c.run(), [l17, l13]〉@child.
Given the abstract event modeling and event-posting re-

lations, we will start to infer the HB relations (Figure 3(f))
for detecting UAF order violations. Initially, there are no HB
relations for the four events, implying that any two events may
happen in parallel as illustrated in Figure 3(d).

From the first two event-posting relations in Fig-
ure 3(c), we obtain 〈onCreate(), []〉 ≺ 〈a.run(), [l16]〉 and
〈onCreate(), []〉 ≺ 〈b.run(), [l17]〉, which are 1 and 2 re-
spectively. Because SARD’s modeling can distinguish the event
queues of different threads (e.g., b.run() and c.run()
associated with two different threads UI and child as identi-
fied by 3 in Figure 3(f)), SARD can infer a may-happen-in-
parallel relation instead of an unsound HB relation reported by
NADROID, which assumes a single event queue for all threads.

By considering the control-flows, SARD determines that
a.run() and b.run() are posted in the order as denoted by
the dominance relation l16 dom l17. With this flow-sensitive
information together with 1 and 2 , SARD can easily infer
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Fig. 4: An overview of SARD.

4 , i.e., a.run() happens before b.run().
We can obtain 5 , i.e., a.run() happens before c.run()

since 4 indicates that a.run() is executed before
b.run(), which has posted c.run() for execution ( 3 ).

Since onCreate() happens before b.run(), as identi-
fied by 2 , the HB relation 6 holds transitively for any other
events (e.g., c.run()) posted by b.run() ( 3 ).

Finally, based on the HB relations in Figure 3(e), SARD can
prove the absence of UAF violations in this example because
the field use at l4 in a.run() always happens before the null
pointer assignment at l6 in c.run() according to 5 , which
is missed by NADROID, causing a false alarm.

III. APPROACH

In this section, we introduce the approach used in SARD, as
shown in Figure 4. SARD first models all the context-sensitive
abstract events and identifies the event-posting relations. Then,
SARD performs a flow- and context-sensitive analysis to infer
the HB relations for all the abstract events. Finally, SARD
detects order violations between two events based on their HB
relations and the field usage in the two events. SARD applies
a light-weight feasible path analysis to further prune out false
alarms by identifying spurious UAF pairs.
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Fig. 5: Modeling abstract events based on API calls.

A. Abstract Event Modeling

Abstract events are modeled context-sensitively to dis-
tinguish events under different calling contexts. A context-
sensitive abstract event is denoted by 〈e, c〉, where the context
c ∈ C of an event e is a stack represented by a sequence
of call statements leading to the executing method of e. An
abstract thread t is a thread where an abstract event resides
in. In SARD, we use the allocation sites of thread objects to
represent abstract threads. If an event runs in the UI thread that
does not have allocation sites in application code, we use UI
to represent its abstract thread. We write 〈e, c〉@t to indicate
that a context-sensitive event e runs in an abstract thread t
under context c.

Each abstract event is modeled based on a sequence
of event-creating API calls s ∈ I. We have systemati-
cally modeled 22 APIs falling into three categories: (1)
handler-based APIs, (2) activity-based APIs, and
(3) thread-based APIs. In Figure 5, the left column gives
the code examples for the three categories.

The API methods in the first category are the methods in
class Handler, an internal class in Android. Figure 5(a)
gives an example to demonstrate that two abstract events
created under different contexts running in their corresponding
threads via a handler-based API. At line 6 (line 8),
handler1.post(a) (handler2.post(a)) uses a han-
dler object to post the runnable event a.run() to the event
queue of the child (UI) thread.

For the second category, one can create an event
via runOnUiThread(runnable) provided by Android’s
Activity class and its subclasses (e.g., ListActivity).

m: the containing method of a call statement s

e is a callback method

〈e, ∅〉@UI
[C-CALLBACK]

s : a handler-based API call e = getTgt(s)
〈m, c〉 c′ = c.append(s) t = getThread(s)

〈e, c′〉@t
[C-POST]

s : an activity-based API call e = getTgt(s)
〈m, c〉 c′ = c.append(s)

〈e, c′〉@UI
[C-UI]

s : an thread-based API call e = getTgt(s)
〈m, c〉 c′ = c.append(s) t = getAllocSite(s)

〈e, c′〉@t
[C-THREAD]

s /∈ I : m′ is invoked 〈m, c〉 c′ = c.append(s)

〈m′, c′〉 [C-CONTEXT]

Fig. 6: Rules for modeling abstract events.

All events created are posted only to the event queue
of the UI thread. For example, at line 4 in Figure 5(b),
activity.runOnUiThread(a) posts a runnable object
to UI’s event queue.

The last category contains the API methods that fork a tradi-
tional Java thread. For the statement at line 5 in Figure 5(c), it
is treated as posting an asynchronous event to a special thread
child whose queue only contains this event.

Figure 6 gives the rules to model context-sensitive abstract
events by handling the calls of these three types of APIs.
Rule [C-CALLBACK] builds an abstract event for every An-
droid callback method, which runs in the UI thread. For every
callback event e, its context is c = ∅, since it is created in the
Android framework but not through some event-creating APIs
in the application code.

If a call statement s invokes a handler-based API, we
apply [C-POST] to model its corresponding abstract event.
getTgt(s) returns the corresponding event posted by s
and getThread(s) retrieves the abstract thread where the
event runs. With event e, context c′ and abstract thread t,
we create a context-sensitive event 〈e, c′〉@t. Figure 5(a)
gives two context-sensitive events created by this rule, i.e.,
〈a.run(), [l6]〉@child and 〈a.run(), [l8]〉@UI . For example, if
s is handler1.post(a) in Figure 5(a), then getTgt(s) returns
a.run() and getThread(s) returns child.

For a call s (e.g., activity.runOnUiThread(a)
in Figure 5(b)) that invokes an activity-based API
method, we only create an event running in the UI thread
with its corresponding context following [C-UI]. Figure 5(b)
shows an example for creating a context-sensitive event
〈a.run(), [l4]〉@UI .

Rule [C-THREAD] is applied to build an abstract event if
s is a thread-based API call (e.g., child.start()
in Figure 5(c)). The abstract thread t is modeled by
getAllocSite(s), which finds the thread allocation site,
where the thread object at s is created. By applying this rule,
we extract a context-sensitive event 〈a.run(), [l5]〉@child as
illustrated in Figure 5(c).
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For a call statement s that does not invoke any event-posting
API denoted by s /∈ I, we apply [C-CONTEXT] to build new
contexts for method m′ invoked by s. Based on the context
c of method m, which is the containing method of s, a new
context c′ is created by appending s to c.

B. Static Happens-Before Analysis

Once all the abstract events have been modeled, we con-
struct an event-posting relation between different events. For
an invoking statement s of event method e′, if its containing
method can be reached in the call graph from event method
e without passing through other event methods, we write
〈e, c〉@t

s−→ 〈e′, c′〉@t′ to represent the fact that event e in
abstract thread t under context c posts e′ to the event queue
of thread t′ under context c′ at statement s.

Given all the abstract events, SARD builds their HB relations
to identify all safe use-free pairs 〈suse, sfree〉. This ensures
that a field use statement suse in one event always happens
before a free statement sfree in another event.

An abstract event can be an Android callback event or
a normal event (built via the three types of API calls in
the application code). We first build the HB relations be-
tween Android’s callback events running on the UI thread.
When creating an Android Activity or a Service component,
onCreate() is invoked before any other callback events.
Therefore, we create the HB relations from onCreate() to
every other callback event. Similarly, onDestroy() happens
after all other callback events, since it is the last to be invoked
when exiting an Android component.

Next, SARD performs a flow- and context-sensitive analysis
to build the HB relations (1) between two normal events or
(2) between a callback event and a normal event following
the rules in Figure 7. We use 〈ex, cx〉 ≺ 〈ey, cy〉 to denote an
HB relation from 〈ex, cx〉 to 〈ey, cy〉, where event ex under
context cx always happens before ey under context cy .

[INTRA-POST] extracts the HB relations between two events
that have event-posting relations. For an event 〈ey, cy〉 in
thread ty posted by event 〈ex, cx〉 in thread tx, where tx = ty ,
we have 〈ex, cx〉 ≺ 〈ey, cy〉. Let us revisit the example in
Figure 3, onCreate() happens before both a.run() and
b.run() based on this rule. Due to the precision in our
model, b.run() does not happen before c.run(), because
these two events will be running in two different threads.

[INTRA-SAME] defines the HB relations between two events
posted by the same event 〈ex, cx〉 by considering the control
flow information between the two events. In this rule, 〈ey, cy〉
and 〈ez, cz〉 are both posted by 〈ex, cx〉 at statements s and s′,
respectively. We write s dom s′ to indicate that s dominates s′

in the inter-procedural CFG starting from 〈ex, cx〉, i.e., every
path from the method entry of event 〈ex, cx〉 to s′ must go
through s. Based on this information and the FIFO policy for
an event queue, we know that 〈ey, cy〉 is posted before 〈ez, cz〉.
If 〈ey, cy〉 and 〈ez, cz〉 are in the same thread, we know that
〈ey, cy〉 must happen before 〈ez, cz〉. In Figure 3, we find that
a.run() happens before b.run() by applying this rule.

〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty tx = ty

〈ex, cx〉 ≺ 〈ey, cy〉
[INTRA-POST]

〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty

〈ex, cx〉@tx
s′−→ 〈ez, cz〉@tz

ty = tz s dom s′

〈ey, cy〉 ≺ 〈ez, cz〉
[INTRA-SAME]

〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty

〈ez, cz〉@tz
s′−→ 〈ew, cw〉@tw

〈ex, cx〉 ≺ 〈ez, cz〉 ty = tw

〈ey, cy〉 ≺ 〈ew, cw〉
[INTRA-DIFF]

ex, ez are callback events

〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty

tx = ty 〈ex, cx〉 ≺ 〈ez, cz〉
〈ey, cy〉 ≺ 〈ez, cz〉

[INTRA-INFER]

〈ey, cy〉@ty
s−→ 〈ez, cz〉@tz

〈ex, cx〉 ≺ 〈ey, cy〉
〈ex, cx〉 ≺ 〈ez, cz〉

[COMBO]

Fig. 7: Rules for building happens-before relations.

[INTRA-DIFF] builds the HB relations for two events 〈ey, cy〉
and 〈ew, cw〉, which are posted by two different events 〈ex, cx〉
and 〈ez, cz〉, respectively. We can obtain that 〈ey, cy〉 happens
before 〈ew, cw〉 if (1) 〈ey, cy〉 and 〈ew, cw〉 are in the same
abstract thread, and (2) 〈ex, cx〉 happens before 〈ez, cz〉.

[INTRA-INFER] is used to model the HB relations between
a callback event and a normal event posted by a callback
event. We have this rule based on the Android event-driven
mechanism by which the UI thread can only execute one event
at a time and no other callback events (e.g., onClick())
can be posted to UI thread’s event queue if an existing
event on the UI is executing. In this rule, we can infer
〈ey, cy〉 ≺ 〈ez, cz〉 if there exists a callback event 〈ex, cx〉
such that (1) 〈ex, cx〉 ≺ 〈ez, cz〉 holds, i.e., the callback event
〈ez, cz〉 can only be posted into UI’s queue after executing
〈ex, cx〉 and (2) 〈ex, cx〉 has already posted 〈ey, cy〉 into UI’s
even queue during its execution. Thus, 〈ey, cy〉 always happens
before 〈ez, cz〉.

Given an HB relation 〈ex, cx〉 ≺ 〈ey, cy〉, we can easily
establish 〈ex, cx〉 ≺ 〈ez, cz〉 transitively if 〈ez, cz〉 is posted by
〈ey, cy〉. Therefore, [COMBO] can yield intra-thread or inter-
thread HB relations, where 〈ex, cx〉 and 〈ez, cz〉 can be in
either the same thread or two different threads. In Figure 3,
onCreate() and a.run() both happen before c.run()
based on this rule.

C. Static Order Violation Detection

After having obtained the HB relations for all the abstract
events, we can detect UAF order violations. For every event,
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we collect its field usage operations, i.e., field use and object
free statements. SARD regards each statement that derefer-
ences a field as a field use suse and a statement that sets a
field to null as a field free sfree. With the help of the alias
analysis in [26], we collect the set Pall of all candidate pairs
〈suse, sfree〉, where two operations that access the same object
and the two field usage statements suse and sfree are from
different events. Let P be the set of all the UAF pairs detected
by SARD:

P = {〈suse, sfree〉 ∈ Pall | suse �≺ sfree, sfree ⇒ suse}
where suse does not happen before sfree, and sfree ⇒ suse
denotes a UAF-feasible path from sfree to suse, such that (1)
the path is control-flow feasible from sfree to suse, and (2)
there is no assignment to initialize the underlying field object
between sfree to suse along this path.

SARD performs a light-weight path-sensitive analysis by
analyzing the immediate branch conditions of suse and sfree,
where the two events suse and sfree run on the same thread.
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Fig. 8: Commonly occurring infeasible paths.

Figure 8 gives six common infeasible paths. Figure 8(a)
demonstrates the situations when a null check happens before
a field use statement. With such a check, the use statement
will never be executed after a field free statement.

Figures 8(b) and (c) show the scenarios when a field
assignment statement is executed before a field use statement.
In SARD, an assignment statement can be either a statement
directly assigning a new value to the field or indirectly via An-
droid’s system methods (e.g., activity.getIntent()).
We assume that assigning a value to a field by invoking any
system method will initialize the field. Figures 8(d) and (e)
depict the occurrence of an assignment statement immediately
after a free statement. These four examples illustrate infeasible
paths that can never trigger any UAF order violation due to
the fact that the field object is initialized before any use.

In Android, finish() can be invoked to terminate an
Android component. Figure 8(f) shows that if there is an invo-
cation of activity.finish() after a field free statement,
no other events in this component can be executed, resulting
in an infeasible path from sfree to suse.

IV. EVALUATION

The objective of our evaluation is to demonstrate that
SARD can effectively detect both intra- and inter-thread UAF
order violations with low false alarms and high efficiency
in real-world Android apps. For the same set of apps used,
SARD significantly outperforms NADROID [2], a state-of-the-
art static analysis tool, in terms of both efficiency (by running
175 times faster) and precision (by reporting three times fewer
false alarms and identifying 3 more true alarms). In addition,
SARD also achieves a false negative rate that is two times
lower than NADROID on the apps with the ground truth about
the UAF order violations present.

A. Implementation

SARD is built upon FLOWDROID [27], a static taint analysis
for Android apps. We use FLOWDROID to decompile an
Android application and then obtain all callback methods of
the application. FLOWDROID uses the SPARK [28] pointer
analysis in SOOT [26] framework to construct a call graph.
SARD uses the call graph and the alias information provided
by FLOWDROID and SPARK for our field usage analysis to
support our static happens-before analysis.

B. Experimental Setup and Methodology

In order to fairly compare SARD with NADROID, we use
all the 27 real-world Android apps also used in NADROID.
These applications exhibit a wide range of event usage pat-
terns through a wide variety of event-creating APIs. Since
our approach adopts a more precise flow- and context-
sensitive modeling of the Android concurrency system, SARD
can successfully identify HB relations that are missed by
NADROID, thereby eliminating spurious UAF violation pairs
(Section III-B). SARD also applies a light-weight path-
sensitive analysis to discover UAF infeasible paths to further
remove more false alarms (Section III-C).

To further validate the effectiveness of SARD, we use 8
Android apps that have been manually injected with real UAF
order violations to demonstrate that SARD can find UAF order
violations in a low false negative rate.

Our experiments are conducted on a quad-core i5-6500
3.2GHz machine with 16GB RAM running Ubuntu 16.04 LTS.
The analysis time of every app is the average of three runs. Our
evaluation answers the following research questions (RQs):

• RQ1. Can SARD effectively and efficiently detect UAF
order violations in real-world Android apps?

• RQ2. Does SARD perform better than NADROID, a state-
of-the-art static tool in detecting UAF order violations?

• RQ3. Can SARD recall more manually injected UAF
order violations than NADROID?

C. RQ1. Effectiveness and Efficiency of SARD

In this section, we evaluate the overall performance and the
effectiveness of SARD in removing false alarms.

Table I illustrates the effectiveness of SARD in analyzing
27 large real-world Android apps, consisting of 537K lines
of Java code in total. This table is partitioned into five parts
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TABLE I: The effectiveness and efficiency of SARD in analyzing 27 real-world Android apps.

App Name LOC #Potential
Violations

#Feasible
Violations

#False Positives Eliminated by HB relations #Violations
Reported Time (secs)[CALLBACK

RELATION] [INTRA-POST] [INTRA-SAME] [INTRA-DIFF] [INTRA-INFER] [COMBO] Total

SoundRecorder 1194 9 9 9 0 0 0 0 0 9 0 0.96
Swiftnotes 1571 0 0 0 0 0 0 0 0 0 0 1.02
Photoaffix 1924 379 66 38 14 0 0 1 8 61 5 17.50
MLManager 2073 64 0 0 0 0 0 0 0 0 0 11.79
InstaMaterial 2248 102 3 0 0 0 3 0 0 3 0 2.46
Tomdroid 2372 0 0 0 0 0 0 0 0 0 0 1.66
ToDoList 2637 44 10 10 0 0 0 0 0 10 0 4.47
SGT puzzle 2944 585 7 0 7 0 0 0 0 7 0 1.14
Aard 3684 718 121 0 28 0 18 0 15 61 60 (8) 15.44
Clipstack 3948 0 0 0 0 0 0 0 0 0 0 1.99
KissLauncher 5210 0 0 0 0 0 0 0 0 0 0 1.42
Zxing 6453 113 15 4 1 0 0 5 5 15 0 9.34
DashClock 10147 25 9 0 2 1 2 0 4 9 0 2.49
Dns66 10423 11 7 7 0 0 0 0 0 7 0 12.60
Music 10518 22633 3545 388 379 0 610 1159 955 3491 54 28.02
CleanMaster 11014 19 17 0 0 0 7 0 0 7 10 15.98
Omninotes 13720 2395 116 0 44 12 6 0 54 116 0 30.29
Solitair 15478 18 0 0 0 0 0 0 0 0 0 7.82
MyTracks 1 27080 2458 467 65 8 0 0 2 0 75 392 (45) 12.07
Mms 27578 2657 1066 63 4 0 0 4 78 149 917 20.91
Browser 30675 10647 788 271 84 3 118 158 147 781 7 76.26
ConnectBot 32645 150 44 30 0 0 0 0 1 31 13 (13) 80.47
MyTracks 2 37031 10894 938 55 203 152 4 3 0 417 521 (52) 62.56
MiMangaNu 37827 6 0 0 0 0 0 0 0 0 0 5.21
QKSms 56082 493 45 0 0 0 0 0 1 1 44 (28) 20.90
K9-Mail 78437 2413 255 116 41 0 0 0 20 177 78 63.81
Firefox 102658 20721 1134 6 385 7 8 0 48 454 680 (1) 66.63
Total 537571 77554 8662 1062 1200 175 776 1332 1336 5881 2781 (147) 575.19

(separated by “||”). The first part gives the information about
the apps used in our evaluation, including their names and
lines of code (LOC).

The second part of Table I gives the number of raw

potential order violations generated by SARD, which will be
gradually scrutinized by our precise HB analysis. A candidate
violation pair generated by SARD has two parts: (1) a pair of
conflict operations (i.e., a free statement in event ex and a use
statement in event ey) on the same field object, and (2) the
corresponding contexts of the two events 〈ex, cx〉 and 〈ey, cy〉.

The third column of Table I gives the afore-mentioned
potential order violations in each app without applying any
refinement. The fourth column gives the remaining number of
violation pairs after we have applied our feasible path analysis
as discussed in Section III-C.

The third part in Table I ranges from Column 5 to Col-
umn 11. The first six columns, respectively, illustrate the
capabilities of each rule of our model (Figure 7) in elimi-
nating false positives by working together to extract the HB
relations in an app. Furthermore, the last column gives the
total number of false positives removed by SARD’s precise
HB relations. For all the apps, the HB relations between only
Android callback events help us eliminate a total of 1062 false
pairs. Furthermore, SARD’s HB relation rules, [INTRA-POST],
[INTRA-SAME], [INTRA-DIFF], [INTRA-INFER] and [COMBO]
are effective in removing 1200, 175, 776, 1332 and 1336
false pairs, respectively. In total, 5881 false alarms have been
removed from the original 8662 feasible violations.

Finally, the fourth part gives the number of UAF order
violations reported by SARD for each app, where the numbers
in brackets are the true violations checked manually. In total,
2781 violations are reported by SARD and 147 of them are

Remaining
32%(2781)

Filtered Out
68%(5881)

[CALLBACK RELATION] 18.06%

[INTRA-POST] 20.40%

[INTRA-DIFFERENT] 13.20%

[INTRA-SAME] 2.98%

[COMBO] 22.72%

[INTRA-INFER] 22.65%

(a) (b)

Fig. 9: Pie charts for visualizing the data in Table I.

true UAF order violations based on manual inspection.
Figure 9 visualizes the data in Table I. The deep blue slice

in Figure 9(a) represents 68% of false positives removed by
SARD. This is further decomposed into six slices in the pie
chart in Figure 9(b) with each slice representing the percentage
of false positives removed by each rule in our HB analysis.

Table I also illustrates the analysis time (including call graph
construction, our abstract event modeling, static HB analysis
and static order violation detection) spent on each app in the
last column. For the 27 Android apps, SARD spends only 21.3
seconds for each app on average and 575.19 seconds in total.
This confirms that SARD is efficient in analyzing the real-
world Android apps.

D. RQ2. SARD vs. NADROID: Effectiveness and Efficiency

In this section, we compare SARD with NADROID in finding
UAF order violations in real-world Android apps. Since both
do not find any violations in the same 11 apps listed in Table I,
the remaining 16 apps are used in this experiment. As the order
violations reported by NADROID are not differentiated by the
contexts of events that have field usage operations, we merge
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TABLE II: Comparing SARD and NADROID in effectiveness and efficiency. SARD ∩ NADROID represents the number of UAF
order violations that are reported by both SARD and NADROID. SARD \ NADROID is the number of UAF order violations
reported by SARD alone, and NADROID \ SARD is the number of UAF order violations reported by NADROID alone.

App Name #Violations Reported SARD \ NADROID NADROID \ SARD Time (secs)
NADROID SARD NADROID ∩ SARD #True Positives #False Positives Total #True Positives #False Positives Total SARD NADROID

PhotoAffix 4 5 0 0 5 5 0 4 4 17.50 502.22
Aard 48 13 13 0 0 0 0 35 35 15.44 4367.66
KissLauncher 36 0 0 0 0 0 0 36 36 1.42 586.93
Zxing 2 0 0 0 0 0 0 2 2 9.34 3828.89
Dns66 13 0 0 0 0 0 0 13 13 12.60 703.58
Music 207 48 38 0 10 10 0 169 169 28.02 664.09
CleanMaster 0 6 0 0 6 6 0 0 0 15.98 8496.46
Solitaire 1 0 0 0 0 0 0 1 1 7.82 388.68
MyTracks 1 80 52 48 2 2 4 0 32 32 12.07 2708.79
Mms 312 182 120 0 62 62 0 192 192 20.91 1119.86
Browser 0 7 0 0 7 7 0 0 0 76.26 3338.98
ConnectBot 13 13 13 0 0 0 0 0 0 80.47 1265.98
MyTracks 2 71 74 56 1 17 18 0 15 15 62.56 14983.00
QKSMS 19 11 11 0 0 0 0 8 8 20.90 12603.63
K-9 Mail 336 76 20 0 56 20 0 316 316 63.81 25477.80
FireFox 468 68 31 0 37 57 0 437 437 66.63 11095.86
Total 1610 555 350 3 202 205 0 1260 1260 502.37 88303.51

the contexts of events among our reported violation pairs
in Table I and then compare with NADROID. For effectiveness,
we compare the order violations that are detected as potential
violations by both tools. For efficiency, we compare the
analysis times of SARD and NADROID.

Table II compares both in more detail. Its second and third
columns show the number of order violations reported by
NADROID and SARD, respectively. For the 16 apps, SARD
reports 555 violation pairs while NADROID reports 1610.
Among the violations detected, 350 are reported by both tools
and this set of violations contains all the 88 true violations
mentioned in NADROID [2]. Note that each tool reports
some UAF order violations missed by the other. We break
down the remaining 205 (1260) violations reported by SARD
(NADROID) and manually check them to see whether they are
false positives or not in order to understand their precision.

SARD reports fewer false alarms than NADROID with a
good precision. The fifth to the seventh columns of Table II
illustrate the number of true positives and false positives that
are reported by SARD alone in the 16 apps. After manual
inspection, we found that SARD detects 202 false and 3 true
violations, including 2 in MyTracks 1 and 1 in MyTracks 2.
All the three true UAFs are missed by NADROID.

We give an example in MyTrack 2 in Figure 10 to illustrate
a typical true UAF case missed by NADROID. NADROID fails
to detect that the event run() executes in a different thread,
since NADROID relies on some filters to remove excessive false
alarms heuristically. It has missed the violation pair between
line 11 and line 14 due to its aggressive null check filter
applied at line 10. However, this check does not guarantee
the safety of the field use at line 11.

Meanwhile, we have also checked the 1260 violation pairs
detected by NADROID only, shown in the eighth to tenth
columns of Table II. These are found to be all false alarms.

In total, SARD reports 555 violations with 464 false alarms
(and 91 true errors) and NADROID reports 1610 violations with
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Fig. 10: A true order violation in MyTracks 2.

1522 false alarms (and 88 true errors). We have found 3 more
true pairs by issuing three times fewer false positives.

SARD is much more efficient than NADROID, the analy-
sis times of SARD and NADROID for analyzing each app
are given in the last two columns of Table II. For the 16
apps used, NADROID takes 88303.51 seconds while SARD
is 175 times faster using only 502.37 seconds to finish the
analysis. NADROID is slower since it converts all Android’s
asynchronous events into native Java threads and then applies a
heavyweight race detector (e.g., CHORD [4]) to detect potential
UAF order violations in a large number of converted threads.

E. RQ3. SARD vs. NADROID: False Negatives

In this section, we compare the false negative rates of SARD
and NADROID in finding UAF order violations of Android
apps. We use eight Android apps also used by NADROID.
These apps were manually injected with 28 UAF order vi-
olations detected by a dynamic approach [24], which can be
seen as the ground truth. Table III illustrates the number of
violations that are recalled by SARD and NADROID.
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TABLE III: Comparing SARD and NADROID in false negatives
with regard to the manually injected 28 UAF order violations
used in [2]. The numbers in bold indicate that SARD recalls
more real violations than NADROID does.

App Name #Manually Injected
Ordering Violations

#Ordering Violations
Detected by NADROID

#Ordering Violations
Detected SARD

Aard 1 1 1
Browser 3 1 3
K9 Mail 1 1 1
Mms 6 4 5
Music 6 5 5
MyTracks 2 1 1 1
SGT Puzzles 9 8 9
Tomdroid 1 0 0
Total 28 21 25

For the eight apps, SARD recalls 25 real UAF order viola-
tions in total while NADROID recalls only 21 violations. For
the app Browser, SARD finds two more order violations. For
Mms and SGT Puzzles, SARD finds one more violation in each
app. In total, we recall 4 more order violations than NADROID,
which shows that SARD has a lower false negative rate (10.7%)
than NADROID (25.0%) in finding UAF order violations for
Android apps. We have manually checked the app code to
see why SARD outperforms NADROID. For Mms, NADROID
miss 1 more order violation than SARD because the containing
method of field access statements is not reachable in its call
graph. The other 3 order violations missed by NADROID in
Browser and SGT Puzzles are due to the fact that NADROID
incorrectly filters them out by its unsound filters ([2], §6.2).

F. Discussion

Despite the removal of the majority of false positives, the
precision of SARD depends on the precision of its underlying
pointer analysis used and the precision in reasoning about the
feasible control-flow paths between a UAF pair.

Pointer Analysis. SARD leverages the pointer analysis
SPARK [28] in SOOT [26]. SPARK can only perform a conser-
vative flow- and context-insensitive may-alias analysis, which
can affect the precision of our field usage analysis and the
call graph constructed for an app. Some sophistiated pointer
analyses [29–34] can be used in future work.

Implicit Control-Flow Path. Another cause of imprecision
is the implicit UAF-infeasible paths between two field use
statements. Although our light-weight path-sensitive analysis
has successfully pruned away a lot of false alarms by analyzing
their immediate enclosing branch conditions, there are still
situations where SARD is ineffective. For example, a branch
condition that represents a null check may involve some
complex data dependences before a field use statement.

V. RELATED WORK

Detecting use-after-free races in Android is a new research
area relative to traditional Java race detection. There are both
static and dynamic approaches proposed.

Static Analysis for Android. The work that is the most
related to our static tool SARD is NADROID [2]. As discussed
earlier, NADROID converts asynchronous events into native
Java threads and leverages the Java race detector CHORD [4]

to perform race detection. Section IV shows that SARD out-
performs NADROID in both effectiveness and efficiency.

Recently, a static tool, SIERRA [25], has been introduced for
detecting event-based races in Android applications. SIERRA
applies an action-sensitive pointer analysis and builds happens-
before relations between asynchronous events for event-based

race detection. However, unlike SARD, SIERRA handles only
the event-based races that happen within the same thread. In
addition, SIERRA also ignores the contexts of events, which
will induce different running threads and HB relations with
others. Currently, the source code of SIERRA is not available
yet, so we are not able to compare our tool with it.

Some other static tools also have been proposed to detect
races in Android. ASYNCHRONIZER [35] is a static refactoring
tool to extract long-running operations in AsyncTask (an
encapsulated thread class). However, this tool focuses on
AsyncTask only and is not able to detect the races caused
by asynchronous events. DEVA [36] is another static tool for
detecting races in Android apps. This work is also limited for
only detecting races between two callbacks without modeling
their HB relations. This limitation causes the tool to suffer
from significant false positives and false negatives.

Dynamic Analysis for Android. Dynamic tools [1, 24] are
developed to detect races in Android at runtime. Their ap-
proaches first collect execution traces, which are generated by
running Android apps on devices with their customized ROM.
They then perform an off-line HB relations analysis to detect
races on the collected traces. EventRacer [23] uses an off-line
analysis algorithm to improve the scalability and precision of
the previous approaches. ERVA [37] represents an approach
used to verify the results of dynamic tools. Recently, the
authors of [38, 39] also introduce new approaches to building
the HB relations for Android apps based on execution traces.
While reporting fewer false positives, dynamic tools suffers
from limited code coverage and extra runtime overheads.

Race Detection for Java. There are quite a few existing
approaches that can detect data races in traditional Java
programs. There are static tools, based on, for example,
locksets [4–7], type systems [8–10] and model checking [11].
There are also dynamic analysis tools [12, 14, 13, 15–22].
These tools are not aware of Android’s asynchronous events,
making them ineffective in detecting UAF races in Android.

VI. CONCLUSION

In this paper, we have presented a new static tool, SARD,
for detecting UAF order violations in Android apps. In SARD,
we have systematically modeled the asynchronous events in
Android and introduced a flow- and context-sensitive analysis
to build precise happens-before relations between two events.
According to our evaluation, SARD outperforms NADROID
by removing its false alarms substantially and discovering its
missed true violations with significantly less analysis times.
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