
An Exploratory Investigation of Log Anomalies in Unmanned
Aerial Vehicles

Dinghua Wang∗
dinghua.wang@student.uts.edu.au
University of Technology Sydney,
Australia, Southern University of
Science and Technology, China

Shuqing Li
sqli21@cse.cuhk.edu.hk

The Chinese University of Hong
Kong, China

Guanping Xiao
gpxiao@nuaa.edu.cn

Nanjing University of Aeronautics
and Astronautics, China

Yepang Liu†∗
liuyp1@sustech.edu.cn

Research Institute of Trustworthy
Autonomous Systems, Department of
Computer Science and Engineering,
Southern University of Science and

Technology, China

Yulei Sui
y.sui@unsw.edu.au

The University of New South Wales,
Australia

Pinjia He†
hepinjia@cuhk.edu.cn

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China
Shenzhen Research Institute of Big

Data, China

Michael R. Lyu
lyu@cse.cuhk.edu.hk

The Chinese University of Hong
Kong, China

ABSTRACT
Unmanned aerial vehicles (UAVs) are becoming increasingly ubiqui-
tous in our daily lives. However, like many other complex systems,
UAVs are susceptible to software bugs that can lead to abnormal sys-
tem behaviors and undesirable consequences. It is crucial to study
such software bug-induced UAV anomalies, which are often mani-
fested in flight logs, to help assure the quality and safety of UAV
systems. However, there has been limited research on investigating
the code-level patterns of software bug-induced UAV anomalies.
This impedes the development of effective tools for diagnosing and
localizing bugs within UAV system code.

To bridge the research gap and deepen our understanding of
UAV anomalies, we carried out an empirical study on this subject.
We first collected 178 real-world abnormal logs induced by soft-
ware bugs in two popular open-source UAV platforms, i.e., PX4 and
Ardupilot. We then examined each of these abnormal logs and com-
piled their common patterns. In particular, we investigated the most
severe anomalies that led to UAV crashes, and identified their fea-
tures. Based on our empirical findings, we further summarized the

∗Dinghua Wang is a student in the joint Ph.D. program of UTS and SUSTech. This
work was done when he was a visiting Ph.D. student at CUHK-Shenzhen.
†Yepang Liu and Pinjia He are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639186

challenges of localizing bugs in system code by analyzing anoma-
lous UAV flight data, which can offer insights for future research in
this field.

CCS CONCEPTS
• General and reference→ Empirical studies; • Software and its
engineering→ Software defect analysis.

KEYWORDS
UAV Anomaly, Software Bug, Crash, Code Pattern, Empirical Study

ACM Reference Format:
DinghuaWang, Shuqing Li, Guanping Xiao, Yepang Liu, Yulei Sui, Pinjia He,
and Michael R. Lyu. 2024. An Exploratory Investigation of Log Anomalies in
Unmanned Aerial Vehicles. In 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3639186

1 INTRODUCTION
In recent years, UAVs have become more and more popular in our
daily lives and played an increasingly important role. On the one
hand, UAVs have a wide range of applications [24, 30], such as
photography, parcel delivery, firefighting, and pesticide spraying.
On the other hand, UAVs have more and more complex functions,
such as automatic obstacle avoidance [16, 26], autonomous nav-
igation [2, 34], and path planning [3, 87, 93]. However, with the
diversification of applications and functions, the abnormal UAV
behaviors caused by software bugs have also become more diverse
and frequent, resulting in serious financial and even life losses. It
is essential to study the characteristics of such abnormal UAV be-
haviors induced by software bugs to help people better judge UAV
status and develop more reliable UAV systems.

https://doi.org/10.1145/3597503.3639186
https://doi.org/10.1145/3597503.3639186

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, Yulei Sui, Pinjia He, and Michael R. Lyu

Figure 1: A UAV Log of Airspeed Changes

UAVs, as a typical type of cyber-physical systems (CPSs), employ
a multitude of sensors to sense and respond to the dynamics of
the physical environment, while also possessing the capability to
establish network connections to interact with other UAVs and
humans [11, 39, 41, 81]. Sensors in UAVs monitor the UAVs’ states
in real-time, such as speed, altitude, temperature, and battery power.
Such information is often recorded in logs in popular UAV systems.
In this paper, we focus on studying abnormal data in UAV logs that
resulted from software bugs. We refer to such abnormal data in
UAV logs as UAV anomalies for ease of presentation.

Figure 1 shows a typical UAV log that records airspeed changes
during a flight. We can see that the UAV log is a collection of data
points that vary over time, i.e., a time series. Existing research has
pointed out that developers usually locate and fix software bugs
in UAV systems by manually analyzing abnormal logs [41]. How-
ever, analyzing UAV anomalies is a challenging task that requires
rich expertise in different domains, such as mechanics and control
engineering. Moreover, UAV logs often contain noises and inter-
ference from the physical environment, which differ significantly
from traditional software logs [90]. These difficulties impede the
effective diagnosis of UAV anomalies. There is also some research
that has explored the abnormal behaviors of UAVs, but much of the
research has only classified UAV anomalies without investigating
their patterns in depth. For example, when developing an anomaly
detection tool, Li [41] analyzed anomalies in aviation logs but did
not thoroughly investigate the causes of such anomalies at the sys-
tem code level. Ultimately, experts still need to manually analyze
anomalies case by case to determine unknown errors. Additionally,
some studies [23, 86, 90] have focused on categorizing software
bugs in UAV systems. However, the relationship between software
bugs and UAV anomalies still remains largely unknown.

To fill the above-mentioned research gaps, we aim to analyze
and understand the characteristics of UAV anomalies, disclosing
their causes at the system code level, to provide developers with
more guidance in combating software bugs via analyzing UAV logs.
Particularly, we pay special attention to UAV crash anomalies, as
they can result in significant damages. For example, in October 2021,
a UAV show was disrupted by signal interference, causing many
UAVs to fall from the sky and incurring serious property losses [98].
It is important and urgent to demystify such crash anomalies in UAV
systems. In addition, before fixing software bugs that induce UAV
anomalies, developers often need to locate the faulty source code
in the UAV system. However, the difficulties of fault localization
through UAV anomaly analysis are still unknown. Gaining insights
into these difficulties is instrumental in designing effective UAV
fault localization tools.

To achieve the above research goals, we conducted an empirical
analysis of real-world UAV anomalies. Specifically, we aimed to sum-
marize systematic knowledge about UAV anomalies by analyzing
the available flight logs of two open-source UAV platforms: PX4 [54]
and Ardupilot [8]. For the study, we collected 2,036 bugs in PX4
and Ardupilot, 178 of which were accompanied by abnormal flight
logs. We manually analyzed each of these logs and relevant data,
including source code, patches, bug reports, and so on. Our analysis
identified six common types of UAV anomalies and their corre-
sponding anomaly-inducing code patterns, as shown in Figure 2.
We also summarized the features of UAV crash anomalies by ana-
lyzing the associated logs and observed four prominent challenges
of fault localization in UAV systems via analyzing UAV anomalies.

Our work can help developers and researchers better understand
UAV anomalies and the patterns of anomaly-inducing system code.
It can also assist developers and researchers in performing effec-
tive fault localization by utilizing UAV anomalies, as well as in
developing more stable and reliable UAV systems.

In summary, our work makes the following contributions:
• We conducted the first empirical study of software bug-induced
UAV anomalies. Our investigation revealed six common types of
UAV anomalies and their patterns at the system code level.

• We systematically discussed the difficulties of fault localization
in UAV systems via anomalies in flight logs.

• We released a replication package and our dataset at https://doi.
org/10.5281/zenodo.8208253 to facilitate future research.
The remaining part of this paper is organized as follows. In

Section 2, we introduce the background of CPSs, UAVs, UAV logs,
UAV log analysis, and pattern classification. The research questions
driving our study are listed in Section 3. In Section 4, we present
our analysis methodology. Sections 5, 6, and 7 delve into each of
the three research questions and discuss our findings. We review
the prior work related to our study in Section 8. In Section 9, we
discuss the potential threats to the validity of our findings. Finally,
Section 10 gives a conclusion of this work.

2 BACKGROUND
2.1 CPSs and UAV Systems
CPSs refer to systems formed by the tight integration of computer-
controlled physical processes and networked communication sys-
tems. A common design objective of CPSs is to enhance system
performance, efficiency, and security. These systems typically en-
compass sensor networks, real-time control systems, and automa-
tion systems [89, 91].

UAVs are an important type of CPSs. Within a typical UAV sys-
tem, the embedded computer and controller manage the UAV’s
attitude and flight status, while sensors collect various flight data
and environmental information to enable intelligent control and
optimization of UAVs [5, 50]. In recent years, UAV technology has
continued to advance rapidly, and several open-source UAV plat-
forms have also emerged. For example, PX4 [27, 48, 54, 75] and
Ardupilot [8, 14, 44, 49] are open-source UAV control software
platforms, offering high performance, reliability, and flexibility.
They support various vehicles, including multi-copters, fixed-wing
aircraft, and vertical take-off and landing (VTOL) aircraft, with
modular architectures.

https://doi.org/10.5281/zenodo.8208253
https://doi.org/10.5281/zenodo.8208253

An Exploratory Investigation of Log Anomalies in Unmanned Aerial Vehicles ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 2: Types and Code Patterns of UAV Anomalies

2.2 UAV Logs
Logs play a critical role in recording system operations, aiding in
troubleshooting, performance analysis, and optimization [95–97].
This is particularly important in the realm of UAVs, where analyzing
flight data and system status is vital for safety and performance.
Prominent UAV systems like PX4 and ArduPilot offer robust logging
capabilities to capture sensor data, control outputs, and system
messages [9, 57]. Typically, UAV log files encompass various data
types, including time series data [79, 88] that provide continuous
recordings over time, such as sensor measurements, flight status,
and control outputs. Time series data is organized by timestamps,
serving as a crucial component for researchers and developers to
analyze UAV performance and diagnose UAV issues.

2.3 UAV Log Analysis and Pattern Classification
UAV log analysis is vital for understanding and optimizing UAV op-
erations. Various general data analysis techniques can be employed
for UAV log analysis, which mainly include three categories: statis-
tical [7, 17, 28, 33, 37], classification-based [18, 85], and clustering-
based [6, 15, 52] methods. Statistical methods involve modeling
data distributions, often using the Gaussian model. Classification-
based methods require labeled training data to learn and create
boundaries between different classes. Clustering-based methods
group data points into clusters, identifying anomalies as those not
fitting any cluster.

Pattern classification techniques are crucial for identifying anom-
alies in UAV flight logs, which can also be divided into three main
categories [1, 84]: feature-based (FB) [51], model-based (MB) [36],
and distance-based (DB) methods [35]. In FB methods, time series
data is transformed into feature vectors and classified using a con-
ventional classifier such as a decision tree. MB methods assume
shared underlying models within a class, assigning new series based
on the best-fitting model. DB methods involve defining distance
measures, which are then integrated into distance-based classifica-
tion methods such as the k-nearest neighbor classifier.

3 RESEARCH QUESTIONS
Our empirical study investigates three research questions (RQs):

• RQ1 (Anomaly Types and Anomaly-inducing Code Pat-
terns): Are there common types of UAV anomalies? What are
the anomaly-inducing patterns at the system code level?

• RQ2 (Characteristics of Crash Anomalies): Which anomaly-
inducing code pattern is most prone to cause UAV crashes? What
are the underlying reasons behind the crash anomalies?

• RQ3 (Difficulties of Fault Localization): What are the diffi-
culties in fault localization via analyzing UAV anomalies?

By investigating RQ1, we aim to classify UAV anomalies into
different types and understand how UAV anomalies arise due to
bugs in the system code. In RQ2, we dig deeper into the causes of
UAV crashes based on the results of RQ1. In RQ3, we explore the
obstacles of fault localization through anomaly analysis.

4 METHODOLOGY
4.1 Data Collection
To construct a dataset of UAV bugs and logs for analysis, we con-
sidered the following three requirements: (1) To ensure that our re-
search results are useful, we should choose popular and active UAV
systems with a sufficient number of anomalies as our study subjects.
(2) To investigate the code-level patterns behind UAV anomalies,
we should have access to the system source code. Therefore, the
selected systems should be open-source. (3) For a comprehensive
understanding of UAV anomalies (i.e., from the origin of the anom-
alies to their resolution), it is essential to know the details of the
software bugs causing the anomalies, as well as their fixes. In accor-
dance with requirement 1, we chose PX4 and ArduPilot from a wide
range of open-source UAV systems as our study subjects. Other
open-source UAV platforms, such as OpenPilot and Paparazzi, lack
available issue data [90] for analysis. Based on requirements 2 and
3, we devised the following data collection criteria:

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, Yulei Sui, Pinjia He, and Michael R. Lyu

Table 1: The Statistics of the Two Subjects: PX4 and Ardupilot

Project Name # Stars on GitHub # Commits Lines of Code # Files # Closed Issues # Bugs
PX4 6,400 44,348 1,139,400 3,384 6,236 1,384

Ardupilot 8,400 75,857 2,123,463 3,291 5,085 652

• Closed Issue Reports: Resolved issues are often represented by
closed reports, which are essential for our analysis. That is, we
exclude open issues.

• Inclusion of Log Data in Issue Reports: In the open-source
community, users or developers may not always adhere to issue
reporting standards andmay omit crucial log data when reporting
abnormal UAV behaviors. Such reports hold little value for our
study and are thus excluded.

• Bug-tagged Issue Reports with a Corresponding Patch:
Open-source project maintainers typically assign appropriate
labels to issue reports. In line with requirement 3, we collected
issue reports tagged with a “bug” label and accompanied by a
patch that resolves the issue.

Based on the above criteria, we manually collected 2,036 real
bugs, of which 178 contain logs, from 11,321 closed issues in the
projects PX4 and Ardupilot on GitHub. As shown in Table 1, PX4
contains 6,236 closed issues and 1,384 bugs, while Ardupilot has
5,085 closed issues and 652 bugs. It can also be seen from the table
that these two projects contain more than two million lines of code
and over 110,000 commits.

4.2 Types of UAV Anomalies
To gain a precise understanding of the collected anomalies, we
begin by classifying them into different types. To facilitate manual
analysis, we first employ the Flight Review tool [58] provided by
PX4 and the UAV Log Viewer tool [10] from Ardupilot to visualize
the UAV log files collected from the respective platforms. Since UAV
logs consist of time series data, we also employ a widely adopted
time series anomaly classification system [19, 22] to categorize the
anomalies in UAV logs into three types, as shown in Figure 3:

Point Anomalies: Individual data points deviating significantly
from the expected trend. Causes include random noise, data entry
errors, or genuine unusual events.

Contextual Anomalies: Data points deviating from the ex-
pected pattern within a specific context, such as a particular day
or season. These anomalies may appear normal in isolation but
abnormal within context.

Collective Anomalies: A group of data points exhibiting un-
usual behavior collectively, although each point may not be anoma-
lous individually. This type typically suggests underlying changes
in the system generating the data, pattern shifts, or unknown vari-
able relationships.

Following the aforementioned classification and the prior re-
search [42] on anomaly detection in flight logs1, we classify point
and contextual anomalies as instantaneous-type anomalies in this
work. Furthermore, we will provide a detailed classification scheme
for collective anomalies in Section 4.3.

1Previous work [47] also explored anomaly classification in CPSs. However, as their
studied systems differ greatly from UAVs, their method cannot be used in our work.

Figure 3: UAV Altitude with Three Types of Anomalies

4.3 Classifying Anomaly Types and
Anomaly-inducing Code Patterns

To achieve an objective classification of UAV anomaly types and
anomaly-inducing code patterns, we employed an open-coding
procedure [40, 43, 90], a widely adopted data analysis method in
empirical research. Specifically, two authors of this paper engaged
in an eight-month iterative labeling process on the collected data
in this study. Both authors have more than three years of research
and development experience in the CPS domain. Particularly, prior
to this work, they investigated hundreds of bugs in open-source
CPS projects and deployed tens of buggy PX4 versions on either
real UAVs or in emulators. During the manual analysis, through
continuous discussion and refining of classification strategies, they
ultimately reached a consensus on the classification results. In the
following, we present the details of the manual analysis process.

In the first iteration, spanning a period of four months, the two
authors separately analyzed all the UAV anomalies by checking
logs, source code, patches, issue reports, and comments from the
project developers, and provided descriptions and labels for the
code-level patterns and types of UAV anomalies based on their own
understanding. In this step, no restrictions were set on the content
or format of the descriptions. For labels, we requested the two
authors to describe them concisely, using as few words as possible
to avoid excessive length.

Upon completing the above task, the two authors carried out
their first discussion. They initially compared and discussed their
results for each anomaly, preserving those with consistent or similar
labels. For labels with discrepancies, they analyzed the reasons
behind these differences, exploring factors such as whether the
discrepancies stem from one party’s misunderstanding, whether the
discrepancies are due to different descriptive methods, or whether
both parties misunderstand the anomalies. With these discussions,
the two authors established a preliminary classification and labeling
strategy.

In the second iteration, the two authors re-labeled all UAV anom-
alies based on the devised strategy and compared the outcomes.
However, discrepancies persisted in the labeling results. This was
because certain anomalies could be associated with multiple labels,

An Exploratory Investigation of Log Anomalies in Unmanned Aerial Vehicles ICSE ’24, April 14–20, 2024, Lisbon, Portugal

suggesting that the boundaries between different classes were un-
clear and the labeling strategy was ambiguous. To address these
discrepancies, the two authors discussed again and clarified the
boundaries of different classes, ensuring that each anomaly would
be exclusively associated with a single label.

After the second refinement of the classification and labeling
strategy, the two authors carried out a third iteration and ultimately
achieved a consistent classification of anomaly types and anomaly-
inducing code patterns.

With the three iterations, every UAV anomaly was assigned
to one unique class within our taxonomy of anomaly types and
anomaly-inducing code patterns. To facilitate the replication of
our work, we discuss some special cases encountered during our
classification process:

(1) Since UAV logs include more than 20 different indicators,
such as speed, position, and temperature, the same anomaly may
manifest in different indicators. For example, a crash may be iden-
tified as a sudden vertical drop in altitude, while also appearing
as extremely irregular fluctuations in the UAV’s posture. When
developers do not specify the specific abnormal indicators in the
issue reports, we would study the anomalies related to the physical
trajectory of the UAV by referring to previous studies [32].

(2) Some logs contain a chain of abnormal events. For example,
in PX4 Issue 12071 [59], a UAV experienced a loss of control that
ultimately caused it to run out of power and crash. In such situations,
we would study the initial anomaly that led to the loss of control
rather than the crash anomaly that occurred later.

5 RQ1: ANOMALY TYPES AND
ANOMALY-INDUCING CODE PATTERNS

5.1 Different Types of UAV Anomalies
After conducting iterative classification, in addition to the instan-
taneous type anomalies mentioned in Section 4.2, we addition-
ally identified five other types of UAV anomalies based on their
visual features: W-type, L-type, Climb-type, Deviation-type, and
Interruption-type.

The W-type anomalies refer to those UAV anomalies exhibiting
a waveform-like oscillation pattern with fluctuations.W-type anom-
alies rarely exhibit standard interval fluctuations. Instead, most of
them have varying amplitudes and directions of oscillation, which
can be broadly classified into horizontal, upward, and downward
oscillations.

The L-type anomalies refer to those UAV anomalies that exhibit
a sudden steep decline from normal states, followed by a gradual
flattening with little or no significant fluctuation.

The Climb-type anomalies, in contrast to the L-type anomalies,
are characterized by a rapid abnormal ascent from the normal
state, followed by a gradual leveling off with little to no apparent
fluctuation. The resulting shape resembles a step-like pattern as
seen in the log data.

The Deviation-type anomalies refer to deviations between the
UAV logs and the originally planned flight states. In contrast to the
above types of anomalies, the Deviation type requires a comparison
between two log entries to determine. For instance, in Figure 4, the
UAV’s flight appears normal by solely examining the yaw angle

Figure 4: A Deviation-Type UAV Anomaly

estimated. However, by observing the yaw setpoint, we can identify
a rightward deviation of the yaw angle in the UAV’s flight path.

The Interruption-type anomalies in UAV logs refer to discon-
tinuous or interrupted events. These anomalies are characterized
by gaps or interruptions in the UAV’s log data.

5.2 Code-Level Patterns of UAV Anomalies
Through our iterative classfication, we identified six major anomaly-
inducing patterns at the code level. These patterns include bound,
clash, incompatible, math, transition, and validity. In the following,
we provide a detailed discussion of each pattern.

5.2.1 Bound. In UAV systems, there are various numerical bound-
aries related to physical parameters, time, UAV functionalities, and
others. Failing to adhere to these boundaries (e.g., exceeding a limit)
can result in anomalies or malfunctions of the UAV.
• Bound of Parameters. In UAV systems, there are thousands of
parameters, most of which have physical boundaries. For exam-
ple, the HDRIFT parameter represents the horizontal drift speed
to use GPS, and its numerical bound is 0.1 to 1. If the program
violates this boundary when using GPS, the UAV may malfunc-
tion. In addition, there are also some issues related to the use
and optimization of parameter boundaries. For example, setting
unnecessary boundaries or improper boundaries (e.g., too large
or too small) can also cause UAV anomalies. In Issue 11420 [60],
some users attempted to adjust the MPC_XY_VEL_MAX parameter
to decrease the speed of the UAV. However, this approach led to
an issue where the UAV’s flight controller attempted to pull the
aircraft back to the limited speed when the MPC_VEL_MANUAL or
MPC_XY_CRUISE parameters exceeded the maximum speed. This
resulted in the W-type anomaly depicted in Figure 5. Ultimately,
the problem was resolved by verifying whether the parameters
exceeded the maximum speed, as illustrated in Listing 1.

• Bound of Filters. Signal transmission within a UAV typically
requires the use of filters to ensure signal quality by filtering out
noises that are out of certain boundaries. High-quality signals, i.e.,
those with low noises, can ensure stable operation of the UAV. In
practice, improper filtering may cause abnormal UAV behaviors.
For example, in Issue 9150 [61], after achieving a stable takeoff,
developers observed unstable oscillations in the UAV flight as
shown in Figure 6. The occurrence of this anomaly was due to the
disabling of the D-term filter2 in the mc_att_control module

2The D-term filter is a component of the PID controller in UAVs and is responsible for
fine-tuning the controller’s output.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, Yulei Sui, Pinjia He, and Michael R. Lyu

Figure 5: A W-Type UAV Anomaly of Issue #11420

// Check that the design parameters are inside
// the absolute maximum constraints

if (_param_mpc_xy_cruise.get() >
_param_mpc_xy_vel_max.get()) {

_param_mpc_xy_cruise.set(_param_mpc_xy_vel_max
.get());

_param_mpc_xy_cruise.commit();
mavlink_log_critical(&_mavlink_log_pub,

"Cruise speed has been constrained by max speed")
}

Listing 1: The Fix of Issue #11420

- PARAM_DEFINE_FLOAT(MC_DTERM_CUTOFF, 0.f);
+ PARAM_DEFINE_FLOAT(MC_DTERM_CUTOFF, 30.f);

Listing 2: The Fix of Issue #9150

Figure 6: A W-Type UAV Anomaly of Issue #9150

of the system. This resulted in a high cutoff frequency, which
negatively impacted the UAV’s smooth operation. The solution
to this issue is to enable the D-term filter, as shown in Listing 2.

• Bound of Time. Due to the limited processing power of UAVs
and the need to handle a large number of tasks, sometimes small
time boundaries can also cause UAV anomalies. For example,
in Issue 15810 [62], the land detector module subscribed to a
frequency of 1Hz, resulting in a timeout value that was too small.
As a result, the UAV was unable to execute failsafe landing tasks
in a timely manner before it shuts down in the air. Then, an
L-type anomaly occurred, as shown in Figure 7.

There are other bound-related anomalies in our dataset, but due to
the page limit, we present only the above three typical cases in this
paper. All anomalies can be found in our released dataset.

Figure 7: A L-Type UAV Anomaly of Issue #15810

+ // Accumulate autopilot gyro data across the same
time interval as the flow sensor

+ _imu_del_ang_of += _imu_sample_delayed.delta_ang -
_state.gyro_bias;

+ _delta_time_of += _imu_sample_delayed.delta_ang_dt;

Listing 3: The Fix of Issue #6772

5.2.2 Clash. The pattern Clash refers to the presence of two clash-
ing objects, causing UAV anomalies. These objects include but are
not limited to methods, libraries, commands, parameters, and refer-
ence coordinate systems.
• Clash Between Commands and Flight Modes. UAV systems
are equipped with commonly used flight modes, such as takeoff,
landing, and follow modes. PX4 includes 17 flight modes, each
responding to different user commands. The diverse range of
flight modes offered by UAV systems can cause clashes between
user commands and flight modes, leading to unintended conse-
quences. For example, in Issue 12029 [63], the use of the com-
mand SET_ACTUATOR_CONTROL_TARGET resulted in the disregard
of subsequent commands, which ultimately led to a crash when
the UAV attempted to fly in offboard mode using body_rate and
thrust setpoints (the SET_ACTUATOR_CONTROL_TARGET command
clashes with the offboard flight mode).

• Clash of Timer Interval. Some sensors have different timers,
which can cause clashes in sensor data. For example, in Issue
6772 [64], the UAV’s inertial measurement unit (IMU) data of
gyro were not being accumulated over the same timer interval as
the flow sensor data. This caused the optical flow configuration
to exhibit slow drift over time. The problem was fixed by aligning
the timers, as shown in Listing 3.

• Clash Between Coordinates and Setpoints. UAV systems
involve various reference coordinate systems, including map co-
ordinate systems, Earth coordinate systems, camera coordinate
systems, global coordinate systems, and more. Different coordi-
nate systems are associated with different setpoints. As a result,
the reference coordinate systemmay clash with the setpoints. For
instance, in Issue 12517 [65], the position control of a fixed-wing
UAV uses a global coordinate system, but the position control
in PX4 uses non-global position setpoints. This results in the
fixed-wing UAV being unable to follow position setpoints for
flight missions. As shown in Figure 8, the UAV flies directly in
a straight line (i.e., the blue line) in offboard mode instead of
following the setpoints.

An Exploratory Investigation of Log Anomalies in Unmanned Aerial Vehicles ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 8: A Deviation-Type UAV Anomaly of Issue #12517

pwm_out_sim mode_pwm
sensors start
commander start

- land_detector start multicopter
+ land_detector start vtol
navigator start

Listing 4: The Fix of Issue #7737

5.2.3 Math. As a control system, UAVs involve a multitude of in-
tricate mathematical calculations, encompassing tasks like angular
velocity computation, position calculation, attitude determination,
flight control algorithms, and more. Developers may make mistakes
when implementing the calculations. Here is a typical example of
this pattern: In Issue 18595 [66], the fixed-wing landing’s loiter exit
was incorrectly calculated during counterclockwise loiters, which
resulted in the aircraft flying an approach vector with an offset. As
a result, the UAV experienced a rightward deviation anomaly, as
shown in Figure 4. The issue was eventually resolved by modifying
the calculation formula.

5.2.4 Incompatible. There are many types of UAVs, such as fixed-
wing andmulti-copter, each corresponding to different flight control
algorithms. If the flight control algorithm does not match the UAV
type, it can lead to abnormal UAV behaviors. In Issue 7737 [67], the
developer mistakenly used the land_detector for VTOL UAVs on
a fixed-wing UAV, resulting in the UAV having very little throttle
during takeoff, which eventually led to a failed takeoff. The devel-
oper fixed the bug by adjusting to the appropriate UAV type, as
shown in Listing 4.

5.2.5 Transition. In UAVs, flight missions and modes can be switc-
hed using commands at runtime. However, due to the varying
implementations of different missions or modes, many bugs can
occur during the switching process. For example, in Issue 12910 [68],
there is no control in the fixed wing after transitioning from altitude
control. This results in the UAV’s throttle being immediately cut to
zero, as shown in Figure 9.

5.2.6 Validity. In UAV systems, data validity requires multiple
verifications beyond simple numerical and data type checks. For
instance, in Issue 15037 [69], the tailsitter’s quaternion input must
be completely normalized because the acosf() function used by
the system module to calculate the control attitude requires input
values to be within the range of -1 to 1. Invalid quaternion input
resulted in the UAV failing to generate a pitch set value, which in
turn caused the tailsitter VTOL front/back transmission to fail. The
fix for this issue is shown in Listing 5.

Figure 9: A Instantaneous-TypeUAVAnomaly of Issue #12910

+ // ensure input quaternions are exactly
normalized because acosf (1.00001) ==NaN

+ _q_trans_sp.normalize ();

Listing 5: The Fix of Issue #15037

5.2.7 Others. There are other anomaly-inducing code patterns
such as hardware support, and driver issues that we consider less
important to be discussed in this paper since similar problems also
exist in general software systems. Therefore, we will not elaborate
on them due to the page limit.

5.3 Discussions
5.3.1 Comparison with General CPSs. Given that UAV systems
are a typical type of CPSs, it is not surprising to find that many
anomalies and code patterns observed in UAV systems also appear
in other traditional CPSs. For instance, the bound pattern associated
with UAV parameters can also be observed in robot systems [92, 94],
which often enforce various parameter bounds. Furthermore, a
noteworthy point is that some UAV systems such as PX4 directly
leverage technologies from the Robot Operating System (ROS) [76]
for obstacle avoidance and collision prevention, thereby naturally
causing many similarities between these UAV systems and robot
systems. Nonetheless, we found that UAV systems exhibit distinct
features when compared to general CPS counterparts:

Severity of Crash Anomalies. UAVs may suffer from crash
anomalies where altitude abruptly dropped to zero due to their
unique operation in the airspace. We have observed twelve crash
cases in our dataset where altitude unexpectedly drops to zero,
causing severe consequences. In comparison, crashes in many other
CPSs [47] do not manifest such pronounced changes in altitude.

Code Pattern Distributions. While anomaly-inducing code
patterns can exhibit similarities between UAV systems and other
CPSs, their distribution characteristics deviate due to the dispari-
ties in system functionality and hardware. According to a recent
empirical study [94] on CPS bugs, bugs tied to numerical ranges
accounted for 2.75%, whereas in our dataset, bound-related bugs
comprised a substantial 34.8%.

Impact of the Control Algorithm. Flight control algorithms
are a distinctive feature of UAV systems. UAVs demand exception-
ally precise and real-time flight control algorithms [77] and bugs
within these algorithms can lead to critical flight issues. In con-
trast to conventional CPSs, the system code governing UAV flight
control involves a complex interplay of mathematical and physical
calculations [55]. As exemplified in Section 5.2.1, even a minute
deviation can culminate in a catastrophic UAV crash.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, Yulei Sui, Pinjia He, and Michael R. Lyu

5.3.2 Detecting UAV Anomalies and Software Bugs. In RQ1, we
reveal the causes of UAV anomalies at the system code level. To
inspire future research, we further discuss several possible ideas to
detect the three most common types of software bugs that induce
abnormal UAV behaviors.

The Bound Pattern: Our studied UAV systems involve more
than one thousand parameters, whose values should be within
specific boundaries [90]. The number of parameters may further
expand with software or hardware updates. Essentially, the state
of a UAV flight is determined by a set of diverse parameter values.
Therefore, it is possible to employ fuzzing techniques to continu-
ously fly a UAV to detect whether each set of parameter values is
within proper boundaries. However, the challenge arises from the
multitude of parameter combinations, leading to a potential search
space explosion. One viable solution to this problem is to utilize
evolutionary algorithms to select the parameters to fuzz in a guided
manner. Future research can investigate the effectiveness of this
approach or leverage other search and optimization algorithms to
reduce the search space when detecting bugs of the bound pattern.

The Clash Pattern: According to our observation of the clash
of timer intervals in RQ1, it is evident that two distinct sensors may
possess different timer intervals. When values from sensors with
disparate timer intervals intersect within the program, conflicts
may arise. To address and detect such issues, we recommend using
symbolic execution. This method allows for the identification of
potential intersection points among variables storing values from
different sensors, thereby facilitating the detection of clashes.

The Transition Pattern: Building upon our observations of
real anomalies, it is possible to craft specialized testing strategies
to detect bugs of the transition pattern. For instance, one can con-
tinuously generate commands for UAVs to switch flight modes (i.e.,
transition-specific fuzzing) to detect potential issues arising during
mode transitions within the system.

6 RQ2: CHARACTERISTICS OF CRASH
ANOMALIES

Given the severe consequences of UAV crashes, it is important to
understand the characteristics of the crash anomalies in real UAV
systems to guide future research. For the first sub-question of RQ2,
we focus on discerning the most common anomaly-inducing code
pattern that can result in UAV crashes. The second sub-question
investigate how such bugs in system code cause UAV crashes.

For the first sub-question, we observed that the bound pattern
is most likely to cause a UAV to lose control and crash. We did
statistical analysis on the code patterns causing UAV crash anom-
alies based on the results of RQ1. As shown in Figure 10, the bound
pattern clearly caused the highest number of crash anomalies. This
suggests that future research effort may focus on developing effec-
tive techniques to identify improper or missing boundary checks
in UAV system code to avoid the catastrophe of UAV crashes.

To answer the second sub-question, we examined the fixing code
for each bound-related issue in our dataset. Specifically, by manual
code inspection, we analyzed which system module was affected by
each bound-related issue and why such issues ultimately led to UAV
crashes. We made two major observations through the analysis:

41.67%

8.33% 8.33% 8.33%

33.33%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Bound Clash Incompatible Transition Others

Figure 10: Code Pattern Distribution of Crash Anomalies

1) Most issues with bound patterns are related to control
algorithms. In our dataset, 80% bound-related issues are in control-
related modules, such as position control, altitude control, atti-
tude control3, navigation, and so on. This is understandable since
the flight control algorithm has a direct impact on the stability
of the UAV [53]. We observe that control algorithms can act like
an amplifier that magnifies and even superimposes the effects of
bound-related problems, ultimately leading to the loss of control.
For example, in Issue 7202 [70], the problem arose from temperature
fluctuations, which affected the accuracy of the Inertial Measure-
ment Unit (IMU), leading to a minor deviation in IMU.AccZ (i.e.,
the Z-axis acceleration). Initially, this deviation did not impact the
UAV’s flight performance. However, as the flight mission contin-
ued, this deviation accumulated and there was no boundary check
for the value. Consequently, the accumulated deviation grew be-
yond the Extended Kalman Filter’s (EKF) capacity, resulting in a
catastrophic UAV crash. This entire process is a kind of “butterfly
effect” within the UAV, with the flight control algorithm acting as
the accumulator.

2) The boundary checking in our studied UAV systems is
insufficiently effective. Our manual code analysis unveils that
all bound-related issues resulting in UAV crashes were due to the
lack of proper boundary checks. In a UAV system, important value
boundaries should be correctly enforced to ensure that the UAV’s
operation complies with safety requirements or restrictions. How-
ever, when building real UAV systems, it is difficult to implement
sound error protection measures (i.e., certain values may not be
checked properly at runtime). Once some values exceed their ex-
pected boundaries, the system may not be able to take corrective
measures to prevent the UAV from exhibiting undesired behaviors.
This could make the UAV lose control and ultimately crash. For
example, in Issue 10757 [71], the UAV’s setpoint was only slightly
beyond a reasonable radius, but the system could not prevent the
UAV from crashing by correcting the setpoint.

Although boundary checking is critical to ensuring the safety of
UAVs, the frequent occurrences of crash anomalies caused by issues
with the bound pattern highlights the inadequacy of boundary
checking in real UAV systems. Ideally, whenever a new input is
received or a new variable is introduced, the system should verify
whether the value of the variable falls within a reasonable boundary.
Otherwise, issues may arise. Unfortunately, when implementing
UAV systems, developers need to consider a substantial amount
of boundaries (e.g., there are more than one thousand boundaries
related to parameters). It is highly challenging for them to avoid
bound-related issues effectively.

In summary, we observed that bound-related issues are the pri-
mary reason for UAV crashes and boundary checking in real UAV
3The attitude control of a UAV refers to the precise control of its flight orientation,
including pitch, roll, and yaw.

An Exploratory Investigation of Log Anomalies in Unmanned Aerial Vehicles ICSE ’24, April 14–20, 2024, Lisbon, Portugal

8

2
4

3
2

3

0

2

4

6

8

10

Deviation Climb Instantaneous L Interruption W

Figure 11: The Number of Distinct Anomaly-Inducing Code
Patterns for Each Anomaly Type

systems is far from comprehensive. To prevent disastrous conse-
quences, UAV systems should have more effective error protection
measures such as self-monitoring, real-time fault diagnosis, and self-
healing capabilities. This will help improve the safety and reliability
of UAVs, ensuring their stable operation in various environments
and tasks. Nonetheless, the computational resources of UAVs are
often constrained, and incorporating additional error-protection
features may inevitably affect UAV performance. Exploring efficient
approaches for handling crash anomalies while mitigating the per-
formance impact becomes a compelling avenue for future research
in this domain.

7 RQ3: DIFFICULTIES OF FAULT
LOCALIZATION

To address RQ3, we analyzed the UAV anomalies in our dataset
to explore two questions: (1) For each type of UAV anomalies, do
the anomaly-inducing code segments exhibit common patterns in
terms of their location (e.g., whether the code segments are often
located within a common system module)? (2) Are there obvious
correlations between the types of UAV anomalies and the anomaly-
inducing code patterns? If any of the two questions has a positive
answer, it would mean that developers can have useful clues when
performing fault localization via examining anomalies in flight
logs. Unfortunately, by analyzing the collected anomalies and their
patches, we found that the answer to both questions is “no”, sug-
gesting that locating buggy code in UAV systems is challenging
even when anomalous flight logs are available. Developers may
need more information besides the easily obtainable logs to per-
form effective fault localization. In the following, we discuss the
observations we made during the analysis process.

Observation 1: Locating software bugs causing deviation-
type anomalies is particularly challenging. Figure 11 gives the
number of distinct anomaly-inducing code patterns for each anom-
aly type. As we can see, deviation-type anomalies exhibit the most
diverse anomaly-inducing code patterns. Among 20 deviation-type
anomalies, we identified a total of eight distinct anomaly-inducing
code patterns (four are included in the others category in Figure 2).
Besides, deviation-type anomalies are distributed across 12 different
system modules, making fault localization very challenging.

Since it is difficult to locate bugs causing deviation-type anom-
alies, it would be very interesting to investigate how developers
actually deal with deviation-type anomalies in their debugging
process. Based on our investigation of GitHub issue reports and
fixing commits, we observed two strategies adopted by developers
to debug deviation-type anomalies:

Strategy 1: Examining both deviation-type anomalies and other log
items, not just the anomalous items. The logs of a UAV contain over
twenty items, which can be used to determine the UAV’s status. We

observed that in addition to anomalous log items, some developers
also checked normal log items to obtain useful information for
debugging deviation-type anomalies, as shown in Issue #14735 [72].
This is because deviation-type anomalies usually mean that the
UAV is yawing but still operational, so many log items are in normal
states. By analyzing normal log items one by one, developers can
effectively rule out certain possibilities when pinpointing faulty
modules.

Strategy 2: Adjusting parameters to observe the performance of
the UAV. Some developers chose to observe the status of the UAV
by constantly adjusting the relevant parameters to identify a min-
imal set of parameters and related data flows that truly affected
the performance of the UAV. For example, in Issue 5110 [73], the
developers mentioned such an attempt. While the developers did
not immediately succeed in resolving the issue, their description
highlighted that parameter adjustment was employed as a trou-
bleshooting strategy.

While developers can address deviation-type anomalies through
various strategies, we found that fixing bugs that cause deviation-
type anomalies in PX4 was time-consuming, taking an average of
49.5 days. In comparison, on average, it took developers around 34
days to fix other bug-tagged issues in PX4 [25]. This also indicates
the challenges of dealing with deviation-type anomalies.

Observation 2: There is a many-to-many relationship be-
tween UAV anomaly types and anomaly-inducing code pat-
terns. Figure 2 shows that in our dataset, each anomaly type
is associated with multiple anomaly-inducing code patterns, and
conversely, each code pattern is found across multiple anomaly
types. Such a many-to-many relationship makes fault localization
difficult: (1) When multiple anomaly types are related to the same
anomaly-inducing code pattern, identifying the specific anomaly
type causing an error can be challenging; (2) On the other hand,
when the same anomaly type is associated with multiple anomaly-
inducing code patterns, inferring the specific code pattern respon-
sible for an error can be challenging. In both of the two scenarios,
further analysis is necessary to determine the true anomaly type
and identify the buggy code segments in the UAV system. Contex-
tual information and domain knowledge are essential to locate the
faults accurately in such cases. Since the many-to-many relation-
ship between anomaly types and anomaly-inducing code patterns
can be highly complex in real UAV systems with large codebases,
automated tools and techniques are desirable to help locate faults
effectively. Future research may explore the possibility of lever-
aging deep learning algorithms to learn the complex relationship
between UAV anomalies and their triggering bugs.

Observation 3: UAV behaviors are often affected by envi-
ronmental factors. Such uncertaintiesmake fault localization
challenging. In our datasets, we observed that UAV flight logs are
frequently influenced by environmental factors, which can pose
challenges for analysis. Specifically, 34.27% of the analyzed logs
were subject to the influence of environmental factors.

The physical environment can affect the analysis of the UAV
flight logs in several ways. First, the quality of the UAV logs may
be affected in certain environments. For example, high- or low-
temperature environments can cause a decrease in the performance
of UAV hardware and sensors, thereby affecting log quality, espe-
cially for some temperature-sensitive sensors, as we mentioned

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, Yulei Sui, Pinjia He, and Michael R. Lyu

in Section 6-A. Secondly, some anomalies can only occur under
specific environmental conditions. For instance, in Issue 13956 [74],
developers remarked: “This is an issue that we have seen constantly, with
the PixRacer and K66, FMUv5. We are seeing this issue when the wind is 6
m/s and over.” This anomaly only becomes evident when the wind
speed is 6 m/s and over; however, it vanishes from the log when
the wind speed is low. This leads to a situation where developers
are unable to observe and analyze user-reported UAV anomalies,
hindering fault localization. Furthermore, some physical environ-
ments can also result in UAV communication interruptions, leading
to abnormal termination of log data. This also causes obstacles to
fault localization.

Observation 4: It is often difficult to distinguish between
hardware error-caused anomalies and software bug-caused
anomalies in UAVs. Our study focuses on anomalies caused by
software bugs. However, quite a few (around 11.8%) real-life issues
mentioned hardware in their issue reports. In UAV systems, there
are close interconnections between hardware and software compo-
nents. This tight coupling often results in similar anomalies with
different causes (e.g., unstable flight and abnormal landings can
be caused by both hardware and software problems), making it
challenging for developers to differentiate between hardware and
software issues.

The interaction between multiple components further compli-
cates fault localization. For instance, sensor readings that affect the
behavior of the control system may result in problems that appear
to be software errors. Here is a representative developer comment
from a real issue [74] in our dataset: “And actually the battery is still
enough, I only set the minimum voltage per cell a bit higher. When I started
Auto Mode, it flew a couple meter then changed to Land Mode due to the
UAV detect low battery.” The difficulty of fault localization stems from
the complexity of distinguishing whether the problem is caused by
battery damage, or a software bug through log analysis.

When hardware is damaged, UAV systems typically record error
logs. However, these abnormal logs may exhibit similarities with
anomalies caused by software bugs. In UAV systems, distinguishing
between anomalies caused by hardware errors and those caused
by software errors requires developers to consider various factors,
such as error manifestations, component interactions, error logs,
and environmental conditions. Future research can further look
investigate this problem to design effective solutions. It might be
possible to leverage learning algorithms to identify the boundaries
between hardware and software-related issues.

8 RELATEDWORK
Anomaly Detection. Several surveys have been written on the
topic of anomaly detection [56]. For example, Chandola et al. [19]
conducted a comprehensive survey of anomaly detection tools, cat-
egorizing existing techniques based on their underlying approach
and identifying key assumptions that can be used to differentiate
between normal and abnormal behaviors. They also discussed the
computational complexity of the techniques. Hodge and Austin [33]
presented a survey of anomaly detection techniques, highlighting
their motivations and distinguishing their advantages and disad-
vantages. Agyemang et al. [4] discussed the applications of anomaly

detection and provided a taxonomy for categorizing anomaly detec-
tion techniques. Besides the general surveys, recent studies have
also advanced the field of anomaly detection in UAVs. Markou and
Singh [46] presented a review of statistical approaches to anomaly
detection and discussed the novelty of NN-based anomaly detec-
tion. They also highlighted the importance of anomaly detection in
computer vision, pattern recognition, and robotics, which is highly
related to UAV system reliability. A substantial amount of research
on outlier detection has been done in the area of statistics and has
been reviewed in several books [31, 78] and articles [12, 13].

As for anomaly detection approaches, Shar et al. [80] developed
DronLomaly, a deep learning method with LSTM models for real-
time anomaly detection in drones, leveraging flight log analysis.
Silalahi et al. [82] introduced a sentiment analysis method using
fine-tuned large language models for anomaly detection in drone
flight logs. Studiawan et al. [83] proposed the use of Sigma rules in
drone forensic timelines, aiding in the identification of anomalous
drone activities. Ma et al. [45] introduced graphical normalizing
flows, a novel deep learning model for efficient anomaly detection
in small unmanned aerial systems. Moreover, Cleland-Huang et
al. [21] focused on enhancing the safety of small UAVs in airspace
with a multi-pronged approach that combines data analytics and
deep learning techniques for anomaly analysis in both real-time
and post-mortem scenarios.
Evaluation of Anomaly Detectors. There are also many studies
focusing on evaluating anomaly detection tools. Lavin and Ah-
mad [38] evaluated real-time anomaly detection algorithms using
the Numenta Anomaly Benchmark (NAB), which provides a con-
trolled and repeatable environment for evaluating anomaly detec-
tors. Markus and Seiichi [29] evaluated 19 different unsupervised
anomaly detection algorithms on 10 different datasets frommultiple
application domains, highlighting the strengths and weaknesses of
different approaches. Varun and Vipin [20] evaluated seven anom-
aly detection techniques on ten public datasets collected from three
diverse application domains, presenting a novel way to generate se-
quence data with desired characteristics for further understanding
of the performance of anomaly detectors.
Empirical Studies of UAV Bugs. Taylor et al. [86] studied the
reported bugs in Ardupilot and PX4, two widely used open-source
control firmware for UAV systems, and characterized their root
causes, severity, and position in the firmware architecture. Despite
the adoption of rigorous software engineering practices, bugs were
common in the two systems and often had severe symptoms. Wang
et al. [90] performed the first large-scale empirical study of UAV-
specific bugs, also focusing on PX4 and Ardupilot. By thoroughly
analyzing 569 bugs, they successfully identified eight distinct types
of UAV-specific bugs and provided insights into their root causes.

Differing from the above studies, our work aims to provide guid-
ance for locating software bugs in UAV systems by analyzing anom-
alies manifested in UAV logs. Although there is a plethora of re-
search on anomaly detection for UAV systems, further analysis and
identification of bugs in the system code still requires significant
manual effort. To fill this gap, our work offers a more comprehen-
sive characterization of UAV anomalies and reveals the relationship
between anomalies and the underlying software bugs.We also point
out the difficulties of fault localization through analyzing UAV logs
to shed light on future research.

An Exploratory Investigation of Log Anomalies in Unmanned Aerial Vehicles ICSE ’24, April 14–20, 2024, Lisbon, Portugal

9 THREATS TO VALIDITY
9.1 External Threats
Our empirical study only included two open-source UAV projects,
and the UAV anomalies we collected may not be representative
or comprehensive. Therefore, our findings may not be applicable
to other UAV systems. We made an effort to find more projects,
but many are either closed-source or lack sufficient data for our
analysis. Future studies may further investigate more projects to
enhance the community’s understanding of UAV anomalies and
software bugs.

9.2 Internal Threats
The internal threats mainly come from bug selection and manual
analysis. We only collected issues labeled as “bugs” from PX4 and
Ardupilot for our research. Although the project developers and
maintainers label bugs properly, there is still a chance that we
missed some real bugs that have caused severe UAV anomalies but
were not labeled. One possible way to mitigate this threat is to
investigate GitHub issues with other labels or no labels. As this
process is labor-intensive, we leave it as our future work.

Besides, similar to many other empirical studies [86, 90], man-
ual analysis has often been a potential threat to the validity of
research results, as subjective judgment can come into play. To re-
duce this threat, we adopted the widely used data analysis method
in empirical research known as “open coding” [40, 43, 90]. To en-
hance objectivity in the classification process, multiple iterations
of analysis were conducted by two authors. They held many dis-
cussions when analyzing and categorizing anomaly patterns. They
also looked for references from the comments in issue reports when
constructing the anomaly type and anomaly-inducing code pattern
taxonomy. The results have also been cross-validated by two other
authors and released for public scrutiny.

10 CONCLUSION AND FUTUREWORK
In summary, in this work, we delved into the realm of UAVs to
examine the impact of software bugs on UAV anomalies. We col-
lected and analyzed 178 real-world abnormal logs stemming from
software bugs in two widely used open-source UAV platforms, PX4
and Ardupilot. Our research primarily focused on the identification
of code-level patterns associated with these anomalies. We paid
special attention to crash anomalies to understand their causes and
also investigated the challenges of localizing anomaly-inducing
code in UAV systems. The observations and insights gained from
our study can shed light on research on diagnosing and localizing
bugs within UAV system code. Based on our empirical findings, in
the future, we plan to design useful techniques to help developers
enhance the security and reliability of UAV systems. We will also
collect more issues from real-world projects to make our empirical
study more comprehensive.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (Grant Nos. 61932021, 62002163, and 62102340), Natural
Science Foundation of Jiangsu Province (Grant No. BK20200441),

Science and Technology Innovation Committee Foundation of Shen-
zhen (Grant No. ZDSYS20210623092007023), and the ResearchGrants
Council of the Hong Kong Special Administrative Region, China
(No. CUHK 14210920 of the General Research Fund).

REFERENCES
[1] Amaia Abanda, Usue Mori, and Jose A Lozano. 2019. A review on distance based

time series classification. Data Mining and Knowledge Discovery 33, 2 (2019),
378–412.

[2] Wilbert G Aguilar, Vinicio S Salcedo, David S Sandoval, and Bryan Cobeña.
2017. Developing of a video-based model for UAV autonomous navigation. In
Computational Neuroscience: First Latin American Workshop, LAWCN 2017, Porto
Alegre, Brazil, November 22–24, 2017, Proceedings. Springer, 94–105.

[3] Wilbert G Aguilar, Vinicio S Salcedo, David S Sandoval, and Bryan Cobeña.
2017. Developing of a video-based model for UAV autonomous navigation. In
Computational Neuroscience: First Latin American Workshop, LAWCN 2017, Porto
Alegre, Brazil, November 22–24, 2017, Proceedings. Springer, 94–105.

[4] Malik Agyemang, Ken Barker, and Rada Alhajj. 2006. A comprehensive survey
of numeric and symbolic outlier mining techniques. Intelligent Data Analysis 10,
6 (2006), 521–538.

[5] Foisal Ahmed and Maksim Jenihhin. 2022. A Survey on UAV Computing Plat-
forms: A Hardware Reliability Perspective. Sensors 22, 16 (2022), 6286.

[6] James Allan, Jaime G Carbonell, George Doddington, Jonathan Yamron, and
Yiming Yang. 1998. Topic detection and tracking pilot study final report. (1998).

[7] Frank J Anscombe. 1960. Rejection of outliers. Technometrics 2, 2 (1960), 123–146.
[8] Ardupilot. 2023. Ardupilot Doc. Retrieved March 25, 2023 from https://ardupilot.

org/ardupilot/
[9] Ardupilot. 2023. Ardupilot Log. Retrieved March 25, 2023 from https://ardupilot.

org/copter/docs/common-logs.html
[10] Ardupilot. 2023. UAV Log Viewer. Retrieved March 25, 2023 from https://plot.

ardupilot.org/#/
[11] Radhakisan Baheti and Helen Gill. 2011. Cyber-physical systems. The impact of

control technology 12, 1 (2011), 161–166.
[12] Zuriana Abu Bakar, Rosmayati Mohemad, Akbar Ahmad, and Mustafa Mat Deris.

2006. A comparative study for outlier detection techniques in data mining. In
2006 IEEE conference on cybernetics and intelligent systems. IEEE, 1–6.

[13] Richard J Beckman and R Dennis Cook. 1983. Outlier. s. Technometrics
25, 2 (1983), 119–149.

[14] He Bin and Amahah Justice. 2009. The design of an unmanned aerial vehicle
based on the ArduPilot. Indian Journal of Science and Technology 2, 4 (2009),
12–15.

[15] Richard J Bolton, David J Hand, et al. 2001. Unsupervised profiling methods for
fraud detection. Credit scoring and credit control VII (2001), 235–255.

[16] Almira Budiyanto, Adha Cahyadi, Teguh Bharata Adji, and Oyas Wahyunggoro.
2015. UAV obstacle avoidance using potential field under dynamic environment.
In 2015 International Conference on Control, Electronics, Renewable Energy and
Communications (ICCEREC). IEEE, 187–192.

[17] Simon Byers and Adrian E Raftery. 1998. Nearest-neighbor clutter removal for
estimating features in spatial point processes. J. Amer. Statist. Assoc. 93, 442
(1998), 577–584.

[18] Joao BD Cabrera, Lundy Lewis, and Raman K Mehra. 2001. Detection and
classification of intrusions and faults using sequences of system calls. Acm
sigmod record 30, 4 (2001), 25–34.

[19] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[20] Varun Chandola, Varun Mithal, and Vipin Kumar. 2008. Comparative evalua-
tion of anomaly detection techniques for sequence data. In 2008 Eighth IEEE
international conference on data mining. IEEE, 743–748.

[21] Jane Cleland-Huang, Nitesh Chawla, Myra Cohen, Md Nafee Al Islam, Urjoshi
Sinha, Lilly Spirkovska, Yihong Ma, Sulil Purandare, and Muhammed Tawfiq
Chowdhury. 2022. Towards Real-Time Safety Analysis of Small Unmanned Aerial
Systems in the National Airspace. In AIAA AVIATION 2022 Forum. 3540.

[22] Andrew A Cook, Göksel Mısırlı, and Zhong Fan. 2019. Anomaly detection for IoT
time-series data: A survey. IEEE Internet of Things Journal 7, 7 (2019), 6481–6494.

[23] Andrea Di Sorbo, Fiorella Zampetti, Aaron Visaggio, Massimiliano Di Penta, and
Sebastiano Panichella. 2023. Automated identification and qualitative characteri-
zation of safety concerns reported in uav software platforms. ACM Transactions
on Software Engineering and Methodology 32, 3 (2023), 1–37.

[24] Paul G Fahlstrom, Thomas J Gleason, and Mohammad H Sadraey. 2022. Introduc-
tion to UAV systems. John Wiley & Sons.

[25] Maria Lucia Ferramosca. 2021. Safety Assessment of UAV Systems: Field Data
Analysis. Ph. D. Dissertation. Politecnico di Torino.

[26] Allen Ferrick, Jesse Fish, Edward Venator, and Gregory S Lee. 2012. UAV ob-
stacle avoidance using image processing techniques. In 2012 IEEE International
Conference on Technologies for Practical Robot Applications (TePRA). IEEE, 73–78.

https://ardupilot.org/ardupilot/
https://ardupilot.org/ardupilot/
https://ardupilot.org/copter/docs/common-logs.html
https://ardupilot.org/copter/docs/common-logs.html
https://plot.ardupilot.org/#/
https://plot.ardupilot.org/#/

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, Yulei Sui, Pinjia He, and Michael R. Lyu

[27] Jesús García and Jose M Molina. 2022. Simulation in real conditions of navigation
and obstacle avoidance with PX4/Gazebo platform. Personal and Ubiquitous
Computing 26, 4 (2022), 1171–1191.

[28] Robert D Gibbons, Dulal K Bhaumik, and Subhash Aryal. 2009. Statistical methods
for groundwater monitoring. John Wiley & Sons.

[29] Markus Goldstein and Seiichi Uchida. 2016. A comparative evaluation of un-
supervised anomaly detection algorithms for multivariate data. PloS one 11, 4
(2016), e0152173.

[30] Lav Gupta, Raj Jain, and Gabor Vaszkun. 2015. Survey of important issues in
UAV communication networks. IEEE communications surveys & tutorials 18, 2
(2015), 1123–1152.

[31] Douglas M Hawkins. 1980. Identification of outliers. Vol. 11. Springer.
[32] Zhijian He, Yao Chen, Enyan Huang, QixinWang, Yu Pei, and Haidong Yuan. 2019.

A system identification based oracle for control-cps software fault localization.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 116–127.

[33] Victoria Hodge and Jim Austin. 2004. A survey of outlier detection methodologies.
Artificial intelligence review 22, 2 (2004), 85–126.

[34] Nursultan Imanberdiyev, Changhong Fu, Erdal Kayacan, and I-Ming Chen. 2016.
Autonomous navigation of UAV by using real-time model-based reinforcement
learning. In 2016 14th international conference on control, automation, robotics and
vision (ICARCV). IEEE, 1–6.

[35] Hüseyin Kaya and Şule Gündüz-Öğüdücü. 2015. A distance based time series
classification framework. Information Systems 51 (2015), 27–42.

[36] Alexios Kotsifakos and Panagiotis Papapetrou. 2014. Model-based time series
classification. In Advances in Intelligent Data Analysis XIII: 13th International
Symposium, IDA 2014, Leuven, Belgium, October 30–November 1, 2014. Proceedings
13. Springer, 179–191.

[37] Jorma Laurikkala, Martti Juhola, Erna Kentala, N Lavrac, S Miksch, and B Kavsek.
2000. Informal identification of outliers in medical data. In Fifth international
workshop on intelligent data analysis in medicine and pharmacology, Vol. 1. 20–24.

[38] Alexander Lavin and Subutai Ahmad. 2015. Evaluating real-time anomaly detec-
tion algorithms–theNumenta anomaly benchmark. In 2015 IEEE 14th international
conference on machine learning and applications (ICMLA). IEEE, 38–44.

[39] Edward A Lee. 2008. Cyber physical systems: Design challenges. In 2008 11th IEEE
international symposium on object and component-oriented real-time distributed
computing (ISORC). IEEE, 363–369.

[40] Sarah Lewis. 2015. Qualitative inquiry and research design: Choosing among
five approaches. Health promotion practice 16, 4 (2015), 473–475.

[41] Lishuai Li. 2013. Anomaly detection in airline routine operations using flight data
recorder data. Ph. D. Dissertation. Massachusetts Institute of Technology.

[42] Lishuai Li. 2013. Anomaly detection in airline routine operations using flight data
recorder data. Ph. D. Dissertation. Massachusetts Institute of Technology.

[43] Shuqing Li, Yechang Wu, Yi Liu, Dinghua Wang, Ming Wen, Yida Tao, Yulei
Sui, and Yepang Liu. 2020. An exploratory study of bugs in extended reality
applications on the web. In 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 172–183.

[44] Zongtong Luo, Xianbo Xiang, and Qin Zhang. 2019. Autopilot system of remotely
operated vehicle based on Ardupilot. In Intelligent Robotics and Applications:
12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019,
Proceedings, Part III 12. Springer, 206–217.

[45] Yihong Ma, Md Nafee Al Islam, Jane Cleland-Huang, and Nitesh V. Chawla.
2023. Detecting Anomalies in Small Unmanned Aerial Systems via Graphical
Normalizing Flows. IEEE Intell. Syst. 38, 2 (2023), 46–54. https://doi.org/10.1109/
MIS.2023.3252810

[46] Markos Markou and Sameer Singh. 2003. Novelty detection: a review—part 2::
neural network based approaches. Signal processing 83, 12 (2003), 2499–2521.

[47] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2016.
Automated test suite generation for time-continuous simulink models. In pro-
ceedings of the 38th International Conference on Software Engineering. 595–606.

[48] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. 2015. PX4: A node-based
multithreaded open source robotics framework for deeply embedded platforms.
In 2015 IEEE international conference on robotics and automation (ICRA). IEEE,
6235–6240.

[49] Julio Alberto Mendoza-Mendoza, Victor Javier Gonzalez-Villela, Gabriel
Sepulveda-Cervantes, Mauricio Mendez-Martinez, Humberto Sossa-Azuela,
Julio Alberto Mendoza-Mendoza, Victor Gonzalez-Villela, Gabriel Sepulveda-
Cervantes, Mauricio Mendez-Martinez, and Humberto Sossa-Azuela. 2020.
ArduPilot Working Environment. Advanced Robotic Vehicles Programming: An
Ardupilot and Pixhawk Approach (2020), 19–46.

[50] Ana Carolina BMonteiro, Reinaldo P Franca, Vania V Estrela, Sandro R Fernandes,
Abdeldjalil Khelassi, R Jenice Aroma, Kumudha Raimond, Yuzo Iano, and Ali
Arshaghi. 2020. UAV-CPSs as a test bed for new technologies and a primer to
Industry 5.0. Imaging and sensing for unmanned aircraft systems 2 (2020), 1.

[51] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. 2001. Feature-based
classification of time-series data. International Journal of Computer Research 10,
3 (2001), 49–61.

[52] Raymond T Ng and Jiawei Han. 1994. Efficient and Effective Clustering Data
Mining Methods for Spatial. In Proceedings of the 20th VLDB Conference, Santiago,

Chile. 12–15.
[53] Hoa T Nguyen, Toan V Quyen, Cuong V Nguyen, Anh M Le, Hoa T Tran, and

Minh T Nguyen. 2020. Control algorithms for UAVs: A comprehensive survey.
EAI Endorsed Transactions on Industrial Networks and Intelligent Systems 7, 23
(2020), e5–e5.

[54] Khoa Dang Nguyen, Cheolkeun Ha, and Jong Tai Jang. 2018. Development
of a new hybrid drone and software-in-the-loop simulation using px4 code. In
Intelligent Computing Theories and Application: 14th International Conference, ICIC
2018, Wuhan, China, August 15-18, 2018, Proceedings, Part I 14. Springer, 84–93.

[55] Kaan Taha Öner, Ertuğrul Çetinsoy, EFE Sirimoğlu, Cevdet Hançer, Mustafa Ünel,
Mahmut Faruk Akşit, Kayhan Gülez, and Ilyas Kandemir. 2012. Mathematical
modeling and vertical flight control of a tilt-wing UAV. Turkish Journal of Electrical
Engineering and Computer Sciences 20, 1 (2012), 149–157.

[56] Animesh Patcha and Jung-Min Park. 2007. An overview of anomaly detection
techniques: Existing solutions and latest technological trends. Computer networks
51, 12 (2007), 3448–3470.

[57] PX4. 2023. Flight Log. Retrieved March 25, 2023 from https://docs.px4.io/main/
en/log/flight_log_analysis

[58] PX4. 2023. Flight Review Tool. RetrievedMarch 25, 2023 from https://review.px4.io
[59] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/12071
[60] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/11420
[61] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/9150
[62] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/15810
[63] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/12146
[64] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/6772
[65] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/12517
[66] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/18595
[67] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/7737
[68] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/12910
[69] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/15037
[70] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/7202
[71] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/10757
[72] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/14735
[73] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/5110
[74] PX4. 2023. Issue Report. Retrieved March 25, 2023 from https://github.com/PX4/

PX4-Autopilot/issues/13956
[75] PX4. 2023. User Guide. Retrieved March 25, 2023 from https://docs.px4.io/main/

en/
[76] PX4. 2023. User Guide-ROS. Retrieved March 25, 2023 from https://docs.px4.io/

main/en/ros/
[77] Matthes Rieke, Theodor Foerster, Jakob Geipel, and Torsten Prinz. 2012. High-

precision positioning and real-time data processing of UAV-systems. The Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 38 (2012), 119–124.

[78] Peter J Rousseeuw and Annick M Leroy. 2005. Robust regression and outlier
detection. John wiley & sons.

[79] Tabea Schmidt, Florian Hauer, and Alexander Pretschner. 2020. Automated Anom-
aly Detection in CPS Log Files: A Time Series Clustering Approach. In Computer
Safety, Reliability, and Security: 39th International Conference, SAFECOMP 2020,
Lisbon, Portugal, September 16–18, 2020, Proceedings 39. Springer, 179–194.

[80] Lwin Khin Shar, Wei Minn, Ta Nguyen Binh Duong, Jiani Fan, Lingxiao Jiang, and
Daniel LimWai Kiat. 2022. DronLomaly: Runtime Detection of Anomalous Drone
Behaviors via Log Analysis and Deep Learning. In 29th Asia-Pacific Software
Engineering Conference, APSEC 2022, Virtual Event, Japan, December 6-9, 2022.
IEEE, 119–128. https://doi.org/10.1109/APSEC57359.2022.00024

[81] Jianhua Shi, JiafuWan, Hehua Yan, and Hui Suo. 2011. A survey of cyber-physical
systems. In 2011 international conference on wireless communications and signal
processing (WCSP). IEEE, 1–6.

[82] Swardiantara Silalahi, Tohari Ahmad, and Hudan Studiawan. 2023. Transformer-
based Sentiment Analysis for Anomaly Detection on Drone Forensic Timeline.
In 11th International Symposium on Digital Forensics and Security, ISDFS 2023,
Chattanooga, TN, USA, May 11-12, 2023. IEEE, 1–6. https://doi.org/10.1109/

https://doi.org/10.1109/MIS.2023.3252810
https://doi.org/10.1109/MIS.2023.3252810
https://docs.px4.io/main/en/log/flight_log_analysis
https://docs.px4.io/main/en/log/flight_log_analysis
https://review.px4.io
https://github.com/PX4/PX4-Autopilot/issues/12071
https://github.com/PX4/PX4-Autopilot/issues/12071
https://github.com/PX4/PX4-Autopilot/issues/11420
https://github.com/PX4/PX4-Autopilot/issues/11420
https://github.com/PX4/PX4-Autopilot/issues/9150
https://github.com/PX4/PX4-Autopilot/issues/9150
https://github.com/PX4/PX4-Autopilot/issues/15810
https://github.com/PX4/PX4-Autopilot/issues/15810
https://github.com/PX4/PX4-Autopilot/issues/12146
https://github.com/PX4/PX4-Autopilot/issues/12146
https://github.com/PX4/PX4-Autopilot/issues/6772
https://github.com/PX4/PX4-Autopilot/issues/6772
https://github.com/PX4/PX4-Autopilot/issues/12517
https://github.com/PX4/PX4-Autopilot/issues/12517
https://github.com/PX4/PX4-Autopilot/issues/18595
https://github.com/PX4/PX4-Autopilot/issues/18595
https://github.com/PX4/PX4-Autopilot/issues/7737
https://github.com/PX4/PX4-Autopilot/issues/7737
https://github.com/PX4/PX4-Autopilot/issues/12910
https://github.com/PX4/PX4-Autopilot/issues/12910
https://github.com/PX4/PX4-Autopilot/issues/15037
https://github.com/PX4/PX4-Autopilot/issues/15037
https://github.com/PX4/PX4-Autopilot/issues/7202
https://github.com/PX4/PX4-Autopilot/issues/7202
https://github.com/PX4/PX4-Autopilot/issues/10757
https://github.com/PX4/PX4-Autopilot/issues/10757
https://github.com/PX4/PX4-Autopilot/issues/14735
https://github.com/PX4/PX4-Autopilot/issues/14735
https://github.com/PX4/PX4-Autopilot/issues/5110
https://github.com/PX4/PX4-Autopilot/issues/5110
https://github.com/PX4/PX4-Autopilot/issues/13956
https://github.com/PX4/PX4-Autopilot/issues/13956
https://docs.px4.io/main/en/
https://docs.px4.io/main/en/
https://docs.px4.io/main/en/ros/
https://docs.px4.io/main/en/ros/
https://doi.org/10.1109/APSEC57359.2022.00024
https://doi.org/10.1109/ISDFS58141.2023.10131749
https://doi.org/10.1109/ISDFS58141.2023.10131749

An Exploratory Investigation of Log Anomalies in Unmanned Aerial Vehicles ICSE ’24, April 14–20, 2024, Lisbon, Portugal

ISDFS58141.2023.10131749
[83] Hudan Studiawan, Ahmad Firdaus, Baskoro A Pratomo, and Tohari Ahmad.

2023. Anomaly Detection on Drone Forensic Timeline with Sigma Rules. In 2023
International Conference on Emerging Smart Computing and Informatics (ESCI).
IEEE, 1–5.

[84] Gian Antonio Susto, Angelo Cenedese, and Matteo Terzi. 2018. Time-series
classification methods: Review and applications to power systems data. Big data
application in power systems (2018), 179–220.

[85] David MJ Tax and Robert PW Duin. 1999. Support vector domain description.
Pattern recognition letters 20, 11-13 (1999), 1191–1199.

[86] Max Taylor, Jayson Boubin, Haicheng Chen, Christopher Stewart, and Feng
Qin. 2021. A study on software bugs in unmanned aircraft systems. In 2021
International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 1439–
1448.

[87] John Tisdale, ZuWhan Kim, and J Karl Hedrick. 2009. Autonomous UAV path
planning and estimation. IEEE Robotics & Automation Magazine 16, 2 (2009),
35–42.

[88] Darren Turner, Arko Lucieer, and Steven M De Jong. 2015. Time series analysis
of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sensing
7, 2 (2015), 1736–1757.

[89] Michael Vierhauser, Jane Cleland-Huang, Sean Bayley, Thomas Krismayer, Rick
Rabiser, and Pau Grünbacher. 2018. Monitoring CPS at runtime-A case study in
the UAV domain. In 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 73–80.

[90] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021.
An exploratory study of autopilot software bugs in unmanned aerial vehicles.

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 20–31.

[91] Haijun Wang, Haitao Zhao, Jiao Zhang, Dongtang Ma, Jiaxun Li, and Jibo Wei.
2019. Survey on unmanned aerial vehicle networks: A cyber physical system
perspective. IEEE Communications Surveys & Tutorials 22, 2 (2019), 1027–1070.

[92] JunWu, JinsongWang, and Zheng You. 2010. An overview of dynamic parameter
identification of robots. Robotics and computer-integrated manufacturing 26, 5
(2010), 414–419.

[93] Liang Yang, Juntong Qi, Jizhong Xiao, and Xia Yong. 2014. A literature review
of UAV 3D path planning. In Proceeding of the 11th World Congress on Intelligent
Control and Automation. IEEE, 2376–2381.

[94] Fiorella Zampetti, Ritu Kapur, Massimiliano Di Penta, and Sebastiano Panichella.
2022. An empirical characterization of software bugs in open-source cyber–
physical systems. Journal of Systems and Software 192 (2022), 111425.

[95] Lei Zeng, Yang Xiao, Hui Chen, Bo Sun, and Wenlin Han. 2016. Computer oper-
ating system logging and security issues: a survey. Security and communication
networks 9, 17 (2016), 4804–4821.

[96] Tianzhu Zhang, Han Qiu, Gabriele Castellano, Myriana Rifai, Chung Shue Chen,
and Fabio Pianese. 2023. System Log Parsing: A Survey. IEEE Transactions on
Knowledge and Data Engineering (2023).

[97] Jiang Zhaoxue, Li Tong, Zhang Zhenguo, Ge Jingguo, You Junling, and Li Liangx-
iong. 2021. A survey on log research of aiops: methods and trends. Mobile
Networks and Applications 26, 6 (2021), 2353–2364.

[98] zhihu. 2023. news. Retrieved March 25, 2023 from https://zhuanlan.zhihu.com/
p/423739596

https://doi.org/10.1109/ISDFS58141.2023.10131749
https://zhuanlan.zhihu.com/p/423739596
https://zhuanlan.zhihu.com/p/423739596

	Abstract
	1 Introduction
	2 Background
	2.1 CPSs and UAV Systems
	2.2 UAV Logs
	2.3 UAV Log Analysis and Pattern Classification

	3 Research Questions
	4 Methodology
	4.1 Data Collection
	4.2 Types of UAV Anomalies
	4.3 Classifying Anomaly Types and Anomaly-inducing Code Patterns

	5 RQ1: Anomaly Types and Anomaly-Inducing Code Patterns
	5.1 Different Types of UAV Anomalies
	5.2 Code-Level Patterns of UAV Anomalies
	5.3 Discussions

	6 RQ2: Characteristics of Crash Anomalies
	7 RQ3: Difficulties of Fault Localization
	8 Related Work
	9 Threats to Validity
	9.1 External Threats
	9.2 Internal Threats

	10 Conclusion and Future Work
	Acknowledgments
	References

