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Abstract—In recent years, there has been an increasing de-
mand for sensitive data tracing for industrial microservices; these
include change of governance, data breach detection, to data
consistency validation. As an information tracking technique,
Taint analysis is widely used to address these demands. This
paper aims to share our experience in developing a scalable
static taint analyzer on sensitive data tracing for large-scale
industrial microservices. Although several taint analyzers have
been proposed for Java applications, our experiments show that
existing approaches are inefficient and/or ineffective (in terms
of low recall/precision rates) for analyzing large-scale industrial
microservices.

Instead, we present CFTaint, a compositional field-based taint
analyzer, to address the challenges for popular microservices
running on industrial Fintech applications. CFTaint improves
scalability by using a fast compositional function summary, which
summarizes the data propagation of each function during the
on-the-fly taint analysis. CFTaint also uses a novel filed-based
algorithm to analyze the taint propagation based on specified sen-
sitive fields to reduce false negatives. Our field-based algorithm
maximizes the soundness of our approach even when the taint
tracking is performed on an unsound call graph. Furthermore, we
also propose an efficient code transformation method to model the
behaviours of the containers, which allows our analysis to trace
data propagation in a container environment. Experiments on
numerous production microservices demonstrate the high recall
(96.09%) rates and precision (93.51% for tracing sensitive data)
of CFTaint with low time complexity (121.73 seconds).

Index Terms—program analysis, taint analysis, micro-services

I. INTRODUCTION

Taint analysis is an information tracking technique that aims
to analyze the control and data dependence from a source to a
sink. It has been widely used in software analysis and testing to
detect sensitive data leakage and various vulnerabilities (e.g.,
memory errors and code injection attacks) [1]–[8]. According
to a recent study [9], data breaches incurred an average cost
of 4.42 million US dollars in the year 2020. These data breach

† is corresponding author.

vulnerabilities also impose large FinTech enterprises to spend
more than millions of US dollars annually to protect their
software security. With the increasing sophistication of busi-
ness logic and the continuous expansion of industrial micro-
services used in these FinTech companies (e.g., Ant Group,
PayPal, etc.), there is an urgent demand for scalable taint
analysis tools which can run on mega-scale microservices.

The static analysis aims to approximate runtime behaviour
without running the program so that a vulnerability can be
captured in the early stage of a software development cycle.
This paper presents a ”scalable” compositional static taint
analyzer for industry-scale micro-services. Currently, there are
several static taint analysis solutions for traditional software
systems, such as FlowDroid [10], F4F [11], DroidInfer [12]
and ANTaint [2]. We note that as a variant of FlowDroid,
ANTaint is inadequate in analyzing large-scale micro-services
applications. Built upon FlowDroid [10], ANTaint [2] im-
proves its scalability via building the call-graph and propa-
gating taints in an on-demand manner. To accurately analyze
the traditional software systems, ANTaint requests a complete
and precise call-graph and a self-defined taint propagation
model. However, the scalability of ANTaint’s using the IFDS
framework faces many difficulties in analyzing micro-services
applications with millions of lines of code. Here, we state the
challenges in designing industrial-scale taint analysis tools:

Challenge 1: Recall. Recall is one of the major obstacles to
precisely analyzing taint propagation on large-scale industrial
micro-services. Most conventional static taint analyzers con-
duct their analysis based on a pre-built callgraph [2], [10],
[12], [13], which means their analysis performances, such
as precision and recall, rely solely on the soundness of the
underlying call-graph. For example, FlowDroid [10], the state-
of-the-art IFDS-based static program analysis study, executes
its interprocedural program analysis by relying on the pre-
built call-graph. However, it is extremely hard to build a
sound call-graph statically for large-scale industrial micro-



services applications due to the usage of complex framework
behaviours such as AOP (Aspect Oriented Programming),
message services, IOC (Inversion of Control), reflection, and
events [14]. Although some studies claimed that the miss-
ing call-sites related to such framework behaviours could
be supplemented to the call-graph by manually modelling
these framework behaviours [2], it is inherently inefficient
and costly for human resources. In addition, it is also error-
prone and almost impossible to guarantee that all framework
behaviors are properly modelled. Any deficiency of framework
behaviors models can cause missing caller-callee relations of
the related framework behavior invoked in the generated call
graph. Therefore, it will significantly reduce the recall rate of
the static analyzers.

Challenge 2: Scalability. Scalability is another major
challenge for static taint analysis of industrial microservices.
Previous static analyzers suffered from both high time and
memory consumption for precise analyzing real-world indus-
trial microservices. Note that modern industrial microservices
typically consist of many modules with multiple libraries [14].
This means that the microservices are often of large-scale
and are very complex. Despite the possibility of overcoming
the recall challenge and obtaining a sound and precise call
graph, the generated call graph is often huge. Performing
a precise context-sensitive interprocedural analysis on such
large-scale call graphs is computationally expensive. Hence,
it is intractable for conventional analyzers to execute pre-
cise context-sensitive analysis on industrial microservices.
Moreover, functions invoked under different contexts must be
(re)analyzed repeatedly by tools that follow a top-down or
bottom-up analysis pattern to perform their interprocedural
analysis. In addition, for analyzers with field-sensitivity [10],
memory requirements could be very demanding if the heap
is abstracted precisely for all instances [14]. Field-insensitive
analysis, which does not distinguish fields of an object and
treats all fields as a single object, could provide a scalable
alternative, but it can reduce the precision of the analysis [14].
Therefore, scalability is one of the major concerns for precise
static taint analysis on industrial microservices.

Challenge 3: Precision. Precision is also a critical metric
for static taint analysis. Complex containers, such as map, list,
or JSON object, are heavily used in industrial micro-services
applications. Such containers are often used in a sensitive data
propagation scenario in industrial micro-services. For example,
as shown in Figure 1, the object that contains sensitive data
source (line 4 in Figure 1) is propagated and stored into a list.
In this case, because most previous field-sensitive analyzers
cannot trace the data propagation of such containers precisely,
the whole list will be marked as tainted, which will cause a
high number of false positives. For instances, the operation
of list.get(i) or the operation of list.get(i).f2
at the sink (line 5 in Figure 1) will be mistakenly labelled
as data leakage in this scenario. Hence, conventional analysis
results are often misleading for sensitive data tracing tasks and
make the analysis results meaningless for developers due to
the massive amount of false positives.

1 public void taint (){
2 Object obj = new Object() ;
3 obj . f1 = source () ;
4 list .add(obj) ;
5 sink ( list . get ( i ) . f2) ;
6 }

Fig. 1: Example of Challenge3
In this paper, we share our experience in addressing the

above challenges in analyzing large-scale microservices appli-
cations. In order to make taint analysis efficient and accurate
for large-scale microservices, we propose a new ”field-based
compositional static taint analysis” approach for tracking
sensitive data. To address the recall problem (Challenge 1),
we have implemented our analyzer based on the field-based
technique rather than the field-sensitive approach. Our field-
based taint analyzer, which distinguishes fields of the same
type but merges all instances of the same type, relies less on
the pre-built call graphs (which will be explained in detail
in Sections 3 and 4) than previous field-sensitive approaches.
This feature enables our approach to be less dependent on
the impact of the missing caller-callee relations of the related
framework behaviour invoked in the generated call graph, and
maintain a high recall rate of our analysis.

To address scalability (Challenge 2), our approach leverages
a concept in static program analysis called ”compositional
program analysis” and we extend it to the field-based compo-
sitional taint analysis to trace sensitive data in industrial micro-
services applications statically. Our approach adopts a function
summary-based compositional analysis, which analyzes and
summaries each function in the microservices separately so
to abstract the data flow of each function. Each function will
be analyzed once, and the function summary will be reused
for later interprocedural analysis, which repeatedly analyzes
function calls when computing the tainted value-flows. Unlike
previous compositional program analyses, which overlook the
context information [15], to maintain the precision of the
compositional analysis when building the function summary,
our compositional taint analyzer keeps and stores the valid
context information in the function summary.

Furthermore, to guarantee the accuracy of sensitive data
tracing within containers, we model the operation of the
frequently used containers. Summary models are built so as
to abstract the taint propagation features (Challenge 3).

In this paper, we present CFTaint, a highly scalable static
taint analyzer for industrial microservices. CFTaint has a much
higher recall rate while maintaining good precision when
compared with other state-of-the-art. Specifically, we note the
following contributions:

• We present a new field-based compositional static taint
analyzer for sensitive data tracing on large-scale mi-
croservices.

• We compare the precision and recall of field-based with
field-sensitive analysis. The comparison results demon-
strate that the precision loss of field-based analysis on
industrial microservices for tracing sensitive data is lim-
ited because of the strict usage rules of fields in industrial



microservices applications.
• We have implemented our approach in CFTaint and eval-

uated with the open-source micro-benchmark [2] and the
production benchmark. The results demonstrate that CF-
Taint greatly outperforms the state-of-the-art ANTaint [2]
and P/Taint [16] in scalability and with promising recall
(96.09%) and precision (93.51%) rates.

II. MOTIVATION AND APPROACH OVERVIEW

The microservices architecture, a variant of the service-
oriented architecture (SOA) structural style, allows developers
to quickly build and deploy applications. Microservices appli-
cations consist of a collection of small, autonomous services
for handling large-scale distributed transactions. Microservices
architecture is widely used in the industry for integrating
applications, i.e., SOFA [17], Spring Cloud [18] and Apache
Camel [19] are some well-known open-source microservices
architectures. Also, SOFA, a variant based on Spring, has
been heavily used in FinTech systems. However, due to
the complexity of these microservices, there are only a few
practical taint analyzers available [2] for large-scale industrial
microservices. However, the demand for tracking sensitive
data on microservices has been increasing significantly. In
this section, we illustrate the challenges and the fundamental
idea of our field-based compositional taint analyzer using a
sensitive data tracing in an industrial microservices framework.

1 // Facade layer
2 @SofaService(uniqueId = ” refServiceId ”)
3 public class ServerFacadeImpl implements ServerFacade{
4 private SampleService service = new SampleServiceImpl();
5 @Override
6 public void querySampleResult(Request request ){
7 Model model = new Model();
8 model.setPhoneNumber(request.getPhoneNumber());
9 service .doProcess(model);}

10 }
11 // Service layer
12 public class SampleServiceImpl implements SampleService{
13 @Override
14 public void doProcess(Model model){
15 SampleDO sampleDO = new SampleDO();
16 sampleDo.setPhoneNumber(model.getPhoneNumber());
17 // potential sensitive data leak
18 DAO.insert(sampleDO);}
19 }
20 // Interceptor class that configured in Spring XML
21 public class TaskInterceptor extend Interceptor {
22 public void interceptorInvoke (MethodInvocation invocation

){
23 Model interModel = invocation .getMethod(). getParameter ()

. get (0) ;
24 // potential sensitive data leak
25 Log. print (interModel .getPhoneNumber());}
26 }

Fig. 2: An Illustrating Example
A. Motivating Example

Figure 2 shows a simple micro-services snippet that
is written under the SOFA-RPC framework. The func-
tion interceptorInvoke of TaskInterceptor is

an example of the interception function which has been
configured in the Spring XML configuration, and it will
be executed before the invocation of doProcess().
Consider an example that the service interface is ex-
posed by the SofaService annotation with a unique ser-
vice id refServiceId. The functionality of the operation at
querySampleResult(Request request) is to read
the sensitive user phone number from the request and store it
into an object of Model. Then it calls doProcess(Model
model) at the service layer, which writes the user
phone to DB through SampleDO. The interception function
interceptorInvoke of TaskInterceptor will then
write the sensitive user phone number to a log file before
the invocation of doProcess(). In this snippet example,
there are two potential sensitive data leakage: one is to the
DB in doProcess() (Line 18 in Figure 2); another potential
sensitive data leakage is to the write to log file via the function
interceptorInvoke at the TaskInterceptor (line 25
in Figure 2). To trace the sensitive data so to detect such
potential data leakage, let us elaborate on the challenges for
existing analysers and briefly introduce how our field-based
compositional approach addresses these challenges.

B. Field-based Compositional Analysis

Field-based algorithm for interprocedural analysis. The
field-based analysis is a technique to address the low recall
rate of the state-of-the-art static taint analysers caused by
the dependency on the unsound pre-built call graph. Most
previous static program analysers require a precise and com-
plete call graph to connect data propagation between methods
in a function call for performing the interprocedural data
flow analysis. However, as we mentioned in Challenge 1,
it is difficult, if not impossible, to build a sound call-graph
statically for large-scale industrial micro-services applications.
For example, existing static taint analysers would fail to
trace data propagation that caused the data leakage at the
interceptorInvoke function (line 25 in Figure 2) when
the interception mechanisms defined in Spring XML files
are not properly modelled. This failure is caused by the
missing caller-callee relation of function calls supported by the
framework behaviours on the generated call graph. In order to
maintain the taint analyzers’ recall rate, we have adopted a
field-based analysis, which is less dependent on the pre-built
call graph than the field-sensitive analysis, to connect different
methods for the interprocedural data flow analysis. Unlike
previous static taint analysers, which depend on a precise pre-
built call graph to perform their interprocedural analysis, our
field-based analysis approach distinguishes fields of the same
class of object, but merges all different instances of the same
type to connect the interprocedural data propagation. Because
sensitive data will be propagated by the specified fields in
different methods, by connecting all propagations of the fields
in different methods in the program, all data propagations of
fields in the program could be traced without the call graph.
For instance, for the example shown in Figure 2, our field-
based analysis approach will treat the field phoneNumber of



the class Model as the same everywhere and merge all its data
propagation in the querySampleResult, doProcess
and interceptorInvoke functions. Therefore, using this
approach, even if the pre-built call graph is incomplete due
to the lack of modelling of the interception mechanism, our
field-based could still find the sensitive data is propagated to
both the DB and log file. The detailed introduction of this
field-based algorithm will be introduced in Section IV-A.

Precision of Field-based analysis. Although merging in-
stances in the field-based analysis may cause precision loss
compared to field-sensitive analysis, this has a limited effect
when applied to industrial microservices, especially in tracing
sensitive data. In most industrial scenarios for tracing sensitive
data on microservices applications, developers usually are
more concerned about the property of leaked data than the
source of leaked data [14]. In most tracing sensitive data
cases, developers care more about whether the data exposed
at the sink is a field used to hold the sensitive data in the
microservices. However, the exact data stored in this field at
the source is not of the main concern. Furthermore, based on
our investigation of the industrial microservices application
(which will be discussed detailed in Session IV-C), the usage
of each field in the industrial microservices application has
various strict rules. Each field in the microservices usually
represents a concept that remains unchanged in all its usage
in the application. For example, consider the sensitive fields
password of the object user in the application, which is as-
signed with a specific concept: the user password. Developers
will only use this field to store the user password and will
never use it to carry other information, such as the user id.
Similarly, other fields (e.g., id ) are never used to hold the
other sensitive data, i.e., user password. Thus, even though
our field-based analysis is less precise than the field-sensitive
analysis, these strict rules limit the precision loss. In addition,
in order to compensate for the precision loss, we also model
the operation of the frequently used containers (which will be
discussed in Session IV-C), such as map, list and JSON object,
to support the field-based algorithm to precisely trace sensitive
data propagation within those containers by constant keys.

Compositional Analysis The compositional analysis, which
combines the field-based algorithm, could provide faster and
less memory consumption static taint analysis for more scal-
able sensitive data tracing on large-scale industrial microser-
vices applications. Most existing static taint analysers follow a
top-down analysis pattern to analyse programs starting from a
specified entry function. These analysers process their taint
analysis in the order based on the generated call graph.
However, as we mentioned above, it is challenging to generate
a precise call graph statically. Even though it is possible
to generate a sound call graph, the scale of the generated
call graph is usually huge due to the large-scale industrial
microservices applications. According to the findings in [2],
in a real-world industrial environment, independent of the size
of the programs, even small programs may touch a large part
of the libraries. Performing a precise context-sensitive inter-
procedural analysis on a large-scale call graph is inherently

computationally expensive [14]. Moreover, unlike traditional
applications, a microservices application usually has multiple
entry functions since all its exposed methods could be the
entry methods that other microservices could trigger. Thus,
analysers that follow the top-down analysis pattern need to
analyse the whole program with different entry methods to
guarantee its coverage, and this introduces inefficiency. What
is worse, if the heap is abstracted precisely for instances with
field-based analysis, the memory consumption will be huge.
Repeat analysis for the same function in different invokes with
different context information is also required. Therefore, it is
costly to run precise context-sensitive interprocedural analysis
on such a large-scale call graph [14] based on the top-down
analysis pattern with the field-sensitive analysis.

Hence, to make the analysis scalable for running on large-
scale microservices applications, our proposed compositional
analysis adopts a bottom-up analysis pattern instead of the
top-down pattern (which will be introduced detailed in Session
IV-B). In our bottom-up analysis pattern, the analysis does not
need a specific entry method to start the analysis. It randomly
picks up a function to start the analysis and executes the
intraprocedural analysis on each method of the application
to build the data propagation summary for each function.
Because the intraprocedural analysis adopts the field-based
analysis to summarise the data propagation for each function,
the interprocedural data propagations are connected by these
generated field-based functions summary. Thus, using the
field-based algorithm, we could execute our interprocedural
analysis based on the generated function summary without
a precise call graph. Furthermore, our function summary
has been designed to keep the input parameters and the
method’s return value for computing different data propagation
results with different input parameters. The function summary
is reusable for computing the data propagation in different
invokes of the same function. Therefore, repeat analysis of
functions in different context information is not required in
our compositional analysis. Moreover, because the function
summary construction is based on the field-based algorithm,
which merges instances of the same type of object, the memory
consumption is less than that of the field-sensitive analysis.
Thus, our field-based compositional analysis provides faster
and less memory consumption static taint analysis for more
scalable sensitive data tracing on large-scale microservices.

III. SYSTEM ARCHITECTURE

In this section, we present the architecture of our static
taint analysis tool CFTaint. Note that our proposed techniques
can be extended to other platforms, currently, it is built over
the SOFA/SOFABoot [17] framework, a well-known financial
variant of the Spring/SpringBoot micro-services architecture.

As shown in Figure 3, our static taint analysis platform
takes the production jar packages (including applications jar
packages and their dependencies) of the micro-services ap-
plications as input. All these byte code jar packages will be
processed by GraalVM [20] and be transformed to Graal IR.



Fig. 3: System Architecture

Pre-processing Module. The pre-processing module aims
to model the hidden code and configurations of the SOFA
framework as we need and the middlewares such as Spring/-
SOFA Bean or MyBatis configurations [17]. It analyzes the
JAVA source code and the XML configuration files of the
micro-services applications and reveals the essential informa-
tion to the taint analysis module. For example, the pre-analysis
will detect the entry interface methods, which other applica-
tions can access. The technical details of the preprocessing
module will be provided and discussed in Section IV-C and
also detailed in our technical engineering report [21].

Compositional Taint Analysis Module. The compositional
taint analysis module is the core component of CFTaint. It is
to perform the field-based compositional taint analysis task
and to provide the taint propagations results of the sensitive
fields. The ”function summary construction” and ”field-based
analyzer” are two components of this module. The ”func-
tion summary construction” analyzes the data propagation of
all program functions and generates corresponding function
summaries with the filed-based algorithm. The field-based
analyzer then composes all the function summaries together to
construct a field-based transition graph. Finally, the field-based
analyzer will query the taint propagation facts on the generated
taint value-flow graph based on the given sources and sinks
to produce analyzing results. The technical details will be
presented and discussed in Section IV-A and Section IV-B.

IV. OUR APPROACH

This section introduces the technical details of the field-
based compositional static taint analyzer. We show how the
compositional tool addresses the challenges in scalability
without compromising too much on precision and explain how
the field-based analysis can maintain a good recall rate. We
also present how precision is maintained in our approach.

A. Field-based Analysis for Higher Recall Rate

Our proposed approach is implemented with a ”field-based”
algorithm rather than ”field-sensitive”. Using this technique,
we aim to demonstrate how the field-based analysis solves
the recall challenge (Challenge 1). Different from the field-
sensitive approach, which distinguishes both fields and in-
stances of objects, our field-based approach does not distin-
guish different instances of the same type but distinguishes
fields of the same kind. Although most existing studies claim
their proposed approach is sound, their soundness really de-
pends on the soundness of the underlying call-graph. However,
as we mentioned in Challenge 1, it is difficult, if not impossi-
ble, to construct a thoroughly sound call graph because there

can be many missing caller-callee relations of function calls
supported by the framework behaviours, such as the interceptor
behaviours that are shown in the motivating example (Figure
2). As we mentioned, the field-sensitive analyzers, such as
Flowdroid [10] and ANTaint [2], are required to distinguish
both fields and instances of objects to maintain the precision
of the analysis. In order to distinguish different declared
instances in the inter-procedural analysis, the field-sensitive
analyzers need a complete and precise call-graph to trace the
context of the different instances to distinguish them. However,
because our field-based analysis only distinguishes different
fields of the same object type but merges all declared instances
of the same type, our field-based analysis algorithm does
not need to rely on the pre-build call graph to distinguish
different instances. By using ”field-based” rather than ”field-
sensitive”, our field-based analysis relies less on a pre-built call
graph than field-sensitive analysis. Even when the call-graph
is incomplete, the field-based analysis supports the analyzer to
perform the static analysis with a high recall rate. For example,
refer to the study described above in Figure 2, two potential
sensitive data leakage could be identified in this case: one
is to the database at the doProcess (Line 18 in Figure
2); another data leakage is to the log file in the function
interceptorInvoke (Line 25 in Figure 2). In this case,
most static analyzers could easily find the first potential data
leakage that exposes data to the database but fail to find
the other cases if the interception mechanism configured in
Spring XML files is not properly modelled. However, our
approach benefits from the underlying mechanism of the
field-based algorithm, which merges different instances of
the same type but distinguishes fields of the same kind, the
field PhoneNumber of the object Model will be seen as
the same everywhere in the program. Thus, the field-based
algorithm allows the analyzer to identify the data leakage to
both the database and the log file in the example case without
modelling the framework behaviour, such as the interception
mechanism configured in the Spring XML. Although our
field-based algorithm is less precise than the field-sensitive
algorithm, which is because of the false negatives generated
by merging all instances of the same type in some cases,
the precision loss is limited when analyzing the industrial
applications, especially in tracing sensitive data in industrial
applications. We will introduce details in section IV-C.

B. Compositional Analysis for Scalable Taint Tracking

To maintain the scalability of sensitive data tracking in
large-scale microservices, we adopted a compositional anal-
ysis algorithm for our analyzer. Algorithm 1 shows the
new compositional inter-procedure taint analysis. Unlike the
previous state-of-the-art IFDS-based taint analyzers, such as
FlowDroid and ANTaint, which follow a top-down pattern
to analyze the application from a specified entry function
and process the taint analysis in order based on the call-
graph, our compositional analysis algorithm follows a bottom-
up analyzing pattern. Instead of analyzing from the entry-
points of an application A, CFTaint performs an out-of-order



Tp = {⟨pi, f⟩ ∈ Tp | pi ∈ P f ∈ F pi
taint−−−→ f}

Rf = {f ∈ Rf | f ∈ F m
return−−−−→ f}

Rp = {pi ∈ Rp | pi ∈ P m
return−−−−→ pi}

Fig. 4: Summary Components

analysis for each method and generates a context-sensitive
field-based information propagation graph G, which is a set
of tuple ⟨f, f ′⟩ demonstrating that a field f could taint f ′ in
the application. At the start of the algorithm, the information
propagation graph G and the summary set S are initialized
with empty set. Then we randomly build a summary for each
method m ∈M, in which M is the set of all methods, using the
function BuildSummary(). All methods are summarized
once and reused for all their inter-procedural function invokes.
During the summary building process, the information graph
G will be updated. Once a summary S for a method m is
built, it will be added to the set S. The following sections will
elaborate the summary-building process in detail.

1) Intra-Procedure Summary Building: For each summary
S, we maintain three sets, as shown in Figure 4, for describing
the potential data propagation information for the method.
Since of analysis is field-based, the method summary aims to
trace the final behaviour of class fields and method parameters
by merging the local objects’ operations within the method.
The set Tp is a set of tuple ⟨pi, f⟩ where pi is the i-th
parameter of a method m, and f is a class field that may
be potentially tainted by pi. As for Rf and Rp, they contain
the class fields f and parameters pi separately that could be
returned by the method m.

For a given method m ∈ M, the function
BuildSummary() will first initialize the three sets
Tp, Rf and Rp for the generated summary S. In addition,
a middle state set MID is also created in order to store the
transition relations that the local variable is invoked (line 7
in Algorithm 1). The intra-procedure analysis mainly focuses
on each assignment statement and return statement in m,
which is shown in lines 10-22. For an assignment statement
in the form of v ← v′ that the variable v′ is assigned to the
variable v, our algorithm considers different scenarios. If the
assigned variable v is a local variable, the algorithm updates
the middle state set MID with a tuple ⟨v, v′⟩ at line 12.
The variable v′ could be in any form, including class field,
parameter or local variable. When v is a class field .f , we
query the data sources of the variable v′ using find(v′,MID)
at line 14. It will return all the previously stored data sources
of v′ in the set MID. For each parameter data source pi of
variable v′, the set Tp will be updated by adding a tuple
⟨pi, f⟩ indicating the field f could be potentially tainted by
the parameter pi. For the condition that the data source is a
class field .f ′, the algorithm directly adds a tuple ⟨f ′, f⟩ to
the propagation graph G at line 17, which means the field f ′

is able to taint f . Between lines 18 and 22, our algorithm
handles the return statements of m. If a variable v is returned
by a statement, the function find() is also invoked to obtain
all the data sources of v. The set Rp and Rf will be updated

Algorithm 1: Inter-Procedure Taint Analysis
Input : application A
Output: G

1 G = ∅, S = ∅
2 foreach m ∈M do
3 Sm = BuildSummary(m,G,S)
4 S = S ∪ {Sm}
5 return G
6 Function BuildSummary(m,G,S):
7 Tp = ∅, Rf = ∅, Rp = ∅, MID = ∅
8 Sm = {Tp,Rf ,Rp}
9 foreach statement ∈ m do

10 if statement : v ← v′ then
11 if v is local then
12 MID = MID ∪ {⟨v, v′⟩}
13 else if v : .f then
14 foreach pi ∈ find(v′,MID) do
15 Tp = Tp ∪ {⟨pi, f⟩}
16 foreach .f ′ ∈ find(v′,MID) do
17 G = G ∪ {⟨f ′, f⟩}
18 else if statement : return v then
19 foreach pi ∈ find(v,MID) do
20 Rp = Rf ∪ {pi}
21 foreach .f ∈ find(v,MID) do
22 Rf = Rf ∪ {f}
23 else if statement : v = m′(v′) then
24 Sm′ = generate(m′,S)
25 foreach pi ∈ find(v′,MID) do
26 foreach ⟨p′i, f⟩ ∈ T′

p do
27 Tp = Tp ∪ {⟨pi, f⟩}
28 foreach .f ′ ∈ find(v′,MID) do
29 foreach ⟨p′i, f⟩ ∈ T′

p do
30 G = G ∪ {⟨f ′, f⟩}
31 MID = MID ∪ {⟨v, src⟩ |src ∈

R′
f || src ∈ R′

p}
32 return Sm

separately based on the different types of data sources.
2) Inter-procedure Summary Building: The inter-procedure

summary building focuses on connecting the summaries of
different methods, which is handled between lines 23 and
31 in Algorithm 1. When the analysis encounters an invoke
statement v = m′(v′), where the variable v could be void
if the method m′ does not return anything. And there could
be any number of v′ based on how the parameters m′ have.
For finding the method target of m′ in the presence of virtual
invoke in JAVA, our tool applies a CHA-based strategy with
the enhancement of an intra-procedure type analysis. At line
24, generate() will either directly return the method summary
Sm′ if there is an existing summary in S, or will call the
function BuildSummary() to create Sm′ in a depth-first
manner. After acquiring Sm′ , the algorithm finds the data
sources of the parameter variable v′ at lines 25 and 28. For
each data source of v′ is a parameter pi, we get the set T′

p



from Sm′ . Each tuple ⟨p′i, f⟩ ∈ Sm′ that is related to v′ in
m′, we update Tp in m with ⟨pi, f⟩. If a data source of v′ is
field f ′, we add the tuple ⟨f ′, f⟩ to the graph G based on the
information of T′

p of Sm′ . At last, if m′ has return values, we
every tuple ⟨v, src⟩ to the middle state set MID of m, where
src is every variable in the set R′

f and R′
p from Sm′ .

The reusable function summary for each function provides
better scalability for our compositional taint analysis. Our
compositional taint analysis benefits from the reusable func-
tion summary, which includes the parameter set, return set,
and field propagation set of each function. Even if a specified
method is invoked in different inter-procedural function calls
with different contexts, the generated function summary could
be reused under different contexts for updating the data
propagation. Thus, repeat analysis of the same method with the
different contexts is not required in our compositional analysis,
and this reduces the time consumption of the analysis and
makes the analysis more efficient. It is also worth mentioning
that because our intra-procedural summary building follows
the rules of the underlying field-based algorithm that merges
all different declared instances of the same class rather than
using abstract heap precisely for different instances, the huge
memory consumption that caused by the traditional field-
sensitive analysis can be significantly reduced in our composi-
tional taint analysis. Thus, our compositional analysis based on
the context-sensitive field-based function summary improves
the scalability of the static inter-procedural taint analysis,
which reduces both the time consumption and memory usage.

C. Discussion on the Precision

Hence, we present how our field-based compositional anal-
ysis resolves the challenge in precision (Challenge 3). Even
when distinguishing fields but merging all instances of the
same type in the field-based analysis will lead to less accuracy
than the field-sensitive analysis, this accuracy loss is limited
in industry microservices, especially when tracking sensitive
data [14]. This is because every field in the industrial program
usually represents a specified concept that never changes in an
application during its propagation. Sensitive data is propagated
among the fields assigned with specific concepts [14]. For
example, refer to the example shown in Figure 2, a specified
concept ‘the phone number of users’ is assigned to the field
phoneNumber, which will only be used to hold the phone
number of users in the application. Developers will never use
other fields (e.g. address) to carry user phone numbers. Thus,
this phenomenon limits the precision loss of our field-based
analysis, even where all declared instances of the same type
are merged in our field-based algorithm.

Furthermore, in order to maintain the accuracy of the
sensitive data propagation within containers, we have studied
and modelled the operations of the frequently used containers,
such as map, list and JSON. This container model is integrated
into the summary constructor and will be used when building
the data propagation for a function. Our container model will
mode and replace all container operating invokes during the
data propagation summary construction. Each sensitive data

propagated to the container will be managed in the model by
a specified constant key. Because the constant keys are used
to manage the propagations of the sensitive data within the
complex containers, our compositional function summary can
trace sensitive data precisely within those containers. Thus,
our container model improves the precision of our tool.

V. ADAPTING TO ENTERPRISE-SPECIFIC FRAMEWORKS: A
PRACTICE IN SOFA-BASED FINTECH MICRO-SERVICES

Different enterprises have different frameworks based on
their business scenario and technology stack. In this section,
we introduce how we resolve the framework problems in
SOFA architecture. We first performed the modelling task on
the target application before the compositional taint analysis.
Then, the modelling result of the target applications will
be processed by the taint analysis module for the analysis.
This automated process includes preprocessing of the SOFA
framework (the financial micro-services variant framework of
Spring), RPC and database operation.

Preprocessing and Modeling. According to our experience,
the AOP, Spring Bean injections, and SOFA Bean injections
features that provided by the SpringBoot [22] and SOFA [17]
framework usually lead to missing knowledge about the in-
stance type of some object or the particular code that need
to be executed at some function. AOP, Spring Beans, and
SOFA Beans are usually configured in configuration XML
files and are used in the form of annotation in the code at
the beginning or end of the function. Thus, in our case, we
will first automatically scan and extract the above information
from the configuration XML files based on the semantics of
the SOFA-RPC and Spring XML domain language. Then we
model this information in a specified format by using the code
transformation and modelling supporter. These models will
be loaded into the memory for the further analysis task. In
our compositional taint analysis process, when the specified
annotation is found, the analyzer will query the model from
memory based on the annotation details and use the loaded
model for the taint analysis.

Entry Point Determination. Because our proposed ap-
proach, which used the compositional analysis approach, does
not rely on the traditional top-down analysis mode, deter-
mining the specified entry points is not required for our
analysis. Therefore, distinct from other approaches based on
the traditional top-down analysis mode, we do not need to
identify the specified entry point before the analysis. The
analyzer will randomly select an entry analysis function and
execute the analysis process on all functions in the program
to cover the whole program.

Sources and Sinks Determination. According to the
successful experience of ANTaint [2] in sources and sink
determination, we also assume that all the incoming data in
the program will be marked as sources. These incoming data
include the input parameters of the entry points, the return
value of the RPC function, the interested fields or parameters
provided by the developers, and the fields or objects that query
from the database by the ’Select’ operation. Furthermore, we



assume that all the out-coming (output) data or the output
functions which will expose the data to other environments
or namespace will be marked as sinks. These out-coming
(output) data include all the return values from the entry points,
parameters for the RPC functions, the log or system printing
functions, and the object or fields that will be updated to the
database by the ’update’, ’insert’, and ’delete’ operation.

VI. EVALUATION

We evaluated our tool on multiple dimensions with two
benchmarks and compared it to some open-source tools. Due
to space limitations, we list and discuss the key investigations.
Our evaluation aims to answer the following questions:

• RQ1: How well can CFTaint perform in terms of preci-
sion and recall, for sensitive data tracing on industrial
microservices applications?

• RQ2: What is the performance of our approach when it
is applied to industrial microservices applications?

• RQ3: what is the performance of CFTaint when we
compare it to existing tools, such as ANTaint, P/Taint?

A. Implementation and Datasets

Implementation. We have implemented the proposed field-
based compositional taint analysis approach as a microservice
on Java8 with GraalVM, based on the SOFA [17] architecture.
When our implemented service receives the request from the
gateway, it analyzes the bytecode of the target microservices
and then returns the analysis result. The implementation has
been deployed on a set of elastic cloud clusters, each of
which is with eight 2.5GHz cores and a 64 GB RAM. The
implementation executes with the following production and
micro benchmarks for the experiment and evaluation.

Production-benchmark. The production benchmark com-
prises the core production microservices most frequently used
in Ant Group. Microservices are usually the critical informa-
tion systems that perform the fundamental business values for
enterprises. Due to business and security concerns, enterprises
usually will not publish such microservices. Thus, collecting
a real-world production microservices benchmark outside the
enterprise for evaluation is difficult if not impossible. Thus, we
evaluated the static analyzers on the production microservice
of Ant Group that are written in the SOFA [17] architecture.
The SOFA architecture is the open-source FinTech microser-
vices architecture used in many FinTech enterprises. As a
variant constructed based on Spring/SpringBoot, SOFA is
backward compatible with Spring and SpringBoot. Thus, our
tool could also extend the outstanding performance to the
Spring/SpringBoot architecture microservices.

Furthermore, it is difficult for an expert to manually identify
and list all the data flows because there are usually thousands
of data propagation paths for each production microservices,
and some propagation paths may be complex and very long.
Therefore, in our evaluation, we select six production applica-
tions. Then ask the site reliability engineers and the developers
to list four sensitive fields they are most concerned about and
manually identify all data flows targeted to those sensitive

fields as the ground truth for validation. To investigate the
impact of framework behaviour and container operations on
precision and recall for the analysis, we have separated these
four fields into two catalogues. The data propagation of two
fields will be related to the usage of framework behaviours
and container operations, and the other two will not. We
have executed the evaluation on FlowDroid, ANTaint, P/Taint,
CodeQL and CFTaint. Due to the extensive experimental
results, listing all data in this paper is difficult. Thus, we
group the tools based on their underlying analyzing technique
and list the outstanding performance tools of each group in
this report. As an extension of FlowDroid, ANTaint performs
better analysis on larger-scale microservices. Thus, we show
the results of ANTaint to represent the performance of the
FlowDroid and ANTaint groups. The key results of the com-
parative experiment with ANTaint and P/Taint are listed in
Table II For the detailed report, please refer to our experiment
full-version report [21].

Micro-benchmark. The micro-benchmark is an open-
source [23] benchmark, which provides by Wang et al. [2]
on GitHub for static taint analysis evaluation. This micro-
benchmark is contributed by the industry experts, and it
contains the most relevant cases of the real-world industry
scenarios that developers are concerned with. The evaluation
of our approach running on the micro-benchmark is shown in
Table I, and we compared these results with the performance
results of ANTaint that was published by Wang et al. [2].

ANTaint CFTaint
Micro-benchmark Exp Exa FN FP Exa FN FP
queryForPageTaint 5 5 0 0 5 0 0
resolveFromReference 10 10 0 0 0 10 0
updateRidAll 18 18 0 0 18 0 0
queryAllTaint 15 15 0 0 15 0 0
allResolve 20 20 0 0 20 0 0
saveAndQuery 15 15 0 0 15 0 0
updateRidByName 10 10 0 0 10 0 0
queryByNamesTaint 9 9 0 0 9 0 0
saveSampleByResult 10 10 0 0 10 0 0
batchResolve 10 10 0 0 10 0 0
resolveSampleResult 10 10 0 0 0 10 0
queryByCallbacks 11 11 0 0 11 0 0
testMultiplePaths4 1 1 0 0 1 0 0
testLists 3 3 0 0 3 0 0
testDeepCopies 4 4 0 0 4 0 0
Total 151 151 0 0 131 20 0

TABLE I: Micro-benchmark and Results

B. Methodology
We evaluate our approach by comparing it with several

state-of-the-art taint analyzers, FlowDroid, ANTaint and P/-
Taint, which have been used in most industrial scenarios [2].
To answer RQ1, we evaluate the effectiveness of CFTaint
by running it on the micro-benchmark and applications of the
production-benchmark, and evaluate it in terms of precision
and recall. The maximum memory for each running case is
set as 16 GB. Since code frequently changes in industrial
scenarios, so developers would like to receive the analy-
sis report as quickly as possible to judge the risks of the



code change. Because of this, it is unacceptable to ask the
developers to wait for a long time to run a taint analysis
task. Thus, we also limit the maximum running time of each
analysis task to 3 hours (10800 seconds). To answer RQ2,
we observe and collect the analysis’s performance, including
the time consumption and the true positives, false-positive,
and false-negative taint propagation paths when running on
the production benchmark. To answer RQ3, we compare
the effectiveness and the performance of CFTaint, ANTaint
and P/Taint on the production benchmark. Note that the time
consumption of CFTaint is calculated based on the whole
analysis duration, including the code transformation and mod-
elling, which starts from the jar package input and ends when
the final taint analysis report is generated. Table II includes
two experiments. Experiment 1 demonstrates the performance
of all tools when the propagation of sensitive data includes
the propagation with container operations and the framework
behaviours. Experiment 2 shows the results of all tools when
the propagation of sensitive data includes the propagation
without container operations and the framework behaviours.

1 public void failTracing () {
2 Object result = source () ;
3 SampleDTO dto = (SampleDTO) result;
4 sink (dto . id ) ;}
5 public void successTrace (){
6 SampleDTO dto = new SampleDTO();
7 dto . id = source () ;
8 Object result = dto ;
9 SampleDTO dtoClone = (SampleDTO) result;

10 sink (dtoClone. id ) ;}

Fig. 5: Usage super-class object as source

C. Experimental Results and Analysis

RQ1: Effectiveness and Precision. The results in Table I
demonstrate the precision of CFTaint in the micro-benchmark
and compare it with ANTaint [2]. The column ’Exp.’ indi-
cates the ground truth of the number of the taint propagation
paths for the test case; the column ’Exa.’, the column
’FN’ and column ’FP’ indicate the actual taint propagation
paths found by the tools, the false-negative and false-positive
results that are identified from the analysis results respectively.
Although CFTaint is implemented with field-based analysis,
it can process the field tracing task with high precision. As
listed in Table I, CFTaint passes 93% (25 out of 27 cases)
of the test scenarios in the micro-benchmark with a precision
of 100%. An interesting note is that we found there are two
test scenarios (highlighted in Table I) that CFTaint could not
find any taint propagation paths of the sensitive field. The
main cause that triggers this problem is using a super-class
object as a source for the analysis, which is also the limitation
of our field-based algorithm. For example, as shown in the
case failTracing() in Figure 5, because the SampleDTO
(line 3 in Figure 5) is obtained from the source, which
is a super-class object, the sensitive field dto.id (line 4
in Figure 5) is unknown in the super-class type of source
(Object result, line 2 in Figure 5). Therefore, we are

not able to obtain where the sink dto.id come from, and the
field-based algorithm will fail to trace the field from the source
to the sink. However, if the source type is specified, which is
not a super-class object type, then our field-based mechanism
is able to trace sensitive fields from the source to the sink
even though the tainted data is propagated to a super-class
object. For instance, as shown in the ’successTrace()’
example in Figure 5, although the tainted data is propagated to
a super-class object, the propagations between the source and
the sink are still traceable in our field-based approach because
the taint source (line 8 in Figure 5) is specified, and the same
field (dto.id) is propagated at the sink.

RQ2: Performance. Our experiment on the production
benchmarks demonstrates that CFTait can provide scalable
and precise taint analysis on large-scale microservices for
sensitive data tracing with limited time consumption. As one
can see from the listing results (in Table II), the average
time consumption of this tool is 127.31 seconds. Overall,
CFTaint could process and provide the taint analysis results
at the minute level in most cases, while CFTaint completes
the analysis task in 199 seconds in the worst case. Ben-
efiting from the field-based analysis, CFTaint can perform
the interprocedural analysis without dependency on the call-
graph. Thus, CFTaint will not be affected by the unsound call
graph. It has achieved high recall rates (96.09% in Experiment
1 and 94.35% in Experiment 2) in our experiments. Only
8 FNs, which are caused by using a super-class object as
the taint source, are found in these scenarios. 45 FPs are
found in Experiment 1 (Table II), and 28 FPs are found in
Experiment 2 (Table II), which reduces the precision (73.2%
in Experiment 1 and 69.76% in Experiment 2) of our tools.
However, our investigation of these FPs has revealed that this
large number of FP is caused by merging instances in the
field-based analysis because most of these FPs have the same
concept as the one assigned to the field at the source (as
indicated as BTP in Table II). Only 1 FP in Experiment 1
was caused by the data propagation between containers with
a non-constant value as the key. As we mentioned early, in
most of the sensitive data tracing scenarios in the industry,
developers usually care more about the property of the tainted
data at the sink rather than the source of the tainted data. Thus,
the BTP will usually be treated as correct in such scenarios. As
a result, when applying the analysis for sensitive data tracing
tasks in most industrial scenarios, CFTaint performs with high
precision (93.51% in Experiment 1 and 99.17% in Experiment
2).

RQ3: Comparison with ANTaint and P/Taint. To answer
RQ3, we compare the effectiveness and performance of our
tool with ANTaint and P/Taint on the micro-benchmark and
production-benchmark. We have the following conclusion:

Effectiveness. From the evaluation results of the micro-
benchmark, the same as ANTaint, in most scenarios, CFTaint
can trace the sensitive field from source to sink without
any false-negative or false-positive. However, when using a
super-class type object as the taint source, 20 false-negative
results are reported due to the limitation of the field-based



P/Taint ANTaint CFTaint

Micro App
(MB)

Lib
(MB) #LOC BTP FN FP R(%) P(%) Time(s) BTP FN FP R(%) P(%) Time(s) BTP TN FN FP R(%) P(%) PITC(%) Time(s)

Sensitive data propagated with container operations and framework behaviors
M1 5.4 118.1 268K 13 13 8 50% 61.90% 5937 17 9 4 65.38% 80.95% 2192 25 7 1 9 96.15% 73.53% 92.59% 54
M2 9.1 165.1 250K 18 15 15 54.55% 54.55% 9273.6 24 9 12 72.73% 66.67% 5512 30 0 3 4 90.91% 88.24% 88.24% 150
M3 11.5 106.2 314K 8 6 10 57.14% 44.44% 6815 9 5 8 64.29% 52.94% 2768 14 5 0 5 100% 73.68% 100% 70
M4 21.9 29.9 709K 19 19 14 50% 57.58% 7120 22 16 13 57.89% 62.86% 3120 34 7 4 13 89.47% 72.34% 85% 199
M5 29.8 49.6 1145K 13 7 8 65% 61.90% 6368 16 4 8 80.00% 66.67% 3248 20 7 0 8 100% 71.43% 95.24% 81
M6 40.9 85.8 2454K 5 4 6 55.56% 45.45% 4068 7 2 5 77.78 58.34% 2065 9 6 0 6 100% 60% 100% 167.4
Avg 19.77 125.78 857K 55.37% 54.30% 6596.93 69.68% 64.74% 3150.83 96.09% 73.2% 93.51% 121.73

Micro App Lib #LOC Sensitive data propagated without container operations and framework behaviors
M1 5.4 118.1 268K 4 0 1 100% 80% 5840 4 0 1 100% 80% 2104 4 2 0 2 100% 66.67% 100% 54
M2 9.1 165.1 250K 15 5 2 75% 82.24% 9106 19 1 3 95% 86.36% 5236 19 3 1 3 95% 82.61% 95% 150
M3 11.5 106.2 314K 8 1 0 88.89% 100% 6474 8 1 0 88.89% 100% 2491 8 3 1 3 88.89% 72.73% 100% 70
M4 21.9 29.9 709K 16 3 4 84.21% 80% 6835 17 2 2 89.47% 89.47% 2901.6 17 8 2 8 89.47% 68% 100% 199
M5 29.8 49.6 1145K 14 0 4 100% 77.78% 6202 14 0 4 100% 77.78% 3183 13 8 1 8 92.86% 61.90% 100% 81
M6 40.9 85.8 2454K 5 1 2 83.33% 71.43% 3897 6 0 0 100% 100% 1861.2 6 3 0 3 100% 66.67% 100% 167.4
Avg 19.77 125.78 857K 88.57% 82.91% 6392.67 95.56% 88.94% 2962.8 94.37% 69.76% 99.17% 121.73

TABLE II: Production-benchmark and results (Note: TP indicates the identified correct/true paths; BTP(Broad True Positive)
indicates false positives which have the correct/same field concept with the source; FN indicates the missed correct path
(false-negatives); FP indicates the incorrect paths that have been marked as tainted (false-positive); P indicates the precision
rate of the analysis; Recall indicates the recall rate; PITC indicates the precision which treats the BTP as correct (formula:
TP/(TP+FP-BTP)); App indicates the application jar packages size in MB; Lib indicates the library jar packages size)

algorithm, which traces the data propagation based on the
specified field. Although this problem will cause the FN in
the analysis, according to the inspection of the experimental
results on the production-benchmark, the effect is limited
because using the super-class object as a taint source is rare
in real-world industrial micro-services applications. According
to the experimental results of the production-benchmark, only
8 FN (4.32%) in Experiment 1 and 5 FN (5%) in Experiment
2, which are caused by the usage of a super-class object as a
source, are found for CFTaint. Furthermore, 45 FN (23.31%)
is found for ANTaint, and 64 FN (25.6%) is found for P/Taint
on the production-benchmark in Experiment 1. The main
reason for this enormous FN in ANTaint and P/Taint is their
dependency on the unsound call-graph in their inter-procedure
analysis, leading to the missing data propagation tracing to the
framework behaviours (i.e., AOP, IoC, Message services, etc.).

Performance. As shown in Table II, when running on
scenarios that do not contain any containers and framework
behaviours during the data propagation (Experimental 2),
conventional field-sensitive analysis, which abstracted the heap
of instances, achieves higher precision than our field-based
analysis. However, based on our investigation, most fields in
industrial microservices will be propagated to framework be-
haviour calls or containers during their data propagation. Thus,
as shown in the experimental results of Experiment 1, when
framework behaviours or container operations are invoked in
the data propagation of the sensitive data, the precision and
recall rate of our CFTaint is higher than ANTaint and P/Taint.
Experiment on the production microservices applications of
Experiment 1 indicates the high recall (96.09%) rates and
precision (73.2%) of CFTaint with low time consumption
(121.73 seconds on average). It outperforms the state-of-the-art
ANTaint (with a precision of 64.74% and a recall of 69.68%)
and P/Taint (with a precision of 54.3% and a recall of 55.37%).
Although the precision of CFTaint is only 73.2% in Experi-
ment 1 and 69.76% in Experiment 2, most of the false-positives
could be considered as BTPs since it has the same field concept
that was assigned by the source. Thus, when considering the
precision for tracing sensitive data on industrial microservices

applications, CFTaint has a high precision (as indicated as
PITC in Table II)(93.51% in Experiment 1 and 99.17% in
Experiment 2). Furthermore, CFTaint has the highest recall rate
than other conventional analyzers in most cases. Moreover,
the overall time consumption of CFTaint is 3.86% of ANTaint
and 1.85% of P/Taint. For the worst case, CFTaint found all
taint propagation in 199 seconds while P/Taint requires 7120
seconds and ANTaint requires 3120 seconds.

In conclusion, although the field-based algorithm is less
precise than the field-sensitive, CFTaint still achieves a higher
precision and recall rate than ANTaint and P/Taint when
running on industrial microservices. These precision and re-
call rate gaps are caused by the heavily used framework
behaviours and containers in industrial microservices. The
heavily used framework behaviours could worsen the precision
of the generated call-graph that conventional analyzers need
for interprocedural analysis. The inaccuracy of data tracing
in containers will amplify the tainted scope. Even though the
precision of CFTaint is only 73.2% in Experiment 1, when
considering the precision for sensitive data tracing on indus-
trial microservices, the precision (PITC) of CFTaint (93.51%)
will be much higher than ANTaint and P/Taint. In other words,
it is 28.77% more accurate than ANTaint and 39.21% more
accurate than P/Taint for tracing sensitive data. Furthermore,
in the micro-benchmark, CFTaint can accurately trace all data
propagation of the specified field in most scenarios based on
the field-based algorithm. However, due to the limitation of
the field-based algorithm, CFTaint will be unable to trace data
propagation when using a super-class type object as the source.
Overall, CFTaint takes 96.13% less time than ANTaint and
98.15% less than P/Taint.

VII. INDUSTRY APPLICATION

The introduced field-based compositional static taint anal-
ysis approach is used in various industry scenarios of tracing
sensitive data for change governance, data breach detection,
and data consistency validation at Ant Group.

Change governance. Consider there is a database that
contains a transaction history table, and the database will



be queried by multiple services more than 10 million times
per day. The primary key ‘transaction id’ in the transaction
history table is an ‘int’ type field, which will be auto-increased
for each new transaction record. With the increasing trans-
action volume, an ‘int’ type ‘transaction id’ is not enough
for future transactions (maximum 4,294,967,295 records in
total). To address this issue, the database team needs to
migrate the data to a new database table and update the data
type of the ‘transaction id’ from ‘int’ to ‘BigInt’. In this
case, developers need to notify those micro-services that will
query data from this table with the ‘transaction id’, to make
corresponding updates. Developers need to update the data
type of parameter related to the ‘transaction id’ in the micro-
services from ‘int’ to ‘long’ or ‘BigInteger’. Otherwise, the
overflow error will be triggered when loading the ‘BigInt’
type of data of the ‘transaction id’ field from the database.
Manually identifying all these related parameters and all data
flows is a complicated task, which is time-consuming due
to the scale and complexity of the industry micro-services
applications. Furthermore, although manually identifying is
possible in some cases, the accuracy needs to be verified.
For the site reliability requirement, to guarantee the reliability
of the system, a verification mechanism needs to be used to
verify these changes. Therefore, developers need to verify that
all parameters related to the change are manually identified
correctly and updated in the micro-services. In the above
scenes, a scalable analysis tool that can trace the sensitive data
or specified field in the large-scale complex micro-services is
necessary for any change governance. The analysis can help
identify and automatically verify all parameters related to the
change in the micro-services.

VIII. RELATED WORK

In the past, the software engineering community has con-
tributed widely to taint analysis. The mainstream studies can
be divided into two categories according to the analytical
techniques: the static and dynamic taint analysis. We limited
our discussion to the most related work of CFTaint.

Static taint analysis tools. Many related works on static
taint analysis could be found. The IFDS framework [24]
is one of the most popular frameworks used for solving
inter-procedural, finite, distributive subset problems in a flow-
sensitive and fully context-sensitive way. FlowDroid [10] is
one of the best practices that target analyzing Android appli-
cations, and provide accuracy by performing context-sensitive,
field-sensitive, and flow-sensitive analysis based on the IFDS
framework. It provides precision in terms of context-sensitive,
flow-sensitive, and field-sensitive. Although FlowDroid has the
benefit of precision from the scalable point-to analysis and
one-demand alias, scalability is still a challenge for FlowDroid
[2] in the running on the microservices applications with
millions of lines of the code. Massive context information
needs to be maintained from the source for each function, and
repeated analysis is required for the same function when used
with different context information. ANTaint [2] is the previous
static taint analysis tool used in Ant Group, which is built

atop of FlowDroid. The main aim of ANTaint is to address
the scalability challenge of static taint analysis on industrial
micro-services applications by resolving the concrete problems
in the existence of implicity dependency. However, because
the unsound call-graph, which lacks tracing data propagations
in framework behaviours, is provided for the inter-procedural
analysis, many data propagation paths are missing in the taint
analysis results. Furthermore, CHEX [25], LeakMiner [1], and
SCanDroid [26] are tools for reasoning data flows that are
similar to FlowDroid. Leakminer tries to solve the scalability
challenges by using an incremental method to construct the
call graph for applications. However, the analysis precision of
such tools is lower than FlowDroid [2].

Datalog is another underlying technology that is used for
taint analysis [27]. Livshits [28] proposed a taint analyzer that
uses Datalog. However, the proposed approach uses Datalog
without elements that unify pointer analysis. P/Taint [16] also
uses Datalog for static taint analysis, but P/Taint combines
Datalog with the information-flow and point-to analysis, which
provides a more accurate analysis than Livishits’ proposed
approach. Although P/Taint can provide accurate taint analysis
based on the underlying information-flow and point-to analy-
sis, it is time costly to run on large-scale microservices. Fur-
thermore, the program slicing or dependence [29] technique is
also the favoured technique for static taint analysis. TAJ [30]
is an example of a taint analyzer that uses program slicing
for static taint analysis. TAJ will analyze the taint propagation
based on the information-flow analysis based on the program
slicing. However, it is limited in scalability and unsound for
analyzing large-scale microservices.

IX. CONCLUSION

In this paper, we present CFTaint, a new field-based com-
positional static taint analyzer for scalable static sensitive data
tracing on large-scale industrial micro-services applications. It
uses the underlying techniques, such as the function summary,
field-based algorithm, code transformation, and modelling
supports, to perform precision and scalable dataflow tracing for
taint analysis. As a proof of concept, based on the deployment
in Ant Group, we validated this proposed approach. Based
on the evaluation of the micro-benchmark provided by Wang
et al. [2] and the evaluation of the production-benchmark,
compared with ANTaint, CFTaint has significantly improved
the accuracy and efficiency of taint analysis.
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