
VFix: Value-Flow-Guided Precise Program Repair
for Null Pointer Dereferences

Xuezheng Xu∗, Yulei Sui†, Hua Yan∗ and Jingling Xue∗
∗School of Computer Science and Engineering, UNSW Sydney, Australia

{xuezhengxu, huayan, jingling}@cse.unsw.edu.au
†Faculty of Engineering and Information Technology, University of Technology Sydney, Australia

yulei.sui@uts.edu.au

Abstract—Automated Program Repair (APR) faces a key chal-
lenge in efficiently generating correct patches from a potentially
infinite solution space. Existing approaches, which attempt to
reason about the entire solution space, can be ineffective (by
often producing no plausible patches at all) and imprecise (by
often producing plausible but incorrect patches).

We present VFIX, a new value-flow-guided APR approach,
to fix null pointer exception (NPE) bugs by considering a
substantially reduced solution space in order to greatly increase
the number of correct patches generated. By reasoning about the
data and control dependences in the program, VFIX can identify
bug-relevant repair statements more accurately and generate
more correct repairs than before. VFIX outperforms a set of 8
state-of-the-art APR tools in fixing the NPE bugs in Defects4j
in terms of both precision (by correctly fixing 3 times as many
bugs as the most precise one and 50% more than all the bugs
correctly fixed by these 8 tools altogether) and efficiency (by
producing a correct patch in minutes instead of hours).

Keywords-program repair, static analysis, null dereference

I. INTRODUCTION

To reduce the maintenance cost of large-scale software, Au-
tomated Program Repair (APR) provides a promising solution
for automatically generating software patches to fix software
bugs. Existing APR approaches proceed in two phases: (1)
fault localization, which identifies a set of suspicious, i.e.,
repair statements, L, that may trigger a bug after exercising
at least one failing test case in a test suite, and (2) patch
generation, which generates a repair operation o ∈ O by
applying a predefined repair template (e.g., insertion and
deletion) on a suspicious statement ` ∈ L and then validates
the candidate patch by running the repaired program against
the test suite. This generate-and-validate process repeats until
a plausible patch, i.e., one that passes all the test cases in
the test suite is found. A plausible patch is only correct iff it
results in the correct outputs for all possible program inputs.

Challenges. APR faces a key challenge in efficiently gener-
ating correct patches from a potentially infinite solution space.
Given a set of predefined repair templates, existing search-
based approaches usually generate an unbounded number of
repair operations O (e.g., via brute-force mutations [38, 54,
78]) even for a single suspicious statement ` ∈ L. The
underlying search-space-explosion problem is further exacer-
bated when all repair templates are instantiated over all the
suspicious statements in a program. The resulting solution

1
2
3
4

5
6
7

8
9
10
11
12

boolean removeDomainMarker(…){
…
if(layer == Layer.FOREGROUND){

markers = this.…Markers.get(…);

}else {
markers = this.…Markers.get(…);

}

removed = markers.remove(…);
if(removed && notify)

fireChangeEvent();
return removed;

}

+ if(markers==null) return false;

+ if(markers==null) return false;

+ if(markers!=null)
NPE!

Correct Patch

Implausible Patch

Plausible-but-incorrect Patch

Executed Statement

Unexecuted Statement

Crash Point

Fig. 1: An example with three patches, correct, plausible but
incorrect, and incorrect, for fixing the NPE at l8.

space S = L×O = C∪I ∪X may contain possibly infinitely
many patches, where the ratio of the correct patches ∈ C
over the incorrect patches (including implausible ones ∈ I and
plausible but incorrect ones ∈ X) is extremely small. This can
seriously impede the efficiency and effectiveness of existing
APR approaches in finding correct patches.

Prior Work. To address this problem, existing efforts typ-
ically accelerate the repair process by ranking patches based
on their probabilities of being correct, i.e., exercising only the
high-priority patches that are likely to be correct. Given a user-
specified time budget, the solution space L×O is thus reduced
to a subset L′ × O′, where L′ is often selected through a
fault localization tool via stress testing with a limited number
of test cases [4, 68, 88] and O′ is selected by adopting a
variety of heuristics, such as syntactic [24, 84] or semantic
code search [32], statistical analysis [31, 37, 81, 85], symbolic
execution [49, 53] and machine learning [44, 58].

Limitations. Without considering the data and control de-
pendences in a program, these patch-ranking approaches that
operate on the entire solution space are still inadequate, as they
can be ineffective (by often producing no plausible patches at
all) and imprecise (by often producing plausible but incorrect
patches). In addition, increasing the time budget used for fixing
a bug may increase the chances for obtaining a correct patch,
but without any correctness guarantee in the presence of a
huge solution space [86]. As a result, the per-bug time budget

is often set up as 3 – 5 hours [38, 54, 78, 81, 87] for heavy
testing.

Most APR approaches [24, 31, 32, 37, 81, 84, 85] adopt
a generic process to repair bugs without distinguishing their
types or categories. Thus, many repair operations that are
unable to repair a particular type of bugs are often generated,
but to no avail. For example, existing APR tools are ineffective
in fixing Null Pointer Dereference (aka NullPointerException
(NPE)), one of the most common types of Java bugs [17],
representing 37.2% of all memory bugs in Mozilla and Apache
and over 40% of exceptions in Android [33, 41, 72]. However,
an APR approach is expected to increase both precision and
efficiency by being aware of the bug types, e.g., NPE, repaired
during its fault localization and patch generation.

NPE, as a representative bug type, is very difficult to fix
since choosing a right repair statement with a correct repair
operation is challenging. For the 15 NPEs in Defects4j
(a well-known benchmark suite often used for validating
APR [30]), existing tools, HDRepair [37], ACS [86], Cap-
Gen [81] and SimFix [28], can only correctly repair 1, 2, 2
and 4 NPEs, respectively, after having tried tens of thousands
of incorrect patches in hours per bug. This is because an NPE
and its bug-fixing location can span across multiple functions
in large codebases [9], due to a wide variety of programming
mistakes, including missing null pointer checks [34, 58] and
object initialization [34], resulting in possibly infinite many re-
pair operations at a large number of suspicious statements [43].

Insights. Static analysis is relatively unexplored for auto-
mated program repair. This paper aims to make one step for-
ward in investigating how to apply static value-flow analysis,
which resolves both the data and control flow of a program,
to help APR generate a precise solution space by increasing
the number of correct patches generated for repairing NPEs.
Figure 1 gives a real NPE from JFreeChart to demonstrate
how we can avoid a plausible but incorrect patch (due to an
imprecise L′) and an implausible patch (due to an imprecise
O′) if the data and control flow information is considered.

When obtaining L′, the spectrum-based fault localization
tools [4, 83] usually record the execution traces for successful
and failed test cases and then contrast the two types of traces
by ranking the frequently executed statements that trigger
a bug [56]. Due to limited test cases, this coarse-grained
selection usually produces an imprecise L′ since some l∈L′
may not represent a correct repair location [55]. In Figure 1,
markers may be null in both branches, `4 and `6. However,
there is only one test case that triggers the bug at `8, with
L′= {`2, `3, `4, `8} containing the executed statements along
the if branch but without the unexecuted ones, `5−`7 (along
the else branch) and `9 − `12. All the statements in L′ are
given the same priority to produce a fix. However, applying
a fix at any statement other than `8 will always generate an
incorrect patch, since the unexecuted `6 may also introduce an
NPE at `8. For example, placing a fix after `4 will generate a
plausible but incorrect patch as highlighted in yellow.

When obtaining O′, existing approaches [24, 31, 32, 37, 58,
81, 84, 85], which ignore data and control dependences, often

value-flow graph

Step 3-1

Step 3-2

Step 2-2

Applying Value-Flow-Aware Repair Ops

Selecting and Ranking Repair Locations

a buggy program & test cases

selected locations

candidate patches

Validation

succeeds

fails

a correct patch

Value-Flow Analysis

Patch Generation

Congestion Calculation

Dynamic Slicing

candidate statements

applicable operations

Step 1

Step 2

Step 3

Step 2-1

VFix

Constructing a Value-Flow Graph

Fig. 2: The workflow of VFIX.

generate incorrect repair operations that either fail to pass a
test case or introduce new bugs. For example, a skip operation
is often applied, resulting in a null pointer check added
(highlighted in gray in Figure 1) to bypass the crash point at
`8. However, removed, which is only initialized at `8, is used
later at `9. Thus, this `8-bypassing skip operation will cause
an undefined behavior at `9, failing on some test cases. By
considering the static value-flow information, we can generate
a correct fix (same as the manual fix in green) that never
accesses such an undefined variable, by also avoiding hundreds
of attempts made by, e.g., dependence-unaware repair [48].

Our Solution. This paper introduces VFIX, a new value-
flow-guided APR approach to fixing NPEs by considering a
substantially reduced solution space in order to increase the
number of correct patches generated. VFIX enhances APR by
incorporating with data and control dependence information,
making it possible to identify bug-relevant repair statements
more accurately and generate more correct repairs than before.

VFIX is complementary to existing APR approaches, which
operate on an already reduced solution space S′ = L′ ×
O′ = C ′ ∪ I ′ ∪ X ′, VFIX will operate on a different one
Svf = Lvf × Ovf = Cvf ∪ Ivf ∪ Xvf to improve precision and
efficiency by including more correct patches and less incorrect
ones from the entire solution space S = L × O, such that
|Svf| � |S′|, |Cvf| � |C ′|, and |Ivf ∪Xvf| � |I ′ ∪X ′|.

Figure 2 gives an overview of VFIX. A test suite for a given
NPE bug contains one failing test case (with several NPE-
triggering test cases for the same bug conceptually treated
as one). For the NPE-triggering test case given, VFIX first
constructs an inter-procedural value-flow graph (VFG), a static
(value-flow) slice of the program, to capture all the potential
NPE-triggering sources and other related NPE crash sites.
Then we formulate our fault localization problem by first
identifying the set of suspicious statements, Lvf, as a portion
of the static slice dynamically executed by the NPE-triggering
test case, and then rank them by solving a graph congestion
calculation problem on the static slice [15, 16]. Given a repair
location, VFIX finally produces a precise set of value-flow-
aware repair operations, Ovf, by filtering out repair templates
or their sub-templates doomed to yield incorrect repair oper-
ations based on the dependence constraints established.

In summary, we make the following main contributions:
• We propose VFIX, a value-flow-guided APR approach to

main(...){
Object obj;
if(Cond1)
obj=this.fs.get(...);

else
obj=this.bs.get(...);

...
+if(obj!=null){//our fix
Object x=obj;
if(Cond2)
gtCC(x);

if(Cond3)
gtCI(x);

+}
...

}
void gtCC(Object x){
x.bar();

}
void gtCI(Object x){
x.bar();

}

1
2
3
4
5
6

7
8
9
10
11
12
13

14
15
16
17
18
19
20 Executed Statement

Unexecuted Statement

Crash Point

ENTRY main

if(Cond1)

x = obj

if(Cond2)

…
EXIT main

1

3

Obj=this.bs.get(…)6

8

9

Obj=this.fs.get(…)4

gtCC(x) x.bar1()1610

if(Cond3) 11

gtCI(x) x.bar2()1912

Executed Statement Unexecuted Statement

return

call

call

return

4 6

8

10

16

12

19

Executed Value Flow

Unexecuted Value Flow

Sliced Value-Flow Graph

Path ①

Path ②

Path ③

Path ④

4 8 10 16

4 8 12 19

6 8 10 16

6 8 12 19

2 2 4 2 2 2 2Congestion

(d) Congestion calculation
From To Path

4 16 4-8-10-16

4 19 4-8-12-19

6 16 6-8-10-16

6 19 6-8-12-198

10 12

4 6

Selected Repair Location

From To Path

4 16 4-8-10-16

4 19 4-8-12-19

6 16 6-8-10-16

6 19 6-8-12-19
Skipped Statements

(a) A buggy program (b) Inter-procedural CFG (c) Value-flow graph (e) Repair operation

Fig. 3: A motivating example.

precisely and efficiently fixing NPE bugs by considering
a substantially reduced solution space in order to increase
the number of correct patches made.

• We formulate our fault localization problem by first
identifying the suspicious problems based on static value-
flow analysis and dynamic execution and then rank them
by solving a graph congestion calculation problem.

• We have evaluated VFIX against a set of eight existing
APR tools in terms of their ability in fixing the NPE bugs
in Defects4j. VFIX is more effective by correctly fix-
ing 3x as many bugs as the most precise one, SIMFIX [28]
(12 bugs by VFIX vs. 4 bugs by SIMFIX), and 50%
more than all the bugs correctly fixed by these eight tools
altogether. In addition, VFIX is also more efficient by
producing a correct patch in minutes instead of hours, on
average. For 10 out of the 12 correctly fixed bugs, VFIX
fixes each bug by generating only one patch in a single-
pass validation. To further validate the effectiveness of
VFIX, we also evaluate VFIX using another set of 15
NPEs in four open-source Apache projects. VFIX has
successfully repaired 12 NPEs, with the fixes that are
semantically equivalent to the developers’ fixes.

II. A MOTIVATING EXAMPLE

We use a program in Figure 3 to explain the three steps of
VFIX (Figure 2). In Figure 3(a), there is an NPE at `16, where
x is null, adapted from the real NPEs in JFreeChart. The
inter-procedural CFG in Figure 3(b) highlights the set of exe-
cuted statements (in gray), Ldyn = {`2, `3, `4, `8, `9, `10, `16},
by a test case that triggers the NPE, as obj = null after
`4 on retrieving a non-existent element from a map. VFIX
is able to generate exactly the same bug-fixing patch as the
developer’s fix (highlighted in `7 and `13), as follows:

Step 1: Constructing a Value-Flow Graph. For the
crash site at `16, VFIX builds an inter-procedural value-flow
graph (VFG), which is essentially a static (value-flow) slice,

Gsta = (Lsta, Esta), shown in Figure 3(c), where Lsta =
{`4, `6, `8, `10, `12, `16, `19}. The nodes (identified by line
numbers) in Lsta represent variables and their edges capture
their def-use relations. Apart from `4, the source for triggering
the NPE at `16, Lsta also includes another potential source `6
for this NPE and a second potential crash point `19.

Step 2: Selecting and Ranking Repair Locations. This
amounts to solving a fault localization problem. Given Ldyn
and Lsta, VFIX collects the suspicious statements on the
dynamic slice Lvf = Ldyn ∩ Lsta = {`4, `8, `10, `16}, which is
a portion of the static slice executed by the bug-triggering test
case. VFIX then ranks these statements by solving a value-flow
congestion calculation problem on Gsta. The intuition behind is
to apply a repair operation to the most likely correct location
in order to avoid also some NPEs that are not triggered by
the given test suite, thus eliminating plausible but incorrect
patches. As illustrated in Figure 3(d), VFIX calculates the
congestion value of each ` ∈ Lvf on Lsta by enumerating all the
paths from the sources in {`4, `6} to the sinks in {`16, `17}
on the VFG (Figure 3(c)). Thus, `8, which has the highest
congestion value, is selected as the first repair location.

Step 3: Applying Value-Flow-Aware Repair Operations.
VFIX generates the repair operations for a repair statement
based on the value-flow information (to increase their success
rate). For `8 selected, VFIX concludes that `10 and `12 are
dependent on `8 and thus adds a null pointer check that
encompasses `8 − `12, as illustrated in Figure 3(e), delivering
a very first patch that is identical to the manual fix.

VFIX fixes the NPE bug in this example by selecting
precisely a repair location and a repair operation. Without our
value-flow analysis, either `4 or `16 will likely be selected as a
repair location. Thus, another potential NPE-triggering source
`6 is ignored, producing a plausible but incorrect patch.

III. APPROACH

We describe VFIX’s three steps for constructing static value-
flow slices (Section III-A), selecting and ranking repair loca-

s ∈ STMT ::= p = q | p = q.f | p.f = q | p = new T |
p = null | returnm p | p = q.m(−→r)

r, p, q ∈ PTR f ∈ FIELD T ∈ CLASS
a, a′ ∈ OBJ m ∈ METHOD `, `′, `′′ ∈ LABEL

(a) A tiny Java-like language

Rule Statement ` Def-Use Information
NULLASGN p = null ` ∈ Defp
NEWASGN p = new T ` ∈ Defp
COPY p = q ` ∈ Defp ` ∈ Useq
LOAD p = q.f ` ∈ Defp ` ∈ Useq

a ∈ pts(q) ` ∈ Usea.f
STORE p.f = q ` ∈ Useq ` ∈ Defa.f

a ∈ pts(p) ` ∈ Usep ` ∈ Usea.f
CALL p = q.m(−→r) ` ∈ Defp ` ∈ Useq

∀ ri ∈ −→r : ` ∈ Useri
MTDENTRY m(−→r){} ∀ ri ∈ −→r : ` ∈ Defri
RET returnm p ` ∈ Usep

[INTRA-POINTER]
` ∈ Defp IntraDU(`, `′, p) `′ ∈ Usep

`
p−→ `′

[INTRA-OBJECT]
` ∈ Defa.f IntraDU(`, `′, a.f) `′ ∈ Usea.f

`
a.f−−→ `′

[INTER-POINTER] m′ = dispatch(a,m)

` : p = q.m(−→r) a ∈ pts(q) `′ : m′(
−→
r′) `′′ : retm′ p′

`
q−→ `′ ∀ ri ∈ −→r : `

ri−→ `′ `′′
p′
−→ `

[INTER-OBJECT]
` ∈ Defa.f InterDU(`, `′, a.f) `′ ∈ Usea.f

`
a.f−−→ `′

(b) Intra-procedural def-use information statement-wise (Defv (Usev) (c) Value-flow edges
denotes the set of definition (use) statements for a variable v)

Fig. 4: Value-flow graph construction.

tions based on static value-flow slices (Section III-B), and de-
termining value-flow-aware repair operations (Section III-C).

A. Constructing Static Value-Flow Slices

Given a buggy program with one NPE crash site, VFIX
builds an inter-procedural value-flow graph (VFG) Gsta =
(Lsta, Esta), a directed graph that captures all the potential
NPE-triggering sources and other related NPE crash sites,
where Lsta is the set of nodes representing statements and Esta
is the set of edges representing their def-use relations.

Figure 4(a) gives a tiny Java-like language. Global variables
and static methods are handled in the standard manner.

Figure 4(b) lists the intra-procedural def-use information of
a variable or field extracted directly from a statement. For
a NULLASGN, NEWASGN or COPY statement, its def-use
information is directly read off. For a LOAD or STORE, the
def-use information for the objects indirectly accessed must
also be considered. Here, pts(v) denotes the points-to set of
v obtained from a demand-driven context-sensitive pointer
analysis [66]. At a STORE, a weak update is assumed [69].
For a method call (CALL, MTDENTRY and RET), the def-use
information for variables is directly available.

Figure 4(c) gives the rules for building the value-flow
edges between two statements. To keep track of the intra-
procedural value-flow for variables and fields, respectively,
[INTRA-POINTER] and [INTRA-OBJECT] find the intra-
procedural definition sites ` of a variable or field from its use
site `′ via IntraDU (Definition 1). [INTER-POINTER] and
[INTER-OBJECT] handle the inter-procedural value-flow for
variables and fields, respectively. In [INTER-POINTER], the
inter-procedural def-use relations for variables are obtained
directly via parameter/return passing. In [INTER-OBJECT]

(illustrated in Figure 5), the inter-procedural def-use relations
for fields are obtained via InterDU (Definition 2).

bar(){

p.f =…;

zot();}

zot(){

foo();

…}

foo(){

…= q.f;

…}
a.f

[INTER-OBJECT]

𝑙1:

𝑙2:

𝑙3:

pts p = {a, a′}

pts q = {a}
𝑙4:

𝑙5:

𝑙6:

𝑙7:

Fig. 5: An inter-procedural value-flow for field a.f .

Definition 1 (Intra-Procedural Def-Use). IntraDU(`, `′, v),
where v is a variable or a field, represents a def-use relation for
v from ` to `′ on an intra-procedural control flow path P with
no redefinition of x in between, i.e., @ `′′ ∈ P : `′′ ∈ Defv .

Definition 2 (Inter-Procedural Def-Use). InterDU(`, `′, a.f)
represents a def-use relation for a.f from ` to `′ (with both
in two distinct methods) on an inter-procedural control-flow
path P , which is discovered context-sensitively [66], with no
redefinition of a.f in between, i.e., @ `′′ ∈ P : `′′ ∈ Defa.f .

Example 1. Figure 5 shows a value-flow for a.f across
bar(), zot() and foo() via the two callsites `3 and `5.
Here, a.f is defined at `2 : p.f = .. in bar() and used at
`7 : .. = q.f in foo(), where p.f and q.f are aliases since
pts(p) ∩ pts(q) = {a}, on the inter-procedural control-flow
path `2, `3, `4, `5, `6, `7, with no redefinition of a.f .

Let p.use() be an NPE crash site, where p is null. We
obtain its static value-flow slice Gsta = (Lsta, Esta) by solving
Gi+1 = fvfg(Gi) iteratively, starting with G0 = {p}, until
a fixed point is reached, where fvfg consists of applying the
rules in Figure 4(c) to add first all the (direct and indirect) defs
of the variables or fields in Gi to Gi and then all the (direct
and indirect) uses of the variables or fields in Gi to Gi. It is
understood that fvfg includes the statement for a variable or
field under consideration in Gi.

B. Selecting and Ranking Repair Locations

Let Ldyn be the set of statements executed by the NPE-
triggering test case. To fix this bug, it suffices to consider only

Source Node

Sink Node

a

b

c

d

e

f

g

h

i

𝐿vf

Source Sink VF-Path

a e a-b-c-d-e

a h a-b-c-h

a i a-b-c-d-i

f h f-g-c-h

f e f-g-c-d-e

f i f-g-c-d-i

Congestion Value 3 3 6 4 2

Rank 4 3 1 2 5

a b c d e

Candidate Locations:

(a) Gsta(Lvf = {a, b, c, d, e}) (b) VF-Paths
Source Sink VF-Path

a e a-b-c-d-e

a h a-b-c-h

a i a-b-c-d-i

f h f-g-c-h

f e f-g-c-d-e

f i f-g-c-d-i

Congestion Value 3 3 6 4 2

Rank 4 3 1 2 5

a b c d e

Candidate Locations:

(c) Ranks

Fig. 6: An example for ranking repair locations.

the repair statements in the dynamic slice Lvf = Ldyn ∩ Lsta,
i.e., the portion of the static slice Lsta dynamically executed.

VFIX then ranks the repair statements in Lvf by solving
a congestion calculation (Definition 3) problem on Gsta. The
intuition behind is that a repair location with a higher con-
gestion value has a better chance to avoid also the other
related potential NPE bugs that are not discovered by the NPE-
triggering test case, thus reducing more effectively the number
of plausible but incorrect patches generated.

Definition 3. Given Gsta for a NPE bug, an `s − `t VF-path,
denoted VF-Path(`s, `t), is a simple path (with no repeated
cycles), such that `s is a source and `t is a sink in Gsta.
For a fixed source-sink pair (`s, `t), VF-Path-Set(`s, `t) is
the set of all `s − `t VF-paths. The congestion value of a
node ` in VF-Path-Set(`s, `t) is given by N

`s,`t
`

|VF-Path-Set(`s,`t)| ,

where N `s,`t
` is the number of `s − `t VF-paths that passes

through `. The congestion value of a node ` in Gsta is given
by

∑
`s∈Src

∑
`t∈Snk

N
`s,`t
`

|VF-Path-Set(`s,`t)| .

VFIX then ranks the statements in Lvf in the non-increasing
order of their congestion values calculated for Gsta based on
the definition above. A reverse topological order in Gsta is
used as a tie-breaker (with the statements in the same strongly
connected component (SCC) being ranked arbitrarily).

In Gsta, a source node can be p = null or return null, a
potential source for causing a null dereference, and a sink node
can be a potential point for triggering a null dereference.

Example 2. Figure 6 illustrates how to select and rank repair
statements. For Gsta given in Figure 6(a), we assume that Lvf =
{a, b, c, d, e}. Figure 6(b) displays its VF-Paths. Figure 6(c)
ranks a, b, c, d and e based on their congestion values.

Finally, Algorithm 1 is used to rank the candidate statements
in Lvf. In actuality, it is only necessary to compute the
congestion value for a repair statement in Lvf in line 5.

C. Applying Value-Flow-Aware Repair Operations

We first discuss our NPE bug model and then introduce the
repair templates used for fixing NPE bugs.

Algorithm 1: Ranking Repair Locations
Input: Gsta = (Lsta, Esta) (a static slice)

Lvf (a set of repair statements)
Output: a linear ordering of the repair statements in Lvf

1 Function RankingRepairLocations(Gsta, Lvf)
2 G′sta = (L′sta, E

′
sta)← Gsta with all SCCs collapsed;

3 Let SRC′sta be the set of source nodes in G′sta;
4 Let SNK′sta be the set of sink nodes in G′sta;
5 foreach ` ∈ L′sta do
6 foreach `s × `t ∈ SRC′sta × SNK′sta do
7 N `s,`t

` ← number of `s − `t VF-paths that
passes through ` in G′sta;

8 VF-Path-Set(`s, `t)← set of `s − `t VF-paths
in G′sta;

9 C`s,`t
` ← N

`s,`t
`

|VF-Path-Set(`s,`t)| ;

10 end
11 C` ←

∑
`s∈SRC′

sta

∑
`t∈SNK′

sta
C`s,`t

` ;
12 end
13 Define a linear ordering of the statements in `′ ∈ L′sta,

�C , in increasing order of their congestion values, C`,
by breaking ties with a reverse topological order;

14 Replace each SCC {`1, . . . `n} ∈ L′sta in �C by
`1, . . . `n, where `i ∈ Lsta, in any arbitrary order;

15 return �C restricted to the statements in Lvf;

1) NPE Bug Model: The majority of the NPE bugs that
happen at a crash site, v.use(), in real-world programs arise
in two scenarios: (1) v is not initialized on some path leading
to v.use(), and (2) a “null check” for v.use() is missing (e.g.,
when retrieving an element that may not exist in a map as in
Figure 3). These two sources of NPEs are also acknowledged
elsewhere in developing repair templates [34, 86, 87].

In this paper, we focus on repairing these two kinds of
NPE bugs by assuming call-graph integrity (i.e., that API calls
are invoked correctly) and type integrity (i.e., that variables
are typed correctly in their declarations). In Section IV-F, we
discuss some NPE bugs caused due to such integrity violations.

2) Repair Operations: For the NPE bugs considered, we
summarize all candidate repair operations based on two repair
templates, i.e., initialization and skip, which are also used
by some existing APR tools [34, 86, 87]. The Initialization
template aims to initialize a null pointer by assigning a newly
created object while the skip template aims to avoid executing
an NPE-triggering statements and other related ones. In this
paper, we focus on how to use these two templates efficiently
and precisely under VFIX, our value-flow analysis framework.

VFIX, as discussed in Section I, operates on the solution
space Lvf × Ovf, where Lvf is the set of repair statements
identified in Section III-B and Ovf is the set of repair oper-
ations defined in Figure 7. There are two sets of rules. The
set of rules in Figure 7(a) is responsible for extracting the
candidate variables or fields from a repair statement in ` ∈ Lvf
that may participate in a repair operation for `. The set of

[V-ASSN-NULL]
` : p = null ` ∈ SRCvf

(`, p,⊥) ∈ VF
[V-ASSN]

` : p = q ` /∈ SNKvf

(`, p, q) ∈ VF
[V-RET-NULL]

` : return null ` ∈ SRCvf

(`,⊥,⊥) ∈ VF
[V-RET]

` : return p ` /∈ SNKvf

(`,⊥, p) ∈ VF

[V-LD-SNK]
` : p = q.f ` ∈ SNKvf

(`, p, q) ∈ VF
[V-ST-SNK]

` : p.f = q ` ∈ SNKvf

(`,⊥, p) ∈ VF
[V-CALL-SNK]

` : p = q.m(−→r) ` ∈ SNKvf

(`, p, q) ∈ VF

[V-LD-INT]
` : p = q.f ` ∈ INTvf

(`, p, q.f) ∈ VF
[V-ST-INT]

` : p.f = q ` ∈ INTvf

(`, p.f, q) ∈ VF
[V-CALL-INT]

` : p = q.m(−→r) ` ∈ INTvf

(`, p, q.m(−→r)) ∈ VF

(a) Identifying the candidate variables or fields in a repair statement ` ∈ Lvf for repairing `

[INIT-SIMP] [INIT-SRC]
(`, x, y) ∈ VF y 6= ⊥ c : y == null `′ : y = new T

`⇒ if (c) {`′}; `
(`, x,⊥) ∈ VF ` : = null =⇒ `′ : x = new T ` : return null =⇒ `′ : return new T

`⇒ `′

[INIT-SNK] [SKIP-ONE] FSL(`) = {`}
(`, x, y) ∈ VF ` ∈ SNKvf x 6= ⊥ @ `′′ ∈ Usey : `′′ pDom ` c : y == null `′ : x = new T

`⇒ if (c) {`′} else {`}
(`, x, y) ∈ VF y 6= ⊥ ` 6= return c : y != null

`⇒ if (c) {`}
[SKIP-MULTI] FSL(`) = {`, `1, · · · , `n} n ≥ 1 [SKIP-RET]
(`, x, y) ∈ VF y 6= ⊥ @ `′ ∈ FSL(`) : `′ = return c : y != null

`⇒ if (c) {`, `1, · · · , `n}
(`, x, y) ∈ VF y 6= ⊥ c : y == null `′ : return r r ∈ {new T, null, ε}

`⇒ if(c) {`′}; `

(b) Generating a repair operation for ` ∈ Lvf (` ⇒ `′ denotes the code transformation from ` to `′ and FSL(`) is a forward slice of `)

Fig. 7: Rules for applying value-flow-aware repair operations.

rules in Figure 7(b) generates the repair operations in Ovf by
using six NPE-repairing templates, with three refined from the
initialization template and the three from the skip template.

Let us first consider the rules in Figure 7(a). As Lvf is a
portion of Gsta restricted to those dynamically executed by
the NPE-triggering test case, denoted Gvf, SRCvf, SNKvf and
INTvf represent the set of source, sink and intermediate nodes
in Gvf, respectively. In particular, SNKvf is a singleton contain-
ing the NPE-triggering statement. For each repair statement
` ∈ Lvf, we collect (`, x, y) ∈ VF, where x and y appear
in `, to indicate that y may be null on entry of ` and x
may be null (or undefined when ` ∈ SNKvf) on exit of `.
[V-ASSN-NULL], [V-ASSN], [V-RET-NULL], and [V-RET]

are self-explanatory, where ` ∈ SRCvf and ` /∈ SNKvf are
redundant. For a load (` : p = q.f), store (` : p.f = q), or
call (` : p = q.m(−→r), there are two rules each, depending on
whether ` is the actual NPE crash site or not.

Let us now examine the six NPE-fixing templates given in
Figure 7(b) in greater detail. Due to the value-flow information
collected (Figure 7(b)), we can now apply a template when
some value-flow constraints are satisfied, thereby filtering
out a particular incorrect template, and consequently, all the
incorrect repair operations instantiated from it.

a) Initialization: There are three templates,
[INIT-SIMP], [INIT-SRC] and [INIT-SNK], which
serve to assign a new object to a potentially null pointer
(a variable or field). Currently, when generating an object
initialization statement v = new T , the public default
constructor (if available) in class T , where T is the declared
type of v or a subtype, is used as in [20, 34]. In future work,
other non-default constructors can be considered similarly.
According to the premises of these templates, [INIT-SIMP]
applies to the statements handled by [V-ASSN], [V-RET],
[V-LD-*], [V-ST-*] and [V-CALL-*]; [INIT-SRC]

applies to the statements handled by [V-ASSN-NULL] and
[V-RET-NULL]; and [INIT-SNK] applies to the statements

handled by [V-LD-SNK] and [V-CALL-SNK].
In [INIT-SIMP], as y may be null, we perform an initial-

ization for y guarded by a runtime null check for y.
In [INIT-SRC], where a repair statement is = null or

return null, we simply add the missing initialization.
In [INIT-SNK], where a repair statement ` (a load or a

call) suffers from a null dereference when y = null, causing
the result in x to be undefined, we add an initialization of x
guarded again by a runtime null check for y and also skip `.
However, we will only do so when @ `′′ ∈ Usey : `′′ pDom `
holds, i.e., when y does not have any post-dominant use in
Usey with respect to `. Otherwise, the repair operation for `
will likely be incorrect even plausible. If x is of a primitive
type T , then T () returns the default value for T as in C++.

b) Skip: There are also three templates, [SKIP-ONE],
[SKIP-MULTI] and [SKIP-RET], which each insert a null
check at a repair location to skip the statements affected by the
null dereference. These three rules apply to all the statements
except for p = null and return null, which are handled
by [INIT-SRC]. In both [SKIP-ONE] and [SKIP-MULTI],
FSL(`) represents the traditional forward slice computed at `.

In [SKIP-ONE], as y may be null at a repair statement `,
we skip ` with a null check y != null (when FSL(`) = {`}).

In [SKIP-MULTI], we skip multiple statements that depend
on a repair statement ` (when FSL(`) = {`, `1, . . . , `n} 6=
{`}). If `, `1, . . . , `n are not consecutive, we choose to skip
the smallest code region encompassing these statements.

In [SKIP-RET], we skip all the statements starting from `
in the method m containing `, by returning nothing (ε) if m’s
return type is void, or new T if T is primitive as discussed
for [INIT-SNK], or one in {new T, null} if T is a class.

In the case of multiple repair operations available at a
repair statement from both an initialization template and a skip
template, the skip template will be tried first, reflecting how
such templates are used in real-world bug-fixing scenarios.

TABLE I: NPEs in Defects4j

Project Description KLOC Bug IDs #NPEs
Chart Plotting Software 96 2, 4, 14, 15, 16, 25, 26 7
Lang Java Utility 22 20, 33, 39, 47, 57 5
Math Mathematics Lib 85 4, 70, 79 3
Time Calendar System 28 - 0
Total 231 15

Example 3. Let us revisit Figure 1 to select the re-
pair operations for the statement at `8, the NPE-
triggering site. By [V-CALL-SNK], we obtain (`8,removed,
markers) ∈ VF. The skip templates are considered first. As
FSL(`8) = {`8, `9, `10, `11} contains `11, a return statement,
[SKIP-RET] applies, giving rise to the correct path shown
in Figure 1. Without our value-flow analysis, [SKIP-ONE]
may be tried, resulting in the implausible patch also shown in
Figure 1. Thus, VFIX can successfully avoid many incorrect
repair operations, thereby reducing the search space.

IV. EVALUATION

Our objective is to show that VFIX can significantly out-
perform the state of the art for repairing NPE bugs in terms of
both precision and efficiency (i.e., the time spent on generating
a correct patch). By comparing VFIX with a set of eight
representative APR tools in fixing all the 15 NPE bugs in
Defects4j (version 1.0.1), we find that VFIX can correctly
repair 3x as many NPEs as the most precise one, SIMFIX [28]
(12 bugs by VFIX vs. 4 bugs by SIMFIX) and 50% more
than all the NPEs correctly fixed by all the eight APR tools
together. In addition, we have also validated the effectiveness
of VFIX using another set of 15 NPEs in 4 open-source
Apache projects, VFIX has successfully repaired 12 NPEs,
by generating the fixes that are semantically equivalent to the
developers’ fixes. VFIX repairs 24 out of these 30 NPEs in
about 30 minutes, i.e., under 80 seconds per bug on average.

A. Implementation

We have implemented VFIX in SOOT [76] in about 11.5
KLOC of Java code, with our value-flow analysis performed
in its Jimple IR. Given a program with a test suite consisting
of one NPE-triggering test case, VFIX relies on SOOT’s built-
in CFGs and call graph to construct its static value-flow slice
Lsta by using the rules in Figures 4(b) and (c). The points-to
information required is discovered by using a demand-driven
context-sensitive pointer analysis [66]. GZoltar [12] is used
to obtain an execution trace Ldyn for the program under the
NPE-triggering test case. Lvf = Lsta ∩ Ldyn then contains all
the repair statements localized. To generate patches, we use
JavaParser [3] to parse, analyze and transform the source code.

B. Experimental Setup

We use two sets of benchmarks. Table I lists the four out
of the five projects in Defects4j (version 1.0.1) [30], a
bug database widely used by the program repair community.
Note that Closure Compiler is excluded due to the lack
of a standard JUnit testing format. There are 15 NPE bugs,

TABLE II: NPEs in Apache Projects

Project Description KLOC Bug IDs #NPEs

Pdfbox PDF Library 128
2266, 2477, 2812

92948, 2951, 2965
2995, 3479, 3572

Felix OSGi Platform 25 4960, 5464 2
Collections Collection Handling 69 39, 360 2

Sling Web Framework 4 4982, 6487 2
Total 226 84 15

with 7 in Chart, 5 in Lang, 3 in Math and 0 in Time.
We have selected this version since the experimental results
from many existing tools for it are available. Table II lists the
four large open-source Apache applications with also a total of
15 NPEs, Pdfbox (9), Felix (2), Collections (2) and
Sling (2). We have selected these 15 NPEs from their bug
repositories [2] since they have NPE-triggering test cases with
the correct patches accepted by developers. For each of these
30 NPEs, we use the test suite provided for the class where
the bug resides, which includes one NPE-triggering test case.

Our experiments were done on a machine with an Intel Core
i5 3.20 GHz CPU and 4GB memory, running Ubuntu 16.04
operating system with JDK 1.6.0 45 with the maximum heap
size of Java virtual machine set as 4 GB. Each program was
run five times and the average is reported in our evaluation.

C. Precision and Efficiency

Following [81, 86], we adopt a relatively strict definition
of correctness for a patch. A patch is correct iff it passes
all the test cases in the test suite and is also semantically or
syntactically equivalent to a human-written patch.

We compare VFIX with eight representative APR tools,
seven general-purpose ones, JGENPROG [38, 48], JKALI [48,
55], NOPOL [48], ACS [86], CAPGEN [81], HDREPAIR [37]
and SIMFIX [28], and one specialized for NPEs, NPEFIX [22].
The results of the first seven tools are taken from their papers.
The time budget per bug is 90 minutes for CAPGEN and
HDREPAIR, 180 minutes for JGENPROG, JKALI and NOPOL,
300 minutes for SIMFIX, and 30 minutes for ACS.

Figure 8 compares VFIX with these APR tools in terms of
each tool’s capability in generating correct patches for the 15
NPE bugs in Defects4j. VFIX outperforms these tools by
correctly repairing 12 out of the 15 NPE bugs.

1) VFIX vs. General-Purpose APR Tools: Among the seven
general-purpose APR tools, SIMFIX is the best in terms of
the number of correct patches generated, repairing 4 out of
the 15 NPEs, with one plausible but incorrect patch and
10 implausible patches produced. CAPGEN and ACS each
fix two NPEs. NOPOL and JKALI produce some plausible
patches, which are all incorrect. VFIX fails to generate correct
patches for three NPEs, as discussed further in Section IV-F. In
comparison with these general-purpose APR tools, VFIX has
successfully repaired six out of the 15 NPE bugs exclusively.

2) VFIX vs. NPEFIX: NPEFIX, an APR tool developed to
repair NPE bugs, can generate 12 plausible patches but with
only two being correct. When fixing a NPE bug, NPEFIX
considers only the NPE-triggering test case while ignoring the

Chart Lang Math

2 4 14 15 16 25 26 20 33 39 47 57 4 70 79

NPEFix

jGenProg

jKali

Nopol

ACS

CapGen

HDRepair

SimFix

VFix

Correct Plausible-but-incorrect Implausible

Fig. 8: Comparing the correctness of the patches generated
by VFIX and eight existing representative APR tools for
Defects4j. The numbers across are the bug IDs correspond-
ing to Column 4 in Table I. Only the applications containing
NPEs, i.e., Chart, Lang and Math, are included here.

others in the test suite. This renders NPEFIX vulnerable to
over-fitting with simple plausible yet incorrect patches such
as randomly replacing a null pointer with a non-null pointer.
Thus, the majority of its patches (10/12 = 83%) are incorrect,
confirmed by manual inspection, because they either introduce
new bugs or significantly alter the program logic.

3) VFIX vs. Runtime Recovery Tools: Instead of providing
correct patches for bugs (including NPEs), some tools, such
as APPEND [20], RCV [45], and Ares [27], aim to prevent
crashes in order to continue program execution. These tools
seek a temporary recovery solution in a short time rather
than repeatedly generating and validating patches against a
test suite. To compare with APPEND [20], we have written
the patches for the 15 NPEs in Defects4j by following its
recovery policy (i.e., calling a default constructor or skipping
the null dereference if the default constructor is unavailable).
Only two bugs, Lang-20 and Lang-47, are fixed correctly.

4) VFIX’s Patch Generation: Table III analyzes VFIX’s
efficiency and precision in repairing the 30 NPEs across the 8
projects, with a 10-minute time budget per bug. VFIX repairs
a bug in three steps, Steps 1 – 3, as shown in Figure 2.
For Chart-2, Math-79, Pdfbox-2812 and Math-2951,
VFIX times out in Step 3 (marked as OOB). If these four
NPEs are included, VFIX takes 4256 seconds (70.9 minutes) in
repairing the 30 NPEs, with 22.9%, 7.4% and 69.7% in Steps 1
– 3, respectively. Otherwise, VFIX takes 1856 seconds (30.9
minutes) in repairing the 26 remaining NPEs, with 44.4%,
13.4% and 42.2% in Steps 1 – 3, respectively.

For the 30 NPE bugs, VFIX has successfully generated
patches for 26 NPEs, in which 24 are correct and two are
incorrect, giving a precision of 92.3%. The high precision con-
firms the effectiveness of our value-flow analysis. In addition,
VFIX is also efficient as the first patch is correct in 19 out
of 24 correct fixes. This fast and precise patch generation is
attributed to the value-flow-aware repair operations used. For
the four NPE bugs mentioned above, however, VFIX still fails
to generate plausible patches within the time budget.

TABLE III: Analyzing VFIX’s patch generation for repairing
the 30 NPEs across the 8 projects (with a 10-minute time
budget per bug). OOB denotes out-of-budget. A breakdown
of the times for its three steps (Figure 2) is given. A green
(red) box marks a correct (incorrect) patch, while a white box
marks a bug for which no plausible patch is generated.

Bug ID Time (secs) N-th patch
passing test CorrectnessStep 1 Step 2 Step 3 Total

Chart-2 37 16 OOB OOB ∞
Chart-4 45 14 34 93 1

Chart-14 41 14 32 87 1
Chart-15 48 13 46 107 1
Chart-16 13 8 10 31 1
Chart-25 41 13 37 91 1
Chart-26 43 3 49 95 1
Lang-20 14 3 13 30 2
Lang-33 15 4 17 36 1
Lang-39 14 3 16 33 1
Lang-47 13 3 16 32 3
Lang-57 12 3 12 27 1
Math-4 16 11 7 34 1
Math-70 13 8 9 30 2
Math-79 12 6 OOB OOB ∞

Felix-4960 23 7 19 49 1
Felix-5464 14 8 9 31 1

Collections-39 13 4 11 28 2
Collections-360 12 7 8 27 1

Pdfbox-2266 50 19 57 126 1
Pdfbox-2477 52 14 66 132 2
Pdfbox-2812 49 24 OOB OOB ∞
Pdfbox-2948 52 17 61 130 1
Pdfbox-2951 54 20 OOB OOB ∞
Pdfbox-2965 51 17 47 115 1
Pdfbox-2995 50 18 44 112 1
Pdfbox-3479 55 19 50 124 2
Pdfbox-3572 55 16 38 109 1
Sling-4982 12 1 16 29 1
Sling-6487 57 1 60 118 1

Total
(with OOB)
(w/o OOB)

976 314 2966 4256
824 248 784 1856

C-4 C-14 C-15 C-16 C-25 C-26 L-20 L-33 L-39 L-47 L-57 M-4
0%

25%

50%

0.2% 0.6% 0.2%

7.7%

0.1% 0.1% 2.6% 2.9% 2.1%

11.8%

40.0%

2.4%

Fig. 9: The percentages of the number of repair statements
in Lvf found by VFIX over the total number of suspicious
statements reported by the fault localization tool, GZoltar [12],
for the 12 NPEs in Defects4j fixed by VFIX (with Chart,
Lang and Math abbreviated to C, L, and M, respectively).

D. VFIX’s Refined Solution Space

We provide some insights on why and how VFIX achieves
high precision and efficiency by refining its solution space
Lvf×Ovf using value-flow analysis. We consider the 12 NPEs
in Defects4j that are fixed by VFIX, as shown in Table III.

Figure 9 shows that VFIX has achieved an average reduction
of 94.11% by moving away from the space of suspicious state-
ments selected by a general-purpose fault localization tool,
GZoltar [12], to Lvf. By leveraging the value-flow information
for an NPE-triggering site, VFIX avoids many irrelevant repair

C-4

C-14

C-15
C-16

C-25

C-26

L-20

L-33

L-39
L-47

L-57

M-4

1 2 3 4 5 6 Without Value-Flow Analysis
With Value-Flow Analysis

Fig. 10: The number of repair templates instantiated at each
bug-fixing statement with and without value-flow analysis for
the 12 NPEs in Defects4j fixed by VFIX (with Chart,
Lang and Math abbreviated to C, L, and M, respectively).

locations that would otherwise be selected by such bug-type-
unaware spectrum-based fault localization techniques.

Figure 10 shows how VFIX has significantly reduced the
number of repair operations in Ovf by comparing the number
of repair templates instantiated with and without our value-
flow analysis at a statement where a correct fix is made. In the
absence of value-flow information, all six templates (given in
Figure 7) are used. By exploiting the value-flow information,
VFIX has cut this down to 2.58, resulting in a reduction of
57.0%, on average, avoiding unnecessary repair operations
tried and boosting the efficiency of patch generation.

E. Case Studies

We conduct two cases studies in Defects4j to show how
VFIX repairs intra- and inter-procedural NPEs precisely and
efficiently within a reduced solution space Svf = Lvf ×Ovf.

Figure 11(a) shows an NPE bug, Chart-4, and its patch
generated by VFIX. The bug happens in `4494, where r
can be null. VFIX adds a null check in `4493 and `4452 to
encompass `4494 − `4451 in an if branch by [SKIP-MULTI].
By manual inspection, we found that this patch is identical
to the one committed by developers. The challenge here
lies in determining the end of the scope for the if-branch.
Closing it too early (e.g., right after `4494) would leave some
variables that are data-dependent on the skipped statements to
be undefined (e.g., c in `4495 and a in `4499). Closing it too
late would introduce unnecessary control-dependencies on the
if-statement added (in `4493), potentially altering the program
logic. Without value-flow analysis, one would have to blindly
enumerate all possible mutations at a statement in order to find
a correct fix, which is computationally impractical. With value-
flow analysis, resulting in a precise Ovf, VFIX can correctly
identify the scope of the inserted if branch by [SKIP-MULTI].

Figure 11(b) illustrates another NPE bug, Chart-16,
repaired by VFIX. This bug happens in `574 as
this.category is not initialized in `207 in the constructor
DefautlIntervalCategoryDataset(...). Given
`574, Gsta built by VFIX contains not only `574 but also
`690, another potential NPE crash site. For the given NPE-
triggering test case, Lvf contains `208 and `574 (but not `690
as it is not executed). VFIX finds the correct patch, which

4493
4494
4495
4496
4497
4498
4499
4450
4451
4452

71
72

1377
1378
1379
1380
1381
1382
1383
1384
1385

public double getMaximumExplodePercent() {
+ if(this.dataset == null){//developer’s fix
+ return 0.0;
+ }
double result = 0.0;

+ if(this.dataset == null)//our fix
+ return 0.0;
Iterator iterator=this.dataset.….iterator();

…
142

207
208

573
574

689
690

DefaultIntervalCategoryDataset(…) {
…

- this.categoryKeys = null;
+ this.categoryKeys = new Comparable[0];
…
public int getCategoryIndex(…){
for(int i=0;i<this.categoryKeys.length;i++){

…
public int getColumnCount(){
return this.categoryKeys.length;

-return solve(min, max);
+return solve(f, min, max);

+if(r != null){
Collection c = r.getAnnotations();
Iterator I = c.iterator();
while(i.hasNext()){
XYAnnotation a = (XYAnnotation)i.next();
if(a instanceof XYAnnotationBoundsInfo){
includedAnnotations.add(a);

}
}

+}

(a) An NPE, Chart-4, correctly repaired with a precise Ovf

142

207
208
209

573
574

581

689
690
691

DefaultIntervalCategoryDataset(…) {
…

- this.categoryKeys = null;
+ this.categoryKeys = new Comparable[0];
}
…
public int getCategoryIndex(…){
for(int i=0;i<this.categoryKeys.length;i++)
…
}
…
public int getColumnCount(){
return this.categoryKeys.length;

}

(b) An NPE, Chart-16, correctly repaired with a precise Lvf

Fig. 11: Two case studies in Defects4j (with the patches
generated by VFIX shown by + anf -).

initializes this.category in `208 by [INIT-SRC]. This
patch can be obtained only if the inter-procedural value-flow
information is available. In addition, our ranking algorithm,
which prioritizes the repair statements Lvf precisely by their
congestion values, is also instrumental here. As Gsta contains
both `574 and `690, `208 is ranked ahead of `574, enabling
VFIX to generate the correct fix in `208. Otherwise, adding
the same fix just before `574 is only plausible but incorrect,
as it fails to fix the other NPE crash site in `690.

F. Discussions

In this paper, we investigate how to apply value-flow anal-
ysis to boost the precision and efficiency of APR. While we
focus on fixing NPEs, the most common type of Java bugs,
our approach can also be effective in fixing other types of bugs
such as use-after-free and memory leaks in C/C++ programs.

In practice, a test suite provided for a bug report may
not be comprehensive enough to enable the bug to be fixed.
This paper shows that we can mitigate such deficiency by
augmenting a test suite with static value-flow analysis.

Currently, VFIX focuses on repairing a class of com-
monly occurring NPE bugs under the assumptions that
call-graph integrity and type integrity are preserved (Sec-
tion III-C). However, an NPE can occur when a wrong API
is called, resulting in a call-graph integrity violation. For
example, fixing Math-70 in Defects4j would require
return solve(min, max) to be replaced by return
solve(min, max), so that f becomes correctly initialized.
In addition, an NPE can also occur due to an integer overflow,
caused possibly by a type integrity violation. For example,
fixing the NPE bug, Math-79 in Defects4j, would require
the declared type of sum and dp in method distance()
of class MathUtils to be changed from int to double.

Going beyond our current bug model will be an interesting
research topic.

V. RELATED WORK

A. Automated Program Repair

Existing APR approaches can be broadly classified into
two categories: general-purpose approaches, which can be
theoretically applied to all kinds of bugs, and bug-specific
approaches, which are designed for specific types of bugs.
General-purpose approaches are based on search algorithms or
driven by semantics-preserving transformations. Search-based
approaches typically adopt a generate-and-validate process
that generates candidate patches by exhaustively exploring the
solution space using, for example, genetic programming [38,
79] or random search [54], and then validates the patches
with a test suite. In practice, the large search space hinders
their efficiency and scalability. Therefore, much research has
been devoted to developing effective heuristics and repair
templates for narrowing down the scope and guiding the search
to generate correct patches efficiently. For example, AE [78]
reduces the search space by merging semantically equivalent
patches. PROPHET [44] uses machine learning techniques
to guide patch generation by learning from correct patches.
CAPGEN [81] leverages the context information extracted
from a program’s AST to achieve fine-grained patch prior-
itization. PAR [34] summarizes common fix patterns from
human-written patches and performs the generate-and-validate
process within a domain confined by these patterns. ACS [86]
focuses on synthesizing branch conditions, ranking patches
by analyzing documents, predicate statistics and dependencies
relations between variables. Semantics-driven approaches [35,
36, 49, 50, 53, 87] represent another class of program repair
techniques, which view a repair task as a program synthesis
problem and synthesize patches via constraint-solving. As
evaluated in Section IV, existing general-purpose approaches
are only marginally effective for repairing NPEs.

Bug-specific APR techniques restrict their scope to some
types of bugs only. For example, FOOTPATCH [77] fixes bugs
related to heap memory properties by employing separation
logic to reason about pointer semantics. MEMFIX [39] consid-
ers memory deallocation errors (e.g., memory leaks, double-
free and use-after-free bugs) using static analysis. There are
also others focusing on buffer overflows [60, 92], integer
overflows [13, 18], memory leaks [23, 89], error-handling
bugs [75] and concurrency errors [29, 29]. The work that
is the most closely related to ours is NPEFIX [22], which
generates patches for NPEs by capturing runtime information
with dynamic analysis. In contrast, VFIX represents a static
approach for fixing NPEs by performing a systematic value-
flow analysis to drastically reduce the search space in order to
avoid implausible and plausible but incorrect patches. As eval-
uated in Section IV, VFIX outperforms NPEFIX significantly
in terms of both effectiveness and precision.

B. Value-Flow Analysis
Understanding the flow of values in a program is funda-

mental in program analysis [61, 70]. By explicitly modelling
the definition-use relations among program variables, value-
flow analysis enables or enhances a series of crucial tasks,
including compiler optimization [7, 67], pointer analysis [40,
51, 62, 69, 70, 73, 74], bug detection [14, 71], software
debugging [80, 82], and validation and verification [19, 21].
In recent years, for example, the potential for value-flow
analysis has been widely explored in detecting a variety
of critical bugs, including memory leaks [14, 71], uses of
uninitialized variables [46, 91], use-after-free errors [61, 90],
and information leaks [5, 26]. While many existing approaches
track the flow of values iteratively at each program point along
the control-flow [6, 57, 63, 64], VFIX uses a fully-sparse
value-flow analysis for both variables and fields. This full-
sparsity leads to the efficiency of VFIX. To the best of our
knowledge, VFIX is the first approach that exploits value-flow
analysis to repair NPE bugs.

C. Mitigations Againist Null Pointer Dereferences
The NPEs that cause program crashes can be detected by

a variety of testing techniques such as fuzzing [1, 8, 10] and
symbolic execution [11, 25, 59]. To increase coverage, static
analysis has been investigated. XYLEM [52], for example, is a
representative static detector that has been shown to be effec-
tive in the industry. There also exist research efforts focusing
on verifying the absence of NPEs using static analysis, in both
whole-program [42, 65] and demand-driven [47] settings. In
addition, fault tolerance techniques for NPEs has also been
studied [20, 27, 45]. RCV [45], for example, processes the
interrupt signals triggered by NPEs at runtime with its own
handlers to allow a buggy program to continue execution.
VFIX, as an APR approach, can also benefit from a more
precise static analysis for its fault localization.

VI. CONCLUSION

This paper presents VFIX, a new value-flow-guided APR
approach for fixing NPE bugs by considering a substantially
reduced solution space in order to increase the number of
correct patches generated efficiently. We have formulated our
fault localiaztion problem as one of solving a congestion calcu-
lation problem based on static value-flow analysis and dynamic
execution trace with respect to a given NPE-triggering test
case. We have formulated our problem of generating repair
operations as one of instantiating repair templates subject to
certain value-flow constraints. VFIX is shown to generate more
correct patches more efficiently than the state of the art.

In future work, we plan to extend VFIX by repairing the
types of NPE bugs that are not currently covered by our bug
model. We also plan to generalize our value-flow analysis
approach to repair other non-NPE bugs.

VII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable comments. This research is supported by Australian
Research Grants DP180104169 and DE170101081.

REFERENCES

[1] American fuzzy lop (afl) fuzzer. http://lcamtuf.coredump.cx/afl.
[2] Apache projects issues. https://issues.apache.org/jira/projects.
[3] Javaparser. https://javaparser.org/.
[4] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy

of spectrum-based fault localization. In TAICPART-MUTATION
’07, pages 89–98, 2007.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In PLDI ’14, pages 259–269, 2014.

[6] D. Babic and A. J. Hu. Calysto: Scalable and precise extended
static checking. In ICSE ’08, pages 211–220, 2008.

[7] R. Bodı́k and S. Anik. Path-sensitive value-flow analysis. In
POPL ’98, pages 237–251, 1998.

[8] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury.
Directed greybox fuzzing. In CCS ’17, pages 2329–2344, 2017.

[9] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S.
McKinley. Tracking bad apples: reporting the origin of null and
undefined value errors. In OOPSLA 07, pages 405–422, 2007.

[10] E. Bounimova, P. Godefroid, and D. Molnar. Billions and
billions of constraints: Whitebox fuzz testing in production. In
ICSE ’13, pages 122–131, 2013.

[11] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In OSDI ’08, pages 209–224, 2008.

[12] J. Campos, A. Riboira, A. Perez, and R. Abreu. Gzoltar: an
eclipse plug-in for testing and debugging. In ASE ’12, pages
378–381, 2012.

[13] X. Cheng, M. Zhou, X. Song, M. Gu, and J. Sun. Intpti:
Automatic integer error repair with proper-type inference. In
ASE ’17, pages 996–1001, 2017.

[14] S. Cherem, L. Princehouse, and R. Rugina. Practical memory
leak detection using guarded value-flow analysis. In PLDI ’07,
pages 480–491, 2007.

[15] J. Chuzhoy. Routing in undirected graphs with constant con-
gestion. In STOC ’12, pages 855–874, 2012.

[16] J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar. Hardness
of routing with congestion in directed graphs. In STOC ’07,
pages 165–178, 2007.

[17] M. Cielecki, J. Fulara, K. Jakubczyk, and Ł. Jancewicz. Prop-
agation of jml non-null annotations in java programs. In PPPJ
’06, pages 135–140. ACM, 2006.

[18] Z. Coker and M. Hafiz. Program transformations to fix c
integers. In ICSE ’13, pages 792–801, 2013.

[19] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program
verification in polynomial time. In PLDI ’02, pages 57–68,
2002.

[20] K. Dobolyi and W. Weimer. Changing java’s semantics for
handling null pointer exceptions. In ISSRE ’08, pages 47–56,
2008.

[21] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation
via scalable path-sensitive value flow analysis. In ISSTA ’04,
pages 12–22, 2004.

[22] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus.
Dynamic patch generation for null pointer exceptions using
metaprogramming. In SANER ’17, pages 349–358, 2017.

[23] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou, B. Xie,
and H. Mei. Safe memory-leak fixing for c programs. In ICSE
’15, pages 459–470, 2015.

[24] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei.
Fixing recurring crash bugs via analyzing q&a sites (T). In ASE
’15, pages 307–318, 2015.

[25] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated
random testing. In PLDI ’05, pages 213–223, 2005.

[26] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard. Information flow analysis of android applications

in droidsafe. In NDSS ’15, page 110, 2015.
[27] T. Gu, C. Sun, X. Ma, J. Lü, and Z. Su. Automatic runtime

recovery via error handler synthesis. In ASE’16, pages 684–695,
2016.

[28] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen. Shaping
program repair space with existing patches and similar code. In
ISSTA ’18, pages 298–309, 2018.

[29] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In PLDI ’11, pages 389–400, 2011.

[30] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database
of existing faults to enable controlled testing studies for java
programs. In ISSTA ’14, pages 437–440, 2014.

[31] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso. Minthint:
automated synthesis of repair hints. In ICSE ’14, pages 266–
276, 2014.

[32] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun. Repairing
programs with semantic code search (T). In ASE ’15, pages
295–306, 2015.

[33] S. W. Kent. Dynamic error remediation: A case study with null
pointer exceptions. University of Texas Masters thesis, 2008.

[34] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch
generation learned from human-written patches. In ICSE ’13,
pages 802–811, 2013.

[35] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser.
Jfix: Semantics-based repair of java programs via symbolic
pathfinder. In ISSTA ’17, pages 376–379, 2017.

[36] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser. S3:
Syntax-and semantic-guided repair synthesis via programming
by examples. In ESEC/FSE’17, pages 593–604, 2017.

[37] X. D. Le, D. Lo, and C. Le Goues. History driven program
repair. In SANER ’16, pages 213–224, 2016.

[38] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog:
A generic method for automatic software repair. TSE, 38(1):54–
72, 2012.

[39] J. Lee, S. Hong, and H. Oh. Memfix: static analysis-based repair
of memory deallocation errors for c. In ESEC/FSE’18, pages
95–106, 2018.

[40] L. Li, C. Cifuentes, and N. Keynes. Boosting the performance of
flow-sensitive points-to analysis using value flow. In ESEC/FSE
’11, pages 343–353, 2011.

[41] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have
things changed now?: an empirical study of bug characteristics
in modern open source software. In ASID ’06, pages 25–33,
2006.

[42] A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and
M. Nanda. Verifying dereference safety via expanding-scope
analysis. In ISSTA ’08, pages 213–224, 2008.

[43] F. Logozzo and T. Ball. Modular and verified automatic program
repair. In OOPSLA ’12, pages 133–146, 2012.

[44] F. Long and M. Rinard. Automatic patch generation by learning
correct code. In POPL ’16, pages 298–312, 2016.

[45] F. Long, S. Sidiroglou-Douskos, and M. Rinard. Automatic
runtime error repair and containment via recovery shepherding.
In PLDI ’14, pages 227–238, 2014.

[46] K. Lu, C. Song, T. Kim, and W. Lee. Unisan: Proactive kernel
memory initialization to eliminate data leakages. In CCS ’16,
pages 920–932, 2016.

[47] R. Madhavan and R. Komondoor. Null dereference verification
via over-approximated weakest pre-conditions analysis. In
OOPSLA ’11, pages 1033–1052, 2011.

[48] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Mon-
perrus. Automatic repair of real bugs in java: A large-scale
experiment on the defects4j dataset. Empirical Software Engi-
neering, 22(4):1936–1964, 2017.

[49] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking
for simple program repairs. In ICSE ’15, pages 448–458, 2015.

[50] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable

http://lcamtuf.coredump.cx/afl
https://issues.apache.org/jira/projects
https://javaparser.org/

multiline program patch synthesis via symbolic analysis. In
ICSE ’16, pages 691–701, 2016.

[51] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for java. TOSEM, 14(1):1–41,
2005.

[52] M. G. Nanda and S. Sinha. Accurate interprocedural null-
dereference analysis for java. In ICSE ’09, pages 133–143,
2009.

[53] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
Semfix: Program repair via semantic analysis. In ICSE ’13,
pages 772–781, 2013.

[54] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength
of random search on automated program repair. In ICSE ’14,
pages 254–265, 2014.

[55] Z. Qi, F. Long, S. Achour, and M. C. Rinard. An analysis
of patch plausibility and correctness for generate-and-validate
patch generation systems. In ISSTA ’15, pages 24–36, 2015.

[56] M. Renieres and S. P. Reiss. Fault localization with nearest
neighbor queries. In ASE ’03, pages 30–39, 2003.

[57] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL ’95, pages
49–61, 1995.

[58] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad. ELIXIR:
effective object oriented program repair. In ASE ’17, pages
648–659, 2017.

[59] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing
engine for c. In ESEC/FSE’05, pages 263–272, 2005.

[60] A. Shaw, D. Doggett, and M. Hafiz. Automatically fixing c
buffer overflows using program transformations. In DSN ’14,
pages 124–135, 2014.

[61] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang.
Pinpoint: Fast and precise sparse value flow analysis for million
lines of code. In PLDI ’18, pages 693–706, 2018.

[62] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your
contexts well: understanding object-sensitivity. In POPL ’11,
pages 17–30, 2011.

[63] J. Späth, K. Ali, and E. Bodden. Ide al: Efficient and precise
alias-aware dataflow analysis. In OOPSLA ’17, page 99, 2017.

[64] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden.
Boomerang: Demand-driven flow-and context-sensitive pointer
analysis for java. In ECOOP ’16, pages 22:1–22:26, 2016.

[65] F. Spoto. Precise null-pointer analysis. Software & Systems
Modeling, 10(2):219–252, 2011.

[66] M. Sridharan and R. Bodı́k. Refinement-based context-sensitive
points-to analysis for java. In PLDI ’06, pages 387–400, 2006.

[67] B. Steffen, J. Knoop, and O. Rüthing. The value flow graph:
A program representation for optimal program transformations.
In ESOP ’90, pages 389–405, 1990.

[68] F. Steimann, M. Frenkel, and R. Abreu. Threats to the validity
and value of empirical assessments of the accuracy of coverage-
based fault locators. In ISSTA ’13, pages 314–324, 2013.

[69] Y. Sui and J. Xue. On-demand strong update analysis via value-
flow refinement. In FSE ’16, pages 460–473, 2016.

[70] Y. Sui and J. Xue. SVF: interprocedural static value-flow
analysis in llvm. In CC ’16, pages 265–266, 2016.

[71] Y. Sui, D. Ye, and J. Xue. Static memory leak detection using
full-sparse value-flow analysis. In ISSTA ’12, pages 254–264,
2012.

[72] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury. Repairing
crashes in android apps. In ICSE ’18, 2018.

[73] T. Tan, Y. Li, and J. Xue. Making k-object-sensitive pointer
analysis more precise with still k-limiting. In SAS ’16, pages
489–510, 2016.

[74] T. Tan, Y. Li, and J. Xue. Efficient and precise points-to
analysis: modeling the heap by merging equivalent automata.
PLDI ’17, 52(6):278–291, 2017.

[75] Y. Tian and B. Ray. Automatically diagnosing and repairing
error handling bugs in c. In ESEC/FSE’17, pages 752–762,
2017.

[76] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot: A java bytecode optimization framework.
In CASCON ’99, pages 13–, 1999.

[77] R. van Tonder and C. Le Goues. Static automated program
repair for heap properties. In ICSE ’18, pages 151–162, 2018.

[78] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equiv-
alence for adaptive program repair: Models and first results. In
ASE ’13, pages 356–366, 2013.

[79] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automat-
ically finding patches using genetic programming. In ICSE’09,
pages 364–374, 2009.

[80] M. Weiser. Programmers use slices when debugging. Commu-
nications of the ACM, 25(7):446–452, 1982.

[81] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung. Context-
aware patch generation for better automated program repair. In
ICSE ’18, 2018.

[82] R. Wismüller. Debugging of globally optimized programs using
data flow analysis. In PLDI ’94, pages 278–289, 1994.

[83] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey
on software fault localization. TSE, 42(8):707–740, 2016.

[84] Q. Xin and S. P. Reiss. Leveraging syntax-related code for
automated program repair. In ASE ’17, pages 660–670, 2017.

[85] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang. Identifying
patch correctness in test-based program repair. In ICSE ’18,
pages 789–799, 2018.

[86] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and
L. Zhang. Precise condition synthesis for program repair. In
ICSE ’17, pages 416–426, 2017.

[87] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. L.
Marcote, T. Durieux, D. L. Berre, and M. Monperrus. Nopol:
Automatic repair of conditional statement bugs in java pro-
grams. TSE, 43(1):34–55, 2017.

[88] J. Xuan and M. Monperrus. Learning to combine multiple
ranking metrics for fault localization. In ICSME ’14, pages
191–200, 2014.

[89] H. Yan, Y. Sui, S. Chen, and J. Xue. Automated memory leak
fixing on value-flow slices for c programs. In SAC ’16, pages
1386 – 1393, 2016.

[90] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context
reduction: A pointer-analysis-based static approach for detecting
use-after-free vulnerabilities. In ICSE ’18, pages 327–337,
2018.

[91] D. Ye, Y. Sui, and J. Xue. Accelerating dynamic detection of
uses of undefined values with static value-flow analysis. In CGO
’14, page 154, 2014.

[92] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou. Intpatch: Au-
tomatically fix integer-overflow-to-buffer-overflow vulnerability
at compile-time. In ESORICS ’10, pages 71–86, 2010.

	Introduction
	A Motivating Example
	Approach
	Constructing Static Value-Flow Slices
	Selecting and Ranking Repair Locations
	Applying Value-Flow-Aware Repair Operations
	NPE Bug Model
	Repair Operations

	Evaluation
	Implementation
	Experimental Setup
	Precision and Efficiency
	VFix vs. General-Purpose APR Tools
	VFix vs. NPEFix
	VFix vs. Runtime Recovery Tools
	VFix's Patch Generation

	VFix's Refined Solution Space
	Case Studies
	Discussions

	Related Work
	Automated Program Repair
	Value-Flow Analysis
	Mitigations Againist Null Pointer Dereferences

	Conclusion
	Acknowledgments
	Bibliography

