
Launch-Mode-Aware Context-Sensitive Activity Transition
Analysis∗

Yifei Zhang
UNSW Sydney, Australia

Yulei Sui
University of Technology Sydney,

Australia

Jingling Xue
UNSW Sydney, Australia

ABSTRACT

Existing static analyses model activity transitions in Android apps
context-insensitively, making it impossible to distinguish different
activity launch modes, reducing the pointer analysis precision for
an activity’s callbacks, and potentially resulting in infeasible activity
transition paths. In this paper, we introduce Chime, a launch-mode-
aware context-sensitive activity transition analysis that models
different instances of an activity class according to its launch mode
and the transitions between activities context-sensitively, by work-
ing together with an object-sensitive pointer analysis.

Our evaluation shows that our context-sensitive activity transi-
tion analysis is more precise than its context-insensitive counter-
part in capturing activity transitions, facilitating GUI testing, and
improving the pointer analysis precision.

CCS CONCEPTS

• Theory of computation → Program analysis; • Software

and its engineering→ Object oriented languages;

KEYWORDS

Android, Pointer Analysis, Activity Transition Analysis
ACM Reference Format:

Yifei Zhang, Yulei Sui, and Jingling Xue. 2018. Launch-Mode-Aware Context-
Sensitive Activity Transition Analysis. In ICSE ’18: ICSE ’18: 40th Interna-
tional Conference on Software Engineering , May 27-June 3, 2018, Gothenburg,
Sweden.ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3180155.
3180188

1 INTRODUCTION

Activity, as a major type of Android components, lies at the heart
of the Android programming framework due to its event-driven
nature. An activity acts as a container consisting of various GUI
elements (e.g., views and text boxes), through which, users interact
with an app for activity navigations, i.e., transitions between dif-
ferent activities. Conceptually, an app executes along the activity
transition paths and other callbacks are sprawled out of them.
∗Thanks to all the reviewers for their valuable comments. This research is supported by
ARC grants, DP170103956 and DE170101081. Yifei Zhang is supported by an Australian
Government Research Training Program Scholarship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180188

4 class Search extends Activity {
5 void onClick(...) {
6 startActivity(new Intent(this,
 Search.class)); }
7 void onCreate(...) {...}
8 void onStart() {...}
 …
9 void onRestart() {...}
 ... }

Android Framework

10 startActivity(Intent intent) {
…
// find target activity instance
// based on the launch mode
11 a = findActivity(intent);
12 if (a == null) {
13 a = createNewActivity(intent);
14 a.onCreate();
15 a.onStart();
16 ...} else {
17 a.onRestart();
... }

omain o3 o6

 (a) Application code

(c) Two activity transition sequences when Search activity
is configured under standard (left) and singleTask (right) launch modes

 (b) Library pseudo-code

1 class Home extends Activity {
2 void onClick(...) {
3 startActivity(new Intent(this,
 Search.class)); } }

Home Search Search omain
Home o3

Search

Figure 1: Three activity transitions, represented by ,

and , via callbacks: Home launches Search and

Search launches itself with standard and singleTaskmodes.

A fundamental static analysis for Android apps is to model ac-
tivity transitions for event-driven callbacks. This serves as a cor-
nerstone for many clients, such as vulnerability detection [5, 6, 9,
10, 14, 19, 27, 31], malware detection and mitigation [7, 8, 27], GUI
model generation [32, 33], and GUI testing [2–4, 20, 23].

The core data structure used for an app is an activity transition
graph (ATG) [2, 4, 23], which represents the activity transitions in
the app. In an ATG, a node represents an activity instance and an
edge between two nodes denotes an activity transition.

In Android, a parent activity can start a child activity by in-
voking, e.g., startActivity() as a form of an inter-component
communication (ICC) call, passing it an intent that describes the
child activity to be launched. In addition, an activity instance of
a class, say, T can be launched in one of the four launch modes,
standard, singleTask, singleTop and singleInstance, either
configured in AndroidManifest.xml or specified in the intent
passed to startActivity(). The first one is the default while the
other three are known as special launchmodes. These launchmodes
affect which activity instances are launched and their transitions.
For example, standard always requests a new activity instance of
T to be launched while singleTask requires an existing activity
instance of T to be reused if it exists (by thus limiting only one
instance of T in each activity transition path).

Figure 1 gives an example to demonstrate how we intend to
use an ATG to keep track of activity transitions (in the presence
of ICC calls) under different launch modes, with Search being
configured once with standard and once with singleTask. We
assume a navigation scenario where the user clicks a button on the

https://doi.org/10.1145/3180155.3180188
https://doi.org/10.1145/3180155.3180188
https://doi.org/10.1145/3180155.3180188

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yifei Zhang, Yulei Sui, and Jingling Xue

current Home activity to launch a Search activity via the ICC call
startActivity() at line 3. Next, the user clicks another button
on the launched Search activity, causing either a new Search ac-
tivity (with standard) or the existing one (with singleTask) to be
launched via the ICC call startActivity() at line 6.

Let us understand the internal working of ICC callbacks in the
above navigation scenario for the three transitions as highlighted in
black, red and blue arrows. There are three steps for each transition
via the Android callback mechanismwhen an app (Figure 1(a)) inter-
acts with the Android framework (Figure 1(b)). First, the app code
passes a new intent object (line 3) to the framework (line 10). Second,
the framework finds the corresponding activity instance a (line 11)
based on the launch mode specified. As shown in Figure 1(b), a new
instance is created (line 13) if the activity is launched for the first
time, i.e., oHome

main
oSearch3 , or in standard mode with the

transition oSearch3 oSearch6 , where oSearch3 and oSearch6 are
two different instances of Search. Finally, the framework launches
Search via the callbacks (lines 14-15) to their corresponding life-
cycle methods (lines 7-8). If a special mode, singleTask, is used,
the Android framework will retrieve the existing Search instance

to restart the activity (line 17), oSearch3 .

Building ATGs statically to reason about activity transitions for
Android apps is challenging. Unlike a Java program with a ded-
icated main() method, an Android app can have multiple entry
points, with some activities implicitly launched by the Android
framework through nondeterministic user and system events. This
can significantly complicate static activity transition analysis in
the presence of a large number of callbacks. In addition, activity
transitions through ICC make use of intent objects to specify target
activities launched, requiring a precise pointer analysis to discover
the contents in such intents. Finally, the heap allocation sites for ac-
tivity instances are invisible in the app code, as they are distributed
via deep call chains in the Android framework. Thus, perform-
ing a precise pointer analysis for an app over the entire Android
framework (with millions of lines of code) is unrealistic [9].

Existing GUI testing techniques [2, 4, 23] use context-insensitive
ATGs to model activity transitions in Android apps, implying that
all instances of an activity class are abstracted with one single ob-
ject. Thus, context-insensitivity makes it inherently impossible to
distinguish different activity launch modes, reduces the pointer
analysis precision for an activity’s callbacks, and potentially intro-
duces infeasible activity transition paths. To analyze the callbacks
of an activity, existing static analyses [1, 9, 14, 24–26, 31] construct
a “fat” harness main(), consisting of one allocation site per activity
class (for allocating one single abstract object for the class) and the
calls to all its callbacks (e.g., onCreate() and onClick()) on the
abstract object. In Figure 1, oSearch will be created regardless
of the launch mode specified for Search. The transitions between
activities are modeled context-insensitively, as discussed Section 2.

To address the above-mentioned challenges in modeling activity
transitions and the limitations of the prior work, we present Chime,
a launch-mode-aware context-sensitive activity transition analysis
for Android apps that builds context-sensitive ATGs, together with
an object-sensitive pointer analysis [12, 13, 15–17, 21, 22, 28–30].

Activity-Aware
Object-Sensitive
Pointer Analysis

Context-
Sensitive

ATG

Preprocessing

 Launch
Mode

Analysis

Chime

Slim Harness
main()

Intent Filters

Launch Modes
Targets of
ICC Calls

Activity
 Behaviors
Modeling

Figure 2: An overview of the Chime framework.

By maintaining context-sensitivity in tracking activity transitions,
Chime can model launched activities based on their launch modes
and reduce the number of infeasible transition paths (that would
otherwise be introduced context-insensitively). By distinguishing
different instances of an activity class based on their activity tran-
sition sequences as contexts, Chime avoids having to analyze the
Android framework (e.g., to look for the heap allocation sites for
activities) and improves the pointer analysis precision for the call-
backs of an activity.

Figure 2 depicts our framework. The activity-aware object-
sensitive pointer analysis and launch mode analysis are mutually
dependent. Its preprocessing phase extracts metadata, including
activity launch modes and intent filters for an Android app. Unlike
existing static analyses [1, 9, 14, 24–26, 31], which use a fat harness
main() for allocating all the activities and calling its callbacks (as
mentioned earlier), Chime builds an ATG for an app by using a
slim harness main(), consisting of initially the same information
but restricted to the entry activities, i.e., the ones registered via
intent filters or exported to the system. The other activities will be
gradually introduced into the ATG during the analysis.

This paper makes the following contributions:
• We introduce a launch mode analysis for distinguishing launched
instances of an activity class based on the launch mode specified.
• We introduce Chime, a launch-mode-aware context-sensitive
activity transition analysis that tracks activity transitions context-
sensitively, together with an object-sensitive pointer analysis.
• We have implemented Chime in the DroidSafe framework [9].
Evaluated with a set of 42 large real-world Android apps from
Google Play, Chime is shown to be more precise than its context-
insensitive counterpart in modeling activity transitions, guiding
GUI testing, and improving the pointer analysis precision.

2 MOTIVATION

In Section 1, we have used an example in Figure 1 to explain why
modeling activity transitions context-sensitively is essential in ac-
counting for the effects of launch modes on launched activities.
In this section, we use another example to demonstrate why such
context-sensitive modeling is also essential in modeling accurately
activity transitions, improving the pointer analysis precision, and
potentially reducing the number of infeasible activity transitions.

With this second example in Figure 3, we show how Chime
models context-sensitively the activity instances launched for Home,
NewTrip, TripView, and EditFolder, and their transitions, by con-
sidering their launch modes. In Figure 3(a), we see a code snippet
from TripView, a real public transportation trip plan tool. Home is
the main activity. Two launch modes, singleTask and standard,
will be considered. The other three activities, configured under
standard launch mode, are not exported (to the system).

Launch-Mode-Aware Context-Sensitive Activity Transition Analysis ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

1 class Home extends Activity {
2 // The “+” button registered with the following callback
3 void onClick(View view) {
4 Intent HMtoNT = new Intent(this, NewTrip.class);
5 startActivity(HMtoNT); }
6 // A list registered with the following callback
7 void onItemSelected(..., int pos, long row) {
8 if(getItem(pos) instanceof TripFolder) {
9 Intent HMtoTV = new Intent(this, TripView.class);
10 startActivity(HMtoTV); } ... }
11 void onNewIntent(..., Intent EFtoHM) {...} }
12 class NewTrip extends Activity {
13 // The “New Folder” button registered with the following callback
14 void onClick(View view) {
15 Intent NTtoEF = new Intent(this, EditFolder.class);
16 startActivityForResult(NTtoEF, ...); }
17 void onActivityResult(..., Intent EFtoNT) {...} }
18 class TripView extends Activity {
19 // A menu registered with the following callback
20 void onContextItemSelected(MenuItem menuItem) {
21 if(menuItem.getItemId() == EDITFOLDER) {
22 Intent TVtoEF = new Intent(this, EditFolder.class);
23 startActivityForResult(TVtoEF, ...); } ... }
24 void onActivityResult(..., Intent EFtoTV) {...} }
25 class EditFolder extends Activity {
26 // A menu registered with the following callback
27 void onContextItemSelected(MenuItem menuItem) {
28 if(menuItem.getItemId() == SAVE) {
29 Intent ret = new Intent();
30 ret.putExtra("folder_name", name);
31 setResult(..., ret);
32 } else if(menuItem.getItemId() == HOME) {
33 Intent EFtoHM = new Intent(this, Home.class);
34 startActivity(EFtoHM); } ... } }

(a) App code abstracted from TripView

Home

NewTrip

TripView

EditFolder

(b) Activity transitions (including GUI events)

<oHM, ∅>

<oNT, ∅> <oTV, ∅>

<oEF, ∅>

(c) Context-insensitive ATG

<omain, ∅>

<o10, [omain]><o5, [omain]>

<o16, [o5, omain]> <o23, [o10, omain]>

NT

NT

TV

TV

HM

HMHM

HM HM

EF EF

(d) context-sensitive ATG (singleTask for Home)

<omain, ∅>

<o10, [omain]><o5, [omain]>

<o16, [o5, omain]> <o23, [o10, omain]>

<o34, [o16, o5, omain]> <o34, [o23, o10, omain]>

HM

HMHM

HM HM

HM HM

NT

NT

NT

TV

TV

TV

EF

EF

EF

EFHMHM

(e) Context-sensitive ATG (standard for Home)

Figure 3: A motivating example. ot− is an instance of t , where t ∈ {Home (HM), NewTrip (NT), TripView (TV), EditFolder (EF)}.
In (d) and (e), and denote two context-sensitive activity transition paths identified by Chime.

2.1 Two Navigations Scenarios

Figure 3(b) shows two activity navigations highlighted in red and
blue arrows, respectively. For the red navigation, Home launches
NewTrip via the ICC call at line 5 once the “+” button for NewTrip
is clicked. Then NewTrip launches EditFolder, once the “New
Folder” button is clicked, to create a new trip folder via the ICC call
startActivityForResult() at line 16, and subsequently, receives
an intent object from the target activity as its result. If “Save” on
the menu is clicked, EditFolder transits back to NewTrip so that
setResult(), which is invoked at line 31, returns an intent object
as the result to the previous NewTrip instance that has launched
EditFolder through the Android callback onActivityResult()
at line 17. If “Home” on the menu is clicked instead, EditFolder
transits back to Home via the ICC call at line 34.

For the blue navigation, Home launches TripView to look up an
existing trip at line 10 once the list item “Existing Trip Folder”
is selected. TripView launches EditFolder to edit the name of an
existing folder via the ICC call at line 23 once “Edit Folder” on the
menu is clicked. Then EditFolder transits back to TripView if
“Save” is clicked or returns to Home if “Home” is clicked.

2.2 Context-Insensitive Transition Analysis

Existing static analyses [1, 2, 4, 9, 14, 23–26, 31] model activity
transitions context-insensitively. For our example, the context-
insensitive ATG obtained is shown in Figure 3(c). For each app,
a “fat” harness main() is created, responsible for allocating one
abstract object for each activity class (to represent all its instances)
and calling all its callbacks (e.g., onCreate()) on the abstract object.
Thus, each abstract activity is parameterized with an empty con-
text ∅. As there are only four context-insensitive activity objects,

⟨oHM, ∅⟩, ⟨oNT, ∅⟩, ⟨oTV, ∅⟩ and ⟨oEF, ∅⟩, the two EditFolder instances
that are actually created at run time along two different transition
paths are indistinguishable. In addition, regardless of the launch
mode specified for Home, the same ATG is always built.

Finally, ATGs are essentially call graphs but used for modeling
activity transitions. When constructed context-insensitively, ATGs
will potentially exhibit infeasible transition paths.

2.3 Context-Sensitive Transition Analysis

For our example, Chime will eventually build the context-sensitive
ATG in Figure 3(d) if Home uses singleTask as its launch mode and
the one in Figure 3(e) if Home uses standard as its launch mode.
Initially, its slim harness main() allocates one instance, oHMmain, of
the main activity Home (and also calls all the callbacks registered).
As before, oHMmain is parameterized with ∅ in the ATG.

Our activity-aware pointer analysis is then performed on the
harnessed app to resolve its activity-related ICC calls. During the
analysis, the pointed-to objects of the intent variables at the two
ICC calls at lines 5 and 10 are queried in order to find their target ac-
tivities. Once their class types, NewTrip (line 4) and TripView (line
9), are found, Chime creates two activity instances, ⟨oNT5 , [o

HM
main]⟩

at line 5 and ⟨oTV10 , [o
HM
main]⟩ at line 10, and then adds the transition

edges from oHMmain to o
NT
5 and oTV10 as shown. Note that o

NT
5 and oTV10 are

parameterized with [oHMmain], a context representing currently the
only activity transition sequence reaching oHMmain. For EditFolder,
however, there are two reaching transition paths, resulting in two
different instances, ⟨oEF16 , [o

NT
5 ,o

HM
main]⟩ and ⟨o

EF
23 , [o

TV
10 , o

HM
main]⟩, param-

eterized by two different transition sequences.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yifei Zhang, Yulei Sui, and Jingling Xue

Finally, ⟨oEF16 , [o
NT
5 ,o

HM
main]⟩ at line 34 launches a Home activity. If

Home is configured with singleTask (Figure 3(d)), Chime retrieves
its existing instance ⟨oHMmain, ∅⟩ along the transition path reach-
ing ⟨oEF16 , [o

NT
5 ,o

HM
main]⟩, and adds an edge from ⟨oEF16 , [o

NT
5 ,o

HM
main]⟩

to ⟨oHMmain, ∅⟩. Similarly, the context-sensitive transition from
⟨oEF23 , [o

TV
10 ,o

HM
main]⟩ to ⟨o

HM
main, ∅⟩ is added. If Home is configured

with standard instead (Figure 3(e)), two new instances of Home
will be created, ⟨oHM34, [o

EF
16 ,o

NT
5 ,o

HM
main]⟩ and ⟨o

HM
34 , [o

EF
23 ,o

TV
10 ,o

HM
main]⟩,

one per each transition path, resulting in the following two
new edges added: ⟨oEF16 , [o

NT
5 ,o

HM
main]⟩ ⟨oHM34 , [o

EF
16 ,o

NT
5 ,o

HM
main]⟩ and

⟨oEF23 , [o
TV
10 ,o

HM
main]⟩ ⟨oHM34 , [o

EF
23 ,o

TV
10 ,o

HM
main]⟩.

2.4 Object-Sensitive Pointer Analysis

Consider the class EditFolderwith onCreate() shown in Figure 4.
At line 4, its intentEF is known to point to only one of the two
intent objects passed from lines 15 and 22 in Figure 3(a), respectively.

1 class EditFolder extends Activity {
2 protected void onCreate(...) {
3 ...
4 Intent intentEF = getIntent();
5 ... } }

Figure 4: Context-sensitive pointer analysis of callbacks

with context-insensitive and context-sensitive ATGs.

Based on the context-insensitive ATG in Figure 3(c), existing
context-sensitive pointer analyses for Android apps [9, 31] will
analyze all the callbacks of an activity context-insensitively. As
there is only one instance of EditFolder, ⟨oEF, ∅⟩, in Figure 3(c),
onCreate() will be analyzed only once on the receiver object
⟨oEF, ∅⟩. As a result, intentEF at line 4 in Figure 4 will point to
the two intent objects passed from lines 15 and 22 in Figure 3(a).

Chime builds one of the two context-sensitive ATGs in Fig-
ures 3(d) and (e) depending on whether Home is configured with
singleTask or standard launch mode. There are two instances
of EditFolder, ⟨oEF16 , [o

NT
5 ,o

HM
main]⟩ (representing the instance of

EditFolder, started at line 16 in Figure 3(a)) and ⟨oEF23 , [o
TV
10 ,o

HM
main]⟩

(representing the instance of EditFolder, started at line 23 in Fig-
ure 3(a)). Our activity-aware object-sensitive pointer analysis is
able to analyze onCreate() separately. With ⟨oEF16 , [o

NT
5 ,o

HM
main]⟩ as

its receiver object, intentEF will point to the intent object pointed
to by NTtoEF at line 15 in Figure 3(a). With ⟨oEF23, [o

TV
10 ,o

HM
main]⟩ as its

receiver object, intentEF will point to the intent object pointed to
by TVtoEF at line 22 in in Figure 3(a).

3 APPROACH

First, we review briefly Android’s intents and its ICC mechanism
(Section 3.1) and introduce our notations used (Section 3.2). Next,
we discuss how Chime preprocesses an app to enable our subse-
quent analyses (Section 3.3). Then, we introduce our activity-aware
object-sensitive pointer analysis (Section 3.4). Finally, we start with
a context-insensitive approach (Section 3.5) and then move to a
context-sensitive one (Section 3.6) for modeling activity transitions.

3.1 Android Intents and ICC Calls

The intent at an ICC call, e.g., startActivity(intent) deter-
mines the target activity to be opened, where intent is either ex-
plicit or implicit. With an explicit intent, the class name of the target

activity is explicit (e.g., as in line 3 in Figure 1). With an implicit in-
tent, an action, together with some data with which to perform the
action, is provided. The Android framework will find a target class
with a registered intent filter (in its app’s AndroidManifest.xml)
that has advertised its ability for performing the action.

The Android framework provides various APIs to store
the information regarding a target activity in the fields of
an intent object, such as setClassName() and setAction(),
whose parameters are target class name and action name, re-
spectively. For an explicit intent, the target class name is
stored into the field Intent.mComponent.mClass, where the
type of Intent.mComponent is ComponentName and the type of
ComponentName.mClass is String. We will use the action field,
Intent.mAction, to resolve an implicit intent. Therefore, the target
activity of an ICC call can be determined by querying the pointed-to
values in the fields of an intent object (Section 3.4).

3.2 Notations

Figure 5 gives our notations. The first part lists the domains used.
Abstract objects are created at object allocation sites. To achieve
object-sensitivity, a context is a sequence of abstract objects.

variable intent , cpnt ,a ∈ V
class type t ∈ T

abstract object oi ,ot ,o
t
i ∈ O

context c ∈ C = ∅ ∪ O ∪ O2 ∪ ...
launch mode {Std, Top, Task, Inst} = LM

pt : V × C→ P(O × C)
f pt : O × C × F→ P(O × C)

newActObj : T→ O
heapCtxSelector : O × C→ C
mtdCtxSelector : O × C→ C

ATG G = (V ,E)
ATG Node ⟨oi , c⟩ ∈ V ⊆ O × C
ATG Edge ⟨oi , c⟩ ↪→

p ⟨oj , c ′⟩ ∈ E ⊆ V ×V × N

Figure 5: Notations.

The middle part lists several functions used in our inference
rules. pt (p, c) gives the points-to set of a pointer p under context c .
f pt (oi , c, f) gives the points-to set of the field f of an object oi under
context c . newActObj(t) creates an instance of an activity class t
in main() (while new(t) applies to every other type t). Following
[12, 21, 22, 29], we usemtdCtxSelector (heapSelector) to generate
a method (heap) context required for analyzing (identifying) a vir-
tual method call (a non-activity object) to enable k-object-sensitive
pointer analysis. Note that heapCtxSelector andmtdCtxSelector
are recursively defined. For heapCtxSelector , the object oi at al-
location site i is modeled context-sensitively by a heap context
[oi1 , . . . ,oik−1] (of length k − 1), where i j is the allocation site for
the receiver object oi j of the method that contains i j−1 (with i0 = i).
For mtdCtxSelector , if x points to an object oi modeled under a
heap context [oi1 , . . . ,oik−1], then the k-object-sensitive method
context used for analyzing a virtual call x . f oo() is [oi ,oi1 , . . . ,oik−1].

The bottom part defines an ATG as a directed multi-edge graph
for an app. A node ⟨oi , c⟩ represents a context-sensitive instance of

Launch-Mode-Aware Context-Sensitive Activity Transition Analysis ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

an activity. An edge ⟨oi , c⟩ ↪→p ⟨oj , c ′⟩ from a parent activity ⟨oi , c⟩
to a child activity ⟨oj , c ′⟩ represents an activity transition, where
⟨oi , c⟩ starts ⟨oj , c ′⟩ via an ICC call, say, startActivity() at line p.
In Figures 1 and 3, the line numbers on their edges are elided.

Wewill present our formalism for a Java-like language consisting
of five types of statements: object allocation (x = new t()), copy
(x = y), load (x = y.f), store (x.f = y) and virtual call (x =
y.g(arg1,. . .,argn)). Static variables and static method calls are
excluded but handled context-insensitively.

In addition, we handle four types of ICC-related statements
specially. We resolve an explicit intent at intent.mComponent =
cpnt and an implicit intent at intent.mAction = action. For
activity-related ICC calls, we consider startActivity(intent)
(for starting an activity) and setResult(intent) (for receiving
a result from an activity). Note that startActivity() repre-
sents all the APIs that can start an activity, including, e.g., also
startActivityForResult() and startActivityIfNeeded(). By
handling startActivity(), onNewIntent() is also modeled. By
handling setResult(), onActivityResult() is also modeled.

3.3 Preprocessing

During this preprocessing step, an app is decompiled to extract its
code and metadata, such as the launch mode of and intent filters
registered by each activity class in its AndroidManifest.xml file.
To analyze an app, we must generate a slim harness main().

For the user-defined Android components of class types,
Service, BroadcastReceiver and ContentProvider in an app,
we proceed as in [1, 9, 31], by including in the harness (1) one
heap allocation site for each component class (for allocating one
abstract object from this class) and (2) a call to each of its callbacks
registered for the object. These components can start an activity
but do not otherwise contribute to activity transitions.

For the user-defined Android components of class type,
Activity, the harness for an app will include the same information
pertaining only to its entry activities, i.e., the ones registered via
intent filters or exported to the system. All the other activities that
are started by these entry activities will be added later to the ATG
of the app context-sensitively during the analysis.

3.4 Activity-Aware Object-Sensitive

(Whole-Program) Pointer Analysis

Given an app, Chime builds a context-sensitive ATG G = (V ,E)
while performing an object-sensitive pointer analysis to the app,
starting from its harness main(). Figure 6 gives our rules. Let
contexts(m) be the set of all the contexts reaching methodm from
main(), where contexts(main()) = ∅. Initially, G = (V ,E) is empty.

Let us consider the first six rules. We handle an object allocation
site depending on whether it is for an activity class in main() ([P-
NewAct]) or otherwise ([P-NewOther]). In the former case, the
activity instance created is added to the ATG. No edges are available
at this stage yet. In each case, o−i uniquely identifies the abstract
object created as an instance of t at allocation site i .

In [P-Copy], [P-Load], [P-Store] and [P-Call], we handle all the
other non-ICC-related statements. In [P-Copy], the points-to facts
flow from RHS to the LHS of a copy statement. In [P-Load] and
[P-Store], the fields of an abstract object oi are distinguished. In

m: the containing method for each statement being analyzed

i : x = new t () m = main()
t is a subtype o f Activity

⟨otmain, ∅⟩ ∈ pt (x , ∅)
⟨otmain, ∅⟩ ∈ V

[P-NewAct]

i : x = new t () c ∈ contexts(m)
¬(m = main() ∧ t is a subtype o f Activity)
⟨oi ,heapCtxSelector (oi , c)⟩ ∈ pt (x , c)

[P-NewOther]

x = y c ∈ contexts(m)
pt (y, c) ⊆ pt (x , c)

[P-Copy]

x = y.f c ∈ contexts(m) ⟨oi , c ′⟩ ∈ pt (y, c)
f pt (oi , c ′, f) ⊆ pt (x , c)

[P-Load]

x .f = y c ∈ contexts(m) ⟨oi , c ′⟩ ∈ pt (x , c)
pt (y, c) ⊆ f pt (oi , c ′, f)

[P-Store]

x = y.д(arд1, ...,arдn)
c ∈ contexts(m) ⟨oi , c ′⟩ ∈ pt (y, c)

д′ = dispatch(oi ,д) c ′′ =mtdCtxSelector (oi , c ′)
c ′′ ∈ contexts(д′) ⟨oi , c ′⟩ ∈ pt (д′this , c

′′)
∀ 1 ⩽ k ⩽ n : pt (arдk , c) ⊆ pt (д′pk , c

′′)
pt (д′r et , c

′′) ⊆ pt (x , c)

[P-Call]

intent .mComponent = cpnt c ∈ contexts(m)
⟨oi , c ′⟩ ∈ pt (intent , c) ⟨oj , c ′′⟩ ∈ pt (cpnt , c)

f pt (oj , c ′′, mClass) ⊆ f pt (oi , c ′, tgtClassName)
[I-Ex]

intent .mAction = action c ∈ contexts(m)
⟨oi , c ′⟩ ∈ pt (intent , c) ⟨oj , _⟩ ∈ pt (action, c)
actionToCpnt (oj) ⊆ f pt (oi , c ′, tgtClassName)

[I-Im]

p : this .startActivity(intent) c ∈ contexts(m)
this instanceof Activity ⟨oi , c ′⟩ ∈ pt (this, c)

⟨oj , c ′′⟩ ∈ pt (intent , c) ⟨ok , _⟩ ∈ f pt (oj , c ′′, tgtClassName)
t = дetType(ok) lm = дetLM(t)

(⟨oi , c ′⟩, ⟨oj , c ′′⟩, lm,p) { t
[I-Act]

this .setResult (intent) c ∈ contexts(m)
this instanceof Activity ⟨ok , c

′⟩ ∈ pt (this, c)
⟨oj , c

′′′⟩ ∈ pt (intent , c) ⟨oi , c ′′⟩ ↪→− ⟨ok , c ′⟩ ∈ E
modelSetResult(⟨oi , c ′′⟩, ⟨oj , c ′′′⟩)

[I-Ret]

Figure 6: Rules for activity-aware object-sensitive pointer

analysis (tgtClassName is a pseudo field for an intent object).

[P-Call], the function dispatch(oi ,д) is used to resolve the virtual
dispatch of method д on the receiver object oi to be д′. We assume
that д′ has a formal parameter д′this for the receiver object and
д′p1, ...,д

′
pk for the remaining parameters, and a pseudo-variable

д′r et is used to hold the return value of д′.
Finally, let us consider the last four rules for handling ICC-related

statements. [I-Ex] and [I-Im] resolve explicit and implicit intents,
respectively (passed via ICC calls). To handle both uniformly, a
pseudo field of type String, tgtClassName, for an intent is used.

In [I-Ex], we analyze intent.mComponent = cpnt by storing
the name of each target activity class in cpnt.mClass directly
into intent.tgtClassName. In [I-Im], we do likewise in analyzing
intent.mAction = action except that actionToCpnt (oj) gives
rise to the set of target classes (identified again by their names) that
have registered an intent filter for performing action oj .

[I-Act] and [I-Ret] handle the two ICC APIs,
a.startActivity() and a.setResult(), respectively. For

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yifei Zhang, Yulei Sui, and Jingling Xue

simplicity, we assume that a = this, where this is an instance
of Activity. This captures the two mostly commonly used cases.
The other cases can be handled similarly, involving a simple search
for any parent activity that may possibly start a child activity and
possibly receive a result from the child activity in the app.

In [I-Act], every call to this.startActivity(intent) at linep
induces a fact (⟨oi , c ′⟩, ⟨oj , c ′′⟩, lm,p) { t , meaning that a parent
activity ⟨oi , c ′⟩ starts an instance of activity class t with its launch
mode lm at line p, with ⟨oj , c ′′⟩ passed as the intent object. Here,
дetType(ok) maps the name of a class ok to its corresponding class
type and дetLM(t) obtains the launch mode of an activity class t .

In [I-Ret], we analyze setResult(intent), where the
intent is given by ⟨oj , c ′′′⟩, which is invoked on a child
activity ⟨ok , c

′⟩ in order to find its matching callback
onActivityResult(. . .,intentRES) that is invoked on its
parent activity ⟨oi , c ′′⟩ (thanks to the ATG built on the fly).
Now, modelSetResult(⟨oi , c ′′⟩, ⟨oj , c ′′′⟩) simply tells the pointer
analysis to analyze onActivityResult(. . .,intentRES) invoked
on ⟨oi , c ′′⟩, where intentRES points to ⟨oj , c ′′′⟩.

3.5 Launch-Mode-Unaware Context-Insensitive

Activity Transition Analysis

Figure 7 gives the rule [Act-Ci] for building a context-insensitive
ATG, G = (V ,E), and also performing the pointer analysis for the
callbacks of every newly started activity at the same time.

(⟨oi , ∅⟩, ⟨oj , c⟩, _,p) { t

ot = newActObj (t) ⟨oj , c⟩ ∈ f pt (ot , ∅, mIntent)
⟨ot , ∅⟩ ∈ V ⟨oi , ∅⟩ ↪→

p ⟨ot , ∅⟩ ∈ E
modelCallBacks(⟨ot , ∅⟩)

modelNewIntent(⟨ot , ∅⟩, ⟨oj , c⟩)

[Act-Ci]

Figure 7: A rule for context-insensitive activity transition

analysis (as assumed in the state of the art).

According to the prior work [1, 2, 4, 9, 14, 23–26, 31], only one
abstract object, ⟨ot , ∅⟩, (with an empty context ∅) is created for each
activity class t . In addition, the launch mode for t is ignored.

Given the new activity ⟨ot , ∅⟩ started, modelActivity(⟨ot , ∅⟩)
tells the pointer analysis to analyze the callbacks of t invoked on
⟨ot , ∅⟩. In addition, for the intent object ⟨oj , c⟩, which is now added
to ot .mIntent (under context ∅) and can be retrieved later by calling
getIntent() on ⟨ot , ∅⟩, modelNewIntent() serves to inform the
pointer analysis to analyze onNewIntent() with this intent on the
receiver ⟨ot , ∅⟩ conservatively (as this may be reused).

3.6 Launch-Mode-Aware Context-Sensitive

Activity Transition Analysis

Figure 8 is an analogue of Figure 7 except that our analysis now is
launch-mode-aware and builds a context-sensitive ATG, G = (V ,E).

The execution of an app is managed by one or more tasks. Every
task has a back stack, which is used to manage activity navigations
(adding a newly created activity to the stack) and backtracking
(popping off the finished activity off the stack). A launch mode
specifies how a new instance of an activity class is associated with
the current task [11]. Developers select launch modes to provide

a smooth and consistent user experience or to achieve design re-
quirements such as the singleton pattern. In Figure 3, two different
launch modes, singleTask and standard, for Home are illustrated.

With the help of a context-sensitive ATG, different launch modes
can now be distinguished and effectively handled during the analy-
sis. The ATG keeps track of activity transitions for every transition
path, mimicking the back stack of a task. Let us examine the rules
for handling four types of of launch modes: [L-Std] (standard),
[L-TopReuse] and [L-TopNew] (singleTop), [L-TaskReuse] and
[L-TaskNew] (singleTask), and [L-Inst] (singleInstance).

(⟨oi , c⟩, ⟨oj , c ′⟩, Std,p) { t
hc = heapCtxSelector (oi , c)

otp = newActObj (t)
⟨otp ,hc⟩ ∈ V ⟨oi , c⟩ ↪→

p ⟨otp ,hc⟩ ∈ E

⟨oj , c
′⟩ ∈ f pt (otp ,hc, mIntent)

modelCallBacks(⟨otp ,hc⟩)

[L-Std]

(⟨oi , c⟩, ⟨oj , c ′⟩, Top,p) { t дetType(oi) = t

⟨oi , c⟩ ↪→
p ⟨oi , c⟩ ∈ E

modelNewIntent(⟨oi , c⟩, ⟨oj , c ′⟩)

[L-TopReuse]

(⟨oi , c⟩, ⟨oj , c ′⟩, Top,p) { t дetType(oi) ̸= t

(⟨oi , c⟩, ⟨oj , c ′⟩, Std,p) { t
[L-TopNew]

(⟨oi , c⟩, ⟨oj , c ′⟩, Task,p) { t
⟨ok , c

′′⟩ ↪→∗ ⟨oi , c⟩ дetType(ok) = t

⟨oi , c⟩ ↪→
p ⟨ok , c

′′⟩ ∈ E
modelNewIntent(⟨ok , c ′′⟩, ⟨oj , c ′⟩)

[L-TaskReuse]

(⟨oi , c⟩, ⟨oj , c ′⟩, Task,p) { t
⟨ok , c

′′⟩ ↪̸→∗ ⟨oi , c⟩ дetType(ok) = t

(⟨oi , c⟩, ⟨oj , c ′⟩, Std,p) { t
[L-TaskNew]

(⟨oi , c⟩, ⟨oj , c ′⟩, Inst,p) { t

(⟨oi , c⟩, ⟨oj , c ′⟩, Task,p) { t
[L-Inst]

Figure 8: Rules for Chime’s launch-mode-aware context-

sensitive activity transition analysis.

standard. For the default launch mode, we always create a
new instance of t , identified by ⟨otp ,hc⟩, where p is the line num-
ber of its corresponding startActivity(), and then deliver its
passed-in intent to this new activity object. While the ATG grows,
modelCallBacks(⟨otp ,hc⟩) serves again (as in [Act-Ci]) to request
the callbacks on the new activity ⟨otp ,hc⟩ to be analyzed now.

singleTop. If the activity to be started has the same type as the
top activity, then the top activity is reused ([L-TopReuse]), with its
onNewIntent() reanalyzed (modelNewIntent()). Otherwise, we
handle it identically as in the case of standard ([L-TopNew]).

singleTask. This mode is similar to singleTop, except that
the activity instance closest to the top of the back stack will be
reused if it has the same type as the new activity to be started ([L-
TaskReuse]). Otherwise, we fall back to the case where standard
is handled ([L-TaskNew]). Here, ⟨ok , c ′′⟩ ↪→∗ ⟨oi , c⟩ represents
the standard graph reachability on a directed graph except that it
disallows the existence of any intermediate node ⟨os , c ′′′⟩ such that
⟨os , c

′′′⟩ ↪→∗ ⟨oi , c⟩ also holds, where дetType(ok) = дetType(os).

Launch-Mode-Aware Context-Sensitive Activity Transition Analysis ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

singleInstance. This mode is similar to singleTask, except
that only one instance of its activity class resides in its task. There-
fore, this mode is handled identically as singleTask ([L-Inst]).

3.7 Discussion

In our evaluation, we will compare Chime with CiChime, a version
of Chime, with [ACT-CI] used for building the ATG for an app.
Given the same object-sensitive pointer analysis applied to a given
app, Chime’s ATG is strictly non-less precise than CiChime’s ATG
as the former is context-sensitive but the latter is not.

Thus, the pointer analysis under Chime will also be strictly non-
less precise than the one under CiChime. With a context-sensitive
ATG, Chime enables an activity’s callbacks to be analyzed context-
sensitively. With a context-insensitive ATG, however, CiChime
allows such callbacks to be analyzed only context-insensitively.

3.8 Example

Let us go through some of our rules for the example in Figure 3 (with
Home configured for singleTask and the others for standard) to
see how Chime builds the context-sensitive ATG in Figure 3(d).
Initially, the ATG contains ⟨omainHM , ∅⟩, an instance of Home allocated
when its harness main() is analyzed ([P-NewAct]). Let o4 an o9
be the intent objects resolved at lines 4 and 9 respectively, so that
we obtain "NewTrip" ∈ f pt (o4, _, tgtClassName) and "TripView"
∈ f pt (o9, _, tgtClassName) ([I-Ex]). By applying [I-Act] to lines
5 and 10, the two ICC call relations (⟨omainHM , ∅⟩, ⟨o4, _⟩, Std, 5) {
NewTrip and (⟨omainHM , ∅⟩, ⟨o9, _⟩, Std, 10) { TripView are estab-
lished. By further applying [L-Std] to these two relations, where
heapCtxSelector (omainHM , ∅) = [omainHM], we obtain two new activity
objects oNT5 and oTV10 . In addition, two ATG edges ⟨oHMmain, ∅⟩ ↪→

5

⟨oNT5 , [o
HM
main]⟩ and ⟨o

HM
main, ∅⟩ ↪→

10 ⟨oTV10 , [o
HM
main]⟩ are discovered.

Similarly, we can resolve the ICC calls at lines 16 and 23. Let o15
an o22 be the intent objects resolved at lines 15 and 22, respectively,
so that we obtain "EditFolder" ∈ f pt (o15, _, tgtClassName)
and "EditFolder" ∈ f pt (o22, _, tgtClassName) ([I-Ex]). At line
16, we obtain (⟨oNT5 , [o

HM
main]⟩, ⟨o15, _⟩, Std, 16) { EditFolder

([I-Act]). By applying ([L-Std]) to this relation, where
heapCtxSelector (oNT5 , [o

HM
main]) = [oNT5 ,o

HM
main], we obtain

(⟨oNT5 , [o
HM
main]⟩ ↪→16 ⟨oEF16 , [o

NT
5 ,o

HM
main]⟩. At line 23, we ob-

tain (⟨oTV10 , [o
HM
main]⟩, ⟨o22, _⟩, Std, 23) { EditFolder ([I-

Act]). By applying ([L-Std]) to this relation, where
heapCtxSelector (oTV10 , [o

HM
main]) = [oTV10 ,o

HM
main], we obtain

(⟨oTV10 , [o
HM
main]⟩ ↪→

23 ⟨oEF23 , [o
TV
10 ,o

HM
main]⟩.

Finally, we consider the startActivity() at line 34. Let
o33 be the intent object resolved at line 33, so that "Home" ∈
f pt (o33, _, tgtClassName) ([I-Ex]). Two relations will be estab-
lished at line 34, (⟨oEF16 , [o

NT
5 ,o

HM
main]⟩, ⟨o33, _⟩, Task, 34) { Home

and (⟨oEF23 , [o
TV
10 ,o

HM
main]⟩, ⟨o33, _⟩, Task, 34) { Home. As Home uses

singleTask launch mode, the final ATG is shown in Figure 3(d).

4 EVALUATION

The objective of our evaluation is to demonstrate that our context-
sensitive activity transition analysis is more precise than its context-
insensitive counterpart in modeling activity transitions, guiding
GUI testing, and improving the pointer analysis precision.

4.1 Implementation

Chime is built on top of the Spark pointer analysis framework in
DroidSafe [9]. We leverage the Android Device Implementation
(ADI) provided by DroidSafe [9], a comprehensive modeling of
the Android framework and Java library, to improve the precision
and soundness of our analysis. DroidSafe is used to decompile
an app, generate a slim harness main(), and obtain app matadata
from its manifest file. To resolve reflection, we use Ripple [34] but
may consider a hybrid analysis [18] in future work.

4.2 Experimental Setup and Methodology

We have selected a total of 42 Android apps in the top-chart free
apps from Google Play downloaded on 30 November 2016. Our
k−object-sensitive pointer analysis is configured to be 2obj+h (with
two elements for a method context and one for a heap context),
which is a widely used configuration for achieving the best tradeoff
between precision and scalability [12, 17, 28–30].

Our experiments are conducted on a Xeon E5-1660 3.2GHz ma-
chine with 256GB RAM running Ubuntu 16.04 LTS. The analysis
time of every app is the average of three runs.

Chime models activity transitions context-sensitively and distin-
guishes activity launch modes. To demonstrate the benefits of our
approach, we compare Chimewith CiChime, a simplified version of
Chime (realized with [Atg-Ai]), which models activity transitions
context-insensitively, and consequently, incapable of handling or
distinguishing activity launch modes adequately.

Our evaluation answers the following research questions (RQs):

• RQ1. Is Chime able to distinguish an activity along different
transition paths compared with CiChime?
• RQ2. Is Chime capable of analyzing launch modes effectively?
• RQ3. is Chime useful for facilitating GUI testing?
• RQ4. is Chime able in improving the pointer analysis precision?

4.3 Results and Analysis

4.3.1 RQ1. Activity Transition. Table 1 compares Chime and
CiChime in terms of the ATGs constructed for the 42 apps evaluated.
For each app, the context-sensitive ATG from Chime is usually
larger than the context-insensitive ATG from CiChime (Columns
“ATG Node” and “ATG Edge”). To see why Chime can distinguish
different activity transition sequences leading to an activity better
than CiChime, we rely on the maximal/average/minimal number
of the class types of the predecessor activities of an activity in an
ATG (Columns “Max/Avg/Min Typ”). The “Max/Avg/Min Typ” for
Chime is always no larger than that for CiChime, showing that
Chime can distinguish different activities that would otherwise be
merged under CiChime. Figure 9 plots the same data measured by
these three metrics. Finally, Chime is more costly in maintaining
context-sensitivity. The average pointer analysis time spent per app
is 183.9 seconds under CiChime but 472.6 seconds under Chime.

4.3.2 RQ2. Launch Modes. Launch modes for activities can
significantly affect how activities are created and their transitions.
We first examine the widespread use of special launch modes,
singleTask, singleTop and singleInstance, other than just
standard in real-world Android apps. We then present and discuss

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yifei Zhang, Yulei Sui, and Jingling Xue

Table 1: Comparing Chime and CiChime in terms of ATGs constructed. For each app, Column “ATG Node” (“ATG Edge”) gives

the number of nodes (edges) in an ATG, Column “Max/Avg/Min Typ” represents the maximal/average/minimal number of the

class types of the predecessor activities of an activity, and Column “PTA Time” gives the pointer analysis time in seconds.

App

ID

App Name

CiChime Chime
App

ID

App Name

CiChime Chime

ATG

Node

ATG

Edge

Max

Typ

Avg

Typ

Min

Typ

PTA

Time

ATG

Node

ATG

Edge

Max

Typ

Avg

Typ

Min

Typ

PTA

Time

ATG

Node

ATG

Edge

Max

Typ

Avg

Typ

Min

Typ

PTA

Time

ATG

Node

ATG

Edge

Max

Typ

Avg

Typ

Min

Typ

PTA

Time

1 Instagram 12 171 10 3.8 1 238 288 6440 2 1.2 1 844 22 Opal 10 38 9 2.8 1 26 46 113 1 1 1 50
2 GoogleLite 4 12 2 1.7 1 16 11 39 1 1 1 25 23 RollingSky 9 242 9 3.8 1 288 37 998 1 1 1 439
3 Raider 6 7 2 1.2 1 19 17 21 1 1 1 29 24 StarWars 4 9 2 1.7 1 24 8 11 1.5 1.2 1 35
4 Speed 11 19 6 1.6 1 34 13 20 6 1.6 1 54 25 ClashofClan 2 5 1 1 1 15 2 5 1 1 1 21
5 FlashLight 5 11 4 3 2 68 13 25 1.5 1.3 1 108 26 TripView 12 14 2 1.1 1 11 28 41 1 1 1 19
6 Booster 6 5 3 2 1 30 6 5 3 2 1 45 27 FireFox 11 57 7 2.8 2 71 124 272 2 1.1 1 190
7 Seek 4 8 4 2 1 19 11 15 1 1 1 29 28 PowerCleaner 27 19 4 1.3 1 44 77 110 1 1 1 119
8 ANZ 7 187 7 5 1 23 50 1182 1 1 1 41 29 TalkingAngela 3 10 1 1 1 38 5 10 1 1 1 62
9 Antivirus 26 244 20 8.2 1 508 369 5101 17 2.3 1 1800 30 SpeedTest 3 3 2 1.5 1 83 6 6 1 1 1 136
10 Solitaire 2 6 1 1 1 66 26 126 1 1 1 148 31 TalkingTom 3 10 1 1 1 42 5 10 1 1 1 67
11 Clean 8 7 3 1.7 1 34 9 7 3 1.7 1 53 32 Slots 4 41 2 1.3 1 12 7 103 1 1 1 17
12 PhoneClean 16 29 9 2 1 44 28 61 4.2 1.3 1 80 33 HealthEngine 8 149 8 5.6 1 73 113 7713 1 1 1 210
13 Pool 2 19 2 1.5 1 18 3 28 1 1 1 26 34 Tiles 18 675 18 5.4 1 824 391 23589 2 1.1 1 2901
14 PayPal 15 221 15 4 1 19 90 1943 1 1 1 77 35 HillClimb 4 119 4 2.3 1 84 8 236 1 1 1 126
15 ClashRoyale 2 5 1 1 1 15 2 5 1 1 1 21 36 HungryJacks 11 34 10 3.4 1 45 52 152 1.6 1.1 1 80
16 MobileStrike 5 13 3 2 1 18 15 45 1 1 1 27 37 MachineZone 5 13 3 2 1 17 15 45 1 1 1 27
17 Cleaner 7 6 3 1.7 1 30 7 6 3 1.7 1 48 38 DeathWorm 3 5 3 2.5 2 31 6 9 1 1 1 47
18 Domino 3 11 2 1.3 1 19 16 47 1.8 1.3 1 31 39 Wallet 18 186 12 4.9 1 166 426 11260 10.1 2.3 1 867
19 Mail 21 710 21 9.8 2 2960 364 5216 2.6 1 1 6252 40 Legends 4 9 3 1.5 1 12 41 165 1 1 1 28
20 VLC 11 71 6 2.9 1 17 168 5357 2.8 1.4 1 105 41 Catch 40 232 21 3.1 1 1312 216 953 18 1.8 1 2398
21 PowerClean 21 45 8 3.1 1 81 80 77 1 1 1 301 42 K9 20 78 8 3.2 1 231 277 1775 2 1 1 1868

1 1 1 1 11 11

3

5

7

9

11

13

15

17

19

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

M
ax

/A
vg

/M
in

 T
yp

App ID

CICHIME

CHIME

Figure 9: Comparing CiChime and Chime graphically in

terms of “Max/Avg/Min Typ” from Table 1. For each bar, its

top edge represents “Max Typ”, its bottom edge represents

“Min Typ” and the dash in the bar represents “Avg Typ”. In

the case of a “1”, “Max Typ” = “Avg Typ” = “Min Typ” = 1.

the results of our launch mode analysis. Finally, we use a real-
world Android app to demonstrate the effectiveness of our activity
transition analysis in handling special launch modes.

Figure 10 present our results on the activity classes analyzed by
Chime in all the 42 apps, with default and special launch modes.
Note that for each activity class, only one launch mode is counted
(statically). We can see that 30% of all activity classes are configured
with special launch modes. Developers often use special launch
modes for some activities in real-world Android apps in order to
provide a smooth and consistent user experience. Such special
launch modes are also used to achieve certain design requirements
such as the singleton pattern. Therefore, it is important to develop
a launch-mode-aware analysis to understand activity transitions.

Let us examine why Chime can but CiChime cannot handle
four types of activity launch modes, The key difference between a
special launch mode and the default mode (i.e., standard) is that
the former may cause an existing activity to be resumed but the
latter will always cause a new activity to be created.

Without context-sensitivity, CiChime represents all instances of
an activity class with one single abstract object. As a result, different

launchmodes cannot be distinguished. In a context-insensitive ATG
constructed, its edges are unaware of the launch modes used.

With context-sensitivity, Chime can distinguish different launch
modes as it can distinguish different instances of an activity class
under different activity transition sequences. In a context-sensitive
ATG constructed, its edges are essentially annotatedwith the launch
modes used. To see this, let us distinguish two types of edges in
an ATG: (1) StdEdge corresponding to standard and (2) SplEdge
corresponding to singleTask, singleTop, or singleInstance.

Table 2 gives our results for individual apps. For each app, while
many activity classes are configured with the default launch mode,
many others use special launch modes (Columns “Std” and “Spl”).
Note that these two columns contain the raw data used for plot-
ting Figure 10. For each app, its ATG consists of not only edges
marked by StdEdge but also many other edges marked by SplEdge
(Columns “StdEdge” and “SplEdge”). For some apps, such as Seek,
an activity class configured with a special launch mode may not
have any incoming edge of type SplEdge since only one instance is
ever created. On the other hand, for Catch, 14 activity classes with
special launch modes result in 456 edges of type SplEdge.

For all the 42 apps combined, there are 275 and 138 activity
classes configured for the default and special launch modes, respec-
tively (Figure 10). In the 42 ATGs constructed, there are 59275 and
14067 edges marked with StdEdge and SplEdge, respectively.

Finally, let us conduct a case study, by considering the code
snippet from Catch in Figure 11. The launch mode for MainHome
(MH) is singleTask but the launch modes for SearchActivity (SA)
and ShoppingCartView (SC) are irrelevant here. MH launches SA at
1 and SA launches (SC) at 2 . Afterwards, SC launches MH again
at 3 . Chime generates a launch-mode-aware ATG to capture the
activity transitions, by considering singleTask for MH at 3 ([L-
TkPrev] in Section 3.6), so that the existing MH is resumed. Thus,

the activity transitions oMHmain oSA9 oSC14 are precisely captured.

Launch-Mode-Aware Context-Sensitive Activity Transition Analysis ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Default
(standard)
(67%)

singleTop
(11%)

singleTask
(16%)

singleInstance
(6%)

Special
(33%)

Figure 10: Percentage of the analyzed activity classes with

the default and special launch modes in the 42 apps.

Table 2: Classification of ATG edges under the default and

special modes. For each app, Columns “Std” and “Spl” give

the number of different activity classes configured with the

default and special launch modes, respectively. For each

ATG, Columns “StdEdge” and “SplEdge” give the number of

edges marked by StdEdge and SplEdge, respectively.

App

ID

App Name

Launch

Mode

ATG Edge

App ID App Name

Launch

Mode

ATG Edge

Std Spl StdEdge SplEdge Std Spl StdEdge SplEdge

1 Instagram 9 3 5446 994 22 Opal 9 1 113 0
2 GoogleLite 4 0 39 0 23 RollingSky 8 1 998 0
3 Raider 4 2 20 1 24 StarWars 3 1 9 2
4 Speed 4 7 10 10 25 ClashofClan 1 1 2 3
5 FlashLight 3 2 23 2 26 TripView 12 0 41 0
6 Booster 2 4 2 3 27 FireFox 7 4 255 17
7 Seek 1 3 15 0 28 PowerCleaner 5 22 110 0
8 ANZ 7 0 1182 0 29 TalkingAngela 1 2 3 7
9 Antivirus 17 9 4632 469 30 SpeedTest 2 1 6 0
10 Solitaire 2 0 126 0 31 TalkingTom 1 2 3 7
11 Clean 2 6 4 3 32 Slots 2 2 102 1
12 PhoneClean 7 9 31 30 33 HealthEngine 8 0 7713 0
13 Pool 1 1 27 1 34 Tiles 15 3 20805 2784
14 PayPal 13 2 1883 60 35 HillClimb 3 1 236 0
15 ClashRoyale 1 1 2 3 36 HungryJacks 10 1 131 21
16 MobileStrike 5 0 45 0 37 MachineZone 5 0 45 0
17 Cleaner 2 5 3 3 38 DeathWorm 2 1 9 0
18 Domino 1 2 37 10 39 Wallet 12 6 2623 8637
19 Mail 17 4 5106 110 40 Legends 3 1 164 1
20 VLC 7 4 4957 400 41 Catch 26 14 497 456
21 PowerClean 13 8 76 1 42 K9 18 2 1744 31

1 // launch mode: singleTask
2 class MainHome extends Activity {
3 void onNewIntent(Intent SCtoMH) {
4 setIntent(SCtoMH);
5 ...}
6 boolean onQueryTextSubmit(String query) {
7 Intent MHtoSA = new Intent(this, SearchActivity.class);
8 MHtoSA.putExtra("search_query", query);
9 startActivity(MHtoSA); } }

10 // launch mode: standard
11 class SearchActivity extends Activity {
12 void onClick(View view) {
13 Intent SAtoSC = new Intent(this,ShoppingCartView.class);
14 startActivity(SAtoSC); } }

15 // launch mode: singleTask
16 class ShoppingCartView extends Activity {
17 boolean onOptionsItemSelected(MenuItem menuItem) {
18 Intent SCtoMH = new Intent(this, MainHome.class);
19 startActivity(SCtoMH); } }

①

②

③

N
e
w
A
c
t
E
d
g
e

N
e
w
A
v
t
E
d
g
eP
r
e
v
A
c
t
E
d
g
e

Figure 11: Activity transitions tracked by Chime in Catch.

4.4 RQ3. GUI Testing

Existing static analyses, TrimDroid [23], Brahmastra [4] and
A3E [2], rely on context-insensitive ATGs to guide GUI testing. For
this client, Chime is expected to be more effective than CiChime as

context-sensitive ATGs are more beneficial than context-insensitive
ATGs. For example, Brahmastra et al. [4] instrument an app to
track a transition path from one activity to another based on a
context-insensitive ATG for the app in order to find security vul-
nerabilities at run time. Due to context-insensitivity, the user has
to work out the transition paths between the two activities to be
tested, with potentially some infeasible transition paths being in-
strumented redundantly (causing false positives). This problem can
be alleviated if a context-sensitive ATG is used for the app, since
the transition paths between two activities are available context-
sensitively (with the number of infeasible transitions also being
reduced).

To demonstrate that Chime can be more effective than CiChime
in guiding GUI testing, Table 3 compares both in terms of the
average number of activity classes (NAC) reaching an activity class
in an ATG (with each cycle in an ATG counted only once). In
a context-sensitive ATG, different nodes may represent different
instances of a common class. In this case, the NAC for the class is the
average of the NACs on the transition paths reaching all such nodes.
For a given app, the smaller NAC is, the less effort is expected to be
spent on GUI testing. In general, Chime’s NAC is always no larger
than CiChime’s NAC. For 10 out of the 42 apps evaluated, both are
indistinguishable. There are two different reasons behind (Table 1).
In the case of Booster, CashRoyale, Cleaner and ClashofClan,
Chime and CiChime produce the same ATG for each app. In the
case of the other 6 apps, the ATGs built by Chime and CiChime for
an app are different but their NACs happen to be the same.

Let us take a look at some specific activity classes. Consider
PostTwitterActivity from HungryJacks. For CiChime, it is rep-
resented by one abstract object in the ATG for HungryJacks. The
number of activity classes reaching it is 11. For Chime, this abstract
object is split into 7 context-sensitive instances. The average num-
ber of activity classes reaching these instances remains to be 11.
Consider SignInActivity from Opal. For CiChime, it is also rep-
resented by one abstract object in the ATG for Opal. The number
of activity classes reaching it is 9. For Chime, this abstract object is
now split into 24 context-sensitive instances. The average number
of activity classes reaching these instances is 4.67.

4.5 RQ4. Pointer Analysis

Given an app, its ATG is context-sensitive under Chime but context-
insensitive under CiChime. Thus, Chime is more precise than Ci-
Chime as the the callbacks of an activity are analyzed context-
sensitively under Chime but context-insensitively under CiChime.

Table 4 compares Chime and CiChime in terms of the average
size of the points-to sets of the intent variables accessed in the
calls to onCreate() in all the activity classes in an app. For Chime,
the size of the points-to set of the intent variable accessed in a
onCreate() call is the average of the sizes of the points-to sets un-
der all its contexts analyzed. Recall how intentEF in EditFolder in
Figure 4 is analyzed (Section 2.4), where EditFoldermay be started
from two different contexts, NewTrip and TripView (Figure 3(a)).
As CiChime is context-insensitive, intentEF in onCreate() will
point to the two intent objects passed both contexts indiscriminately.
However, Chime can distinguish the two intents for intentEF as
onCreate() is analyzed separately under these two contexts.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yifei Zhang, Yulei Sui, and Jingling Xue

Table 3: Comparing Chime and CiChime in terms of the av-

erage number of activity classes reaching an activity class in

an ATG (measuring the effort spent in GUI testing).

App

ID

App Name CiChime Chime

App

ID

App Name CiChime Chime

1 Instagram 7.25 5.12 22 Opal 4.10 3.15
2 GoogleLite 1.75 1.67 23 RollingSky 2.44 1.56
3 Raider 2.17 1.78 24 StarWars 2.50 1.88
4 Speed 2.55 2.36 25 ClashofClan 1.50 1.50
5 FlashLight 1.80 1.35 26 TripView 2.00 1.93
6 Booster 1.50 1.50 27 FireFox 3.45 2.42
7 Seek 2.25 2.00 28 PowerCleaner 4.33 3.21
8 ANZ 4.71 4.32 29 TalkingAngela 1.33 1.33
9 Antivirus 10.12 8.23 30 SpeedTest 1.67 1.50
10 Solitaire 1.50 1.50 31 TalkingTom 1.33 1.33
11 Clean 1.50 1.50 32 Slots 2.50 2.08
12 PhoneClean 4.56 4.56 33 HealthEngine 6.25 5.78
13 Pool 1.50 1.50 34 Tiles 8.39 7.12
14 PayPal 7.40 6.12 35 HillClimb 2.25 2.00
15 ClashRoyale 1.50 1.50 36 HungryJacks 5.09 4.14
16 MobileStrike 1.80 1.73 37 MachineZone 1.80 1.73
17 Cleaner 1.57 1.57 38 DeathWorm 2.00 1.89
18 Domino 2.33 1.95 39 Wallet 9.11 8.47
19 Mail 8.86 7.21 40 Legends 2.00 1.96
20 VLC 4.45 3.70 41 Catch 7.78 5.64
21 PowerClean 2.29 1.42 42 K9 8.00 6.18

Given an app, the average size per points-to set underChime is al-
ways no larger than that underCiChime. For Booster, CashRoyale,
Cleaner and ClashofClan, Chime and CiChime build the same
ATG in each case (Table 1). However, Chime is more precise than
CiChime as Chime allows an activity’s callbacks to be analyzed
context-sensitively. For Seek, Pool, Opal, SpeedTest, HillClimb
and DeathWorm, Chime and CiChime build different ATGs (Ta-
ble 1) but are equally precise. Let us see why by considering Seek
with four activity classes, (1) MainActivity, (2) AuthActivity, (3)
HardUpgradeActivity, and (4) com.adobe.mobile.ar, where (1)
starts (2) twice using a common intent, (1) starts (3) twice using a
common intent, and (1) – (3) start (4) using a common intent. Dis-
tinguishing calling contexts for each onCreate() is not beneficial.

5 RELATEDWORK

Pointer Analysis. Object-sensitive pointer analysis proposed
by Milanova et al. [21, 22] is known to be the best context-
sensitive pointer analysis for object-oriented programming lan-
guages [12, 13, 15–17, 28–30]. Type sensitivity [28] and hybrid
context-sensitivity [12] are two variants based on object-sensitivity.
The former approximates (roughly) the objects created at alloca-
tion sites by their dynamic types, trading precision for scalability
and efficiency. The latter applies call-site-sensitivity to static calls
and object-sensitivity to virtual calls. Recently, Tan et al. improve
object-sensitivity pointer analysis to achieve better precision by
removing redundant context elements [29] and better scalability in
building call graphs by targeting type-dependent clients [30].

However, existing context-sensitive pointer analyses are insuf-
ficient in analyzing the Android-specific APIs, such as ICC calls,
which trigger a large number of callbacks interacting with the
Android framework (e.g., activity objects created therein). In con-
trast, Chime is aware of the activity-related APIs so that activity
transitions are modeled context-sensitively, thereby improving the
precision of the underlying object-sensitive pointer analysis.

Table 4: Comparing Chime and CiChime in terms of the

average size of the points-to sets of the intent variables ac-

cessed in the calls to onCreate() in all activity classes.

App

ID

App Name CiChime Chime

App

ID

App Name CiChime Chime

1 Instagram 16.33 10.78 22 Opal 1.30 1.30
2 GoogleLite 3.00 2.58 23 RollingSky 6.44 5.79
3 Raider 5.33 3.80 24 StarWars 5.25 4.00
4 Speed 4.45 4.00 25 ClashofClan 2.00 1.60
5 FlashLight 5.60 5.00 26 TripView 4.08 3.92
6 Booster 4.17 3.83 27 FireFox 20.82 8.98
7 Seek 2.75 2.75 28 PowerCleaner 2.78 2.51
8 ANZ 4.14 3.86 29 TalkingAngela 8.67 7.92
9 Antivirus 11.42 7.76 30 SpeedTest 6.33 6.33
10 Solitaire 6.50 4.21 31 TalkingTom 9.33 8.58
11 Clean 4.75 4.13 32 Slots 4.75 4.38
12 PhoneClean 4.88 4.10 33 HealthEngine 4.50 3.87
13 Pool 2.00 2.00 34 Tiles 8.39 6.32
14 PayPal 8.00 7.59 35 HillClimb 3.75 3.75
15 ClashRoyale 2.00 1.60 36 HungryJacks 3.91 3.55
16 MobileStrike 4.00 3.60 37 MachineZone 4.00 3.60
17 Cleaner 4.14 3.86 38 DeathWorm 3.67 3.67
18 Domino 8.67 6.78 39 Wallet 13.78 5.37
19 Mail 17.19 11.00 40 Legends 6.00 4.00
20 VLC 5.91 5.08 41 Catch 8.60 5.94
21 PowerClean 5.43 4.19 42 K9 19.95 8.59

Static Android App analysis. FlowDroid [1] is a popular
open-source static information flow analysis, which constructs a
harness method to model the behaviors of the Android components
in an app. Then a context-insensitive pointer analysis is performed
to construct its call graph and inter-procedural control-flow graph,
against which some intra-component taint analysis is performed.
IccTA [14] represents a static taint analysis built on top of Flow-
Droid to detect inter-component privacy leaks. It queries the ICC
analysis IC3 [25] to instrument the target activities started at ICC
calls by using a flow- and context-insensitive pointer analysis.

DroidSafe [9] detects information leaks by applying an object-
sensitive pointer analysis to resolve the intents associate with ICC
calls. Amandroid [31] is a static inter-component data-flow anal-
ysis framework for supporting security vetting tasks, by using a
call-site-sensitive and flow-sensitive pointer analysis to construct
the call graph for an app. Despite the fact that both frameworks
use context-sensitive pointer analysis to construct call graphs, all
the activities are still modeled context-insensitively.

Unlike these earlier approaches, Chime distinguishes different
activities launched under different launch modes along different
transition sequences by using context-sensitive ATGs, which are
constructed on-the-fly during the object-sensitive pointer analysis
for the entire app. Such context-sensitive ATGs can help improve
the efficiency of GUI testing tools [2, 4, 23].

6 CONCLUSION

We present Chime, a launch-mode-aware context-sensitive activity
transition analysis for Android apps. Chime models the activity
transitions under different launch modes context-sensitively, to-
gether with an object-sensitive pointer analysis. Our evaluation
shows that our context-sensitive activity transition analysis is more
precise than its context-insensitive counterpart in modeling activ-
ity transitions, facilitating GUI testing, and improving the pointer
analysis precision for real-world Android apps.

Launch-Mode-Aware Context-Sensitive Activity Transition Analysis ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). ACM, New
York, NY, USA, 259–269. https://doi.org/10.1145/2594291.2594299

[2] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first Exploration
for Systematic Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA ’13). ACM, New York, NY, USA, 641–660. https://doi.org/
10.1145/2509136.2509549

[3] Young-Min Baek and Doo-Hwan Bae. 2016. Automated Model-based Android
GUI Testing Using Multi-level GUI Comparison Criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE ’16).
ACM, New York, NY, USA, 238–249. https://doi.org/10.1145/2970276.2970313

[4] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmastra:
Driving Apps to Test the Security of Third-Party Components. In 23rd USENIX
Security Symposium (USENIX Security ’14). USENIX Association, San Diego, CA,
1021–1036.

[5] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2014. Peeking into Your App
without Actually Seeing It: UI State Inference and Novel Android Attacks. In
23rd USENIX Security Symposium (USENIX Security ’14). USENIX Association,
San Diego, CA, 1037–1052.

[6] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith,
and Emerson Murphy-Hill. 2017. Just-in-time Static Analysis. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’17). ACM, New York, NY, USA, 307–317. https://doi.org/10.1145/3092703.
3092705

[7] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
based Detection of Android Malware Through Static Analysis. In Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE ’14). ACM, New York, NY, USA, 576–587. https://doi.org/10.
1145/2635868.2635869

[8] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. 2017. Au-
tomated Synthesis of Semantic Malware Signatures using Maximum Satisfiability.
In The 2017 Network and Distributed System Security Symposium (NDSS ’17).

[9] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information Flow Analysis of Android Applications
in DroidSafe. In The 2015 Network and Distributed System Security Symposium
(NDSS ’15).

[10] Wei Huang, Yao Dong, AnaMilanova, and Julian Dolby. 2015. Scalable and Precise
Taint Analysis for Android. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis (ISSTA ’15). ACM, New York, NY, USA, 106–117.
https://doi.org/10.1145/2771783.2771803

[11] Google Inc. 2017. Tasks and Back Stack. (2017). https://developer.android.com/
guide/components/activities/tasks-and-back-stack.html

[12] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-sensitivity
for Points-to Analysis. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’13). ACM, New York,
NY, USA, 423–434. https://doi.org/10.1145/2491956.2462191

[13] Ondrej Lhoták and Laurie Hendren. 2006. Context-sensitive points-to analysis:
is it worth it?. In Proceedings of the 15th International Conference on Compiler
Construction (CC ’06). Springer, 47–64.

[14] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick
McDaniel. 2015. IccTA: Detecting Inter-component Privacy Leaks in An-
droid Apps. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 280–291.
http://dl.acm.org/citation.cfm?id=2818754.2818791

[15] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing Reflection
Resolution for Java. In 28th European Conference on Object-Oriented Programming
(ECOOP ’14). 27–53. https://doi.org/10.1007/978-3-662-44202-9_2

[16] Yue Li, Tian Tan, and Jingling Xue. 2015. Effective Soundness-Guided Reflection
Analysis. In 22nd International Static Analysis Symposium (SAS ’15). 162–180.
https://doi.org/10.1007/978-3-662-48288-9_10

[17] Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slic-
ing by Sequential Criteria. In 30th European Conference on Object-Oriented Pro-
gramming, ECOOP 2016, July 18-22, 2016, Rome, Italy (ECOOP ’16). 15:1–15:27.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15

[18] Jie Liu, Yue Li, Tian Tan, and Jingling Xue. 2017. Reflection Analysis for Java:
Uncovering More Reflective Targets Precisely. In 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE ’17). 12–23. https://doi.

org/10.1109/ISSRE.2017.36
[19] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:

Statically Vetting Android Apps for Component Hijacking Vulnerabilities. In
Proceedings of the 2012 ACMConference on Computer and Communications Security
(CCS ’12). ACM, New York, NY, USA, 229–240. https://doi.org/10.1145/2382196.
2382223

[20] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented
Evolutionary Testing of Android Apps. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’14). ACM,
New York, NY, USA, 599–609. https://doi.org/10.1145/2635868.2635896

[21] AnaMilanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized Object
Sensitivity for Points-to and Side-effect Analyses for Java. In Proceedings of the
2002 ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’02). ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/566172.
566174

[22] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2005. Parameterized Object
Sensitivity for Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol. 14,
1 (Jan. 2005), 1–41. https://doi.org/10.1145/1044834.1044835

[23] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.
2016. Reducing Combinatorics in GUI Testing of Android Applications. In Pro-
ceedings of the 38th International Conference on Software Engineering (ICSE ’16).
ACM, New York, NY, USA, 559–570. https://doi.org/10.1145/2884781.2884853

[24] Damien Octeau, Somesh Jha, Matthew Dering, Patrick McDaniel, Alexandre
Bartel, Li Li, Jacques Klein, and Yves Le Traon. 2016. Combining Static Analy-
sis with Probabilistic Models to Enable Market-scale Android Inter-component
Analysis. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA,
469–484. https://doi.org/10.1145/2837614.2837661

[25] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
component Communication Analysis. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway,
NJ, USA, 77–88. http://dl.acm.org/citation.cfm?id=2818754.2818767

[26] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective inter-component communica-
tion mapping in android with epicc: An essential step towards holistic security
analysis. In 22nd USENIX Security Symposium (USENIX Security ’13). 543–558.

[27] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang. 2014.
Towards a Scalable Resource-driven Approach for Detecting Repackaged An-
droid Applications. In Proceedings of the 30th Annual Computer Security Ap-
plications Conference (ACSAC ’14). ACM, New York, NY, USA, 56–65. https:
//doi.org/10.1145/2664243.2664275

[28] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your
ContextsWell: Understanding Object-sensitivity. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11). ACM, New York, NY, USA, 17–30. https://doi.org/10.1145/1926385.
1926390

[29] Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive pointer
analysis more precise with still k-limiting. In International Static Analysis Sym-
posium (SAS ’16). Springer, 489–510. https://link.springer.com/chapter/10.1007/
978-3-662-53413-7_24

[30] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and Precise Points-to Analysis:
Modeling the Heap by Merging Equivalent Automata. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’17). ACM, New York, NY, USA, 278–291. https://doi.org/10.1145/3062341.
3062360

[31] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’14). ACM, New York, NY, USA,
1329–1341. https://doi.org/10.1145/2660267.2660357

[32] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static Control-Flow Analysis of User-Driven Callbacks in Android Applications.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering
(ICSE ’15), Vol. 1. 89–99. https://doi.org/10.1109/ICSE.2015.31

[33] Shengqian Yang, Hailong Zhang, Haowei Wu, Yan Wang, Dacong Yan, and
Atanas Rountev. 2015. Static Window Transition Graphs for Android (T). In
Proceedings of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’15). IEEE Computer Society, Washington, DC, USA,
658–668. https://doi.org/10.1109/ASE.2015.76

[34] Yifei Zhang, Tian Tan, Yue Li, and Jingling Xue. 2017. Ripple: Reflection Analysis
for Android Apps in Incomplete Information Environments. In Proceedings of
the Seventh ACM on Conference on Data and Application Security and Privacy
(CODASPY ’17). ACM, New York, NY, USA, 281–288. https://doi.org/10.1145/
3029806.3029814

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1145/2635868.2635869
https://doi.org/10.1145/2635868.2635869
https://doi.org/10.1145/2771783.2771803
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html
https://doi.org/10.1145/2491956.2462191
http://dl.acm.org/citation.cfm?id=2818754.2818791
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-48288-9_10
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1109/ISSRE.2017.36
https://doi.org/10.1109/ISSRE.2017.36
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1145/2635868.2635896
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/2884781.2884853
https://doi.org/10.1145/2837614.2837661
http://dl.acm.org/citation.cfm?id=2818754.2818767
https://doi.org/10.1145/2664243.2664275
https://doi.org/10.1145/2664243.2664275
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://link.springer.com/chapter/10.1007/978-3-662-53413-7_24
https://link.springer.com/chapter/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/2660267.2660357
https://doi.org/10.1109/ICSE.2015.31
https://doi.org/10.1109/ASE.2015.76
https://doi.org/10.1145/3029806.3029814
https://doi.org/10.1145/3029806.3029814

	Abstract
	1 Introduction
	2 Motivation
	2.1 Two Navigations Scenarios
	2.2 Context-Insensitive Transition Analysis
	2.3 Context-Sensitive Transition Analysis
	2.4 Object-Sensitive Pointer Analysis

	3 Approach
	3.1 Android Intents and ICC Calls
	3.2 Notations
	3.3 Preprocessing
	3.4 Activity-Aware Object-Sensitive (Whole-Program) Pointer Analysis
	3.5 Launch-Mode-Unaware Context-Insensitive Activity Transition Analysis
	3.6 Launch-Mode-Aware Context-Sensitive Activity Transition Analysis
	3.7 Discussion
	3.8 Example

	4 Evaluation
	4.1 Implementation
	4.2 Experimental Setup and Methodology
	4.3 Results and Analysis
	4.4 RQ3. GUI Testing
	4.5 RQ4. Pointer Analysis

	5 Related Work
	6 Conclusion
	References

