
Poster: Live Path Control Flow Integrity
Mohamad Barbar, Yulei Sui
University of Technology Sydney

Hongyu Zhang
University of Newcastle

Shiping Chen
CSIRO/Data61

Jingling Xue
University of New South Wales

ABSTRACT
Per-Input Control Flow Integrity (PICFI) represents a recent ad-
vance in dynamic CFI techniques. PICFI starts with the empty CFG
of a program and lazily adds edges to the CFG during execution
according to concrete inputs. However, this CFG grows monoton-
ically, i.e., invalid edges are never removed when corresponding
control flow transfers (via indirect calls) become illegal (i.e., will
never be executed again). This paper presents LPCFI, Live Path
Control Flow Integrity, to more precisely enforce forward edge CFI
using a dynamically computed CFG by both adding and removing
edges for all indirect control flow transfers from function pointer
calls, thereby raising the bar against control flow hijacking attacks.

CCS CONCEPTS
• Security and privacy→ Information flow control;

KEYWORDS
Control Flow Integrity, Live Path, Hijacking Attacks
ACM Reference Format:
Mohamad Barbar, Yulei Sui, Hongyu Zhang, Shiping Chen, and Jingling
Xue. 2018. Poster: Live Path Control Flow Integrity. In ICSE ’18 Companion:
40th International Conference on Software Engineering Companion, May 27-
June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, Article 4,
2 pages. https://doi.org/10.1145/3183440.3195093

1 INTRODUCTION
Programs written in low-level languages, such as C and C++, make
up the majority of performance-critical system software (e.g., web
browsers and language runtimes) running on most computing plat-
forms. However, these unsafe languages are prone to memory cor-
ruption vulnerabilities (e.g., use-after-free). An attacker may lever-
age these vulnerabilities to launch control flow hijacking attacks
by changing the target of an indirect branch instruction to force a
running program to execute at a location of the attacker’s choice.

Existing Control Flow Integrity (CFI) techniques [1] aim to miti-
gate these adversarial effects by restricting a program’s execution to
its statically over-approximated control flow graph (CFG). PICFI [4]
represents a recent dynamic approach to forward edge CFI. PICFI
first pre-computes a static CFG as the upper bound for its dynamic
one. PICFI starts with the empty CFG of a program. During runtime,
only when a function address is taken (e.g., p = &func), it will add

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05. . . $15.00
https://doi.org/10.1145/3183440.3195093

1: void (*fp)(void);
2: void foo(int n) {
3: if (n) {
4: lpcfi assign const(&fp, &g);
5: fp = &g;
6: } else {
7: lpcfi assign const(&fp, &h);
8: fp = &h;
9: }

10://unsafe: modify the value of fp
11: lpcfi check(&fp);
12: fp();
13: }
14: void main(void) {
15: foo(1);
16: foo(0);
17: }

(a) Otherwise unsafe
code protected by LPCFI.

main foo(1)
foo(0)

foo fp()

g h

e1 e2

e3 e4

main foo ge1 e3
main foo he2 e4

main foo ge2 e3

Direct call
Indirect call

(b) PICFI’s CFG and feasible
(green) and infeasible (red)
paths not protected by PICFG

Figure 1: A motivating example to demonstrate the limita-
tion of PICFI.

an edge from each indirect callsite to func if this edge is also found
in the static CFG. Hence PICFI provides better security guarantees
than conventional CFI which enforce a statically computed CFG.

However, PICFI’s dynamic CFG grows monotonically, i.e, edges
added to the CFG are never removed. Hence, edges become perma-
nently legal to take regardless of whether their legality changes
over time. The conservatively constructed dynamic CFG by PICFI
leaves an attack surface: when an indirect call transfer remains on
the monotonic CFG but will never be legally executed again.

Figure 1 illustrates this limitation of PICFI via a proof-of-concept
attack. Note that the lines marked in blue are instrumentation
calls from our approach to protect against this attack, and will
be explained later. PICFI begins execution with an empty CFG.
Initially the indirect callsite fp() at line 12 cannot invoke any
function legally. After executing the i f branch via foo(1) at line
15, g becomes a legitimate target (e1 and e3 are added to the CFG).
After executing the else branch via foo(0) at line 16, h becomes a
legitimate target (e2 and e4 are added to the CFG).

Figure 1(b) gives PICFI’s CFG constructed immediately before the
indirect callsite fp() at line 12 when foo is invoked for a second
time via foo(0) at line 16. Unfortunately, the indirect call edge
fp()

e3
−−→g, which was added during the first execution of foo, has

already become illegal to take since fp only points to h during the
second execution at the time of calling fp. However, this spurious
edge fp()

e3
−−→g remains on the CFG. The conservative CFG allows

attackers to redirect fp() to g by modifying fp’s value to be g via a
memory corruption error [2], despite f oo not being allowed to call
д when n’s value is 0. Therefore, PICFI still provides an attacker
opportunities to launch control hijacking attacks by treating "out-of-
date", spurious control flow edges as legitimate. This paper presents
LPCFI, Live Path Control Flow Integrity, which aims to overcome

https://doi.org/10.1145/3183440.3195093
https://doi.org/10.1145/3183440.3195093

1: lpcfi assign const(fp, &func) { //function address-taken statement
2: ind = lookup(fp table, &func); //search the index of &func in fp table
3: if(ind==-1) error(’not found’);
4: fp table[ind].actv = 1; //mark func as activated (achieve PICFI)
5: update(fp, &func); } //update fp to point to func
6: fp = &func;

7: lpcfi assign copy(p, q) { //copy statement

8: o = pt(fp table, q) //get the object that q points to in fp table

9: update(p, &o); } //update p to point to o only if o is a function

10: p = q;

11: lpcfi assign load(p, *s) { //load statement

12: o = pt(fp table,*s) //get the object that *s points to

13: ind = lookup(fp table, &o); //search the index of &o in fp table

14: if(ind==-1) error(’not found’);

15: assert(fp table[ind].actv); //ensure o has been activated

16: update(p, &o); } //update p to point to o

17: p = *s;

18: lpcfi assign store(*r, q) { //store statement

19: o = pt(fp table,*r) //get the object that *r points to

20: update(q, &o); } //update q to point to o

21: *r = q;

22: lpcfi check(fp) { //indirect call statement

23: o = pt(fp table,fp) //get the object that fp points to

24: assert(runtimeVal(*fp) == &o && edge(callsite, &o) ∈ static CFG); }
25: fp(...);

(a) Instrumentation provided by LPCFI.

(b) Internal representation of the fp-table.

26: update(fp, &o) { //helper function
27: if(o not a function obj) return;
//search index of the object that fp points to

28: oldInd = lookup(fp table, &pt(fp table,fp));
//remove fp from function pointer set of fp table[oldInd]

29: if(oldInd!=-1) remove(fp table[oldInd].fpset, fp);
//search the index of function o in fp table

30: newInd = lookup(fp table, &o);
31: if(newInd==-1) error(’not found’);
//add fp into the new function pointer set

32: add(fp table[newInd].fpset, fp); }

(c) Helper function to remove and add function pointers.
Figure 2: Implementation of LPCFI’s assignment based instrumentation and its internal data structure

this limitation of PICFI and provide stronger security by both adding
and removing CFG edges, allowing at most one outgoing forward
edge from every indirect callsite at any one point.

Let us revisit the example in Figure 1 whilst taking into consider-
ation LPCFI’s instrumentation (highlighted in blue). During the first
call to foo, fp()

e3
−−→g is added to the CFG via lpcfi_assign_const.

A check is then performed to ensure that the indirect call transfer
from fp() will reach the only legitimate target g. During the sec-
ond call to foo, lpcfi_assign_const in the else branch updates
the CFG by first removing the invalid edge fp()

e3
−−→ g from the

CFG, and then adding fp()
e4
−−→h. This removal is important since

the second call to foo via foo(0) is not allowed to call g, which is
ignored by PICFI. LPCFI ensures only one legitimate (live) function
target is allowed at any call path to an indirect callsite.

2 APPROACH
We represent a program by putting it into LLVM’s SSA form follow-
ing [5]. The set of all variables is split into two subsets: top-level
pointers (registers) whose addresses are not taken, and all potential
targets, i.e., all address-taken objects of a pointer. In SSA, a program
is represented by five types of statements: const (p = &foo), copy
(p = q), store (*p = q), load (p = *q), and call (fp(...)).

LPCFI’s implementation consists of instrumentation (Figure 2(a))
and a data structure (Figure 2(b)), on which the instrumentation
performs bookkeeping to update the dynamic CFG. Like[3, 6],
we use safe memory to store LPCFI’s metadata. Within this safe
memory, LPCFI maintains the fp-table as shown in Figure 2(b),
which is a fixed size array (the length is the number of address-
taken functions in the program) where each element holds: (1)
the address of a function func_address, (2) an activation bit actv,
and (3) a set fpset of function pointers which can legally point
to func_address at a particular program point during runtime.
pt(fp_table, fp) returns the function that function pointer fp
points to. lookup(fp_table,&func) returns the index of &func
in fp_table.

We perform instrumentation for an assignment only if it may
read/write the value of a function pointer as determined by Ander-
sen’s pointer analysis [5]. Figure 2(a) details the instrumentation
implementation for handling the five types of statements.

The four assignments share the same helper function update(fp,
&o) in Figure 2(c), which updates a function pointer fp to correctly
point to a function (e.g., o) by removing fp from the fpset of fp’s
old points-to target (if it is a member of fp_table[oldInd].fpset)
at line 29, and adding fp to o’s fpset at line 32. Note that pointer
analysis is always an over-approximation. A pointer q resolved to
point to a function statically, may not point to such at runtime.
LPCFI will not perform any runtime update if the right hand side
expression of an assignment (e.g., ... = q) does not refer to
a function object as shown at line 27. lpcfi_check is inserted
immediately before an indirect callsite (lines 22-24). It checks the
runtime value of a function target against the value stored in the
fp_table to validate the indirect call transfer.

Discussion. Performance overheadmainly comes from the helper
function due to the search operation on the fp-table. Optimisa-
tions can be implemented to improve performance of the search
operation, e.g., a fast binary search, and caching with a hash map.

The activation bit is used to guarantee that only functions whose
addresses have been taken will be considered as legitimate function
targets at any indirect calls to provide a security lower bound of
that of PICFI. The activation bit is set during runtime when a target
has become legitimate at a const statement. It is then checked at
any load statement which only loads an address-taken function.

3 PROOF-OF-CONCEPT ATTACK & DEFENCE
We have designed a proof-of-concept attack and its defence through
LPCFI using the example in Figure 1. Together with our prototype
tool, they are available at https://github.com/mbarbar/lpcfi.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

Integrity Principles, Implementations, and Applications. ACM Trans. Inf. Syst.
Secur. 13, 1 (Nov. 2009), 4:1–4:40.

[2] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the weak-
nesses of fine-grained control flow integrity. In CCS ’15. 901–913.

[3] Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. 2017. Boosting the
precision of virtual call integrity protection with partial pointer analysis for C++.
In ISSTA ’17. ACM, 329–340.

[4] Ben Niu and Gang Tan. Per-Input Control-Flow Integrity. In CCS ’15. 914–926.
[5] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Analysis

in LLVM. https://github.com/unsw-corg/SVF. In CC ’16. 265–266.
[6] Chao Zhang, Scott A Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer,

and Dawn Song. 2016. VTrust: Regaining trust on virtual calls. In NDSS ’16.

2

https://github.com/mbarbar/lpcfi
https://github.com/unsw-corg/SVF

	Abstract
	1 Introduction
	2 Approach
	3 Proof-of-concept attack & defence
	References

