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Abstract—The C programming language continues
to play an essential role in the development of system
software. May-Happen-in-Parallel (MHP) analysis is
the basis of many other analyses and optimisations
for concurrent programs. Existing MHP analyses that
work well for programming languages such as X10 are
often not effective for C (with Pthreads).

This paper presents a new MHP algorithm for C
that operates at the granularity of code regions rather
than individual statements in a program. A flow-
sensitive Happens-Before (HB) analysis is performed
to account for fork-join semantics of Pthreads on an
interprocedural thread-sensitive control flow graph
representation of a program, enabling the HB rela-
tions among its statements to be discovered. All the
statements that share the same HB properties are
then grouped into one region. As a result, computing
the MHP information for all pairs of statements in
a program is reduced to one of inferring the HB
relations from among its regions.

We have implemented our algorithm in LLVM-
3.5.0 and evaluated it using 14 programs from the
SPLASH2 and PARSEC benchmark suites. Our pre-
liminary results show that our approach is more
precise than two existing MHP analyses yet compu-
tationally comparable with the fastest MHP analysis.

Keywords-MHP; May-Happen-in-Parallel; concur-
rent program; multi-threading; static analysis;

I. Introduction

May-Happen-in-Parallel (MHP) analysis determines
statically whether a given pair of statements in a con-
current program may be executed in parallel or not.
This analysis serves as a cornerstone of many other
static and dynamic analyses on detecting, for example,
data races [1], [2] and deadlocks [3]. However, deter-
mining precisely whether all pairs of statements in a
concurrent program may happen in parallel or not is
NP-complete [4]. As a result, most of previous MHP
algorithms either achieve precision by taking advantage
of some language features in a particular programming
language or sacrifice precision by computing approxi-
mated results.

The X10-like languages provide structured language
features to simplify parallel programming. Their concur-
rency control constructs, async and finish, supports
async-finish parallelism, by avoiding arbitrary uses of
joins to make stronger scheduling guarantees.

Unstructured languages such as C/C++ and Java
remain mainstream in modern software development.
Unlike structured language constructs, unstructured and
low-level fork-join constructs allow programmers to
express rich and complicated patterns of parallelism.
However, such flexible non-lexically-scoped parallelism
poses a major challenge to scalable and precise MHP
analysis. The techniques developed for structured lan-
guages [5], [6], [7], [8] cannot be directly applied to
unstructured languages. In C programs, for example,
a thread may outlive its spawning thread or can be
joined partially along one program path (a partial join)
or indirectly in one of its child threads (a nested join).
Thus, a sophisticated interprocedural analysis is needed
to capture the MHP relations in C programs.

Previously, a MHP analysis for Java [9] introduces
an abstract thread structure analysis to capture the
fork and join interactions among threads. However, this
analysis ignores partial and nested joins, which are some
limitations to be overcome in this paper.

In this paper, we present a new MHP algorithm
to analyse C programs. We perform a flow-sensitive
Happens-Before (HB) analysis for a program by consid-
ering the fork-join semantics of Pthreads on an inter-
procedural thread-sensitive control flow graph represen-
tation of the program. All the statements that share the
same HB properties in the program are grouped into one
region, so that computing the MHP information for all
pairs of statements in the program is reduced to one of
inferring the HB relations from among its regions.

Our contributions are summarised as follows:

• We introduce a new MHP analysis that models the
fork-join semantics of Pthreads in a C program by
performing an interprocedural flow-sensitive analy-
sis on a thread-sensitive control flow graph repre-
sentation of the program.

• We present a region partitioning algorithm to build
a Region Relation Graph (RRG) for a program in
order to compute effectively the MHP information
for the program by operating at the granularity of
its code regions rather than individual statements.

• We have implemented our algorithm in LLVM-
3.5.0 and evaluated it using 14 programs from the
SPLASH2 and PARSEC benchmark suites. Our
preliminary results show that our approach is more



precise than two existing MHP analyses yet compu-
tationally comparable with the fastest MHP analy-
sis.

II. Static Thread Model

A. Abstract Thread

An abstract thread1 refers to a call of pthread create()
at a fork site during the analysis. Abstract threads are
modelled context-sensitively so that a thread t always
refers to a context-sensitive fork site, i.e., a unique
runtime thread unless t is multi-forked, in which case,
t may represent more than one runtime thread.

Definition 1 (Multi-Forked Threads). A thread t is a
multi-forked thread if its fork site ftm→t resides in a loop,
recursion or its spawner thread tm is multi-forked.

For a non-multi-forked thread, its context-sensitive
fork site is cloned for its different calling contexts so that
the thread uniquely identifies one single runtime thread.

We use ftm→t to denote a fork site, where tm → t
represents a spawning relation such that a spawner
thread tm creates a spawnee thread t. Similarly, jtm→t

denotes a join site, where tm → t represents a joining
relation such that a spawnee t is joined by its spawner
tm. For a thread t, we write St to stand for the start
procedure of t, where the execution of t begins.

B. Thread-Sensitive Control Flow Graph

Given a program, its interprocedural control flow
graph (ICFG [10]) is a directed graph. A node repre-
sents a basic block containing a sequence of statements.
An intraprocedural edge from one block to another
represents the flow of control between the two blocks.
All interprocedural edges represent the calling relations
across the procedures. Indirect calls can be found using
Andersen’s pointer analysis [11], [12], [13].

An ICFG can be augmented to yield a thread-sensitive
interprocedural control flow graph (TCFG) by adding
fork and join edges to represent their thread spawning
and joining relations, respectively, as highlighted by the
dashed arrows in Figure 1. For a thread t, we write Gt

to represent the subgraph of the TCFG corresponding
to t, from the entry of t’s start procedure St to the exit
of St, including all reachable callees of St but excluding
the statements in any spawnee thread of t.

C. Modeling Thread Joins

To handle joins effectively, we distinguish direct (or
immediate) and indirect (or nested) joins. In particular,
indirect joins are recursively defined below.

Definition 2 (Direct and Indirect Joins). A join site
jtm→t represents a direct join of t in tm. In addition, a

1The term “thread” means “abstract thread” through the follow-
ing sections; all runtime threads will be noted explicitly.
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Figure 1: A TCFG and its sub-TCFG for thread t.

join site jtm→t′ represents an indirect join of t, where
t 6= t′, if every execution path in t′ contains a join site
jt′→t, which is either a direct or indirect join of t in t′.

Therefore, a join site jtm→t′ that represents a join for a
thread t is direct if t = t′ and indirect otherwise. Figure 2
illustrates four different join patterns to be explained
below. Each Join(t) (Join(t′)) represents a direct join
for t (t′). In addition, as illustrated in Figure 2(c),
Join(t′) represents an indirect join of t in tm.

In C programs, a thread can be joined fully along all
program paths or partially along some but not all paths.
Both cases need to be handled precisely.

Definition 3 (Full and Partial Joins). A join site jtm→t′

that represents a join of a thread t (where t and t′ may
or may not be the same) is a full (partial) join of t in
tm if it is reachable by its corresponding fork site ftm→t

along all (some but not all) program paths.

Existing MHP analyses [9], [14] handle a join site
conservatively. A join site jtm→t is considered only if
jtm→t post-dominates its corresponding fork site ftm→t

(as in the case of Figure 2(a)) but ignored otherwise (as
in the more complex join cases illustrated in Figures 2(b)
– (d)). In Figure 2(b), t is joined fully in tm at two
different join sites in the two branches. In Figure 2(c),
tm creates two threads t and t′, with t being joined fully
with tm via a join site in t′ in an indirect manner. In
Figure 2(d), t can outlive its spawner tm via a partial join
in the if branch. If the if branch is taken, t terminates
after the partial join. If the else branch is taken, t may
still be alive even after tm has finished its execution.

Conservatively handling the above join behaviours
may lead to imprecise MHP results. Figure 3 shows a
partial join from x264 in the PARSEC benchmark suite,
where the thread identified by h→thread handle is joined
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Figure 2: Full and partial join patterns. In (c), Join(t′) is not only a direct join of t′ but also an indirect join of t.

// f i l e encoder / encoder . c
1312 s t a t i c i n t x 2 6 4 s l i c e s w r i t e ( x264 t ∗h) {

. . . . . .
1327 x 2 6 4 s t a c k a l i g n ( x 2 6 4 s l i c e w r i t e , h ) ;
1328 i f r a m e s i z e =

h−>out . na l [ h−>out . i n a l −1] . i pay load ;
. . . . . .

1340 }

1355 i n t x264 encoder encode ( . . . ) {
. . . . . .

1585 i f (h−>param . i t h r e a d s > 1)
1586 {
1587 pthr ead c r ea t e (&h−>thread handle ,

NULL, ( void ∗) x 2 6 4 s l i c e s w r i t e , h ) ;
1588 h−>b t h r e a d a c t i v e = 1 ;
1589 }

. . . . . .
1696 }

1698 s t a t i c void x264 encoder f rame end
( x264 t ∗h , . . . ) {

. . . . . .
1705 i f (h−>b t h r e a d a c t i v e )
1706 {
1707 p th r ead j o i n (h−>thread handle ,NULL) ;
1708 h−>b t h r e a d a c t i v e = 0 ;

. . . . . .
}

1854 }

Figure 3: A partial join in PARSEC.x264.

partially inside an if branch in line 1707. Thus, the
statements from line 1708 after the join site to the end
of the if branch do not happen in parallel with any
statement in the start procedure x264_slice_write of
h→thread handle. However, ignoring this join site will
result in spurious MHP statement pairs.

Following [9], [15], we presently conduct a may-alias
analysis [11], [12], [13] to approximate the set of abstract
threads joined at a join site. This can be unsound as a

may-analysis is conservative. In general, handling all join
sites both soundly and precisely in the presence of multi-
forked threads (Definition 1) is difficult. However, it is
possible to do so in some common usage scenarios. In
Figure 7(a), a “fork” loop is first used to spawn a fixed
number of threads (lines 18 – 20) and then a “join”
loop is used later to join all these threads (lines 22 –
24). Such a usage pattern for multi-forked threads can
be analysed by taking advantage of LLVM’s high-level
loop optimiser, Polly, which uses polyhedral abstractions
to analyze in-loop memory access patterns. The results
computed by Polly can assist our analysis to determine
if a multi-forked thread can be joined soundly.

III. Region-Based MHP Analysis

We first perform a flow-sensitive analysis on TCFG
to discover the statement-level Happens-Before infor-
mation by considering the order in which threads ex-
ecute. We then partition the statements in the program
into regions, so that the statements with the same HB
properties are grouped together to reduce the overhead
incurred in computing all-pair MHP statements.

A. Thread Order Properties

For each context-sensitive abstract thread t spawned
at its fork site ftm→t, we classify the statements (exclud-
ing fork and join sites) contained in both Gt and Gtm

into five categories to approximate the runtime thread
execution order between t and its spawner tm.

Definition 4 (Thread Order Properties). Let ftm→t be
a fork site. The statements in Gt and Gtm are classified,
by considering direct and indirect joins of t in tm:

• BEF (BEFORE): statements in Gtm that may be
executed before the fork site ftm→t;
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i n t gvar ; // g l o b a l v a r i a b l e
void ∗S( void ∗x ) { gvar = 9 ; }

void main ( ) {
pthread t t ;
gvar = 1 ;
i f ( t rue ) {

gvar = 2 ;
f o r ( i n t i =0; i <2; i++){

gvar = 3 ;
p th r ead c r ea t e (&t , NULL, S , NULL) ;
gvar = 4 ;
p th r ead j o i n ( t , NULL) ;
gvar = 5 ;

}
gvar = 6 ;

} e l s e {
gvar = 7 ;

}
gvar = 8 ;

}

Thread tm
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gvar=8

Join(t)

Thread t

Exit(t)

Entry(t)

gvar=9

gvar=2

Fork(t,St)

gvar=4

gvar=6

Exit(tm)

gvar=3

gvar=5

1

2

3

4

5

6

7

8

9

Basic block Forkcontrol flow Join
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Figure 4: An example on classifying statements with different thread execution properties. Given tm as the main
thread and t as the multi-forked thread created inside the loop, we have: Ptm→t(1) = Ptm→t(2) = BEF , Ptm→t(6) =
Ptm→t(8) = AFT , Ptm→t(3) = Ptm→t(4) = Ptm→t(5) = FKJ , Ptm→t(7) = DPP , and Ptm→t(9) = SLA.

• AFT (AFTER): statements in Gtm that may be
executed after a join site jtm→t′ that represents a
(direct or indirect) join of t in tm (if it exists);

• FKJ (FORK-JOIN): statements that appear in
some execution path from the fork site ftm→t to a
corresponding join site ftm→t′ that represents a join
of t (if it exists) or to the exit of Gtm (otherwise);

• DPP (DISJOINT PROGRAM PATHS): statements
in Gtm that do not appear in any common execution
path as the fork site ftm→t; and

• SLA (SLAVE): statements in Gt of the spawnee t.

In what follows, we write Ptm→t(s) to represent
a function mapping a statement s in Gtm and Gt

to {BEF ,AFT ,FKJ ,DPP ,SLA} with respect to one
spawning relation tm → t.

Let us consider an example in Figure 4, where tm
represents the main thread and t a multi-forked thread
created inside a loop. Statements 1 and 2 are annotated
with BEF since both may be executed before t is created,
while statements 6 and 8 are annotated with AFT
since both may be executed after the join site. However,
statements 3 and 5 reside in a loop, causing each to
possess both BEF and AFT, and are thus annotated
with FKJ . Statement 4 lies on a path between the
fork site and join site and is thus labelled with FKJ.
Statement 7 is annotated with DPP since the executions
of this statement and the fork site are mutually exclusive.

Finally, statement 9 in Gt is annotated with SLA.

B. Flow-Sensitive Static Happens-Before Analysis

In Algorithm 1, we present our flow-sensitive anal-
ysis for annotating the statements in a program with
their thread order properties. Our algorithm works by
considering all thread spawning relations individually
(lines 1 and 2). For a spawning relation tm → t created
at a fork site ftm→t, we first mark every statement s
in Gt as SLA: Ptm→t(s) = SLA (lines 3 and 4). We
then mark each statement s in Gtm so that Ptm→t(s) ∈
{BEF ,AFT ,FKJ ,DPP} by Definition 4 (lines 5 – 24).
We do so by first partitioning Gtm into two subgraphs,
GR

tm that contains all statements reachable by the fork
site ftm→t along some program paths either forwards
or backwards and GN

tm that contains the remaining
unreachable statements (line 5). This is achieved by
solving a data-flow problem but omitted here.

For every statement s in GN
tm , we set Ptm→t(s) = DPP

(lines 6 and 7). For the statements in GR
tm , we solve

a forward data-flow problem (V,u, F ) (lines 8 – 24).
We use the semilattice shown in Figure 5, where V =
{BEF ,AFT ,FKJ ,>} and u is the meet operator. Note
that if a fork site and its corresponding join site appear
in recursion or a loop, a statement can have both BEF
and AFT properties, which will be combined into FKJ .
F represents the set of transfer functions used for the
statements in GR

tm , given in lines 18, 20 and 22. Note that
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Algorithm 1: Annotating Thread Order Properties

1 F ← set of all fork statements in the program
2 foreach ftm→t ∈ F do
3 foreach statement s in Gt do
4 Ptm→t(s)← SLA

5 Partition Gtm into GR
tm that contains the

statements reachable by ftm→t either forwards or
backwards along some paths in Gtm and GN

tm
that contains the remaining statements

6 foreach statement s in GN
tm do

7 Ptm→t(s)← DPP

8 foreach statement s in GR
tm do

9 Ptm→t(s)← >
10 W ← set of statements in GR

tm
11 Let sentry be the entry statement in GR

tm
12 W = W ∪ {sentry}
13 Ptm→t(sentry)← BEF
14 while W 6= ∅ do
15 s = a statement removed from W
16 foreach s′ ∈ succ(s) in GR

tm do
17 if s′ is the fork site ftm→t then
18 Ptm→t(s

′) = Ptm→t(s
′) u FKJ

19 else if s′ is a join site jtm→t′

representing a join of t then
20 Ptm→t(s

′) = Ptm→t(s
′) uAFT

21 else
22 Ptm→t(s

′) = Ptm→t(s
′) u Ptm→t(s)

23 if Ptm→t(s
′) has changed then

24 W = W ∪ {s′}

succ(s) denotes the set of successors of a statement s in
GR

tm . To compute Ptm→t(s) iteratively for each statement
s in GR

tm , we first perform the standard initialisation
in lines 8 and 9. We then perform a forward data-flow
analysis to annotate each statement s in GR

tm with BEF,
AFT or FKJ (lines 10 – 24). Three different transfer
functions are applied when processing three kinds of
statements: (1) the (unique) fork statement ftm→t (lines
17 and 18), (2) its corresponding join statements jtm→t′

for joining t (if any) (lines 19 and 20), and (3) the
remaining statements (lines 21 and 22).

C. Region Relation Graph

After having annotated all the statements in a pro-
gram with their thread-order properties, we proceed to
partition the program into regions so that the state-
ments in the same region share the same thread-order
properties. We achieve this by considering each Gtm

individually for all spawning relations tm → t created

>

BEF AFT

FKJ

Figure 5: The semilattice for the analysis in Algorithm 1.

[FORK]
Ptm→t(r) = BEF Ptm→t(r

′) = SLA

r′ r

[JOINFull/Partial ]
Ptm→t(r) = SLA Ptm→t(r

′) = AFT

r′ r/ r′ r

[DISJOINT-PATHS]
Ptm→t(r) = DPP Ptm→t(r

′) = SLA

r′ r

Figure 6: Rules for constructing the inter-thread edges
among the regions in a RRG.

in tm. Two statements s1 and s2 in Gtm are grouped in
the same region if and only if Ptm→t(s1) = Ptm→t(s2)
for every possible thread t spawned by tm. Note that
Ptm→t(s) = Ptm→t′(s) may not necessarily hold when
t 6= t′. For every region r thus obtained from Gtm ,
we abuse our notation by writing Ptm→t(r) to mean
Ptm→t(s) for some s ∈ r (since Ptm→t(s1) = Ptm→t(s2)
for s1, s2 ∈ r). For every thread t spawned by tm, let us
assume that Gt has been eventually partitioned into n re-
gions (when Gt is processed), r1, . . . , rn. By Definition 4,
we know that Ptm→t(r1) = · · · = Ptm→t(rn) = SLA.

Given a program, its region relation graph (RRG) is
a directed graph, where each node represents a region
and each edge between two regions represents an inter-
thread HB relation. We apply the rules given in Figure 6
to construct the inter-thread HB relations for a RRG.
We distinguish two types of edges, denoted by and

, which represent unconditional and conditional HB
relations, respectively. [FORK] models the HB relations
established due to thread creation. [JOIN] models the
HB relations due to full and partial thread joins. For a
full join, r′ r represents the standard HB relation,
which happens unconditionally between r and r′. For
a partial join, r′ r represents a conditional HB
relation, which happens only conditionally between r
and r′ when the partial join actually takes place.

Let us now examine the last rule in Figure 6. In
[DISJOINT-PATHS], we deal with the case when a region
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r in tm never appears on the same execution path as
the fork site ftm→t in tm. We postulate the existence of
r′ r (rather than r r′) in order to achieve better
precision in practice. This is because for every spawning
relation tm → t, there usually exist a region r in tm
(where Ptm→tm(r) = BEF ) and a region r′ in t (where
Ptm→t(r) = SLA) such that r′ r. This can always
happen if the entry node of every sub-TCFG is assumed
to contain a no-op, i.e., skip statement.

D. Computing MHP Relations

We are now ready to describe how to compute MHP
regions and statements in a program.

Definition 5 (Multi-Forked Regions). A region in Gt is
a multi-forked region if t is a multi-forked thread.

Let t and t′ be two distinct threads. Let r be a region
in Gt and r′ be a region in Gt′ . We say that r happens
before r′ and write r′ ⇐= r if there exists a directed path
from r to r′ in the RRG of the program such that the
path starts with a sequence of zero or more unconditional
(i.e., traditional) HB edges , followed optionally by
one conditional HB edge at the end.

Two regions r and r′ may happen in parallel, denoted
r#r′, if one of the following two conditions holds: (1)
both r and r′ are multi-forked regions and (2) neither
r′ ⇐= r nor r ⇐= r′ holds. Recall that if a spawner
thread is multi-forked, its spawnee threads will also be
multi-forked, but the converse is not true (Definition 1).

Given two regions ri and rj , si ∈ ri and sj ∈ rj may
happen in parallel if either (1) ri#rj when i 6= j or (2)
ri is a multi-forked region when i = j.

E. Example

Let us apply our MHP analysis to an example in
Figure 7. In the code shown in Figure 7(a), there are
three spawning relations, tm → t1, tm → t2 and t2 → t3.
The main thread tm creates t1 in line 14 and joins it
partially in line 28. In addition, tm also forks a multi-
forked thread t2 in line 19 and joins it fully in line 22.
The child thread t2 creates t3 in line 6 and joins it in
line 8. Figure 7(b) depicts the TCFG for the program.

For each spawning relation, we apply Algorithm 1 to
annotate program statements with thread-order prop-
erties (Figure 7(c)) and partition the statements into
regions (Figure 7(d)). Given the partitioned regions, we
construct the RRG (Figure 7(e)) according to rules in
Figure 6. Finally, we obtain the region pairs that may
happen in parallel (Figure 7(f)). All MHP statement
pairs can thus be obtained as described in Section III-D.

IV. Evaluation

We have implemented our MHP analysis in LLVM
(version 3.5.0). For evaluation purposes, we have se-
lected a set of 14 C programs, including 11 SPLASH2

1081 f o r ( i =0; i<nprocs −1; i++){ // fo rk loop
1082 Error=pthread c r ea t e (&PThreadTable [ i ] ,

NULL, ( void ∗) ( s l a v e ) ,NULL) ;
1087 }

. . . . . .

1100 f o r ( i =0; i<nprocs −1; i++){ // j o i n loop
1101 Error=pth r ead j o i n ( PThreadTable [ i ] ,NULL) ;
1106 }

. . . . . .

Figure 8: A multi-forked thread example in ocean_ncp

from the SPLASH2 benchmark suite.

benchmarks and 3 PARSEC benchmarks, as shown in
Table I. All our experiments were conducted on a plat-
form consisting of a 3.00GHz Intel Xeon(R) Quad E5450
processor with 16 GB memory, running Ubuntu Linux
(kernel version 3.11.0).

The source code of each program is compiled into bit
code files using clang and then merged together using
LLVM Gold Plugin at link time stage (LTO) to produce
a whole-program bc file. The compiler option mem2reg is
turned on to promote memory into registers. Andersen’s
pointer analysis is used to resolve indirect function calls
and identify the threads joined at a join site.

To evaluate precision and efficiency of our analysis, we
have implemented two previous solutions also in LLVM,
one recent MHP analysis, named PCG (Procedural Con-
currency Graph [14] and one more precise MHP analysis
named as TCT (Thread Creation Tree) [9].

• PCG computes the MHP relations at the granular-
ity of procedures instead of statements. As a result,
this analysis is fast but imprecise.

• TCT computes the MHP relations at the gran-
ularity of statements based on a thread creation
tree. So TCT is more precise but slower than PCG.
However, the TCT analysis does not model precisely
some complex fork-join behaviours, such as multi-
forked threads, partial joins and nested joins.

A. Precision

Table I presents the results for PCG, TCT and our
MHP analysis referred to as RRG. For each benchmark,
we list its code size, the number of memory access
statements, i.e., stores/loads, and the number of MHP
statements found by each analysis. A statement executed
in one thread is classified as a MHP statement if it may-
happen-in-parallel with at least one statement in another
thread. The number of MHP statements for each analysis
is obtained by examining all pairs of statements.

Our RRG analysis can identify an average of 30.02%
fewer MHP statements than PCG (achieving 48.15%
at raytrace) and an average of 1.45% fewer MHP
statements than TCT (achieving 4.70% at lu_cb). RRG
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1 pthread t t1 , t2 [ 5 ] , t3 ;
2 i n t gvar ; // g l o b a l v a r i a b l e
3 void ∗S3 ( void ∗x ) {gvar = 300 ;}
4 void ∗S2 ( void ∗x ) {
5 gvar = 200 ;
6 pthr ead c r ea t e (&t3 , NULL, S3 , NULL) ;

//t3 : t2 ’ s spawnee thread
7 gvar = 210 ;
8 pth r ead j o i n ( t3 , NULL) ;
9 gvar = 220 ;

10 }
11 void ∗S1 ( void ∗x ) {gvar = 100 ;}
12 void main ( ) { //tm
13 gvar = 1 ;
14 pthr ead c r ea t e (&t1 , NULL, S1 , NULL) ;

//t1 : p a r t i a l l y j o in ed
15 gvar = 2 ;
16 i f ( gvar <4){
17 gvar = 5 ;
18 f o r ( i n t j =0; j <5; j++){
19 pthr ead c r ea t e (&t2 [ j ] , NULL, S2 ,

NULL) ; //t2 : multi−f o rked
20 }
21 gvar = 6 ;
22 f o r ( i n t j =0; j <5; j++){
23 pth r ead j o i n ( t2 [ j ] , NULL) ;
24 }
25 gvar = 7 ;
26 } e l s e {
27 gvar = 3 ;
28 pth r ead j o i n ( t1 , NULL) ;
29 gvar = 4 ;
30 }
31 gvar = 8 ;
32 }

Thread tm

gvar=3

gvar=2

Entry(tm)

gvar=8

Join(t2)

Thread t2

Func S2

Exit(t2)

Entry(t2)

gvar=5

Fork(t2,S2)

gvar=6

gvar=7

Exit(tm)

Fork(t1,S1)

gvar=1

Join(t1)

gvar=4

Thread t1

Func S1

Exit(t1)

Entry(t1)

gvar=100

Join(t3)

gvar=200

Fork(t3,S3)

gvar=210

gvar=220

Thread t3

Func S3

Exit(t3)

Entry(t3)

gvar=300

1

2

3

4

5

6

7

8

9

10

11

12

13

Basic block Forkcontrol flow Join

(a) Code (b) TCFG

Property

Statement Relation

tm → t1 tm → t2 t2 → t3

BEF 1 1 2 5 10

AFT 4 7 8 12

FKJ 2 3 5 6 7 8 6 11

DPP - 3 4 -
SLA 9 10 11 12 13

Region Statement Region Statement

r1 1 r7 9

r2 2 5 r8 10

r3 3 r9 11

r4 4 r10 12

r5 6 r11 13

r6 7 8 - -

(c) Statements with its thread-order properties (d) Regions

r2
r8

r5

r6

r1

r4

r7

r9

r10

r11

Region

Conditional HB

Unconditional HB

Multi-forked region

r3

tm
t1

t2

t3

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11
r1
r2

√

r3
√

r4
r5

√ √ √ √ √

r6
√

r7
√ √ √ √ √ √ √ √

r8
√ √ √ √ √ √

r9
√ √ √ √ √ √

r10
√ √ √ √ √ √

r11
√ √ √ √ √ √

(e) RRG (f) MHP statement pairs marked with a ”
√

”

Figure 7: An illustrating example.
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Table I: The MHP statements found by PCG, TCT and RRG.

Benchmark Application Domain LOC
Total Number Number of MHP Statements

of Statements PCG TCT RRG
S

P
L

A
S
H

2

barnes N-body Simulation 14062 3805 3410 2065 2053

cholesky Matrix factorisation 33590 10546 7616 4890 4836

fft Complex 1-D FFT 6215 1523 999 712 706

lu cb Matrix triangulation 6063 1586 761 447 426

lu ncb Matrix triangulation 4935 1216 720 676 645

ocean ncp Ocean current simulation 26659 7147 6069 3386 3326

radiosity Graphics 25764 7436 4390 2599 2568

radix Integer sort 5335 1251 783 665 665

raytrace 3D rendering 36419 8776 2644 1380 1371

water nsquared Molecular dynamics 10905 3072 2088 1696 1681

water spatial Molecular dynamics 12485 3481 2237 1730 1722

P
A

R
S

E
C blackscholes Financial analysis 1077 381 356 312 312

dedup Enterprise storage 37931 5317 3741 2841 2830

x264 Media processing 192981 67929 58080 41231 39960

Total 414421 123466 93894 64630 63101

is slightly more precise than TCT for the set of bench-
marks considered since RRG handles some complex fork-
join behaviours, such as partial joins as illustrated in
Figure 3, more precisely. Figure 8 shows some code
snippet from ocean_ncp in the SPLASH2 benchmark
suite, where a fixed number of threads are forked and
joined in two “symmetric” loops. By performing the
Polly loop analysis in LLVM, our RRG analysis can
identify precisely that any statement in a slave thread
does not happen in parallel with the statements after
the second loop executed in the main thread. However,
TCT handles this scenario conservatively by ignoring the
join site in line 1101, resulting in more spurious MHP
statements as shown in Table I.

B. Efficiency

Figure 9 shows a percentage distribution of RRG’s
analysis time in each of its three stages: (1) pre-
processing (points-to analysis and call graph construc-
tion), (2) HP analysis (happens-before analysis and RRG
construction) and (3) MHP computation.

To compare RRG with PCG and TCT in terms of
efficiency, we examine separately the overheads incurred
in building various data structures, e.g., graphs and
trees, used by these analyses and the times spent on
generating the MHP statements. In the former case,
Figure 10 shows that RRG is slightly more efficient than
TCT but both RRG and TCT are apparently more
costly than PCG. In the latter case, Figure 11 shows that
PCG is the fastest (as it is the least imprecise as shown
in Table I), and RRG, which operates at the granularity
of regions, is 2.1x faster on average than TCT, which
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Figure 9: Percentage distribution of RRG’s analysis time
in its three main analysis phases.

operates at the granularity of statements.

V. Related Work

There has been a lot of studies on MHP analysis.
Bristow et al. [16] build an inter-process precedence
graph to indicate the synchronisation-imposed execution
ordering among processes. Taylor [17] models a con-
currency graph based on a reduced flow graph repre-
sentation of every task. Recently, as parallel platforms
become increasingly prevalent, a number of studies have
appeared, introducing a variety of advanced techniques
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Figure 10: Overheads on building the data structures required (normalised with respect to PCG).

bar
nes

ch
ol

es
ky fft

lu
cb

lu
ncb

oce
an

ncp

ra
dio

sit
y

ra
dix

ra
yt

ra
ce

wat
er

nsq
uar

ed

wat
er

sp
at

ia
l

bla
ck

sc
hol

es

ded
up

x2
64

Ave
ra

ge
0

5

10

15

PCG TCT RRG

Figure 11: Times spent on generating the MHP statements (normalised with respect to PCG).

for discovering MHP statements in a program.

When it comes to the programming languages with
restricted structures, the MHP analysis turns to be more
effective due to the simplified problem. Targeting the
X10 language, desirable effectiveness can be achieved by
an intra-procedural MHP analysis, where simple path
traversals are applied in a Program Structure Tree [5].
For improved precision, Lee and Palsberg [7] present a
type system that solves a context-sensitive MHP analysis
for X10-like structured languages. X10’s async-finish

parallelism model simplifies the inference of escape in-
formation, since the finish construct ensures that all
methods called within its scope terminate before the
execution continues to the next instruction. In contrast
to these MHP analyses for structured languages, our

work focuses on C with Pthreads so that unstructured
parallelism is supported. As a result, the presence of
more flexible multi-threading patterns renders MHP
algorithms for X10-like languages ineffective.

The research for computing MHP information for Java
programs is rich in the literature. Based on Parallel
Execution Graphs (PEGs), a MHP analysis is applied
to Java programs [15], and its scalability was improved
later [18]. A drawback with PEGs is that by combin-
ing the CFGs of individual threads, a bound on the
number of coincident threads modelled is required for
the analysis, since the PEGs may potentially grow in
size otherwise. To simplify this thread model, Barik [9]
describes an efficient MHP algorithm based on a Thread
Creation Tree (TCT) that distinguishes threads by their
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creation sites. However, this analysis is based on the
assumption that a parent thread is executed in parallel
with each child thread. As a result, many join patterns,
e.g., nested joins, are ignored. In this paper, fork and
join behaviours are more precisely handled. In [19], a
flow- and context-sensitive MHP analysis is discussed
for the purposes of detecting concurrent errors in Java
programs, without considering fully the join behaviour.

In the case of C programs (written with Pthreads), the
MHP analysis is confronted with substantial challenges.
Due to the lack of lexical-scope-based synchronisation
and the presence of complex pointer/aliasing relations,
both flow- and context-sensitivity are needed. Joisha
et al. [14] present a coarse-grained analysis based on
Procedural Concurrency Graphs (PCGs) to detect MHP
information at the level of procedures. Chen et al. [20] in-
troduced a graph-based MHP algorithm with a context-
insensitive thread model. Compared to these, our fine-
grained analysis achieves improved precision.

VI. Conclusion

This paper presents a new region-based MHP analysis
for C programs. By modelling thread joins (nested and
partial joins) more precisely than before and reasoning
about happens-before relations at the level of regions
(instead of statements), our analysis can achieve better
precision than existing MHP analyses while being com-
putationally efficient. As MHP analysis is an important
analysis, its improved precision can provide benefits to
many client applications, such as program optimisers,
bug detectors and security analysers.
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