
A Literature Review of Automatic Traceability Links Recovery
for Software Change Impact Analysis

Thazin Win Win Aung, Huan Huo, Yulei Sui
University of Technology Sydney, Australia

thazinwinwin.aung@student.uts.edu.au,{huan.huo,yulei.sui}@uts.edu.au

ABSTRACT
In large-scale software development projects, change impact anal-
ysis (CIA) plays an important role in controlling software design
evolution. Identifying and accessing the effects of software changes
using traceability links between various software artifacts is a com-
mon practice during the software development cycle. Recently,
research in automated traceability-link recovery has received broad
attention in the software maintenance community to reduce the
manual maintenance cost of trace links by developers. In this study,
we conducted a systematic literature review related to automatic
traceability link recovery approaches with a focus on CIA. We iden-
tified 33 relevant studies and investigated the following aspects of
CIA: traceability approaches, CIA sets, degrees of evaluation, trace
direction and methods for recovering traceability link between ar-
tifacts of different types. Our review indicated that few traceability
studies focused on designing and testing impact analysis sets, pre-
sumably due to the scarcity of datasets. Based on the findings, we
urge further industrial case studies. Finally, we suggest developing
traceability tools to support fully automatic traceability approaches,
such as machine learning and deep learning.

KEYWORDS
traceability, change impact analysis, natural language processing
ACM Reference Format:
Thazin Win Win Aung, Huan Huo, Yulei Sui. 2020. A Literature Review
of Automatic Traceability Links Recovery for Software Change Impact
Analysis. In 28th International Conference on Program Comprehension (ICPC
’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3387904.3389251

1 INTRODUCTION
Software change impact analysis (CIA) helps control software de-
sign evolution in the maintenance of continuous software devel-
opment. Bohner defined CIA as “the assessment of the effect of
changes – providing techniques to address the problem by iden-
tifying the likely ripple-effect of software changes and using this
information to re-engineer the software system design” [8]. During
software maintenance, a change can not only impact source code
but also cause a ripple effect upon other artifacts (i.e., requirements,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389251

design and test cases) [15]. Gotel defined requirements traceabil-
ity as “the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent devel-
opment and use, and through periods of on-going refinement and
iteration in any of these phrases)”[22]. Therefore, impact analysis
can use traceability links to understand relationships and depen-
dencies between various software artifacts.

In Bohner’s impact analysis process model, identifying a set
of current impacts is the first phase of the process model. In their
model, there is a total of four impacts sets (i.e., requirement impacts,
design specification impacts, program impacts and test impacts)
that need to be identified in order to provide the complete sets of
changes [8]. Traceability links are also needed for these impact
sets. However, one of the main challenges of recovering traceability
between software artifacts of different types is a knowledge gap
problem [15] between artifacts. Knowledge in this context refers to
syntax and semantics of the artifacts [15]. For instance, source code
is written in the programming language, whereas requirements are
documented in natural language; thus, dependencies between these
two artifacts cannot simply be recovered by parsing the knowledge
of the artifacts. In addition, software engineers need to verify the
traceability links between software artifacts recursively until they
identify all the impacted artifacts [9]. It is time-consuming and
error prone. Therefore, a large and growing body of literature has
investigated the automatic traceability links recovery approach to
support impact analysis process.

Several studies have applied information retrieval (IR) approaches
[4, 6, 19, 25, 36] to the problem of establishing traceability links be-
tween software artifacts of different types. Recently, deep learning
(DL) approaches have been applied in studies to leverage the accu-
racy of recovering traceability links recovery between the require-
ments and the design artifacts [24, 32]. The rationale behind these
approaches is that software documentation (i.e., requirements, de-
sign, program comments, commit logs and test cases) are expressed
in natural language, and the high textual similarity between two
artifacts has high potential to share the same context. Based on this
assumption, traceability links can be recovered between software
artifacts of different types. Also, machine-learning (ML) approaches
focus on optimising the time and effort of verifying impact candi-
date links. Several studies have also presented the effect of transitive
tracing on traceability-link recovery [10, 21, 35], which recovers
traceability links between two artifacts by joining them to a third ar-
tifacts. This approach is useful when the source and target artifacts
share little textual similarity, as a third artifact can be a transitive
artifact to connect the other two. Automating traceability-link re-
covery simplifies the software engineer’s task in identifying the
complete impact change sets.

https://doi.org/10.1145/3387904.3389251
https://doi.org/10.1145/3387904.3389251

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Thazin Win Win Aung, Huan Huo, Yulei Sui

The aim of this study is to systematically review automatic trace-
ability links recovery approaches in a software CIA context to
identify research gaps and report evidence to direct future research.
The term automatic in this paper implies both semi-automatic and
fully automatic approaches. We classified studies as semi-automatic
if their processes required user input to manually filter out false pos-
itive trace links (e.g., IR-based approaches) and as automatic if they
required no user input to verify trace links (e.g., ML approaches).
We clustered publications based on traceability approaches, change
impact sets, trace direction and degree of evaluation. We followed
the systematic literature review guidelines provided by Kitchen-
ham and Charters[28] and reviewed the primary studies published
during 2012–2019. Our SLR paper aims to answer the following
research questions:

• RQ 1. What approaches have been adopted to recover trace-
ability links between artifacts to support CIA?

• RQ 2. Which change impact sets have been covered?
• RQ 3. Howhave studies adopted transitive tracing approaches
to recover traceability links between artifacts?

The paper is structured as follows: Section 2 provides a background
and overview of existing reviews relevant to automatic traceability
link recovery. Section 3 presents our research objectives and RQs
and describes our review method, including search strategy, selec-
tion process, quality assessment, data extraction and data analysis.
Section 4 summarises the key findings of our study. Lastly, section
5 discusses the meaning of findings and the study’s limitations.

2 BACKGROUND

Figure 1: Identify Software Change Impacts [8]

Bohner [8] earliest work of change impact process model rep-
resents the key activities in identifying software impacts. Figure
1 presents the Bohner’s change impact analysis process model.
The traceability activity is broken down into five sub-activities as
follows.

• Classify change and explore similar changes - This ac-
tivity assesses the change history data to compare the cur-
rent change request with similar software changes from the
system’s change history database.

• Determine requirements impacts - This activity deter-
mines the requirements impacts by associating new require-
ments with current system requirements history informa-
tion.

• Identify software design impacts - This activity exam-
ines the current system architecture and program design
information passed from classify change and explore simi-
lar changes and identifies design impacts based on the in-
formation guided examining requirements traceability and
determine requirements impacts activities.

• Analyse software program impacts - This activity uses
various program analysis techniques such as program slicing,
data flow analysis, control flow analysis and dependency
analysis to determine program impact sets.

• Determine regression test candidates - This activity uses
the current system test information from classify change
and explore similar changes activity, guided by information
from program impacts activity and requirements traceability
activity to determine test impacts.

Bohner’s process model is specifically designed for the tradi-
tional software development approaches which rigidly produced
the requirements documents. Therefore, most existing traceabil-
ity approaches are focused on establishing the links between re-
quirements and their downstream artifacts (i.e., design, test case
and code)[2, 4, 6, 36, 40]. However, modern software development
projects based on agile methodologies omit comprehensive doc-
umentation. In [13, 18], the authors described the challenges of
using traditional traceability approaches in agile software projects.
Popular agile approaches such as eXtreme Programming [5] and
Scrum [41], adopt test-driven development, which captures the ini-
tial requirements as user stories in brief and transforms them into
the scripted, customer-accepted tests before writing the code. In
[13], Cleland-Huang proposed the traceability information model
(TIM), which implicitly establishes traceability links from customer-
accepted test cases to source code to support CIA in agile software
projects. As our goal is to review automatic traceability approaches,
a thorough discussion of agile-specific traceability approaches is
outside the scope of this paper, although we highlight the need for
test case–driven automatic traceability approaches to support agile
software projects in future work.

2.1 Traceability Challenges
As mentioned in the previous section, recovering and maintaining
traceability information throughout the software development is
important for the CIA process. Based on Bohner’s impact analysis
model and Cleland-Huang’s traceability model, it is required to
establish traceability links between heterogeneous artifacts (e.g.,
requirements, design, source code and test case) [8, 13]. However,
one of the main challenges of recovering traceability links between
software artifacts of different types is a knowledge gap problem.
Knowledge in this context refers to syntax and semantics of the
artifacts [15]. There is a high level of knowledge gap between

A Literature Review of Automatic Traceability Links Recovery for Software Change Impact Analysis ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

software documentation and source code. The formal one is usu-
ally expressed in a natural language, whereas the latter follows
program syntax and language. Recovering knowledge-based trace-
ability links between these heterogeneous artifacts required data
normalisation as well as human experts verification [6, 19, 25].

In recent decades, IR has been widely adopted as a core technol-
ogy to address the problem of recovering knowledge-based trace-
ability links between artifacts of different types [4, 6, 19, 25, 36].
This approach establishes traceability relationships on the assump-
tion that, if two artifacts share high textual similarity, they are likely
related. However, IR-based approaches require human experts to
verify candidate trace links manually, as it is time-consuming and
error-prone. Recently, several studies have proposed training ML
classification models to verify the validity of trace links generated
with IR approaches [1, 16, 17, 32, 39].

Indeed, several authors have reported the benefits of DL ap-
proaches over IR-based ones. DL approaches generally can learn
unstructured data of any format, as the networks can be trained to
understand the domain knowledge of the system [24, 32], such as
understanding the correlations between requirements and design
documents [23, 47]. To utilise the right traceability link–recovery
approach, software engineers must understand which approaches
are suitable for which change impact sets and, how trace links can
be recovered and the availability of support tools.

2.2 Related Work

Figure 2: Overview of traceability literature review timeline

Figure 2 presents an overview of the timeline, the domain of
automatic traceability link–recovery approaches and the total num-
ber of primary studies in existing literature reviews compared to
the present paper. In Borg et al.[11], the authors presented a sys-
tematic mapping study of IR-based traceability link–recovery ap-
proaches and enhancement strategies covering studies published
from 1999–2011. They highlighted a lack of empirical evidence of
any IR–based model consistently outperforming another. Javed and
Zdun[26]] reviewed studies on traceability published between 1999
and 2013, capturing the correlations between software architecture
and source code. They highlighted that semi–automatic traceability
approaches appeared the most appropriate ways to create trace
links between software architecture and source code. Recently,
Mustafa and Labiche[34] reviewed studies published between 2000
and 2016 on traceability models. However, none of these reviews
discussed traceability link–recovery approaches using CIA, and no
recent empirical studies have examined the current state of fully
automatic traceability link–recovery approaches. As mentioned ear-
lier, we reviewed studies that used both semi-automatic and fully
automatic approaches to review the recent developments of both.
Just as Borg et al.[11] and Javed and Zdun[26] reviewed studies of

semi–automated approaches from 1999–2013, we reviewed studies
published between 2012 and 2019 to study automatic traceability
link–recovery approaches using software CIA to report empirical
evidence and identify research gaps.

3 REVIEWMETHOD
We followed SLR guidelines [28] and developed a protocol to plan,
execute and report our results. We started our review process in
mid-2019 and ended in late 2019. All authors of this study were
involved in the review process. The following sections outline the
processes included in our planning phases.

3.1 Objectives and Research Questions
Our goal was to gather the state of the literature on automatic
traceability-link recovery under the context of CIA, so we strove
to answer three complementary RQs specified by the following
criteria:

RQ1.What approaches have been adopted to recover trace-
ability links between artifacts to support CIA?
We investigated the approaches takenmost frequently in traceability-
link recovery studies as well as trace direction and degree of evalua-
tion.We also studiedwhether the studies introduced any supporting
tools.

RQ 2. Which change impact sets have been covered?
Based on Bohner’s [8] impact analysis model, we analysed four
change impact sets (i.e., requirements, design, program and test)
and reported which traceability studies covered them.

RQ3.Howhave studies adopted transitive tracing approaches
to recover traceability links between artifacts?
We investigated the purpose of transitive tracing in this regard.

3.2 Protocol Development
In our SLR-planning phase, we initially searched for other SLRs
with similar scopes. In our preliminary search, we found a few
relevant studies that fit our research objectives (see Section 2.2).
Accompanied by the already-identified studies, we used these SLRs
as the basis for our own RQs and to develop our iterative review
protocol. The protocol document included SLR RQs, search strategy,
study selection criteria, quality assessment, data extraction strategy,
and data synthesis and analysis guidelines, which are mentioned
briefly in the following sections.

3.3 Search Strategy and Data Sources
Following the research objectives and RQs, we selected four impor-
tant terms for searching the literature: (1) "traceability," (2) "recov-
ery," (3) "software artifacts" and (4) "change impact analysis". We
then selected a range of online databases, ran simple searches in
the titles, keywords and abstracts of the publications, and reviewed
the coverage. While running the searches, we created the search
strings and modified them for various online databases.

ON ABSTRACT : (Abstract: trace*) AND (Abstract: recover* OR
Abstract: maintain OR Abstract: link OR Abstract: establish) AND
(Abstract: requirement OR Abstract: specification OR Abstract: ar-
chitecture OR Abstract: design OR Abstract: code OR Abstract: im-
plementation OR Abstract: test OR Abstract: bug) AND (Abstract:

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Thazin Win Win Aung, Huan Huo, Yulei Sui

change OR Abstract: impact OR Abstract: analysis OR Abstract:
system comprehension)

3.4 Study Selection
We are interested in collecting peer-reviewed studies, published
between 2012-2019, focused on the automatic traceability links
recovery used for CIA. In a first step, we defined the selection
criteria below.

• The publications are written in English
• Research explicitly mention they are targeting trace recovery
relating to software maintenance and change impact analysis

• Studies contain empirical results (e.g., case study, experi-
ments and surveys)

Figure 3 shows a summary of search and selection process.

Figure 3: Search and selection process

• Step 1:We applied our search strings in the following five
databases: (1) ACM Digital Library, (2) IEEE xplore, (3) Sci-
ence Direct, (4) SpringerLink and (5) Scopus. Next, we dis-
carded the duplicate papers. Then, we scanned the title and
excluded the irrelevant papers. The search results showed a
high number of documents (2220 findings).

• Step 2: To extract the results, the first author manually
scanned the abstracts based on selection criteria. Then, the
second and third authors checked a sample of papers ran-
domly. The differences were resolved in discussion between
authors. We included 320 studies in this step.

• Step 3:At the beginning, the first author scanned the content
of the papers based on the selection criteria and marked
the records as relevant/irrelevant studies. The second and
third authors reviewed the findings and selected the relevant
studies separately. We found 29 studies in this step.

• Step 4: Finally, the first author performed a forward snow-
balling on our included studies that have high citations. The
another authors reviewed the new findings. We found four
additional papers in this step. In total, we identified 33 rele-
vant studies.

3.5 Quality Assessment
We performed a quality assessment in two stages as follows:

• Assessment of research design: To assess the quality of
studies, we reviewed the research design mentioned in the

papers. This includes assessing the details of research objec-
tives, design and evaluation. Therefore, we filtered out the
studies that have poor research methods and evaluation as
well as research objectives not related to automatic traceabil-
ity links recovery. We used the quality assessment checklist
from [28] 1).

• Assessment of publication source and impact:We checked
the professional computer science CORE2 journal/conference
ranking site to evaluate the quality of the publications’ sources.
The CORE executive committee periodically update the rank-
ing for addition or re-ranking of conferences by surveying
academics from worldwide as the classification is interna-
tionally acknowledged ranking.

3.6 Data Extraction and Analysis
To answer the RQs, we extracted the following demographic data for
review: title, authors, type of outlet (journal or conference), name of
outlet, publication year, type of trace artifacts, trace direction, trace
recovery technique, quality of evaluation (e.g., research design),
CORE2 ranking and CIA coverage.

4 RESULTS
We have included 33 relevant studies in this review. Concerning
the publication channel, the studies were published in conference
proceedings, workshops and scientific journals. In comparison, 19
papers (58%) of the included studies where published in conference
proceedings, 11 papers (33%) appeared in journals and 3 papers
(9%) belonged to workshops. We identified that 30 papers of the
included studies were published in high ranking conferences and
journals. Only three papers cannot verify ranking, but these papers
were published in the traceability specific journal and workshop.
Please see the primary classification here3.

We included 33 relevant studies in this review. In total, 19 (58%)
were published in conference proceedings, 11 (33%) appeared in
journals and 3 (9%) belonged to workshops. We identified 30 that
were published in high-ranking conferences and journals. We could
not verify the ranking of only three studies, but they were pub-
lished in traceability-specific journals and workshops (please see
our primary classification3).

4.1 Traceability Links Recovery Approaches
Between Software Artifacts

Several approaches have been proposed to recover knowledge-
based traceability links between software artifacts of different types
to assist in the impact analysis process. Please see our primary
classification 3. Figure 4 illustrates the publications trend grouped
by traceability approaches and artifacts. We found a total of four
approaches used in the studies (i.e., IR, heuristic, DL and ML). The
following sections review the purposes of these approaches in the
traceability context.

4.1.1 Information retrieval–based approaches.
In the early years of the field, several studies applied IR approaches

1https://doi.org/10.6084/m9.figshare.11955459
2http://www.core.edu.au
3https://doi.org/10.6084/m9.figshare.11955900

https://doi.org/10.6084/m9.figshare.11955459
http://www.core.edu.au
https://doi.org/10.6084/m9.figshare.11955900

A Literature Review of Automatic Traceability Links Recovery for Software Change Impact Analysis ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 4: Traceability link recovery publication trends (A rectangular box is colored according to traceability approaches. A
circle symbol insides the top-right corner of the rectangle box represents the trace artifacts applied in the studies. Texts inside
the rectangular box present the traceability approaches or tool names and techniques.)

to tackle the challenges of recovering knowledge-based traceability
links between various software artifacts (i.e., requirements, test
cases, source code, bug reports and features). In total, 21 of the 33
studies used IR approaches to identify various change impact sets
because most of the software artifacts were written in a natural
language, as the links between artifacts of different types can be
recovered by computing the textual similarities between them (a
high textual similarity between two artifacts is assumed to relate
them to each other in these approaches). We identified vector space
models (VSMs) [4, 6, 19, 36], latent semantic indexing (LSI) [19, 30,
44], Jensen and Shannon models (JSMs) [3, 25] and latent Dirichlet
allocation (LDA) [36] as the most commonly applied techniques in
the studies, likely due to their easy implementation and set-up.

Ben Charrada et al.[6] presented an IR-based approach to iden-
tify outdated requirements by monitoring source-code changes. All
too often, software engineers directly modify source code with-
out updating the corresponding requirements. As a consequence,
traceability links between these two artifacts become obsoleted and
cannot be used in impact analysis effectively. To mitigate this prob-
lem, the authors proposed extracting trace query terms from recent
source-code changes (e.g., the addition of a new method, class or
package or the deletion of an existing method, class or package)
to establish links with the corresponding requirements. Similarly,
Gethers et al.[19] illustrated the use of LSI to recover traceability
links between bug reports and source code to estimate impact sets.
In contrast, their approach extracted source-code query terms based

on the commit change-sets co-occurrence concept (e.g., method A
and method B are committed to three commit transactions together,
which are considered “co-occurrence” methods). Based on this con-
cept, the authors established the most relevant trace links between
bug reports and source code. Ali et al.[3] enhanced identification
of outdated requirements by monitoring source-code changes in
bug-fix histories to identify the impacts on original requirements.
Similarly, Unterkalmsteiner et al.[44] experimented with VSM and
LSI techniques to recover traceability links between source code
and test cases to identify test case impact sets.

Differently, Panichella et al.[36] proposed a source code class–based,
topic-modelling approach (i.e., LDA) to establish traceability links
between source code and requirements. The rationale behind this
approach is that a class is an abstraction of a domain/solution ob-
ject and a use case is homogeneous and related to one specific
topic. Later that year, Borg, Rath et al.[10, 38] presented the idea
of recovering traceability links between a new issue report and
previous issue reports in an issue repository to identify a set of
potentially impacted artifacts [10, 38]. The study is based on the
assumption that previous issue reports have more textual similarity
relations with current implementation artifacts than a new issue
report. In Tsuchiya et al.[43], the authors proposed an approach to
combine two similarity relevance scores from two sets of traceabil-
ity links (i.e., one between requirements and source code, another
one between requirements and commit messages) to improve the
accuracy when establishing links between requirements and source

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Thazin Win Win Aung, Huan Huo, Yulei Sui

code. Similar to Borg[10], Nishikawa et al.[35] presented an ap-
proach called connecting link method (CLM) to recover transitive
traceability links between two artifacts using a third artifact to
overcome the problem of source and target artifact with no textual
similarity between them. The approach is based on the assumption
that if a requirement 1 is implemented in test case 1 and test case
1 is related to source code 1, then source code 1 will include the
implementation of a requirement 1.

Similarly, Mills and Haiduc[33] studied the impact of trace-
retrieval direction on the accuracy of trace-link recovery between
requirements and code classes. They used a standard VSM and estab-
lished the trace links between artifacts bidirectionally. Interestingly,
their results indicated a high correlation between the accuracy
of an IR-based traceability-recovery approach and trace direction.
Recently, Rahimi and Cleland-Huang[37] presented an approach
called trace link evolver (TLE) to detect obsolete trace links between
requirements and source code by identifying changes between two
consecutive versions of source code. They used a source-code refac-
toring tool to detect a wide range of source-code change scenarios
(e.g., add, remove, move, rename and merge) at both the method
and class levels. Once the code changes were identified, they used a
standard VSM to recover update-to-date links between the require-
ments and the source code. Their findings indicated that trace links
generated with TLE have higher precision than those generated
with a standalone VSM technique.

In [30], Mahmoud and Williams presented a taxonomy-based
traceability-link recovery approach to establish trace links between
non-functional requirements and source code. They manually de-
fined non-functional requirement query terms andmaintained them
in a custom taxonomy database. Their IR engines, which they based
on VSM and LSI models, used these taxonomy terms to establish
trace links between non-functional requirements and source code.
Likewise, Guo et al.[24] proposed a taxonomy-based traceability-
link recovery approach to establish the traceability links between
Health Insurance Privacy and Portability Act (HIPAA) regulations
and system requirements documents. In [46], the authors similarly
created a requirement-based taxonomy approach to recover trace
links between requirements and source code.

Unlike [3, 19], Chaparro et al.[12] proposed an approach to ex-
tracting observed behaviours terms from bug reports to leverage
an IR-based approach. Observed behaviours are texts that describe
the misbehaviour of a system (e.g., “the menu doesn’t open when
I click the button”). They manually extracted observed behaviour
terms from bug reports and used a standard VSM model to recover
traceability links between bug reports and source code. Similarly,
Ali et al. [2] built a parts-of-speech (POS) tagging method with
a constraint-based pruning approach to improve accuracy. Their
approach first extracted all POS categories (i.e., nouns, verbs, ad-
jectives, adverbs and pronouns) from requirements documents and
then computed textual similarity between source-code identifiers
(e.g., class and method) using a VSM and JSM.

Recently, [25] proposed an approach called closeness-and-user-
feedback-based traceability recovery”(CLUSTER), which establishes
trace links between requirements and source code based on code
dependencies among classes to improve the accuracy between the
links. Their approach calculates code dependencies based on de-
grees of direct interaction (e.g., method calls, inheritance and class

usage) and indirect interaction (e.g., reading or writing the same
data). Recently, Seiler et al.[40] proposed a feature-tagging approach
to recover traceability links between requirements and source code.
A feature is a short textual description of functionality that presents
business value, whereas a feature tag concisely summarises the
feature. Their approach recommends labelling requirements and
source code with corresponding tags during development and using
those tags.

4.1.2 Heuristic-Based Approaches.
In previous IR-based approaches, a human expert needed to re-
peatedly and manually verify candidate link lists, which is time-
consuming and error-prone. To reduce the time and effort of the
verification process, Berta et al.[7] presented a traceability-recovery
approach based on multiple search criteria to establish trace links
between requirements and source code. They experimented with a
non-dominated sorting algorithm (NSGA–II) with three weighting
criteria (i.e., similarity scores, frequency of change and recency of
change) and used cosine similarity to calculate similarity scores
between requirements and the source code. They extracted the
metadata for the remaining two criteria—source-code frequency of
change and recency of change —from source-code version history.
This approach established trace links based not only on semantic
similarity between software artifacts but also on change history, op-
timising the accuracy of candidate link lists. All their experimental
results harmonically achieved high-precision results.

In contrast, Berta et al.[7] enhanced the IR-based approach with
a novel method called re-modularization by transforming source-
code syntax into natural language sentences. These sentences are
then used to establish trace links between the source code and
the use cases. Converting source-code syntax to natural language
reduced the knowledge gap between artifacts when calculating the
similarities between them.

4.1.3 Machine Learning-Based Approaches.
We found that most primary studies adopted ML approaches to au-
tomatically verify candidate link lists generated from IR approaches
[16, 17, 32]. In [1], the authors used ML classifiers to recommend
relevance features to comments in the source code.

Falessi et al.[16] proposed an approach called estimation of the
number of remaining links (ENRL) to detect the remaining num-
ber of positive trace links from ranked lists generated with IR ap-
proaches. They trained seven ML classifiers (i.e., ADTree, Bagging,
Fuzzy Lattice Reasoning, IBk, Naïve Bayes, LogitBoost and ZeroR)
with a set of classified golden standard trace links to identify posi-
tive and negative links from the ranked lists. Their results indicated
that the ZeroR classifier produced the lowest-accuracy results with
amean relative error (MRE) of 1. Similarly, Mills et al. [32] presented
a framework called traceability links classifier (TRAIL) to automat-
ically verify the validity of ranked trace links generated with an
IR model. They used three features to validate the trace links: co-
sine similarity, query quality metrics and document statistics. They
experimented with TRAIL with six ML classifiers: Random For-
est, k-Nearest Neighbours (kNN), Multinomial Logistic Regression
Model, Naïve Bayes, Support Vector Model (SVM), and Voted. Their
findings indicated that the Random Forest classifier outperformed
the other five. Also, Falessi et al.[46] trained Random Forest, Naïve
Bayes, Logistic, J48 and Bagging models to verify the validity of

A Literature Review of Automatic Traceability Links Recovery for Software Change Impact Analysis ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

trace links between requirements and source code, but they did
not clearly report which ML classifier performed best. Likewise,
Rath et al.[39] proposed an approach by training ML classification
models to predict potential trace links between issue reports and
source code. They used Naïve Bayes, J48, Decision Tree (DT), and
Random Forest classification models to validate the possible trace
links, finding that Random Forest outperformed the other two.

In contrast, Abukwaik et al.[1] proposed a feature-annotation rec-
ommendation approach, suggesting that developers add annotation
features in newly added code before check-in into a version-control
system. They used three ML classification models (i.e., SVM, kNN
and DT) to predict source-code locations where feature annotations
were missing. The approach used previous change-sets history to
formulate lists of possibly related features for new changes. Their
results indicated that the kNN classifier produced the highest accu-
racy after training with 60 commit change-sets history.

4.1.4 Deep Learning-Based Approaches.
Recently, DL techniques have become popular in the traceability
context to address the knowledge-gap problem. We found four
studies that used recurrent neural networks (RNNs) [23], feedfor-
ward neural networks (FNNs) [47] and word-embedding [14] to
recover traceability links between software artifacts of different
types (i.e., requirements, source code, test cases and features). In
[14], the authors demonstrated that a word-embedding approach
outperformed an LSI model when establishing trace links between
test cases and source code.

Guo et al.[23] combined the word-embedding and the RNN ap-
proaches to eliminate knowledge gap in recovering traceability links
between requirements and design documents. The approach can
be divided into two layers: a word-embedding mapping layer and a
semantic-relation evaluation layer. In the first layer, it converted the
collection of requirements documents to a word-embedding vector
format and identified semantic relations between terms using RNN.
Conversely, the same process ran for design documents. The out-
comes of the embedding layer were then passed to the evaluation
layer to recover the links between them. In the evaluation layer, it
first calculated the vector distances and directions between pairs
of semantic vectors and then passed the resulting vectors to the
sigmoid and softmax (e.g., 1- valid, 0- invalid) functions to calculate
the relations between them.

Similarly, Wang et al.[47] used the word-embedding and the FNN
approaches to address the polysemy issue in recovering trace links
between requirements. Polysemy, in this context, refers to “the
coexistence of multiple meanings for a term appearing in different
requirements” [47]. In their approach, the authors extended the
standard IR recovery approach with the term-pair ranking model
and cluster-ranking model. The term-pair ranking model identi-
fied the lists of polysemy terms in a requirements collection using
word-embedding and FNN. The cluster-ranking model then used
these polysemy terms and updated the term-to-requirements ma-
trix accordingly. They evaluated their approach with two baseline
IR models (i.e., the VSM and LSI). Their results indicated that the
accuracy of the results increased by eliminating the polysemy issue.
Recently, Csuvik et al.[14] trained a word-embedding model with
raw source code, an abstract syntax tree structure of source code and
a test case to predict relevant test cases. The authors compared their

word-embedding model with a standard LSI model and reported
that word-embedding outperformed LSI when recommending the
most similar class.

Table 1: Traceability tools

Tool Features

TraceME [4]
An eclipse-plugin application to recover the traceability links
between source code and requirements during software de-
velopment. The tool supports a graph view to visualise the
trace links between source code and requirements.

RETRO [6]
It is a web-based traceability recovery application to establish
trace links between artifacts of different types (i.e., require-
ments, test case and source code).

TraceLab [27]

A Winforms traceability workbench application to exper-
iment with traceability research projects. The framework
provides a collection of customizable and configurable IR
components to establish traceability links between various
types of textual artifacts of a software project. The appli-
cation is built on top of the General Architecture for Text
Engineering (GATE) framework.

OpenTrace [31]

AWinforms experimental traceability workbench application
for researchers to perform traceability research projects. The
tool supports built-in as well as custom-built traceability com-
ponents (i.e., data importers, pre-processors, IR- based trace
algorithms, trace matrices, debugging utilities and result ex-
porters) to establish links between different software artifacts.
The application is built on top of the C#.Net framework.

SPLTrace [45]

An experimental traceability framework built on four IR mod-
els (i.e., Class Vector, Extended Boolean, Latent Semantic
index, and BM25) and one deep-learning model (i.e., Feedfor-
ward Neural Network). The framework provides the compo-
nents to recovery traceability links between project features
and source code. The application developed using Python.

In terms of tool support, we identified five traceability tools
(i.e., TraceM [4], RETRO [6], TraceLab [27], OpenTrace [31] and
SPLTrace [45]). Table 1 presents the traceability tools proposed in
the primary studies. Generally, TraceMe and SPLTrace can be cate-
gorised as special-purpose tools focused on identifying the impact
set between requirements and source code. In contrast, RETRO can
be considered a general-purpose tool suited to analysing the im-
pacts between software artifacts of different types. Finally, TraceLab
and OpenTrace can be grouped as workbench tools that support
various IR-based trace-recovery components (e.g., data prepara-
tion, experiment execution and evaluation), as it is applicable to
experimental analysis of various IR approaches.

4.2 Traceability Direction and Evaluation
In [33], the authors highlighted the impact of trace direction on the
link-recovery process. We thus grouped the studies based on two
traceability directions (i.e., unidirectional and bidirectional). Figure
5 shows the classification of the studies by trace direction.

In the unidirectional traceability group, we included the 31 (94%)
out of the 33 studies that evaluated their approach to recovering
trace links from one artifact to another in either direction (e.g.,
requirements to design, requirements to source code, etc.). Only
two studies [33, 35] evaluated their approaches bidirectionally. To
the best of our knowledge, the approaches focused on tracing be-
tween two natural-language artifacts (e.g., requirements, test cases
and design) are possible to trace bidirectionally [23, 47]. However,
approaches such as feature-based tracing [1, 24, 40] and code-to-
requirement tracing [6, 14] require specific data tokenisation for

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Thazin Win Win Aung, Huan Huo, Yulei Sui

Figure 5: Distribution of publications by traceability direc-
tion

source code, as these approaches may not be applicable to trace
bidirectionally. Due to the lack of evaluation in the studies, we
cannot conclude which approaches are applicable to bidirectional
tracing.

In terms of degree of evaluation, we reported the research meth-
ods and the type of datasets used in the studies. We used the quality-
assessment checklist from [28]1 to assess their research methods.

Figure 6: Distribution of publications by research methods
(left) and datasets (right)

Figure 6 presents the research methods and datasets used in the
primary studies. We found that 30 (91%) out of the 33 studies applied
experimental research to study the effectiveness of their approaches.
Only 3 (9%) of them [10, 43, 44] used case study methods. In [10],
the researchers studied the impact of automatic traceability-based
CIA approaches in two industrial domains (i.e., automation and
telecommunication). Their findings indicated that their approach
could identify 40% of the potential program change set effectively in
real-world datasets. Similarly, [43] applied a standard VSM model
in a Japanese software company to establish the trace links between
requirements and source code.

Due to data confidentiality, the study anonymised the system
details. In [44], the authors experimented with the two IR models
(i.e., VSM and LSI) in an embedded system, which produces both
hardware and software products. The study evaluated IR models
by establishing links between the source code and test cases. Based
on their findings, an IR-based approach could only identify 38% of
the potential test cases in industry setting. We found that 27 (82%)
out of the 33 studies used open-source projects to evaluate their

approaches, which are presumably closed to industrial projects.
Only three studies [4, 6, 35] used university projects to evaluate
their traceability tools (RETRO and TraceMe).

4.3 Support Change Impact Set
This section classifies the primary studies based on Bohner’s four
impact sets (i.e., requirements, design, program and test) and presents
the results in Table 2, the last row of which describes the acronyms
used in the table.

Table 2: Distribution of publications by change impact sets

Impact Set Artifacts Links Studies

RIS
SC-R, RR-R,
R-R, F-R

[6],[4], [3], [35], [24], [33],
[16], [23],[27], [32], [46], [47], [40]

DIS R-D [35], [16],[27]
TIS SC-TC, R-TC, D-TC [35], [44], [16],[32],[27]

PIS
R-SC, Bug-SC,
TC-SC, F-SC

[19],[36], [10], [43], [35], [30],
[31], [7], [20], [12], [33], [16],
[38], [21], [17], [46], [39],[37],
[1], [2], [45], [40], [14], [27]

Acronyms: RIS - Requirements Impact Set, DIS - Design Impact Set,
TIS - Test Impact Set, PIS - Program Impact Set,
R- Requirements, RR - Regulatory Requirements,
F - Features, D - Design, SC - Source Code, TC - Test Case

4.3.1 Requirements Impact Set.
This section includes the studies that used requirements as target
artifacts in their trace-recovery approaches to identify the impact
on requirements levels. We identified four source artifacts (i.e.,
regulatory requirements [24, 46], low-level requirements [23, 47],
source code [3, 4, 6, 16, 27, 32, 33, 35] and features [40]) used in
the studies to assess the requirements impact scope. In [24, 46],
the authors recovered links between regulatory requirements and
requirements using a taxonomy-based approach to identify the
impact on the requirements level. Similarly, [23, 47] used a DL-based
approach to recover trace links between high-level and low-level
requirements.

Similarly, in [3, 4, 6, 33, 35], the authors mined the class- and
method-level changes of source code from commit histories and es-
tablished the links with existing requirements to identify outdated
requirements. In [16, 32], the authors trained ML models to predict
trace links between source code and requirements. Recently, Seiler
et al.[40] introduced a feature-tagging approach to maintain the
links between requirements and other software artifacts. Interest-
ingly, we could not find studies that used design and test cases as
source artifacts, presumably due to scarcity of test datasets.

4.3.2 Design Impact Set.
In this section, we included studies that used design artifact as a
target artifact in the primary studies. Interestingly, only three stud-
ies [16, 27, 35] focused on recovering links between requirements
and design artifacts, possibly due to scarcity of datasets. These
studies [16, 27, 35] evaluated their approaches with the same test
datasets, due to the availability of golden standard answer sets. In
[27, 35], the authors used standard IR models to recover the links
between requirement and design artifacts. In [16], the study used
the machine learning-based approach to verify the candidate links

A Literature Review of Automatic Traceability Links Recovery for Software Change Impact Analysis ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

between requirements and design artifacts, which are generated
with the IR engine.

4.3.3 Test Impact Set.
This section includes studies that used tests as target artifacts. We
identified two source artifacts (i.e., design [16, 27, 35] and source
code [27, 32, 44]). In [16, 35], the authors evaluated using the same
datasets to recover links between design and test case artifacts to
identify test impact sets. In [44], the authors used two IRmodels (i.e.,
VSM and LSI) to identify test impact case sets by linkingwith source-
code artifacts. Similarly, in [32], the authors used an ML approach
to automatically verify the candidate links between source-code
and test artifacts generated with an IR approach.

4.3.4 Program Impact Set.
This section includes studies that used source code as a target
artifact. We identified four source artifacts (i.e., requirements [2, 7,
16, 17, 19, 20, 25, 27, 30, 33, 36, 37, 43, 46], bug reports [10, 12, 21, 31,
38, 39], test cases [14, 35] and features[1, 40, 45]) used in the studies
to identify the program impact set. In [2, 19, 25, 30, 33, 36, 37, 43, 46],
the authors applied an IR-based approach to establish trace links
between requirement and source-code artifacts to identify program
impact sets. To improve accuracy, the study used a heuristic-based
approach in [7, 20]. In [16, 17], the authors trained ML models to
validate trace links between requirements and source-code artifacts.
Many authors employed IR-based approaches [10, 12, 21, 31, 38]
and ML approaches[39] to recover trace links between bug reports
and source code.

Likewise, one study [35] applied the standard VSM model to
recover trace links between a test case and source code. In [14],
the study used a word-embedding model to establish trace links
between a test case and source code to identify program impact
sets efficiently. Recently, some studies introduced a feature-tagging
approach to maintain trace links between source code and other
software artifacts ubiquitously during software evolution [1, 40, 45].

4.4 Traceability Links Recovery Methods

Figure 7: Traceability link recovery methods

Figure 7 illustrates the two types of traceability link–recovery
methods used in the primary studies. The majority used direct
tracing methods to create explicit trace links between source and
target artifacts. We identified five studies [7, 10, 21, 35, 38] that
used the transitive tracing approach, where traceability links two
artifacts by joining them to a third.

In [10], Borg presented the transitive tracing approach to identify
a set of potentially impacted artifacts for a new issue report. In this

approach, the author used existing issue reports as the transitive
artifacts to recover traceability links between a newly issued report
and its related source code. The assumption is that the previous
issue reports had more textual similarity relations with the current
state of source-code artifacts than a new issue report. Similarly,
Nishikawa et al.[35] proposed CLM, which establishes trace links
between two artifacts by mapping transitively sourced artifacts to
target artifacts via third artifacts, to overcome the textual similarity
gap between source and target artifacts. The CLM approach extracts
search terms from third artifacts to recover trace links between
source and target artifacts.

Likewise, Berta et al.[7] used existing issue reports as transitive
artifacts to recover traceability links between source code and use
cases. They first extracted the lists of corresponding issue reports
related to source code using source-code version history. Next, they
calculated the textual similarity between issue reports and use cases
to identify the impacted source code. Gharibi et al.[21] presented a
similar approach that established traceability links between new
feature requests and existing ones to identify the impact in source
code. Similarly, Falessi et al.[17] established trace links between new
and existing requirements to recover lists of impacted source-code
classes. In [38], Rath et al. used existing requirements and similar
bug reports as transitive artifacts to localise related source-code
areas to fix new bug reports.

5 DISCUSSION
The discussion elaborates on the findings by grouping identified
traceability link–recovery approaches according to our RQs. This
study examined the literature concerning the use of traceability
link–recovery approaches for CIA, noting the underlying challenges
and limitations of the studies.

5.1 Findings of RQs
We found that four approaches (i.e., IR-based, heuristic-based, ML
and DL) could be used to recover traceability links between soft-
ware artifacts of different types. Most of the primary studies focused
on enhancing IR-based approaches to identify outdated trace links
and generate impact analysis reports. The VSM, LSI, JSM and LDA
are the most popular IR models reported in the studies. No stud-
ies reported which IR models outperformed others. Approaches
like ML and heuristics can predict the validity of candidate trace
links generated with IR engines. Recently, some studies tried sub-
stituting IR-based approaches with DL to recover trace links. So
far, one study [14] reported that word-embedding outperformed
LSI in establishing trace links between test cases and source code.
In terms of trace artifacts, we identified six artifacts (i.e., require-
ments, design, source code, test cases, bug reports and features).
Among them, requirements, source code, and bug reports are the
most frequently linked artifacts in the studies. Few studies focused
on linking design and test case artifacts, presumably due to the
scarcity of datasets. Recently, three studies [1, 40, 45] introduced
feature artifacts as transitive artifacts to recover trace links between
requirements and source code. In terms of trace direction, 31 of the
33 studies evaluated their approaches unidirectionally, as determin-
ing their approaches’ bidirectional feasibility was difficult. In terms
of tool support, all four tools were built on an IR-based approach;

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Thazin Win Win Aung, Huan Huo, Yulei Sui

only one supported a DL approach. In terms of evaluation, 30 of
the 33 studies applied experimental research and evaluated their
approaches with either open-source or university projects. Only
three studies applied case studies and evaluated with industrial
data. Due to data confidentiality, the context of the datasets was
not provided in the details.

Our review highlighted that most studies focused on identifying
program impact sets due to source code, making it themost frequent
change area in software development. The studies used require-
ments, bug reports, test cases and features as source artifacts to
identify program impact areas. Interestingly, design artifacts were
left out of this impact set study. The second-most frequent studied
area is the requirements impact set. The studies evaluated their
approaches with either forward tracing (e.g., regulatory require-
ments to requirements) or backward tracing (e.g., source code to
requirements). Test impact set studies followed the third positions
and evaluated with source code, requirements and design artifacts.
Only two studies[16, 35] focused on assessing design impact areas,
both using requirements as source artifacts. Furthermore, only two
studies[14, 35] used test cases as source artifacts and identified the
corresponding source-code artifacts. Based on our findings, most
studies followed the traditional software development approach
and recovered links between requirements and source-code arti-
facts. Few studies focused on establishing links between test cases
and source code, which is essential to support CIA in agile software
projects [5, 13, 41].

This review also highlighted that trace links between artifacts
of different types can be recovered either directly or transitively.
Direct tracing is applicable to explicit tracing scenarios where the
source and target artifacts share high textual similarity. Hence,
direct tracing can recover trace links between existing artifacts
of the system, whereas transitive tracing establishes trace links
between new artifacts (e.g., a new feature request or bug report)
and existing artifacts (e.g., source code). However, the challenging
part of these approaches is finding the right transitive artifact for
various CIA tasks. To the best of our knowledge, no traceability
tool supports a transitive artifact approach, as it is challenging to
extend research in this area.

5.2 Limitations and Future Work
Based on our findings, the studies suffered from the following gaps
and challenges. Improvement in these areas is necessary to leverage
automatic traceability-link recovery to support impact analysis
effectively. To further advance automatic traceability research, we
recommend these key improvements:

• Focus on tool enhancements to support fully automatic
traceability-recovery approaches (e.g., machine learning based
approach and deep learning based approach)

• Emphasise recovering links between trace artifacts com-
monly used in modern software development (e.g., user sto-
ries, accepted test cases and source code)

• Focus on building traceability systems beyond text-based
recovery (e.g., recovering traceability links between design
images and requirements)

• Investigating advanced static program analysis, such as value-
flow analysis [42] and pointer aliasing analysis [29] to sup-
port more precise CIA.

• Evaluate industrial datasets and survey practitioners to gain
valuable feedback for further improvements

6 THREATS TO VALIDITY
The following deviations from the study guidelines[28]may threaten
this study’s validity.

The first threat to validity is the selection of the studies and the
relevance of review in the field. To mitigate this threat, we con-
structed our search strings by referring to previous review studies.
We included all possible keywords to cover abbreviations, syn-
onyms, morphological root forms (e.g., source code, architecture,
trace*). We ran our search in five databases to cover a broader scope
of concerns. To handle the threats of the relevance of study se-
lection, the first author applied the selection criteria. The second
and third authors validated 10% of the selected studies. The second
threat is the reliability with which the authors carried out the data
extraction, interpretation and findings justification. To eliminate
this threat, the first author extracted data from all the selected pub-
lications. The second and third authors individually repeated this
process for 20% of the selected studies. The authors then discussed
the differences and reached the same conclusions.

The third threat is the scope of the review. Our review focused
on automating traceability studies to assist the CIA process, as the
scope is tight. We do not claim that our review applies to other areas
of impact analysis (e.g., dependency impact analysis [8]). Thus, this
external validity threat is minor. Furthermore, as the review proto-
col development presents in details in Section 3, other researchers
can verify the validity of the findings with the search strategy, se-
lection criteria and applied data extraction. Lastly, internal validity
is concerned with the treatment and outcomes. As we presented
our findings through a mixture of empirical studies and descriptive
statistics, this threat is also minimal.

7 CONCLUSIONS
The paper presents the SLR on automatic traceability links recovery
approaches to capture the current state of the literature related to
CIA coverage. The review was conducted by following the guide-
lines provided by Evidence Based Software Engineering (EBSE)
[28]. In total, we identified 33 studies and reviewed them in depth
according to our research questions. The included studies were
published between 2012 and 2019. Our review indicated very few
traceability studies focused on design and test impact set analysis
due to the scarcity of datasets. Based on the findings, we stress the
need for industrial case studies. Finally, we presented suggestions
to advance the traceability tool to support the latest traceability
approaches, such as machine learning and deep learning.

8 ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their valuable
comments. This research is supported by an Australian Research
Grant DP200101328.

A Literature Review of Automatic Traceability Links Recovery for Software Change Impact Analysis ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] H. Abukwaik, A. Burger, B. K. Andam, and T. Berger. 2018. Semi-automated

feature traceability with embedded annotations. In 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE, 529–533.

[2] N. Ali, H. Cai, A. Hamou-Lhadj, and J. Hassine. 2019. Exploiting parts-of-speech
for effective automated requirements traceability. Information and Software
Technology 106 (2019), 126–141.

[3] N. Ali, Y. Guéhéneuc, and G. Antoniol. 2013. Trustrace: Mining software reposito-
ries to improve the accuracy of requirement traceability links. IEEE Transactions
on Software Engineering 39, 5 (2013), 725–741.

[4] G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto, and A. Panichella. 2012.
TraceME: Traceability management in eclipse. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM). 642–645. https://doi.org/10.1109/
ICSM.2012.6405343

[5] K. Beck. 2000. Extreme programming explained: embrace change. Addison-Wesley
Professional.

[6] E. Ben Charrada, A. Koziolek, and M. Glinz. 2012. Identifying outdated require-
ments based on source code changes. In 2012 20th IEEE International Requirements
Engineering Conference (RE). 61–70. https://doi.org/10.1109/RE.2012.6345840

[7] P. Berta, M. Bystrickỳ, M. Krempaskỳ, and V. Vranić. 2017. Employing issues and
commits for in-code sentence based use case identification and remodularization.
In Proceedings of the Fifth European Conference on the Engineering of Computer-
Based Systems. ACM, 1.

[8] S. A. Bohner. 1996. Impact analysis in the software change process: a year
2000 perspective. In 1996 Proceedings of International Conference on Software
Maintenance. 42–51. https://doi.org/10.1109/ICSM.1996.564987

[9] S. A. Bohner and R. S. Arnold. 1991. Software change impact analysis for de-
sign evolution. In Proceedings of the 8th International Conference on Software
Maintenance and Reengineering. 292–301.

[10] M. Borg. 2014. Embrace your issues: Compassing the software engineering
landscape using bug reports. In Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. ACM, 891–894.

[11] M. Borg, P. Runeson, and A. Ardö. 2014. Recovering from a decade: a systematic
mapping of information retrieval approaches to software traceability. Empirical
Software Engineering 19, 6 (2014), 1565–1616.

[12] O. Chaparro, J. M. Florez, and A. Marcus. 2017. Using observed behavior to
reformulate queries during text retrieval-based bug localization. In 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
376–387.

[13] J. Cleland-Huang. 2012. Traceability in agile projects. In Software and Systems
Traceability. Springer, 265–275.

[14] V. Csuvik, A. Kicsi, and L. Vidács. 2019. Source code–level word embeddings in
aiding semantic test-to-code traceability. In 2019 IEEE/ACM 10th International
Symposium on Software and Systems Traceability (SST). 29–36. https://doi.org/
10.1109/SST.2019.00016

[15] A. De Lucia, F. Fasano, and R. Oliveto. 2008. Traceability management for impact
analysis. In 2008 Frontiers of Software Maintenance. 21–30. https://doi.org/10.
1109/FOSM.2008.4659245

[16] D. Falessi, M. D. Penta, G. Canfora, and G. Cantone. 2017. Estimating the number
of remaining links in traceability recovery. Empirical Software Engineering 22, 3
(2017), 996–1027.

[17] D. Falessi, J. Roll, J. L. Guo, and J. Cleland-Huang. 2018. Leveraging Historical As-
sociations between Requirements and Source Code to Identify Impacted Classes.
IEEE Transactions on Software Engineering (2018).

[18] F. Furtado and A. Zisman. 2016. Trace++: A traceability approach to support tran-
sitioning to agile software engineering. In 2016 IEEE 24th International Require-
ments Engineering Conference (RE). 66–75. https://doi.org/10.1109/RE.2016.47

[19] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk. 2012. Integrated impact analysis
for managing software changes. In 2012 34th International Conference on Software
Engineering (ICSE). 430–440. https://doi.org/10.1109/ICSE.2012.6227172

[20] A. Ghannem, M.S. Hamdi, M. Kessentini, and H.H. Ammar. 2017. Search-based
requirements traceability recovery: A multi-objective approach. In 2017 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 1183–1190.

[21] R. Gharibi, A. H. Rasekh, M. H. Sadreddini, and S. M. Fakhrahmad. 2018. Leverag-
ing textual properties of bug reports to localize relevant source files. Information
Processing & Management 54, 6 (2018), 1058–1076.

[22] O. C. Z. Gotel and C. W. Finkelstein. 1994. An analysis of the requirements trace-
ability problem. In Proceedings of IEEE International Conference on Requirements
Engineering. IEEE, 94–101.

[23] J. Guo, J. Cheng, and J. Cleland-Huang. 2017. Semantically enhanced software
traceability using deep learning techniques. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 3–14.

[24] J. Guo, M. Gibiec, and J. Cleland-Huang. 2017. Tackling the term-mismatch
problem in automated trace retrieval. Empirical Software Engineering 22, 3 (2017),
1103–1142.

[25] H. Hu X. Ma J. Lü P. Mäder H. Kuang, H. Gao and A. Egyed. 2019. Using Frugal
User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability

Recovery (ICPC ’19). IEEE Press, 369–379. https://doi.org/10.1109/ICPC.2019.
00055

[26] M. A. Javed and U. Zdun. 2014. A systematic literature review of traceabil-
ity approaches between software architecture and source code. In Proceedings
of the 18th International Conference on Evaluation and Assessment in Software
Engineering. ACM, 16.

[27] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin, E. Moritz, M.
Gethers, D. Poshyvanyk, J. Maletic, J. H. Hayes, A. Dekhtyar, D. Manukian, S.
Hossein, and D. Hearn. 2012. TraceLab: An experimental workbench for equip-
ping researchers to innovate, synthesize, and comparatively evaluate traceability
solutions. In 2012 34th International Conference on Software Engineering (ICSE).
1375–1378. https://doi.org/10.1109/ICSE.2012.6227244

[28] B. Kitchenham and S. Charters. 2007. Guidelines for performing systematic
literature reviews in software engineering.

[29] Yuxiang Lei and Yulei Sui. 2019. Fast and precise handling of positive weight cy-
cles for field-sensitive pointer analysis. In International Static Analysis Symposium.
Springer, 27–47.

[30] A. Mahmoud and G. Williams. 2016. Detecting, classifying, and tracing non-
functional software requirements. Requirements Engineering 21, 3 (2016), 357–
381.

[31] T. Merten, D. Krämer, B. Mager, P. Schell, S. Bürsner, and B. Paech. 2016. Do
information retrieval algorithms for automated traceability perform effectively on
issue tracking system data?. In International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer, 45–62.

[32] C.Mills, J. Escobar-Avila, and S. Haiduc. 2018. Automatic traceabilitymaintenance
via machine learning classification. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 369–380. https://doi.org/10.1109/
ICSME.2018.00045

[33] C. Mills and S. Haiduc. 2017. The impact of retrieval direction on IR-based
traceability link recovery. In 2017 IEEE/ACM 39th International Conference on
Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-
NIER). IEEE, 51–54.

[34] N. Mustafa and Y. Labiche. 2017. The Need for Traceability in Heterogeneous
Systems: A systematic literature review. In 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), Vol. 1. IEEE, 305–310.

[35] K. Nishikawa, H. Washizaki, Y. Fukazawa, K. Oshima, and R. Mibe. 2015. Re-
covering transitive traceability links among software artifacts. In 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
576–580.

[36] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D. Lucia.
2013. How to Effectively Use Topic Models for Software Engineering Tasks? An
Approach Based on Genetic Algorithms (ICSE ’13). IEEE Press, 522–531.

[37] M. Rahimi and J. Cleland-Huang. 2018. Evolving software trace links between
requirements and source code. Empirical Software Engineering 23, 4 (2018), 2198–
2231.

[38] M. Rath, D. Lo, and P. Mäder. 2018. Analyzing requirements and traceability
information to improve bug localization. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). IEEE, 442–453.

[39] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Mäder. 2018. Traceability
in the wild: automatically augmenting incomplete trace links. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE, 834–845.

[40] M. Seiler, P. Hübner, and B. Paech. 2019. Comparing traceability through
information retrieval, commits, interaction logs, and tags. In 2019 IEEE/ACM
10th International Symposium on Software and Systems Traceability (SST). 21–28.
https://doi.org/10.1109/SST.2019.00015

[41] T. Stålhane, G. K. Hanssen, T. Myklebust, and B. Haugset. 2014. Agile change
impact analysis of safety critical software. In International Conference on Computer
Safety, Reliability, and Security. Springer, 444–454.

[42] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, Barcelona, Spain, March 12-18, 2016. 265–266.

[43] R. Tsuchiya, H. Washizaki, Y. Fukazawa, K. Oshima, and R. Mibe. 2015. Interactive
recovery of requirements traceability links using user feedback and configuration
management logs. In International Conference on Advanced Information Systems
Engineering. Springer, 247–262.

[44] M. Unterkalmsteiner, T. Gorschek, R. Feldt, and N. Lavesson. 2016. Large-scale in-
formation retrieval in software engineering-an experience report from industrial
application. Empirical Software Engineering 21, 6 (2016), 2324–2365.

[45] T. Vale and E. S. D. Almeida. 2019. Experimenting with information retrieval meth-
ods in the recovery of feature-code SPL traces. Empirical Software Engineering
24, 3 (2019), 1328–1368.

[46] W. Wang, A. Gupta, N. Niu, L. D. Xu, J.-R. C. Cheng, and Z. Niu. 2016. Auto-
matically tracing dependability requirements via term-based relevance feedback.
IEEE Transactions on Industrial Informatics 14, 1 (2016), 342–349.

[47] W. Wang, N. Niu, H. Liu, and Z. Niu. 2018. Enhancing automated requirements
traceability by resolving polysemy. In 2018 IEEE 26th International Requirements
Engineering Conference (RE). IEEE, 40–51.

https://doi.org/10.1109/ICSM.2012.6405343
https://doi.org/10.1109/ICSM.2012.6405343
https://doi.org/10.1109/RE.2012.6345840
https://doi.org/10.1109/ICSM.1996.564987
https://doi.org/10.1109/SST.2019.00016
https://doi.org/10.1109/SST.2019.00016
https://doi.org/10.1109/FOSM.2008.4659245
https://doi.org/10.1109/FOSM.2008.4659245
https://doi.org/10.1109/RE.2016.47
https://doi.org/10.1109/ICSE.2012.6227172
https://doi.org/10.1109/ICPC.2019.00055
https://doi.org/10.1109/ICPC.2019.00055
https://doi.org/10.1109/ICSE.2012.6227244
https://doi.org/10.1109/ICSME.2018.00045
https://doi.org/10.1109/ICSME.2018.00045
https://doi.org/10.1109/SST.2019.00015

