
CoBOT: Static C/C++ Bug Detection in the
Presence of Incomplete Code

Qing Gao1,2,3†, Sen Ma1,2†, Sihao Shao1,2†, Yulei Sui4‡, Guoliang Zhao1,2,5‡,
Luyao Ma1,2, Xiao Ma1,2, Fuyao Duan1,2, Xiao Deng1,2,3, Shikun Zhang1,2, Xianglong Chen6

1National Engineering Research Center for Software Engineering, Peking University
2Key Laboratory of High Confidence Software Technologies (Peking University), MoE

3School of Electrical Engineering and Computer Science, Peking University
{gaoqing,masen,shaosihao,maluyao,maxiao94,duanfuy,dxeecs,zhangsk}@pku.edu.cn

4CAI and School of Software, University of Technology Sydney, Australia, yulei.sui@uts.edu.au
5CASIC CQC Software Testing and Assessment Technology (Beijing) Corporation, Ltd., zhaogl@sqa-bj.com

6CASC Software Testing Center, 1042399133@qq.com

ABSTRACT

To obtain precise and sound results, most of existing stat-
ic analyzers require whole program analysis with complete
source code. However, in reality, the source code of an ap-
plication always interacts with many third-party libraries,
which are often not easily accessible to static analyzers. Worse
still, more than 30% of legacy projects [1] cannot be com-
piled easily due to complicated configuration environments
(e.g., third-party libraries, compiler options and macros),
making ideal “whole-program analysis” unavailable in prac-
tice. This paper presents CoBOT [2], a static analysis tool
that can detect bugs in the presence of incomplete code.
It analyzes function APIs unavailable in application code
by either using function summarization or automatically
downloading and analyzing the corresponding library code
as inferred from the application code and its configuration
files. The experiments show that CoBOT is not only easy
to use, but also effective in detecting bugs in real-world pro-
grams with incomplete code. Our demonstration video is at:
https://youtu.be/bhjJp3e7LPM.

KEYWORDS

incomplete code, static analysis, bug detection

ACM Reference Format:
Qing Gao, Sen Ma, Sihao Shao, Yulei Sui, Guoliang Zhao, Luyao 
Ma, Xiao Ma, Fuyao Duan, Xiao Deng, Shikun Zhang, Xianglong 
Chen. 2018. CoBOT: Static C/C++ Bug Detection in the Presence 
of Incomplete Code. In ICPC ’18: ICPC ’18: 26th IEEE/ACM 
International Confernece on Program Comprehension , May 27–
28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 
Article 4, 4 pages. https://doi.org/10.1145/3196321.3196367

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5714-2/18/05.
https://doi.org/10.1145/3196321.3196367

1 INTRODUCTION

Static analysis tools, such as Coverity [3], Klocwork [4],
and Clang [5], are widely used to find bugs in the early stage
of the whole software development cycle. To increase the
accuracy of static analysis, most tools require ”whole program
analysis” (1) Complete source code of the target program
needs to be available, including not only the application
code but also library code such as Std, VC and QT. (2)
The program needs to be compiled successfully by providing
detectors with necessary configuration information, such as
the exact locations of libraries’ header files, and macros used
in the compilation environment. However, it is often a difficult
and time-consuming task for users of static analysis tools
to manually configure the compilation environment for a
successful compilation, especially, for correctly configuring
large-scale C/C++ programs with multiple program modules
interacting with many third-party libraries. In 2017, CQC
[1](a famous company for software testing in China) surveyed
test engineers from more than 50 quality assurance (QA)
departments in different companies, and found that more
than 30% of C/C++ projects cannot be easily compiled
due to the complexity of building a proper environment.
Therefore, they are not analyzable by most of the static
analysis tools. The reasons are as follows.

First, large code repositories often contain legacy code
with complicated configurations that refer to various third-
party libraries. Even worse, users of static analysis tools often
lack knowledge in project configuration to include necessary
and correct files for whole-program analysis, especially when
the project has sophisticated third-party library dependence.
Second, users of static analysis tools are often unable to
configure libraries properly, even though they are aware of
the importance of analyzing the libraries due to complicated
configurations for legacy code. The complicated configura-
tions come from two aspects: a) Library compatibility. For
example, the code needs QT8.5 third party library while the

†Co-First authors.
‡Co-Corresponding authors.
This work was supported by the National Key Research and Develop-
ment Program of China (2017YFB0802900), Beijing Natural Science
Foundation (4182024), the China Postdoctoral Science Foundation
(2017M620524), and Australian Research Council grant DE170101081.



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Qing Gao et al.

environment only has QT7.0, which is incompatible with
QT8.5. b) Lots of manual efforts. Test engineers often com-
plain about the existence of many legacy programs that make
it tedious and time-consuming to compile the programs [6].
Furthermore, the source code of a project sent to static anal-
ysis tools may be incomplete or contains compilation errors,,
which makes whole-program analysis extremely difficult.

To address these issues, we present a static analysis tool,
called CoBOT, that supports bug detection for C/C++ pro-
grams with good accuracy even if the code is incomplete or
cannot be compiled due to configuration problems. CoBOT
performs automatic library matching by downloading its cor-
responding versions inferred from the application code and its
configuration files. We apply six heuristic strategies for sys-
tematically resolving the missing libraries of an application,
thereby providing precise and sound results to improve the
accuracy of a wide variety of bug detectors, including detect-
ing null pointer dereferences, use of uninitialized variables,
memory leaks and use-after-frees. Through our experiment,
we demonstrate that CoBOT effectively found C/C++ pro-
gram bugs statically in the presence of incomplete code, with
comparable accuracy when the source code is complete.

2 ARCHITECTURE

The overall CoBOT architecture is shown in Fig. 1, which
is distributed across three phases: parsing, analysis, and detec-
tion. In these phases, there are six highlighted key strategies
to achieve precise results for analyzing real-world projects
in the presence of incomplete code: 1) Library matching:
matching library due to different versions of a third-party
library; 2) Header file retrieval: performing fine-grained head-
er file matching due to header files with the same name
(files residing in different program modules); 3) Macro re-
placement: retrieving macro values without compilation; 4)
Binding building: building links between function/variable
declarations and their uses; 5) Function summary matching:
matching library functions in the absence of their defini-
tions; and (6) Heuristic defect detection: adopting different
detection methods according to different types of defects.

2.1 Parsing Phase

CoBOT uses Eclipse CDT plugin [7] to perform lexical and
syntax analysis and generate enhanced abstract syntax trees
(ASTs) for C/C++ projects. However, without the whole
program, the ASTs will be incomplete, affecting the accuracy
of static analysis. We propose the following four strategies to
build enhanced ASTs for incomplete code, thereby providing
necessary auxiliary information to improve precision and
soundness of static analysis.
(1) Library Matching. Once a program is uploaded into
CoBOT, CoBOT retrieves the proper library automatically
under two scenarios. First, CoBOT matches the correspond-
ing libraries based on the configuration files from the tar-
get project. For example, projects created in Visual Studio
have configuration files with the suffix “vcxproj” or “vcpro-
j”. CoBOT analyzes such configuration files, to acquire the
detailed version based on its XML description. Second, if

third-party libraries can not be determined by the configu-
ration files, CoBOT chooses a corresponding library based
on the calculated similarity score by matching the included
headers in the target project with the headers in different
libraries. Supposing that the number of supported libraries
by CoBOT is 𝑁 , and the set of library files is denoted as 𝐿𝑖

for Library 𝑖, the set of special headers 𝑆𝑝𝑖 for Library 𝑖 is
calculated as follows:

𝑆𝑝𝑖 = {𝑓𝑛|𝑓𝑛 ∈ 𝐿𝑖, 𝑓𝑛 /∈ 𝐿𝑚,𝑚 ̸= 𝑖, 0 6 𝑖,𝑚 < 𝑁, 𝑖,𝑚 ∈ Z}
Note that CoBOT only considers file names and ignores

the file paths in this strategy. Then CoBOT matches included
header file names in the program with 𝑆𝑝𝑖 for Library 𝑖. The
similarity score is calculated using the following formula:

𝑆𝑐𝑜𝑟𝑒𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 ℎ𝑒𝑎𝑑𝑒𝑟𝑠 𝑖𝑛 𝑆𝑝𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 ℎ𝑒𝑎𝑑𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡

CoBOT chooses the library with the highest score. In the
case of a tie, CoBOT will choose one among the candidate
libraries randomly, and then automatically download library
files. CoBOT now supports the following libraries: vc6.0, vs08,
vs10, vs12, MinGW, gcc, tornado, QT4 and QT5.
(2) Header File Retrieval. In a C/C++ project, multiple
headers residing different modules of a third-party library
may have the same name. Matching the wrong one may
affect the correctness of static analysis. CoBOT supports
not only library matching, but also header file matching in
a fine-grained way. To match a header file ℎ𝑒𝑎𝑑𝑒𝑟 included
by a source file 𝑠𝑟𝑐, CoBOT searches through the identified
library and the directory of application code of the project,
using the included header name or path suffix, such as “Win-
dows.h” or “sys/config.h”. If there are multiple header files
matched, we will analyze the most appropriate one. Sup-
posing that the path string of the 𝑖th candidate header is:
𝑆𝑡𝑟𝑖𝑛𝑔𝑖 = ℎ𝑖,1/ℎ𝑖,2/.../ℎ𝑖,𝑗 , the path string of the source file
𝑠𝑟𝑐 is: 𝑆𝑡𝑟𝑖𝑛𝑔𝑠𝑟𝑐 = 𝑠1/𝑠2/.../𝑠𝑘, where “/” represents the
path separator of different operating systems, CoBOT calcu-
lates the distance 𝑑𝑖𝑠𝑡𝑖 between each candidate header and
𝑠𝑟𝑐 using the following formula:

𝑑𝑖𝑠𝑡𝑖 =

𝑚𝑎𝑥(𝑗,𝑘))∑︁
𝑙𝑒𝑣𝑒𝑙=1

(𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(ℎ𝑖,𝑙𝑒𝑣𝑒𝑙, 𝑠𝑙𝑒𝑣𝑒𝑙)*2𝑚𝑎𝑥(𝑗,𝑘)−𝑙𝑒𝑣𝑒𝑙)

The function 𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 represents the Levenshtein dis-
tance. The intuition of this formula is that the candidate
header file with the most similar path prefix, rather than
suffix, should be considered with highest priority. In other
words, we choose the most “close” header file based on the
source file that includes the header file. Finally, CoBOT sorts
the candidate files 𝐻𝑖 and 𝐻𝑗 :

𝐻𝑖 < 𝐻𝑗 iff 𝑑𝑖𝑠𝑡𝑖 < 𝑑𝑖𝑠𝑡𝑗
The first candiate file is chosen. If no candidate files are

found, CoBOT provides missing file information to users.
(3) Macro Replacement. In C/C++, macros are widely
used to produce different versions of a project. When compil-
ing a program, the values of macros defined by the compiler
or by the program can be obtained automatically. However,
without whole-program information, these values are incom-
plete. To tackle this problem, our insights are: (1) Definitions
of macros are usually provided in configuration files (e.g.,
Makefile), which address the macro-missing problem; (2) In



CoBOT: Static C/C++ Bug Detection in the
Presence of Incomplete Code ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 1: The overall architecture of CoBOT.

Strategy 1, CoBOT has identified the corresponding library,
and we can then load the values of a macro defined in the
library, which address the compiler macro-missing problem.
Hence, CoBOT resolves the missing macro definitions, so
that they can be used in the following parser strategies for
macro replacement to improve accuracy.
(4) Binding Building. The links between variable uses (or
function calls) and their definitions are known as binding,
which is crucial for inter-procedural analysis. To build miss-
ing bindings without the whole program, CoBOT searches
variable/function definitions of the same name, and com-
pares the path similarities between the files that define a
variable/function and those that use the variable/function,
following the same formula in the second strategy.

2.2 Analysis Phase

CoBOT transforms ASTs to a program-dependence mod-
el, called Value Dependence Graph (VDG) [8], similar to
SVFG [9] for defect detection. First, CoBOT builds sum-
maries for available library functions. Then CoBOT performs
a series of analyses including control-flow graph (CFG) con-
struction, call graph (CG) construction, virtual function anal-
ysis [10], SSA analysis [11], pointer analysis [12], modification
side-effect analysis [13], and data flow analysis [14].
(5) Function Summary Matching. Function summaries
are constructed by intra-procedural analysis and used in
the inter-procedural analysis phase [15]. Our strategy is to
match summaries for library functions invoked in application
code. If the callee of a function call can not be found in the
application code or any of the available third-party libraries,
CoBOT will retrieve it in the function-summary database.
CoBOT calculates the Levenshtein distance between current
function’s name and that in the database, to determine the
library function that has the shortest length. For example, if a
function name is called 𝑥 𝑚𝑎𝑙𝑙𝑜𝑐, CoBOT will match 𝑚𝑎𝑙𝑙𝑜𝑐.
If none of the summaries can be matched, CoBOT will finally
take it as a user-defined function, handled in Strategy 6.

2.3 Detection Phase

In the last phase, CoBOT detects bugs based on the VDG.
First, CoBOT slices VDG according to different defect pat-
terns. Second, it generates defect constraints on each slice.
Finally, CoBOT solves these constraints by SMTInterpol [16]
to determine if the slice contains a bug. When the whole pro-
gram code is incomplete, function definitions may be missing,
which may cause static bug detectors to report false positives

or negatives. To address this problem, CoBOT uses different
strategies based on different defect patterns.
(6) Heuristic Defect Detection. In this strategy, CoBOT
mainly analyzes user-defined call sites which do not have
corresponding definitions. Handling such call sites depends
on the type of a defect pattern. For example, supposing that
the checker detects use of uninitialized variables, the slice of
the defect is “𝑖𝑛𝑡 𝑣𝑎𝑟; 𝑓𝑢𝑛2(&𝑣𝑎𝑟); 𝑖𝑛𝑡 𝑏 = 𝑣𝑎𝑟;”, and the
call site “𝑓𝑢𝑛2(&𝑣𝑎𝑟)” is not parsed or matched successfully
in the previous strategies. CoBOT conservatively assumes
that 𝑣𝑎𝑟 is initialized in 𝑓𝑢𝑛2 to reduce false positives.

3 EVALUATION

We evaluated the effectiveness of our approach in two
experiments: (1) comparing the bug detection results by
applying and not applying the six heuristic strategies of
CoBOT, and (2) comparing the analysis results by compiling
and not compiling the projects. If the projects were compiled,
the compiling information (e.g., included header file paths)
is provided to CoBOT, otherwise, CoBOT builds enhanced
ASTs for analyzing the incomplete program.
Benchmark: We evaluated the performance and accuracy
by using a set of real-world C/C++ projects, which are
open-source projects as shown in Table 1. We chose null
pointer dereferences and use of uninitialized variables as
two major clients, because the accuracy of detecting these
two types of bugs is particularly affected by compilation
environments and correctly analyzing third-party libraries.
All of our experiments were conducted on a machine with an
8-core i7-4790 3.6GHz CPU, and 8GB RAM.
Experiment 1: CoBOT has a switch to turn on and off the
six heuristic strategies. All the projects were parsed into en-
hanced ASTs for analysis using Eclipse CDT plugins without
compiling the whole program, and the results are shown in
Table 1, in which “Relative False Negative Rate” is calculat-
ed by using the formula (1−𝑛𝑢𝑚(𝐵𝑢𝑔𝑠)/𝑛𝑢𝑚(𝑇𝑜𝑡𝑎𝑙𝐵𝑢𝑔𝑠)),
where 𝑇𝑜𝑡𝑎𝑙𝐵𝑢𝑔𝑠 is the total bugs reported by all methods.
We turned on the switch to apply the strategies, and the false
positive (FP) rate was 5.31%, while the relative false negative
(FN) rate was 18.31%. Then we turned off the switch, and the
FP rate was 90.41%, while the relative FN rate was 69.01%.
First, using the strategies, the FP rate decreased, because
CoBOT(on) dealt with library calls with function summaries.
For instance, for 𝑠𝑐𝑎𝑛𝑓(&𝑣, “%𝑑”), CoBOT(on) considers
𝑣 to be initialized by checking the function name against
the library summaries. Second, the relative false negatives



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Qing Gao et al.

Table 1: Detection results of null pointer dereferences and use of uninitialized variables.
Benchmark LOC

CoBOT(off) CoBOT(on) CoBOT(whole)

B/R Time B/R Time B/R Time

bzip2-1.0.6 8117 0/3 32s 0/0 27s 0/0 23s

zlib-1.2.8 33346 3/15 57s 5/5 58s 0/0 35s

tommyds-2.1 36750 5/25 1min21s 18/19 1min18s 18/19 1min4s

VS LIBEMU(scdbg)-0.2.0 55727 7/207 56s 30/30 1min2s 26/26 57s

ipimitool-1.8.15 79760 6/138 1min1s 12/13 2min34s 10/11 2min20s

mujs-1.0.1 15831 0/5 21s 2/5 41s 2/5 35s

Sjeng-Free-11.2 18035 13/25 32s 17/17 42s 16/16 48s

link41b(parser)-4.1 22372 2/3 28s 3/5 36s 3/4 27s

gobmk(gnugo-3.8) 87575 0/88 2min13s 14/14 2min7s 16/16 4min5s

wrk-4.0.0 77089 3/26 2min14s 6/9 1min48s 6/6 2min16s

libnl-1.0 81776 8/44 1min55s 15/15 53s 14/14 53s

postgres-x2-1.2.1 959200 41/339 17min32s 110/113 17min26s 92/94 13min16s

Total Bugs/Reports 88/918 232/245 203/211

False Positive Rate% 90.41 5.31 3.79

Relative False Negative Rate% 69.01 18.31 15.77

“B/R” is “Bugs/Reports”. “Bugs” is the number of true bugs. “Reports” is the total number of reported bugs. “CoBOT (off)” represents the approach
without the whole program and without applying the six heuristic strategies. “CoBOT (on)” represents the approach without the whole program but
applying the heuristic strategies. “CoBOT (whole)” represents the approach with the whole program and compilation.

also decreased significantly using the six strategies, because
CoBOT(on) successfully matched function call sites with their
definitions, using our library summaries. For instance, in the
code “𝑖𝑛𝑡 * 𝑝 = 𝑛𝑢𝑙𝑙; 𝑖𝑠𝑜𝑐99 𝑠𝑡𝑟𝑙𝑒𝑛(𝑝); ”, the declaration of
𝑖𝑠𝑜𝑐99 𝑠𝑡𝑟𝑙𝑒𝑛 could not be bound, and CoBOT(on) matched
it heuristically with the library function 𝑠𝑡𝑟𝑙𝑒𝑛. Library sum-
maries of CoBOT(on) indicated that the first parameter of
𝑠𝑡𝑟𝑙𝑒𝑛 is dereferenced. Hence a null pointer dereference was
reported.
Experiment 2: As shown in Table 1, by compiling the w-
hole program, CoBOT(whole) kept the FP rate as 3.79%, and
the relative FN rate as 15.77%. Compared to CoBOT(whole),
CoBOT(on) kept acceptable accuracy as described in Exper-
iment 1. First, the reason that CoBOT(on) had more false
negatives was due to under-approximation in our heuristics.
For example, in the code “𝑖𝑛𝑡 𝑣; 𝑓(&𝑣); ” where 𝑓 ’s definition
is not available due to the incomplete application code, the
actual parameter 𝑣 in the caller 𝑓(&𝑣) was considered to be
initialized, because the formal parameter of 𝑓 was of the refer-
ence type, and was normally initialized in the callee function
𝑓 . However, the variable 𝑣 might not be initialized in function
𝑓 , causing false negatives. Second, CoBOT(on) had more false
positives than CoBOT(whole), because CoBOT(on) consid-
ered some calls to library functions, which have already been
over-written by the application code. Thus, those functions
have become user-defined functions.

4 RELATED WORK

Saturn [17], Coverity [3] and Klocwork [4] are C/C++
static bug detection tools, but they do not support analysis
for incomplete code. Averroes [18] is a tool that can construct
call graphs for incomplete Java rather than C/C++ program-
s. FindBugs [19] and PMD [20] are tools supporting defect
detection for incomplete Java programs by matching syntax
rules. Checkmarx [21] is a commercial tool that can analyze
incomplete C/C++ code. CoBOT can complement Check-
Marx in both accuracy and efficiency to analyze real-world
large programs. Atzenhofer and Plösch propose an approach
for adding missing libraries in Java projects [22].

5 CONCLUSIONS

We present CoBOT, a static bug detection tool for C/C++.
Unlike most static analysis tools, CoBOT supports bug de-
tection without whole-program information. To effective-
ly detect bugs in incomplete code, we propose a series of

heuristic strategies in parsing, analysis and detection phas-
es. The experiments demonstrate the effectiveness and ef-
ficiency of our tool. Our demonstration video is at: http-
s://youtu.be/bhjJp3e7LPM.

REFERENCES
[1] CQC China homepage. Retrieved Feb 5, 2018 from

http://www.sqa-bj.com/, 2018.
[2] CoBOT China homepage. Retrieved Feb 5, 2018 from

http://www.cobot.net.cn/, 2018.
[3] Coverity homepage. Retrieved Feb 5, 2018 from

http://www.coverity.com/, 2018.
[4] Klocwork homepage. Retrieved Feb 5, 2018 from

http://www.klocwork.com/, 2018.
[5] Clang homepage. Retrieved Feb 5, 2018 from

http://clang.llvm.org/, 2018.
[6] Brittany Johnson et al. Why don’t software developers use static

analysis tools to find bugs? ICSE ’13, pages 672–681, 2013.
[7] CDT homepage. Retrieved Feb 5, 2018 from

http://www.eclipse.org/cdt/, 2018.
[8] Sen Ma et al. Practical null pointer dereference detection via

value-dependence analysis. ISSRE Workshops, Gaithersburg,
MD, USA, November 2-5, 2015, pages 70–77, 2015.

[9] Yulei Sui et al. SVF: interprocedural static value-flow analysis in
LLVM. CC ’16, pages 265–266, 2016.

[10] Xiaokang Fan et al. Boosting the precision of virtual call integrity
protection with partial pointer analysis for C++. SIGSOFT ’17,
pages 329–340, 2017.

[11] Ron Cytron et al. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans. Program.
Lang. Syst., 13(4):451–490, 1991.

[12] Yulei Sui et al. On-demand strong update analysis via value-flow
refinement. FSE ’16, pages 460–473, 2016.

[13] Barbara G. Ryder et al. A schema for interprocedural modification
side-effect analysis with pointer aliasing. ACM Trans. Program.
Lang. Syst., 23(2):105–186, 2001.

[14] Thomas W. Reps et al. Precise interprocedural dataflow analysis
via graph reachability. POPL ’95, pages 49–61, 1995.

[15] Keith D. Cooper et al. Interprocedural side-effect analysis in
linear time. PLDI ’88, pages 57–66, 1988.

[16] SMTInterpol homepage. Retrieved Feb 5, 2018 from
http://ultimate.informatik.uni-freiburg.de/smtinterpol/, 2018.

[17] Yichen Xie et al. Saturn: A sat-based tool for bug detection. In
CAV’05, pages 139–143. Springer, 2005.

[18] Karim Ali et al. Averroes: Whole-program analysis without the
whole program. ECOOP ’13, pages 378–400, 2013.

[19] Findbugs homepage. Retrieved Feb 5, 2018 from
http://findbugs.sourceforge.net/, 2018.

[20] Pmd homepage. Retrieved Feb 5, 2018 from http-
s://pmd.github.io/, 2018.

[21] Checkmarx homepage. Retrieved Feb 5, 2018 from http-
s://www.checkmarx.com/, 2018.

[22] Thomas Atzenhofer et al. Automatically adding missing libraries
to java projects to foster better results from static analysis. In
SCAM’17, pages 141–146, 2017.


