
Contention-Aware Scheduling for Asymmetric
Multicore Processors

Xiaokang Fan Yulei Sui Jingling Xue
Programming Languages and Compilers Group

School of Computer Science and Engineering, UNSW Australia

Abstract—Asymmetric multicore processors (AMPs) have been
proposed as an energy-efficient alternative to symmetric mul-
ticore processors (SMPs). However, AMPs derive their per-
formance from core specialization, which requires co-running
applications to be scheduled to run on their most appropriate
core types. Despite extensive research on AMP scheduling,
developing an effective scheduling algorithm remains challenging.
Contention for shared resources is a key performance-limiting
factor, which often renders existing contention-free scheduling
algorithms ineffective.

We introduce a contention-aware scheduling algorithm for
ARM’s big.LITTLE, a commercial AMP platform. Our algo-
rithm comprises an offline stage and an online stage. The
offline stage builds a performance interference model for an
application by training it with a set of co-running applications.
Guided by this model, the online stage schedules a workload
by assigning its applications to their most appropriate core
types in order to minimize the performance degradation caused
by contention for shared resources. Our model can accurately
predict the performance degradation of an application when
co-running with other applications with an average prediction
error of 9.60%. Compared with the default scheduler provided
for ARM’s big.LITTLE and the speedup-factor-driven scheduler,
our contention-aware scheduler can improve overall system
performance by up to 28.32% and 28.51%, respectively.

Keywords—Asymmetric Multi-core Processor, performance in-
terference, contention-aware scheduling, regression model.

I. INTRODUCTION

As an alternative to homogeneous multicore processors,
single-ISA heterogeneous multicore processors have been
proposed to achieve higher performance with lower energy
costs for applications with diverse architectural requirements.
Single-ISA heterogeneous multicore processors, also known
as asymmetric multicore processors (AMPs), typically consist
of several high-performance big cores and a large number of
energy-efficient small cores on a single chip. Big cores are
designed with a sophisticated microarchitecture (e.g., with a
high clock frequency and a complex out-of-order pipeline). In
contrast, small cores are less complex (e.g., with a lower clock
frequency and an in-order pipeline). Both core types share the
same instruction set, so that a program can run in a consistent
manner on any core.

Exploiting asymmetric features to achieve good
performance-energy trade-offs for multicore processors has
gained substantial interest in both academia and industry over
the past few years. Recent research [12, 15, 16, 17, 18] has
demonstrated potential benefits of AMPs over homogeneous
multicore processors. Commercial industry solutions for

single-ISA heterogeneous multicore processors include
NVIDIA’s Tegra 3 [23] and ARM’s big.LITTLE [3]. Both
designs provide different big and small core combinations
to satisfy different performance and energy requirements of
various applications.

The effectiveness of AMPs relies heavily on how to best
schedule workloads according to their relative benefits derived
from running on different core types. To improve the overall
system throughput of applications running on AMPs, a few
scheduling algorithms are proposed to map workloads to their
most appropriate core types based on simulation [5, 16, 32],
changing the frequency of some cores on symmetric multicore
processors (SMPs) [27, 28] or modifying the internal workings
of some cores [14].

The sampling based scheduling algorithms are initially
proposed by Becchi et al. [5] and Kumar et al. [16] to decide
which applications would use big cores more efficiently. Their
scheduling algorithms are driven by the speedup factor, which
is the improvement of an application’s performance on a big
core relative to a small core. These algorithms periodically
sample the cycles per instruction (CPI) of an application
on both core types to determine the relative benefit for the
application to run on a big core.

HASS [28] represents an alternative approach to obtaining
the speedup factor using offline profiling of an application
to give a static hint for online scheduling. Its speedup factor
is determined by estimating the last-level cache miss rate.
This work was later extended by considering both efficiency
and thread-level parallelism (TLP) for sequential and par-
allel applications [27]. In their experiments, dynamic volt-
age/frequency scaling (DVFS) technique is applied to change
the frequency of some cores on SMPs. As a result, the cores
in their setting differ only in terms of execution frequency.

Instead of sampling and offline profiling, the bias sched-
uler [14] performs dynamic scheduling by using core stalls to
characterize the potential benefits of scheduling an application
on a big core over a small core. Applications that exhibit
frequent memory and other resource stalls are mapped to small
cores, while applications whose CPI is dominated by execution
cycles rather than stalls are mapped to big cores. To emulate
an asymmetric system accurately, the authors have modified
some cores in SMPs so that they are different only in the
number of micro-ops retired per cycle.

Recently, the research on performance impact estimation
(PIE) [32] shows that the previous approaches that map

2015 IEEE 21st International Conference on Parallel and Distributed Systems

1521-9097/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPADS.2015.98

743

2015 IEEE 21st International Conference on Parallel and Distributed Systems

1521-9097/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPADS.2015.98

742

memory-intensive workloads to small cores and compute-
intensive workloads to big cores may result in suboptimal
scheduling. Their dynamic scheduling mechanism collects pro-
filing information when executing an application on any one
core type to predict the performance on the other core type.
This prediction allows appropriate scheduling adjustments to
be made at runtime. The evaluation is conducted on a simu-
lator where the proposed mechanism requires some profiling
information, such as the inter-instruction dependency distance
distribution, which cannot be collected on existing commercial
cores and requires specialized hardware support [24].

A. Insights

Despite extensive research in AMP scheduling, how to
design and implement an effective scheduling algorithm in a
real asymmetric multicore system remains challenging. One
of the fundamental problems facing the AMP scheduling
designers is the fact that any single core, as part of an on-
chip AMP system, is not an independent processor but sharing
resources (e.g., cache, memory bus and memory controller)
with other cores. The competition for shared resources causes
performance interference of co-running applications, and this
contention can significantly degrade their performance relative
to what they could achieve in a contention-free environment.

Figure 1 shows four representative applications chosen
from the 21 programs in Table III to highlight the perfor-
mance degradations when co-running relative to solo runs
(contention-free) on both big and small core types. The exper-
iments are conducted on ARM’s big.LITTLE, a commercial
AMP system, which has two big cores and three small cores
with different microarchitectures (Table I). For an application
A, 80 workloads are generated with each workload consisting
of A and four randomly selected ones from the remaining 20
applications. The performance interference is observed by first
binding A to a big core to co-run with the four applications
randomly scheduled on the other four cores, and then measure
the interference by binding A to a small core.

From the four representative applications, we can see that
for some applications like 253.perlbmk, the contention has
relatively small impact on performance, resulting in small
differences between the best and worst slowdowns. However,
many applications such as 179.art are observed to have a
big difference gap between the best and the worst slowdowns
on both core types. Applications like 176.gcc have higher
performance slowdowns due to contention when scheduled
to a small core. In contrast, applications 255.vortex have
higher slowdowns when scheduled to a big core.

The performance interference among co-running applica-
tions can also affect the scheduling decisions made by previous
contention-free approaches discussed earlier. As shown in
Figure 2, when an application co-runs with other applications,
its speedup on a big core over a small core may have a large
deviation compared to the speedup measured in a contention-
free environment. Thus, the existing speedup-factor-driven
approaches that ignore the performance interference may lead
to ineffective scheduling.

0	

20	

40	

60	

80	

100	

120	

140	

253.perlbmk	 179.art	 176.gcc	 255.vortex	

%
	 S
lo
w
do

w
n	
to
	 so

lo
	 ru

n

benchmarks

worst	 on	 big	 core	 best	 on	 big	 core	 worst	 on	 small	 core	 best	 on	 small	 core	

Fig. 1: The performance slowdowns relative to solo runs for
different co-running workloads on big and small cores.

0	

2	

4	

6	

8	

253.perlbmk	 179.art	 176.gcc	 255.vortex	

Bi
g	
co
re
	sp

ee
du

p	
(x
)

benchmarks

conten7on-free	speedup	

maximum	speedup	with	conten7on	

minimum	speedup	with	conten7on	

Fig. 2: Speedups of a big core over a small core under three
scenarios: contention-free speedups, maximum speedups with
contention, and minimum speedups with contention.

B. Challenges

Developing practical contention-aware scheduling algo-
rithms in real asymmetric multicore systems is challenging.
The microarchitectures of heterogeneous cores in a real AMP
system differ in many ways, ranging from pipeline to mem-
ory hierarchy. These asymmetric features were not addressed
inadequately in the past [5, 16, 27, 28, 32]. Moreover, al-
though contention-aware scheduling in symmetric multicore
processors has been extensively studied [11, 20, 33, 34, 35],
the algorithms used in SMPs cannot be directly applied
to AMPs. For example, DI [35], one of the representative
SMP contention-aware scheduling algorithms, distributes the
workloads such that the last level cache miss rate is evenly
distributed among the caches. However, as different types of
cores have different cache characteristics (Table I), mapping
applications to cores with an evenly distributed last level cache
miss rate will be ineffective in a real AMP system.

C. Our Solution

In this paper, we present a contention-aware schedul-
ing approach to improving the overall system performance
in a commercial asymmetric multicore architecture: ARM’s
big.LITTLE. The novelty of our approach lies in taking
advantage of the performance interference relations to sup-
port effective dynamic scheduling by selecting an appropriate
application-to-core mapping in a real asymmetric system. As
shown in Figure 3, our scheduling strategy comprises (1) an
offline stage to build a performance interference model that
extracts the interference relations by using lightweight training

744743

Performance
interference modelProfiling

Target application

Training
benchmarks

Runtime schedulerList of target
applications

Scheduling
decision

Offline
Online

Interference
relation

Access rates to
shared

resources
Big core
speedup

Sort by big core
speedups

Run once for
each target
application

Fig. 3: A contention-aware scheduling framework for AMPs.

and (2) an online stage that schedules a set of applications
to the most appropriate core types by considering both the
speedup factor and the predicted performance interference.

For each application A in a candidate application list L, the
offline stage builds a performance degradation function of A
by applying regression analysis to determine the coefficients
related to various shared resources (including cache, bus and
memory controller) when co-running A with different training
benchmarks. During the online stage, L is first sorted based
on the big core speedup of each application in L. Then the
dynamic scheduler maps an application A from L to an idle
core by considering its interference impact when co-running
A with the existing on-core applications.

The following are the key contributions in this paper:

• We present a contention-aware scheduling approach in
a real commercial single-ISA heterogeneous multicore
system to improve the overall system performance.

• We propose a new two-stage scheduling framework: an
offline performance interference model that can accu-
rately analyze the contention correlations among co-
running applications and an efficient online scheduler by
considering predicted performance interference impacts.

• We evaluate our scheduling approach on ARM’s
big.LITTLE. Our model can accurately predict an appli-
cation’s performance degradation due to contention with
an average prediction error of less than 10%. Compared
with the default scheduler provided by the development
board used and the speedup-factor-driven scheduler, our
scheduler can improve the system throughput by up to
28.32% and 28.51%, respectively.

The rest of the paper is structured as follows. First, we
give a brief introduction to ARM’s big.LITTLE architecture
(Section II). Next, we present our contention-aware scheduling
approach with its offline interference model (Section III-A)
and online scheduler (Section III-B). Then, our experimental
results are discussed (Section IV). Finally, we present the
related work (Section V) and conclude (Section VI).

Cortex-‐A7 Cortex-‐A7 Cortex-‐A7

L2	 cache

Cache	 Coherent	 Interconnect

DRAM

Cortex-‐A15

L2	 cache

Cortex-‐A15

L1	 cache L1	 cache L1	 cache L1	 cache L1	 cache

Fig. 4: ARM’s big.LITTLE architecture.

Parameter Cortex-A15 Cortex-A7

Pipeline
Out-of-order In-order
15 – 24 stages 8 – 10 stages

Issue/fetch width 3/3 2/2
Branch predictor 2K-entry BTB/2-way 512-entry BTB/2-way

L1 I-TLB
32-entry 10-entry
fully associative fully associative

L1 D-TLB

Two separate 32-entry One single 10-entry
fully associative TLBs fully associative TLB
for loads and stores,
respectively

L2 TLB 512-entry/4-way 256-entry/2-way
L1 I-cache 32KB/2-way/64B 32KB/2-way/32B
L1 D-cache 32KB/2-way/64B 32KB/2-way/64B
L2 cache 1MB/16-way/64B 512KB/8-way/64B

TABLE I: Microarchitectural differences between Cortex-A15
and Cortex-A7 cores in ARM’s big.LITTLE.

II. ARM’S BIG.LITTLE ARCHITECTURE

Figure 4 illustrates the single-ISA heterogeneous architec-
ture of ARM’s big.LITTLE on which our scheduling frame-
work is implemented. In big.LITTLE, cores of the same type
are grouped together as a cluster. A single chip integrates
a cluster of high performance Cortex-A15 cores [2] and a
cluster of power-efficient Cortex-A7 cores [4] with modest
performance.

Our evaluation is conducted on a big.LITTLE development
board (V2P-CA15×2 CA7×2) which contains two Cortex-
A15 cores and three Cortex-A7 cores. These two types of cores
implement the same ARMv7-A instruction set. Every core has
a private L1 instruction cache and a private L1 data cache. All
cores in the same cluster share a L2 cache. Cache coherency
between the two clusters is maintained via the CCI-400 cache
coherent interconnect.

Table I lists the major microarchitectural differences be-
tween Cortex-A15 and Cortex-A7 cores. The A15 core is
designed for high performance with a 3-way issue, out-of-
order pipeline containing 15 – 24 stages, while the A7 core
is designed for energy efficiency with a 2-way issue, in-order
pipeline containing 8 – 10 stages. Furthermore, their branch
predictors and cache configurations are distinctly different.
The A15 core supports two separate 32-entry fully associative
L1 Data TLBs for data loads and stores. In contrast, the A7

745744

core has only one 10-entry fully associative L1 Data TLB for
both data loads and stores. The unified L2 TLB of the A15
core is also more sophisticated than that of the A7 core. The
two types of cores differ slightly in the L1 instruction cache
and have the same L1 data cache. However, their L2 cache
organizations differ greatly.

From Table I, we can see that a real AMP system has more
complicated asymmetric features designed for different core
types. The previous AMP scheduling algorithms that are devel-
oped based on a simulation [5, 16, 32] or by applying DVFS to
the cores in SMPs [27, 28, 29] may not be sufficiently effective
in accommodating these microarchitectural differences.

Through extensive experiments on a real AMP system, we
find that contention is determined by multiple shared resources
such as cache, bus and memory controller, all combined as a
whole to create the performance degradation. Figure 8 shows
the percent contribution that each of the factors has on the total
degradation, with a detailed analysis given in Section IV.

III. CONTENTION-AWARE SCHEDULING

In this section, we present our contention-aware framework
for scheduling multiple applications in AMPs. As shown in
Figure 3, every application is first trained by co-running it
with a set of training benchmarks to determine the coefficients
related to shared resources by using regression analysis. The
online stage makes contention-aware scheduling to map the
applications to the most appropriate core types by considering
big core speedups and performance slowdowns predicted by
the empirical interference model obtained offline.

A. Offline Interference Model
In the offline phase of each application A, two key results

are collected by answering two questions: (1) how aggressively
does A access the shared resources in a contention-free
environment and how does its performance degradation vary
when A competes for resources with its co-runners?

The interference model first collects the individual pressure
of A and its training benchmarks on each shared resources
by binding each application to run on a certain type of core
in isolation. The aggregate pressures on each shared resources
are then obtained when A co-runs with another four selected
training benchmarks.

Equation 1 denotes the aggregate pressure on a certain kind
of shared resource R in a cluster T (either a big or a small
core cluster):

P T (R) =
n∑

i=1

CTi (R) (1)

where n is the number of co-running applications in the
cluster T and R represents one of the three critical on-chip
resources: (1) shared cache among the cores in the same
cluster, (2) shared bus that connects different clusters, and (3)
shared memory controller among all the cores. The individual
pressure on a shared resource R of the i-th application in T is
represented by CTi (R), which is the application’s access rate
(access count per second) to resource R collected by ARM’s
Streamline tool.

Applications running in the same cluster (intra-cluster) may
have performance interference when competing for shared
cache, bus, and memory controller, while the interference
among the applications running in different clusters (inter-
cluster) only comes from contention for the shared bus and
memory controller. We differentiate the two cases by providing
the following intra- and inter-cluster pressure models:

Intra-PT = α ·P T (cache)+β ·P T (bus)+γ ·P T (mem)+σ
(2)

Inter-PT = δ · P T (bus) + θ · P T (mem) + σ′ (3)

where the coefficients α, β, γ, δ, θ, σ, σ′ are to be instantiated
using linear regression with training results.

The performance degradation function for an application A
is defined by instantiating T in Equations 2 and 3 with big
and small core types:

PDA=

{
Intra-Pbig+Inter-Psmall if A is on big core cluster
Intra-Psmall+Inter-Pbig otherwise

(4)
In order to select appropriate training benchmarks for build-

ing performance degradation functions that cover diverse con-
tention interference cases, we use programs from CPU2006,
MediaBench and MiBench as candidates. However, selecting
a large number of training benchmarks without classifying
their features can be ineffective or inaccurate.

Following [33, 34], we create a training set such that
the benchmarks are evenly sampled based on their pressure
on shared resources. A three-dimensional feature space is
defined with each dimension representing a different shared
resource (cache, bus or memory controller). Every candidate
training benchmark is mapped into the feature space using
its resource pressure. The feature space is evenly divided into
Ncache×Nbus×Nmem cubes, where Ncache, Nbus and Nmem

are user defined. Candidates falling into the same cube are
regarded as having a similar resource pressure. One point
from each nonempty cube is sampled by adding it to the
final training benchmark set. To reduce the training time,
lightweight programs inputs (e.g., the train inputs for SPEC
benchmarks) are used.

We use a SPEC benchmark, 175.vpr, as an example to
explain the key steps for building the performance degradation
function for a specific application on ARM’s big.LITTLE.

Step 1: Collecting pressure. Let Progs be a set of pro-
grams including 175.vpr and the benchmarks in the training
set. For each program i ∈ Progs on a core in cluster T , we
collect the individual pressures (access rates) of i on the three
shared resources i.e., CTi (cache), CTi (bus), and CTi (mem).
For each program, the average pressures are measured in ten
solo runs per core type.

Step 2: Training. We generate 80 workloads, each con-
taining four randomly selected benchmarks from the training
set (Table III) to co-run with 175.vpr. In the first 40
workloads, 175.vpr is bound to a big core. In the remaining
40 workloads, 175.vpr is bound to a small core. For the

746745

Core
Workload

Performance
Intra-pressure Inter-pressure

type slowdown

big

W1 sd1 P big
1 (cache) P big

1 (bus) P big
1 (mem) P small

1 (bus) P small
1 (mem)

...
W40 sd40 P big

40 (cache) P big
40 (bus) P big

40 (mem) P small
40 (bus) P small

40 (mem)

small

W41 sd41 P small
41 (cache) P small

41 (bus) P small
41 (mem) P big

41 (bus) P big
41 (mem)

...
W80 sd80 P small

80 (cache) P small
80 (bus) P small

80 (mem) P big
80 (bus) P big

80 (mem)

TABLE II: Performance slowdowns of 175.vpr in 80 runs.

i-th workload, the runtime performance slowdown sdi of
175.vpr and the corresponding aggregate pressures P T (R)
on shared resources of the workload are listed in the form of
Table II on both big and small core types.

Let us take the first workload W1 as an example. It consists
of 175.vpr and four training benchmarks: 433.milc,
444.namd, 456.hmmer and 470.lbm. In this workload,
175.vpr and 470.lbm are running on big cores while the
other three are running on small cores. Under this co-running
scenario, the performance slowdown (sd1) of 175.vpr is
167.28% on ARM’s big.LITTLE with the following aggregate
pressures on the three shared resources:

P big
1 (cache) = Cbig

lbm(cache) +Cbig
vpr(cache) = 46.20

P big
1 (bus) = Cbig

lbm(bus) +Cbig
vpr(bus) = 100.82

P big
1 (mem) = Cbig

lbm(mem) +Cbig
vpr(mem) = 95.06

P small
1 (bus) = Csmall

milc (bus) +Csmall
namd(bus) + Csmall

hmmer(bus) = 49.79

P small
1 (mem) = Csmall

milc (mem)+Csmall
namd(mem) + Csmall

hmmer(mem) = 93.55

Step 3: Building a degradation function. The data in Ta-
ble II are then used during regression analysis to instantiate the
coefficients in Equation 4. Finally, we obtain the performance
degradation function for 175.vpr:

PDvpr =

0.1358 · P big(cache) +1.5498 · P big(bus)

+0.0091 · P big(mem) +0.4163 · P small(bus)
(big

cores

)
+0.0357 · P small(mem)−14.4522
−−−−−−−−−−−−−−−−−
0.4814 · P small(cache)+0.9847 · P small(bus)

+0.0542 · P small(mem) +0.6163 · P big(bus)
(small

cores

)
+0.0105 · P big(mem) −56.2996

B. Online Scheduling
For a list of applications, L, the online scheduler aims to

optimize the overall performance of all applications in L based
on the offline information. Given the profiling information,
an application A ∈ L with a relatively high (low) big core
speedup under solo runs tends to be mapped to a big (small)
core only if the predicted performance slowdown when co-
running A with the currently on-core applications is under a
predefined contention threshold.

Algorithm 1 shows the online stage algorithm for scheduling
a list of applications in L, where the number of applications
in L may be larger than the total number of cores available.
For an idle core c, the applications in L are first sorted based

on their big core speedups in descending order (lines 3 – 4)
or ascending order (lines 5 – 6) according to the core type of
c.

The sorted application list provides only a hint on which
applications may use a big core more efficiently (than a small
core). Then the performance interference is predicted for a
set of applications W , which includes a chosen application
L[i] and the existing on-core ones (line 8) by using the
performance degradation functions obtained during the offline
stage (line 9). To predict the slowdown of an application A
in W using PDA, we first calculate the aggregate pressure
P T (R) for each resource R on any cluster T using Equation 1.
Then the collected aggregate pressures are substituted into the
degradation function in Equation 4 to obtain the predicted
slowdown sdA. Initially, when W contains fewer applications
than the total number of cores, N , available, Equation 4
obtained earlier for N during the training phase is used.

Application A′ = L[i] is selected (lines 12 – 14) if the com-
puted performance slowdowns of the applications in W are all
within a user-defined contention threshold whose performance
impact is evaluated in Section IV-D. Otherwise, we re-evaluate
the interference for the next candidate in L (line 7). If none of
the applications in L satisfy the threshold condition, we choose
the application A′ = L[i] which causes the smallest total
performance slowdown (recorded during each loop iteration)
when it co-runs with the on-core applications (lines 16 – 18).

Finally, we map the selected application A′ to the idle core
c, remove A′ from L, and mark c as busy (lines 19 – 22).

Let us use an example to explain our online scheduling
algorithm. Suppose there are four applications: 255.vortex,
which is running on a big core, and 176.gcc, 179.art and
188.ammp, which are running on the three small cores. We
have a list L of other applications waiting to be scheduled
to the last idle big core c. Let us go through Algorithm 1 to
demonstrate how to map an application from L to run on c.

Suppose that after L has been sorted in line 4, 175.vpr
is at the head of L. The following steps are performed to
determine whether 175.vpr can be scheduled to c.

Step 1: Predict performance slowdowns. Following Equa-
tion 1, we first compute the aggregate pressures of 175.vpr
and the four on-core applications. The resulting aggregate
pressures on three shared resources in both clusters are:
P big(cache) = 23.58, P big(bus) = 19.26, P big(mem) =
11.27, P small(cache) = 50.27, P small(bus) = 73.91, and

747746

Algorithm 1: Online Scheduling
Procedure ONLINESCHEDULING()

begin
1 Let L be a list with m applications to be scheduled;
2 foreach c ∈ idleCores do
3 if c is a big core then
4 Sort the applications in L in descending

order of their big core speedups

5 else
6 Sort the applications in L in ascending

order of their big core speedups;

7 for i = 0; i < m; i++ do
8 Let W be a set including L[i] and the

current running applications on all cores;
9 Let sdA be the predicted slowdown of

every application A in W computed using
the performance degradation function PDA;

10 Let pdmin be the minimum slowdown,
initialized with the largest value possible;

11 Let S be a user-defined contention
threshold;

12 if @A ∈W : sdA > S then
13 A′ ← L[i];
14 break;

15 else
16 if pdmin >

∑|W |
j=0 sdW [j] then

17 pdmin ←
∑|W |

j=0 sdW [j];
18 A′ ← L[i];

19 Map A′ to core c;
20 W ← ∅;
21 Remove A′ from L;
22 Remove c from idleCores;

P small(mem) = 34.06. Then these aggregate pressures
are substituted into the performance slowdown function of
175.vpr, which is built during the offline stage (Sec-
tion III-A). Finally, we obtain the predicted performance
slowdown of 175.vpr as 50.69% (line 9). Similarly, the
predicted slowdowns, 2.83%, 35.16%, 30.95% and 36.68%,
of the four on-core applications are calculated using their own
degradation functions.

Step 2: Map an application to a core. Suppose that the
user-defined contention threshold S is 60%. Then all predicted
slowdowns are found to be within the threshold. As a result,
175.vpr is selected as an candidate, A′, to be scheduled
to the idle core (lines 12 – 14). However, if S is decreased
to 50%, the estimated performance slowdown of 175.vpr,
which is 50.69%, exceeds the threshold. As a result, 175.vpr

will not be selected as a candidate for scheduling at this stage.
Instead, we continue to examine the other applications in L
to evaluate their predicted slowdowns against S (line 7). If
all predicted slowdowns of the applications in L exceed S
when co-running with the current on-core applications, then
we choose to schedule an application A′ with the smallest total
performance degradation pdmin when co-running A′ with the
existing on-core applications (lines 16 – 18).

IV. EVALUATION

The objective of our evaluation is to demonstrate that our
offline interference model has low prediction errors and our
online stage is highly effective in scheduling a list of applica-
tions to improve overall performance in ARM’s big.LITTLE.
Our model can accurately predict the performance degradation
with an average prediction error of 9.60%. Compared with
the default scheduler provided by big.LITTLE and a speedup-
factor-driven scheduler, our contention-aware scheduler can
improve the overall system throughput by up to 28.32% and
28.51%, respectively.

A. Experimental Setup

We conduct our experiments on a recent ARM’s
big.LITTLE development board: Versatile Express CoreTile
(V2P-CA15x2 CA7x3) which consists of two Cortex-A15
cores and three Cortex-A7 cores (Table I). All cores in the
same cluster run at the same frequency. The frequencies of
the Cortex-A15 cores and the Cortex-A7 cores are set to
their default values, 1.2GHz and 1GHz, respectively. The
development board runs Linux Kernel 3.10.33 [1].

We use the ARM Streamline tool integrated in ARM
Development Studio to collect all the hardware performance
counter values such as access rate to different shared resources.
The Streamline tool interacts with a module called Gator that
runs in the Linux kernel on the development board to collect
the required data. The overhead caused by this kernel module
is less than 1% of the execution time of each benchmark.

B. Benchmarks

Our training benchmarks are chosen from CPU2006, Me-
diaBench and MiBench. The final training benchmark set
is listed in Table III, which is selected using the sampling
method mentioned in Section III-A. The three-dimensional
feature space is evenly divided with Ncache = 6, Nbus = 5
and Nmem = 5. Finally, 28 training benchmarks are selected.

We use 21 programs from CPU2000 (Table III) for our
target applications with the reference inputs used. All the
program are cross compiled on the host machine (Linux kennel
3.13.0) under “GCC -O3” option, and then the binaries are de-
ployed in the development board for conducting experiments.

C. Evaluating Interference Model

To evaluate the accuracy of the performance degradation
function PDA of an application A after training, we first
measure the exact runtime performance slowdown of A when
co-running A with other applications. Then, we compare

748747

0%	

20%	

40%	

60%	

80%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	 45	 46	 47	 48	 49	 50	 51	 52	 53	 54	 55	 56	 57	 58	 59	 60	 61	 62	 63	 64	 65	 66	 67	 68	 69	 70	 71	 72	 73	 74	 75	 76	 77	 78	 79	 80	 Pe
rf
or
m
an

ce
	 sl
ow

do
w
n

Workload	 ID

Average	 error	 6.66%

real	 predicted	

(a) Prediction accuracy on a big core with 80 workloads

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	 45	 46	 47	 48	 49	 50	 51	 52	 53	 54	 55	 56	 57	 58	 59	 60	 61	 62	 63	 64	 65	 66	 67	 68	 69	 70	 71	 72	 73	 74	 75	 76	 77	 78	 79	 80	

Pe
rf
or
m
an

ce
	 sl
ow

do
w
n

Workload	 ID

Average	 error	 9.60%

real	 predicted	

(b) Prediction accuracy on a small core with 80 workloads

Fig. 5: Prediction accuracies of performance slowdowns with 160 randomly generated workloads.

500	

700	

900	

1100	

1300	

1500	

1700	

1900	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10
	

11
	

12
	

13
	

14
	

15
	

16
	

17
	

18
	

19
	

20
	

21
	

22
	

23
	

24
	

25
	

26
	

27
	

28
	

29
	

30
	

31
	

32
	

33
	

34
	

35
	

36
	

37
	

38
	

39
	

40
	

av
era
ge
	

Ex
ec
u&

on
	&
m
e	
(s
ec
s)

Workload	ID

Default	scheduling	 Speedup	driven	scheduling	 Our	scheduling	

Fig. 6: Execution times of three schedulers with 40 randomly generated workloads with 10 applications per workload.

Training
benchmarks

410.bwaves 416.gamess 433.milc 434.zeusmp
435.gromacs 437.leslie3d 444.namd 445.gobmk
447.dealII 456.hmmer 458.sjeng 464.h264ref
470.lbm 482.sphinx3 basicmath qsort
tiffmedia lame jpeg h264
mpeg4 dijkstra stringsearch ispell
rsynth FFT pgp gsm

Target
applications

164.gzip 168.wupwise 171.swim 172.mgrid
173.applu 175.vpr 176.gcc 177.mesa
179.art 181.mcf 186.crafty 188.ammp
189.lucas 191.fma3d 197.parser 200.sixtrack
252.eon 253.perlbmk 255.vortex 256.bzip2
301.apsi

TABLE III: Training benchmarks and target applications.

the exact runtime performance slowdown with the estimated
slowdown produced by PDA to validate the accuracy of the
interference prediction model.

We generate 160 workloads with each of them made up of

five randomly selected applications from the 21 applications
in Table III. Figure 5 compares the accuracy of the estimated
performance degradations (red lines) against the exact slow-
downs during runtime (blue lines) on both big and small core
types. For each of the first 80 workloads, one application
running on a big core is randomly selected as the target
application to evaluate the prediction error for the big core
type (Figure 5(a)). Similarly, for the remaining 80 workloads,
one application running on a small core is randomly selected
from each workload to demonstrate the prediction accuracy
for the small core type (Figure 5(b)).

In most cases, the estimated performance degradation is
close to the real one measured during runtime. The prediction
error for estimating the performance slowdown of an appli-
cation on a big core ranges from 0.72% to 15.13%, with an
average of 6.66%. The prediction error for a small core ranges
from 0.40% to 19.45% with an average of 9.6%.

The eight applications chosen from the 21 applications

749748

0%	

2%	

4%	

6%	

8%	

10%	

12%	

14%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10
	
11
	
12
	
13
	
14
	
15
	
16
	
17
	
18
	
19
	
20
	
21
	
22
	
23
	
24
	
25
	
26
	
27
	
28
	
29
	
30
	
31
	
32
	
33
	
34
	
35
	
36
	
37
	
38
	
39
	
40
	

av
era
ge
	

St
an

da
rd
	D
ev
ia
,o

n

Workload	ID

Default	scheduling	 Speedup	driven	scheduling	 Our	scheduling	

Fig. 7: Standard deviations of the same 40 workloads used in Figure 6 with each repeated for 10 runs.

shown in Figure 8 are the ones that have a maximum per-
formance degradation over 50% on both big and small core
types. Figure 8 shows the percent contribution that each of the
factors has on the total degradation. The five factors, cache,
bus intra, mem intra, bus inter, mem inter, correspond to the
five coefficients α, β, γ, δ and θ in Equations 2 and 3, which
are instantiated by using regression analysis.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

 173.applu	 175.vpr	 176.gcc	 179.art	 181.mcf	 188.ammp	 197.parser	 255.vortex	

Co
nt
rib

u>
on

	 to
	 to

ta
l	 d
eg
ra
da

>o
n

benchmarks

Cache	 Bus_intra	 Mem_intra	 Bus_inter	 Mem_inter	

Fig. 8: Percent contribution from the five contention-impacting
factors to the total performance degradations for eight selected
applications.

D. Evaluating Scheduling

Our online scheduler is implemented by using the standard
process affinity API in Linux to map a process to a certain
core. For a list of candidate applications, our contention-aware
algorithm is invoked to schedule an application to an idle core
according to Algorithm 1.

The following two contention-unaware algorithms are used
to compare with our contention-aware approach based on the
total execution times for scheduling a list of applications.
• Default scheduling The default Global Task Scheduling

(GTS) algorithm [13] provided by the development board
with randomly ordered candidate applications.

• Speedup-factor-driven scheduling The algorithm that
schedules an application with a higher big core speedup
to a big core, and an application with a lower speedup to
a small core.

We generate 40 workloads with each containing 10 ran-
domly selected applications from the 21 applications in Ta-
ble III. For a workload, the average execution time in 10 runs
for each scheduling algorithm is recorded. The performance
results and their corresponding standard deviations for the
three schedulers are compared in Figures 6 and 7, respectively.

In most cases, our scheduler performs better than the other
two. Compared with the default scheduler, the average speedup
of our scheduler is 12.04% with a maximum speedup of
28.32%. Compared with the speedup-factor-driven scheduler,
our scheduler can achieve an average speedup of 7.84%
with a maximum speedup of 28.51%. Our contention-aware
scheduler has smaller deviations (2.37% on average) in the 10
runs than the other two. The default scheduler has the largest
deviation with an average of 6.22%, and the speedup-factor-
driven scheduler has a deviation of 2.45% on average.

An important parameter that affects our contention-aware
scheduler is the performance slowdown threshold as intro-
duced in Section III-B, which is used to map an application to
an idle core when the predicted slowdowns of the applications
in a workload are within the user-defined value. Figure 9
compares the average execution times of the 40 workloads
under a number of threshold values. The performance results
vary across the threshold values selected. Best scheduling can
be obtained by tuning an appropriate value, which is neither
too small (leading to conservative scheduling due to its over-
sensitivity to the resource contention) nor too large (resulting
in severe performance interference).

1080	

1100	

1120	

1140	

1160	

1180	

1200	

1220	

30%	 40%	 50%	 60%	 70%	 80%	 90%	

Ex
ec
u&

on
	&
m
e	
(s
ec
s)

Threshold	value

Fig. 9: Execution times under different contention threshold
values (of S) in our content-aware scheduler (Algorithm 1).

750749

V. RELATED WORK

We limit our discussion to the most related work below:
a) Asymmetric Multicore Processors: A lot of work [5,

16, 24, 28, 31, 32] has been done on developing analytical
performance models and contention-unaware scheduling algo-
rithms for single-ISA heterogeneous multicore processors.

The speedup-factor-driven approaches proposed by Becchi
et al. [5] and Kumar et al. [16] schedule an application to
the most appropriate core type by periodically sampling the
cycles per instruction of the application on different core types.
However, the approaches scale poorly with the increasing core
count. Instead of sampling, the offline approach [28] obtains
the speedup factor using profiling information.

The phase-based tuning approach [29] uses control flow
analysis to divide an application into code segments and group
them into clusters such that all code segments in the same
cluster show similar runtime characteristics. By sampling a
few representative code segments from each cluster on each
type of core, it obtains the runtime characteristic of each
cluster and then makes scheduling decisions based on this
information.

Performance impact estimation (PIE) [32] collects the pro-
filing information of an application on one core type to
estimate the performance of that application on the other
core type. These authors demonstrate that memory-dominance
scheduling [7, 14, 27] that maps applications with frequent
memory-related stalls to small cores and compute-intensive
applications to big cores may lead to suboptimal scheduling
when memory intensity alone is not a good indicator. Later
work by Pricopi et al. [24] improves PIE by building a
predicting model that can predict both power and performance
without the additional hardware support that PIE needs.

In [21], Moore et al. introduce an empirical strategy to
automatically build estimation models that capture how a
multithreaded program’s performance scales with thread count
and core type.

Van Craeynest et al. [31] have recently studied fairness-
aware scheduling for single-ISA heterogeneous multicore pro-
cessors. The approach accelerates threads on big cores based
on two criteria, equal-time scheduling and equal-progress
scheduling. Different from our goal to improve overall system
performance, fairness-aware scheduling focuses on guarantee-
ing balanced progress of all threads. Our scheduling strategy
can be complementary by improving the accuracy of their
approach further with contention being considered.

b) Performance Interference: There is a large body of
work to address the shared resource contention on symmetric
multicore processors [8, 19, 25, 26, 30, 35, 36] and the
contention of co-located applications in warehouse-scale com-
puting [6, 11, 20, 33, 34].

As a representative case, cache contention has been exten-
sively studied. Various cache partitioning algorithms are pro-
posed to minimize the contention effects either via customized
hardware solutions [25, 26] or software based page coloring
approaches [8, 19, 30]. Some contention-aware scheduling
algorithms [35, 36] are proposed for SMP systems where

shared resources such as memory controller [22], on-chip
interconnect [9], and prefetching [10] can significantly affect
the overall system performance.

Several recent efforts on predicting, and scheduling ware-
house applications are proposed to reduce the performance in-
terference between co-located datacenter applications by con-
sidering shared resource contention. Bubble-Up [20] predicts
the performance degradation between two applications for the
shared memory subsystem. Bandit [11] focuses on bandwidth
contention among several co-running applications that may
hurt overall performance. Zhao et al. [33, 34] present a two-
phase empirical model for predicting performance interference
by considering both cache and bandwidth consumption using
piecewise predictor functions.

VI. CONCLUSION

This paper presents a new contention-aware workload
scheduler for asymmetric multicore processors. Our schedul-
ing framework, evaluated in ARM’s big.LITTLE, consists of
an offline performance interference model for predicting the
performance slowdown of an application when it co-runs with
other applications, and an online stage for scheduling an ap-
plication to the most appropriate core type based on predicted
performance interference. Our design is simple and can be
easily integrated in existing AMP systems. Compared with the
default scheduler provided by big.LITTLE and speedup-factor-
driven scheduler, our scheduler can improve overall system
performance by up to 28.32% and 28.51%, respectively.

VII. ACKNOWLEDGEMENT

The authors wish to thank the reviewers for their help-
ful comments. This work is supported by ARC grants,
DP110104628 and DP130101970.

REFERENCES

[1] Linaro stable kernel release for versatile express.
https://releases.linaro.org/14.03/openembedded/vexpress-
lsk.

[2] ARM. ARM Cortex-A15 MPCore processor
technical reference manual, 2013. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/
DDI0438I cortex a15 r4p0 trm.pdf.

[3] ARM. big.LITTLE technology: The future of mo-
bile, 2013. http://www.arm.com/files/pdf/big LITTLE
Technology the Futue of Mobile.pdf.

[4] ARM. Cortex-a7 mpcore technical reference manual,
2013. http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0464f/DDI0464F cortex a7 mpcore r0p5 trm.pdf.

[5] M. Becchi and P. Crowley. Dynamic thread assignment
on heterogeneous multiprocessor architectures. In CF
’06, pages 29–40, 2006.

[6] A. D. Breslow, A. Tiwari, M. Schulz, L. Carrington,
L. Tang, and J. Mars. Enabling fair pricing on HPC
systems with node sharing. In SC ’13, pages 37:1–37:12,
2013.

751750

[7] J. Chen and L. K. John. Efficient program scheduling for
heterogeneous multi-core processors. In DAC ’09, pages
927–930. ACM, 2009.

[8] S. Cho and L. Jin. Managing distributed, shared L2
caches through OS-level page allocation. In MICRO ’06,
pages 455–468, 2006.

[9] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das.
Application-aware prioritization mechanisms for on-chip
networks. In MICRO ’09, pages 280–291, 2009.

[10] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt.
Coordinated control of multiple prefetchers in multi-core
systems. In MICRO ’09, pages 316–326. ACM, 2009.

[11] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hager-
sten. Bandwidth bandit: Quantitative characterization of
memory contention. In CGO ’13, pages 1–10, 2013.

[12] S. Ghiasi, T. Keller, and F. Rawson. Scheduling for
heterogeneous processors in server systems. In CF ’05,
pages 199–210, 2005.

[13] B. Jeff. big.LITTLE technology moves towards fully
heterogeneous global task scheduling. In ARM White
Paper.

[14] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in
heterogeneous multi-core architectures. In Eurosys ’10,
pages 125–138, 2010.

[15] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,
and D. M. Tullsen. Single-ISA heterogeneous multi-
core architectures: The potential for processor power
reduction. In MICRO ’03, pages 81–92, 2003.

[16] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and
K. Farkas. Single-ISA heterogeneous multi-core architec-
tures for multithreaded workload performance. In ISCA
’04, pages 64–75, 2004.

[17] N. Lakshminarayana, J. Lee, and H. Kim. Age based
scheduling for asymmetric multiprocessors. In SC ’09,
pages 1–12, 2009.

[18] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn.
Efficient operating system scheduling for performance-
asymmetric multi-core architectures. In SC ’07, pages
1–11, 2007.

[19] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and
real systems. In HPCA ’08, pages 367–378, 2008.

[20] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations. In MICRO
’11, pages 248–259, 2011.

[21] R. Moore, B. Childers, and J. Xue. Performance mod-
eling of multithreaded programs for mobile asymmetric
chip multiprocessors. In ICESS ’15, 2015.

[22] T. Moscibroda and O. Mutlu. Memory performance
attacks: Denial of memory service in multi-core systems.
In USENIX Security Symposium, page 18, 2007.

[23] Nvidia. Variable SMP - a multi-core CPU ar-
chitecture for low power and high performance,
2011. http://www.nvidia.com/content/PDF/tegra white
papers/tegra-whitepaper-0911b.pdf.

[24] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani,
T. Mitra, and S. Vishin. Power-performance modeling
on asymmetric multi-cores. In CASES ’13, pages 1–10,
2013.

[25] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt.
A case for MLP-aware cache replacement. ISCA ’06,
34(2):167–178, 2006.

[26] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In MICRO ’06,
pages 423–432, 2006.

[27] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov.
A comprehensive scheduler for asymmetric multicore
systems. In EuroSys ’10, pages 139–152, 2010.

[28] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar.
HASS: A scheduler for heterogeneous multicore systems.
SIGOPS Oper. Syst. Rev., 43(2):66–75, Apr. 2009.

[29] T. Sondag and H. Rajan. Phase-based tuning for better
utilization of performance-asymmetric multicore proces-
sors. In CGO ’11, pages 11–20, 2011.

[30] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
Rapidmrc: approximating L2 miss rate curves on com-
modity systems for online optimizations. In ASPLOS ’09,
volume 37, pages 121–132, 2009.

[31] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and
L. Eeckhout. Fairness-aware scheduling on single-ISA
heterogeneous multi-cores. In PACT ’13, pages 177–187,
2013.

[32] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and
J. Emer. Scheduling heterogeneous multi-cores through
performance impact estimation (PIE). In ISCA ’12, pages
213–224, 2012.

[33] J. Zhao, H. Cui, J. Xue, and X. Feng. Predicting cross-
core performance interference on multicore processors
with regression analysis. IEEE Transactions on Parallel
and Distributed Systems, PP(99):1–1, 2015.

[34] J. Zhao, X. Feng, H. Cui, Y. Yan, J. Xue, and W. Yang.
An empirical model for predicting cross-core perfor-
mance interference on multicore processors. In PACT
’13, pages 201–212, 2013.

[35] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Address-
ing shared resource contention in multicore processors
via scheduling. In ASPLOS ’10, pages 129–142, 2010.

[36] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova,
and M. Prieto. Survey of scheduling techniques for ad-
dressing shared resources in multicore processors. ACM
Computing Surveys (CSUR), 45(1):4, 2012.

752751

