
Static Detection of Control-Flow-Related
Vulnerabilities Using Graph Embedding

Xiao Cheng1, Haoyu Wang1, Jiayi Hua1, Miao Zhang1, Guoai Xu1, Li Yi2 and Yulei Sui3
1 Beijing University of Posts and Telecommunications, Beijing, China

2 National Computer Network Emergency Response Technical Team Coordination Center, Beijing, China
3 University of Technology Sydney, Australia

Abstract—Static vulnerability detection has shown its effec-
tiveness in detecting well-defined low-level memory errors. How-
ever, high-level control-flow related (CFR) vulnerabilities, such
as insufficient control flow management (CWE-691), business
logic errors (CWE-840), and program behavioral problems
(CWE-438), which are often caused by a wide variety of bad
programming practices, posing a great challenge for existing
general static analysis solutions. This paper presents a new deep-
learning-based graph embedding approach to accurate detection
of CFR vulnerabilities. Our approach makes a new attempt
by applying a recent graph convolutional network to embed
code fragments in a compact and low-dimensional representation
that preserves high-level control-flow information of a vulnerable
program. We have conducted our experiments using 8,368 real-
world vulnerable programs by comparing our approach with
several traditional static vulnerability detectors and state-of-the-
art machine-learning-based approaches. The experimental results
show the effectiveness of our approach in terms of both accuracy
and recall. Our research has shed light on the promising direction
of combining program analysis with deep learning techniques to
address the general static analysis challenges.

Index Terms—Static analysis, graph embedding, vulnerabili-
ties, control-flow

I. INTRODUCTION

Modern software is large and complex widely used in all
aspects of our daily life, from desktop applications to mobile
apps, from embedded systems to data centres. Unfortunately,
complex system software is often plagued with vulnerabilities,
resulting in serious reliability and security concerns. Automatic
detection of software vulnerabilities through software analysis
and testing has become a fundamental approach to taming
these reliability and security issues.

Static bug detection, which approximates the runtime be-
haviour of a program without running it, is the major way to pin-
point bugs at the early stage of software development cycle, thus
reducing software maintenance cost. The existing static analysis
techniques (e.g., Coverity [3], Fortify [5], Flawfinder [4],
ITS4 [30], RATS [6], Checkmarx [2] and SVF [29]) have
shown their successes in detecting traditional vulnerabilities
(e.g., buffer overflows, memory leaks and use-after-frees).
However, these approaches that rely on conventional static
analysis theories (e.g., data-flow and abstract interpretation) are
still ineffective in detecting non-traditional control-flow-related
(CFR) bugs, such as insufficient control flow management
(CWE-691), business logic errors (CWE-840), and program

behavioral problems (CWE-438), which are often caused by
bad programming practices.

Figure 1 shows three real-world examples of the afore-
mentioned three CFR vulnerabilities. The code fragment in
Figure 1(a) shows a CWE-691 vulnerability found from
Charting, a BIMserver plugin that can create all sorts of
charts. The keyword ‘else’ should match the first ‘if’, but
not the second one. However, the developer forgot the curly
braces, resulting in a wrong execution scope on the control-
flow. Figure 1(b) shows a code fragment from CWE™ [9]. The
vulnerable code does not place any restriction on the number of
authentication attempts made, which leaves attack surfaces that
can be leveraged by attackers to launch brute force attempts.
This shows an anomaly code pattern that causes a logic error
due to the missing of conditional checks. The code fragment
in Figure 1(c) is from a FTP server. The correct code requires
that users must successfully login before performing any other
action such as retrieving or listing files. However, the vulnerable
code which is different from other correct authentication code
snippets in the same project (in terms of control-flow orders),
will incorrectly list the files without confirming users’ identities.

Unlike low-level memory errors which have clear and well-
defined bug specifications for static analysis (e.g., a use-
after-free happens when referencing an object that has been
freed), high-level CFR bugs are often triggered due to bad yet
complicated programming practices, posing a great challenge
for existing rigours and traditional static analyzers in the
presence of a wide variety of anomaly code patterns.

It is non-trivial for human experts to define customized
rules for detecting CFR vulnerabilities. This is not only
because vulnerability detection itself is difficult in a complex
software system, but also because different patterns may
require different detecting rules. The quality of each rule also
varies with individuals. Thus, the results are often limited by
their existing experience in summarizing vulnerability patterns.
Simply designing an unsound analysis using user-defined
pattern matching may result in a large number of false positives
and/or false negatives.

Recently, machine learning has shown its effectiveness
in boosting the performance of static analysis for detecting
memory errors such as buffer overflows [13], [21] and use-after-
frees [35]. However, many state-of-the-art static approaches
require compilable and complete source code, which makes
hard for analyzing incomplete or incompilable code fragments

(a) CWE-691 Insufficient Control Flow
Management

(Charting - a BIMserver plugin)

(b) CWE-840 Business Logic Errors
(Improper Control of Interaction Frequency example from

https://cwe.mitre.org/)

(c) CWE-438 program behavioral Problems
(Improper Enforcement of Behavioral Workflow

example from https://cwe.mitre.org/)

Curly Braces VS. No Braces !

Different Behavioral
order !

Should limit attempt
count-> Different CFG

structure and condition !C
o

rr
e

ct
V

u
ln

er
ab

le
Curly Braces!

 No Braces !

No attempt count limit!

Limit attempt count!

Authentication!

Useless
Authentication!

Fig. 1. Real-world control-flow-related (CFR) vulnerabilities that are hard to be automatically identified by traditional static vulnerability detection approaches.
For each example, we list the correct code fragment and the corresponding identified vulnerable code.

under real-world settings, particularly for detecting high-level
CFR vulnerabilities. It remains open as to whether we can
leverage machine learning or its promising branch, deep
learning, to produce an accurate code representation to support
detecting complicated high-level CFR vulnerabilities.

In this paper, we propose VGDETECTOR, a new deep-
learning-based code embedding approach to detecting control-
flow-related (CFR) vulnerabilities. Our approach makes a new
attempt by applying a recent graph convolutional network to
embed code fragments in a compact and low-dimensional
code representation that preserves high-level control-flow
information of a vulnerable program, without the needs of
manually defined rules. We have conducted our experimental
evaluation based on a large-scale benchmark harvested from
the Software Assurance Reference Dataset (SARD) [8], which
contains a set of known real-world security flaws. To validate
the effectiveness of our approach, we have compiled a list of
8,368 real-world programs (roughly 60K methods) which are
only close related to CFR bugs (i.e., CWE-691, CWE-840 and
CWE-438). To demonstrate the effectiveness of our approach,
we have conducted extensive experiments by comparing our
approach with both well-known conventional static detectors
(including Flowfinder [4] and RATs [6]) and state-of-the-art
machine-learning-based approaches (including Token-based
embedding [33]) and Vuldeepecker [22])).

The key contributions of this paper are as follows:

• We propose VGDETECTOR, a new code representation
approach using graph convolutional network to embed
control-flow information of vulnerable code fragments
that do not have to be compilable.

• We present new insights and an effective deep-learning-
based approach to detect high-level CFR vulnerabilities,
i.e., insufficient control flow management (CWE-691),

business logic errors (CWE-840), and program behavioral
problems (CWE-438). To the best of our knowledge,
no previous studies have investigated such kinds of
vulnerabilities and provided effective solutions.

• Since there are no readily available reference datasets
for complicated high-level CFR vulnerabilities, we also
contribute a large-scale reference dataset to our community
from real-world programs to boost future research studies.

• We have conducted our experiments by comparing VGDE-
TECTOR with the traditional static vulnerability detectors
and two recent machine-learning-based approaches in
characterizing CFR vulnerabilities. The results show the
effectiveness of our deep-learning-based approach in terms
of both accuracy and recall.

II. DESIGN OF VGDETECTOR

The goal of VGDETECTOR is to automatically and statically
detect CFR vulnerabilities without the knowledge of well-
defined patterns of such vulnerabilities, thus saving the efforts
of human inspection to identify high-level yet complicated
vulnerabilities. To this end, we propose a deep-learning-based
approach, and the key idea is to first perform program analysis
on the source code to extract control-flow related semantic
features, and then combine them with graph convolutional
network to embed code fragments in latent feature space.

This section first introduces the design overview of VGDE-
TECTOR. We then detail the major components of VGDETEC-
TOR including code pre-processing, control flow graph (CFG)
construction, CFG embedding and neural network training.

A. Overview of VGDETECTOR

As shown in Fig. 2, the overall inspection process is divided
into two phases, the training and detecting phases. The inputs of
both phases are the source code of programs. A neural network

Source Code for training

Int main(){
...
If(a==NULL){
a++;
}else{
return 0;
}
...
}

Preprocessed source code

...

... ...

...

Int main(){
...
If(a==0){
a=a+1;
}else{
return 0;
}
...
}

...

... ...

...

CFGs

...
If(a==0)

a=a+1

...

return 0

Input Pre-processing
Extracting

CFGs

[...]

[...]

[...]

[...]

...

... ...

...

...

... ...

...

CFGs' vector representations

Basic block
embedding

Training a
GCN

Input
Layer

X1

X2

X3

X4

Z1

Z2

Z3

Z4

Output
Layer

Hidden
Layers

Y1 Y4

Output

Well-
trained

GCN model

Source Code for detecting

Input

Preprocessed source code

Pre-processing

...

... ...

...

...

... ...

...

CFGs

Extracting
CFGs

...

... ...

...

...

... ...

...

Basic block
embedding

Well-
trained

GCN model

Classifying

“0”-
correct

“1”-
vulnerable

Output

CFGs' vector representations

Fig. 2. Overview of VGDETECTOR. The training phase (on the top side) aims to train a model encoded with vulnerability patterns and the detecting phase (on
the bottom side) is to flag whether the target code is vulnerable or not.

model is established in the training phase, embedded with the
control-flow related information of vulnerable code fragments,
reflecting the high-level patterns of CFR vulnerabilities for
later accurate vulnerability detection.

1) Training phase: Our training phase consists of four main
steps, including (1) pre-processing, (2) control-flow graph
construction and labeling, (3) embedding for each basic block
on the constructed CFG using Doc2Vec [18], and (4) the
overall CFG embedding using graph convolutional network [17]
on top of the Doc2Vec embedding of the nodes on the
CFG. VGDETECTOR works directly on the source code of
a program instead of a compiled intermediate representation,
thus our approach is able to support embedding of incomplete
or uncompile code fragments. Embedding a basic block via
Doc2Vec treats its statements as a sequence of tokens, which
needs to be pre-processed to produce a more canonical form of
the source code for an accurate Doc2Vec embedding, while
keeping changing the underlying semantics of the code.

Step 1: Source code pre-processing. For the source code
that preserves the same semantics, there may be multiple
ways for implementation, depending on the coding style of
developers, e.g., naming conventions, statement expressions,
etc. Moreover, developers may define macros in the source code.
Thus, we seek to unify the code that preserves the identical
semantics by summarizing a list of transformation rules (cf.
Table I) and expanding the defined macros if available. The
goal of this step is to eliminate the inconsistencies in the source
code representation, thus to achieve accurate word embedding.

Step 2: Constructing the control flow graph. Since we aim
to detect CFR vulnerabilities, the control-flow-related semantic
information (e.g., CFG together with its branch conditions)
is the major choice for the representation of the source code.
Thus, we first generate the CFG for each function based on
its AST generated by the tool ANTLR4 [1] (more details are

discussed in Section II-C). Each constructed CFG is further
flagged as whether it contains CFR vulnerabilities or not.

Step 3: Basic block embedding via Doc2Vec. A neural
network takes a vector as an input, thus we first transform each
basic block in the constructed CFG, including its statements
and branch conditions, into vector representation. Here, we
take advantage of Doc2Vec [18] for embedding code (in the
form of tokens) into fixed length low-dimensional vectors.

Step 4: Graph embedding via GCN. To accurately embed
graph data structure such as CFG, it is hard to apply neural
models like CNNs and RNNs, which perform well on sequential
tokens but not on graphs. We use graph convolutional neural
networks [17], which represent a recent advance in precise
graph embedding to perform classic ML tasks, such as
classification and clustering. We use the vector representation
of each basic block of a CFG as the feature of each node.
Given the edges of the CFG in the form of adjacency matrix
and the feature of each node in the CFG, we can train our
model by using graph convolutional neural networks [17] to
conduct standard classification of nodes on the graph.

2) Detecting phase: The detecting phase performs CFR
vulnerability prediction for a target program using the trained
model by feeding the extracted CFG related features. Similar
as the training phase, the CFGs of the target program are
first constructed and embedded into a latent space after
pre-processing. We then perform classification for detecting
anomaly code fragments that may contain CFR vulnerabilities.

B. Pre-processing source code

Our approach analyzes a program at the source code level to
handle code fragments that may be incomplete or uncompilable.
Therefore, we have adopted a pre-processing step first to
produce a more canonical form of the original source code.
As aforementioned, the different representations of the same
semantics (e.g., expression “a + = 1” is equivalent to “a = a + 1”)

const gchar*
demo(guint32 val, const value_string *vs, const char *fmt) {
 const gchar *ret;

 g_assert(fmt != NULL);

 ret = match_strval(val, vs);
 if (ret != NULL)
 return ret;
 else cout<<"ret null";

 return ep_strdup_printf(fmt, val);
}

...

functiondefination

functionbody

...

Source code Abstract Syntax Tree

const gchar *ret;
g_assert(fmt != NULL);
ret = match_strval(val, vs);
if (ret != NULL)

return ret;

cout<<"ret null";
return ep_strdup_printf(fmt, val);

Control Flow Graph

...

...... ...

Fig. 3. An Example of Constructing the Control Flow Graph.

lead to different orders of code tokens, making Doc2Vec [18]
embedding of basic block imprecise.

Inspired by the text pre-processing step in the NLP-related
studies, we transform the code text before the Doc2Vec [18]
embedding step. We first convert all the letters in the source
code to the lower case and remove punctuations, accent marks,
and other diacritics. This eliminates the inconsistency of code
recognition caused by different coding styles. We try to unify
the code while preserving the identical semantics by summariz-
ing a list of rules belonging to four main categories (Table I),
including “removing operations”, “simplifying operations”,
“replacing operations”, and “other operations”. Furthermore,
we have expanded the defined macros in the source code if
available. Here, we take advantage of the Tscancode [7] to
perform the aforementioned transformations.

C. Constructing the CFG

We first generate the abstract syntax trees (ASTs) of a
program by taking advantage of ANTLR4 [1] (Another Tool for
Language Recognition), which is a robust parser generator for
reading, processing, executing, or translating structured text or
binary files. Then we traverse the ASTs to identify the contained
functions. Next, we construct the CFG for each function, on
which each node represents a basic block (i.e., a unit of straight-
line statements with no branches), and each edge signifies
the control-flow between two basic blocks, representing the
possible program execution order. This representation together
with the branch conditions are very useful for pinpointing CFR
vulnerabilities. Fig 3 shows an example of the constructed CFG
for the given code fragment. Note that we perform vulnerability
prediction at the granularity of method (CFG), i.e., each method
is flagged as vulnerable or not by referring to the ground truths.

D. Basic Block Embedding

For each constructed CFG, we first transform it into the
symbolic representation. As shown in Figure 4, we have
replaced all the user-defined variables and functions with their
symbolic names (e.g., variables are with names “VAR1” and
“VAR2”, functions are with names “FUN1” and “FUN2”)
in a one-to-one mapping manner. It is worth mentioning
that multiple variables/functions may be mapped to the same
symbolic name when they appear in different CFGs.

const gchar *ret;
g_assert(fmt != 0);
ret = match_strval(val, vs);
if (ret != 0)

return ret;

cout<<"ret null";
return ep_strdup_printf(fmt, val);

CFG Before Symbolization

const gchar *VAR1;
g_assert(VAR2 != 0);
ret = FUNC1(VAR3, VAR4);
if (VAR1 != 0)

return VAR1;

cout<<"ret null";
return FUNC2(VAR2, VAR3);

CFG After Symbolization

Fig. 4. Transforming a CFG to its Symbolic Representation.

const gchar * VAR1 ;
g_assert (VAR2 != 0) ; ret
= FUNC1 (VAR3 , VAR4) ;
if (VAR1 != 0)

return VAR1 ;

cout << " ret null " ;
return FUNC2 (VAR2 , VAR3) ;

Control Flow Graph Embedding

vector0

vector1

vector2

Fig. 5. Embedding CFGs’ Symbolic Representations Into Vectors.

Then, we will encode each basic block on the CFG
into vectors using Doc2vec [18], a widely used tool to
represent documents as fixed length low-dimensional vectors
(i.e. document embeddings). Fig 5 shows an example of the
basic block embedding process. Each basic block is considered
as a document, consisting of several lines of statements. We
first tokenize the document and encode it into a vector using
document embedding method named Distributed Memory
version of Paragraph Vector (PVDM). It acts as a memory
that remembers what is missing from the current context —
or as the topic of the paragraph. The document vector intends
to represent the concept of a document (i.e. basic block).

E. Graph Embedding

Previous work [17] has suggested that the graph convolu-
tional neural network performs well on traditional machine
learning tasks with graph data structures. Here, we choose
GCNConv [17] as the convolutional layer of our model, which
is scalable for semi-supervised learning on graphs. This model

TABLE I
FOUR TYPES OF RULES FOR PRE-PROCESSING THE SOURCE CODE.

Operation Catagory Detailed Description

Removing operations

MACRO in variable declaration like “MACRO int x” redundant parentheses
keywords(‘deprecated’,‘volatile’,‘inline’,‘register’,‘restrict’)

expr.(“extern ‘C”’ and “extern ‘C”’ {}) calling conventions(“__cdecl”,“ __stdcall”..)
expr.(“__attribute__((?))” and “__declspec()”)

Simplifying operations C alternative tokens (‘and’,‘or’,etc.) simple calculations “0[foo]” => “*(foo)”
case ranges (gcc extension) labels and “case|default”-like syntaxes “[;{}]({code;});”=>“[;{}] code;”

Replacing operations

inline SQL => “asm()” “a ## b” => “ab” ‘NULL’ and similar ‘0’-defined macros => ‘0’
platform dependent types => standard types (32 bits: size_t -> unsigned long ;64 bits: size_t -> unsigned long long)

“unsigned long long int” => “long” (with “_isUnsigned=true”,“_isLong=true”)
‘sin(0)’ => ‘0’ and other similar math expressions “x = ({ 123; });” => “{ x = 123; }”

operator name tokens => single token(“operator =” => “operator=”) “a+=b;” => “;a=a+b;”
“f(x=g())” => “x=g(); f(x)” e.g.“atol(“0”)” => ‘0’

Other operations
expand typedef and user-defined macros Combine strings and “- %num%”

Split up variable declarations Handle templates
Put “ˆ {}” statements in “asm()” Order keywords ‘static’ and ‘const’

Input Layer

X1

X2

X3
X4

Z1

Z2

Z3
Z4

Output LayerHidden Layers

Y1

Y4

C F

Fig. 6. The structure of the graph convolutional neural network.

is based on an efficient variant of the convolutional neural
network. Fig. 6 shows an example of the structure of the GCN
for semi-supervised learning with C input channels and F
feature maps in the output layer.

Fig 7 shows the structure of our neural network. We choose
the node feature matrix and the adjacency matrix of the control
flow graph as the input of our neural network. Then the two
matrices were feed to the convolutional part. The convolutional
part consists of a convolutional layer and max-pooling layer.
The activation function we chose in our system is the Rectified
Linear activation function (ReLU). In the convolutional layer,
features were extracted from the node feature matrix and the
adjacency matrix of the input graphs. After each convolutional
layer, we use max-pooling to reduce the feature dimensions.
In our detection system, there can be multiple layers of the
convolutional part. We use a hidden fully connected layer
after the last convolutional layer, which allows high-order
relationships between the features to be detected. Finally,
a softmax layer is used to output the probabilities of class
labels. It is worth noting that most of the parameters in the
neural network are updated automatically by back propagation
during training. Next, we will introduce the propagation rule
of convolution layer in detail as it is the most important part.

Propagation rule of the convolutional layer. The purpose
of the convolution is to extract different features of the inputs.
More convolutional layers of the network can iterate extracting
more complex features from low-level features. In our proposed
architecture, there can be multiple convolutional layers being
used. These convolutional layers are numbered from 1 to
L. The first convolutional layer’s input is the node feature
matrix X, with shape [num_nodes, num_node_features],
where num_nodes is the total number of the basic blocks
and num_node_features is the dimension of the vector
representation of each basic block. We consider a multi-layer
Graph Convolutional Network (GCN) with the following layer-
wise propagation rule:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(1)

Ã = A+ IN represents the adjacency matrix of the graph
with added self-connections. Among them IN is the identity
matrix. D̃ii =

∑
jÃij and W(l) is a layer-specific trainable

weight matrix. σ (·) denotes an activation function. We choose
Rectified Linear activation function(ReLU) as our activation
function:

ReLU (·) = max (0, ·) (2)

H (l) εRN×D means the matrix of activations in the lth

layer of the neural network. For the first layer, H(0) = X. As
can be seen from the propagation rule, the adjacency matrix
of the graph and the feature of each node are encoded into
the convolutional layer. It means that our model scales linearly
in the number of control flow graph edges. The hidden layer
representations is learned by encoding both local control flow
graph structure and the features of each basic block.

III. EXPERIMENTAL SETUP

To the best of our knowledge, no available benchmarks
regarding CFR vulnerabilities could be applied to our evaluation
directly. Thus, we first propose to harvest a reliable dataset of

B1

B2

B3

B1

B2

B3

B4

B1

B2
CFG 1

CFG 2

CFG N

N input graphs

CFG 1

CFG 2

CFG N

Adjacency matrix
Sparse/block-diagonal

. . .

ReLU(A,X)

Pooling

Multiple
optional

Linear

Softmax

Class Label

.
. . .

. . .

. . .

Fig. 7. The structure of our neural network.

CFR vulnerabilities from real-world programs. Then, we detail
the training process of the proposed GCN network.

A. Creating the benchmark

We have harvested a comprehensive CFR vulnerability
benchmark dataset from Software Assurance Reference Dataset
(SARD) [8], which hosts a large number of known real-world
security flaws. It is widely used to evaluate the performance of
vulnerability detection approaches in our community (e.g. [11]
[22] [10].) In the SARD dataset, each program (i.e., test case)
corresponds to one or more CWE IDs, as multiple types of
vulnerabilities could be identified in a program. We identify
three major CFR vulnerability categories (i.e., CWE-691, CWE-
840 and CWE-438) in the SARD. Thus, we have implemented
a crawler to harvest all the available programs related to the
following three CFR vulnerabilities from SARD.

• Insufficient Control Flow Management Vulnerability
(ICFMDS, CWE-691): The code does not sufficiently
manage its control flow during execution, creating condi-
tions in which the control flow can be modified/referred
in unexpected ways. There are 80 CWE-IDs belonging to
this category according to CWE™ [9].

• Business Logic Errors (BLEDS, CWE-840): Vulner-
abilities in this category allow attackers to manipulate
the business logic errors of an application, which can
be devastating to the entire application. However, many
business logic errors can exhibit patterns that are similar
to well-understood implementation and design weaknesses.
73 CWE-IDs belongs to this category.

• Behavioral Problems (BHPDS, CWE-438): Vulnerabil-
ities in this category are related to unexpected behaviors
from code that an application uses, such as incorrect
control-flow execution orders. There are 29 CWE-IDs
belonging to this category.

We conservatively label a sample code as ‘1’ (i.e. vulnerable)
if the code contains at least one vulnerable statement and ‘0’
otherwise. Note that, most of programs in the SARD dataset
were considered to be vulnerable. At last, our constructed

TABLE II
DISTRIBUTION OF LABELLED SAMPLES AT DIFFERENT GRANULARITIES.

Vul Category granularity vulnerable correct total

ICFMDS
program 624 13 637
method 850 4,563 5,413

code-gadget 80 224 304

BLEDS
program 3,859 6 3,865
method 4,014 22,497 26,511

code-gadget 871 1,980 2,851

BHPDS
program 3,860 6 3,866
method 4,015 22,500 26,515

code-gadget 869 1,982 2,851

TOTAL
program 8,343 25 8,368
method 8,879 49,560 58,439

code-gadget 1,820 4,186 6,006

benchmark contains 8,368 programs, including 8,343 vulnerable
ones and 25 correct one, as shown in Table II. Note that, as
our detection performs on the method granularity (CFG of
each method), i.e., pinpointing whether a CFG of a method
is vulnerable or not, thus we further analyze each program
sample to label the vulnerable/accurate method, and use the
CFG related features to train our model. We have labelled
8,879 vulnerable method and 49,560 methods without any
vulnerabilities, as shown in Table II. Note that we also
labelled the samples at the code-gadget granularity. Note that a
code gadget is assembled by program slices [32], representing
the statements of a program (i.e., lines of code) that are
semantically related to an argument of a library/API function
call [22], which will be used in our evaluation (cf. Section IV-C).
Comparing with existing studies, we believe the benchmark
we crafted is large enough to perform evaluation.

B. Training the neural network

For the constructed benchmark, we randomly select 80%
of the samples to train the neural network. We first introduce
how we adapt the CFG samples to the existing neural network
framework. Then we describe the details to implement the
GCN model in this paper.

Data handling of graphs. A graph is used to model
pairwise relations (edges) between objects (nodes). A single

const gchar * VAR1 ; g_assert
(VAR2 != 0) ; ret = FUNC1 (
VAR3 , VAR4) ; if (VAR1 != 0
)

return VAR1 ;

cout << " ret null " ;
return FUNC2 (VAR2 , VAR3) ;

Basic block 0:vec0

Basic block 1:vec1 Basic block 2:vec2

Fig. 8. Data handling of graphs. The CFG can be represented as Data(x =
[vec0, vec1, vec2], edge_index = [[0, 0], [1, 2]], y = [0])

graph in PyTorch Geometric [12] is described by an
instance of torch_geometric.data.Data, which holds
the following attributes by default:

• data.x: Node feature matrix with shape [num_nodes,
num_node_features]

• data.edge_index: Graph connectivity in COO format
with shape [2, num_edges] and type torch.long

• data.y: Target to train against (may have arbitrary
shape)

Fig. 8 shows an example of the data handling process of
the CFG. As can be seen from the figure, vec0 to vec2 are the
vector representations of the two basic blocks. After getting the
vector representations of the two basic blocks, we can form the
data.x matrix. The other two matrices can be easily obtained
from the CFG’s structure.

Implementing the GCN. We choose GCNConv [17] as the
convolutional layer of our model. It is a scalable approach
for semi-supervised learning on graph-structured data that is
based on an efficient variant of convolutional neural networks
which operate directly on graphs. We run experiments on a
machine with NVIDIA GeForce GTX 1080 GPU and Intel
Xeon E5-1620 CPU operating at 3.50GHz. The neural network
is trained in a batch-wise fashion and the batch size is set to 64.
We have implemented the graph convolutional neural network
using PyTorch Geometric [12]. We adopt a 10-fold cross
validation to train the neural network. We used grid search
to perform hyper parameter tuning in order to determine the
optimal values for a given model. The dimension of the vector
representation of each basic block is set to 128. The dropout is
set to 0.5 and the number of epochs is set to 10. The minibatch
stochastic gradient descent together with ADAM [16] is used
for training with the learning rate of 0.001. We used three
convolutional layers on the datasets. The other parameters
of our neural network were tuned in a standard method. All
network weights and biases were randomly initialized using
the default Torch initialization.

C. Evaluation Metrics

We have applied six widely used metrics including accuracy
(ACC), false positive rate (FPR), false negative rate (FNR),
true positive rate (TPR), F1-measure (F1) and AUC to evaluate
the performance of vulnerability detection [25].

Accuracy means the correctness of all detected samples.
FPR means the proportion of false-positive samples in the
total samples that are correct. FNR means the proportion of
false-negative samples in the total samples that are vulnerable.
TPR means the proportion of true-positive samples in the total
samples that are vulnerable. F1-measure means the overall
effectiveness considering both precision and false negative rate.
AUC means the area under the receiver operating characteristic
(ROC) curve. According to previous research, AUC and F1-
measure has been proved as a better and more statistically
consistent criterion than the accuracy [23], especially for
imbalanced data.

IV. RESULTS AND ANALYSIS

To evaluate the performance of VGDETECTOR, we have
compared it with two well-known static vulnerability detection
frameworks (Flawfinder [4] and RATS [6]), and two state-of-
the-art machine-learning-based approaches (Vuldeepecker [22]
and token-based embedding [33]). Table III shows the overall
results on the benchmark in terms of all the aforementioned
evaluation metrics. In general, VGDETECTOR performs the
best out of all the studied frameworks, and the average detection
accuracy is over 91% for all the three CFR vulnerabilities.

A. VGDETECTOR VS. Traditional Detection Tools

We consider two open source tools Flawfinder [4] and
RATS [6], as the baseline. These two tools are open-sourced
and widely used by the community. These frameworks detect
vulnerabilities based on a list of pre-defined anti-patterns, and
they mainly target low-level bugs including buffer overflow
risks, race conditions, format string problems, and so on. The
detection process is quite simple, by processing the source
code and matching the summarized anti-patterns directly.

To enforce the fair comparison, we have applied these two
frameworks to detect vulnerabilities in our labeled benchmark
on the method granularity, i.e., predicting a method is vulnera-
ble if it contains at least one vulnerable statement flagged by
these tools. As shown in Table IV, VGDETECTOR outperforms
the referred tools with regard to all the evaluation metrics. The
false negative rates of both tools are over 50% in all the three
vulnerability categories we considered. Surprisingly, for the
ICFMDS vulnerability, over 72% of the samples reported by
the tool RATS are false negatives. This result suggests that
these tools are almost cannot be adopted in the real-world
software systems, as human experts need to manually re-check
almost all the reported methods due to high FPs and FNs.

The main reason leading to the poor performance of the
traditional bug detection tools is that, the high-level CFR bugs
are often triggered due to bad yet complicated programming
practices, which have no specific bug patterns, thus posing
a great challenges for the pattern-based detection tools. By
manually examining the rules defined by human experts that
embedded in the tools, we found the rules are quite simple
and the number of rules is quite limited. Take FlawFinder [4]
as an example, the size of its rule-set is 223, which means
that it only relies on the 223 code patterns to detect a number

TABLE III
COMPARING VGDETECTOR WITH STATE-OF-THE-ART VULNERABILITY DETECTION APPROACHES. THE BEST RESULT OF EACH METRIC IS SHOWN IN BOLD.

TABLE IV
COMPARING WITH TRADITIONAL TOOLS

Category Method TPR FPR FNR ACC F1 AUC

ICFMDS
RATS 0.271 0.146 0.729 0.825 0.134 N/A

Flawfinder 0.371 0.214 0.629 0.764 0.137 N/A
VGDETECTOR 0.846 0.069 0.153 0.918 0.766 0.955

BLEDS
RATS 0.464 0.192 0.536 0.759 0.350 N/A

Flawfinder 0.472 0.363 0.528 0.614 0.255 N/A
VGDETECTOR 0.894 0.066 0.106 0.926 0.791 0.977

BHPDS
RATS 0.464 0.193 0.536 0.759 0.350 N/A

Flawfinder 0.472 0.363 0.528 0.614 0.255 N/A
VGDETECTOR 0.899 0.066 0.101 0.929 0.792 0.975

TABLE V
COMPARING WITH VULDEEPECKER AND TOKEN-BASED METHOD

Category Method TPR FPR FNR ACC F1 AUC

ICFMDS
Vuldeepecker 0.404 0.065 0.596 0.793 0.494 0.862
Token-based 0.600 0.011 0.399 0.928 0.722 0.926

VGDETECTOR 0.846 0.069 0.154 0.918 0.766 0.955

BLEDS
Vuldeepecker 0.717 0.187 0.282 0.784 0.667 0.866
Token-based 0.572 0.011 0.428 0.926 0.700 0.933

VGDETECTOR 0.894 0.066 0.106 0.926 0.791 0.977

BHPDS
Vuldeepecker 0.697 0.181 0.303 0.782 0.657 0.874
Token-based 0.609 0.015 0.391 0.928 0.719 0.933

VGDETECTOR 0.899 0.066 0.101 0.929 0.792 0.975

of different vulnerabilities. It is known to us that, the real-
world vulnerabilities are far more complicated than the simple
rules defined by the detection tools, especially for the high-
level CFR bugs. As time goes by, diverse kinds of high-level
vulnerabilities will occur, which will great limit the usage
scenarios of the traditional rule-based detection tools, as they
are purely relying on human experts to craft the sophisticated
detecting rules.

To conclude, our experiment results suggest that the tradi-
tional rule-based detection method is not applicable to detecting
high-level CFR vulnerabilities, while VGDETECTOR, which
embeds high-level control-flow information via deep-learning,
is effective in pinpointing CFR vulnerabilities in a general
manner without the knowledge of any pre-defined anti-patterns.

B. VGDETECTOR VS. Token-based Embedding

Token-based embedding approach [33] was proposed to
detect vulnerabilities by representing the source code as
sequential tokens. It first generates a token sequence for each
method and then embeds raw-text information via deep-learning.
It claims to support both low-level bugs and high-level ones,
as bugs are nowhere else except in the code raw-text.

As shown in Table V, VGDETECTOR outperforms the
token-based embedding approach considering all the three
vulnerabilities and all the evaluation metrics. Taking the
Business Logic Error bug (BLEDS) as an example, we further
illustrate the result in Fig 9(b) in a more intuitive manner. It is
interesting to see that, the false positive rate of the token-based
approach is roughly 42%, while the percentage of our approach
is 10%, only a quarter of referred approach. With regard to the
result of F1-measure, VGDETECTOR is roughly 10% higher
than the token-based approach.

This result suggests that, representing the source code as raw-
text is far from enough to detect vulnerabilities, as the semantic
information is lost during the process, which is vital for
predicting vulnerabilities. As a contrast, VGDETECTOR uses a
more precise code abstraction (i.e. CFG) as the representation
of source code. Figuratively speaking, token-based embedding
only considers the methods of source code as single-big code
blocks (i.e. sequential tokens), while VGDETECTOR splits
them up and add connections between smaller code blocks
(i.e. basic blocks). In general, the real-world programs are
complex, and the CFG used in our approach can better reflect

(b)VGDETECTOR VS. VulDeepecker(a)VGDETECTOR VS. Token-based embedding

0

0.2

0.4

0.6

0.8

1

FNR F1 AUC

Evaluation Measures

BLEDS

Token-based VGDETECTOR

0

0.2

0.4

0.6

0.8

1

ICFMDS BLEDS BHPDS

Datasets

F1-measure

Vuldeepecker VGDETECTOR

Fig. 9. Comparing VGDETECTOR with token-based embedding approach and
Vuldeepecker. Fig (a) compares token-based embedding with VGDETECTOR
on BLEDS vulnerability. Fig (b) compares VGDETECTOR with Vuldeepecker
on the three kinds of vulnerabilities using F1-measure.

the execution logic of the code while the token sequence only
considers the code as a plain text, missing the execution logic
and the information of relationships between basic blocks.
Taking “if-else” as a simple example, the ‘if’ scope and ‘else’
scope should be considered as the same level while token-
based approach represents them in a sequence manner, without
considering the branch information.

C. VGDETECTOR VS. VulDeepecker

Vuldeepecker [22] is a state-of-the-art approach that detects
vulnerabilities in source code, which relies on data-flow
dependency information to represent the source code. It first
locates bug-related APIs in the source code and then extracts
program slices corresponding to the parameters of these APIs,
thus generating the code gadgets by assembling api-related
program slices [22] to enforce accurate bug detection. It uses
code gadget as the granularity to pinpoint bugs and the number
of generated code gadgets depends on the number of APIs
existed in the source code. As shown in Table II, we have
extract the code gadgets in our benchmark to evaluate the
performance of Vuldeepecker.

As illustrated in Table V, VGDETECTOR outperforms
Vuldeepecker greatly, as Vuldeepecker reports a large number of
false positives and false negatives. For example, considering the
ICFMDS vulnerability, the false negative rate of Vuldeepecker
has achieved 59.6%, which suggested that over 40% of the
vulnerable samples were overlooked by Vuldeepecker. Even
the token-based embedding approach performs better than
Vuldeepecker in our dataset. This result suggested that although

Vuldeepecker claims to perform well on low-level bugs such
as buffer over flow, it cannot handle CFR bugs perfectly.

The main reason is that, CFR vulnerabilities are mostly
control-flow-related, while Vuldeepecker only considers data
flow dependency, without considering the control flow such
as branch conditions. Fig 10 shows an example of Insufficient
control flow management error (CWE-691). Following the
approach presented in Vuldeepecker, we extract the code
gadgets from the source code. As shown in Fig 10, there is
no difference between the code gadgets of the vulnerable code
and accurate one. They are the same code gadget (i.e. lines of
code). However, the CFGs of vulnerable code and the correct
one are quite different, considering the relationships between
basic blocks. Therefore, VGDETECTOR is more effective in
detecting such kinds of vulnerabilities.

Furthermore, as mentioned in VulDeepecker [22], because
of the difficulty of locating the key-point (i.e. APIs) of
vulnerability in some cases, it can only extract a limited number
of code gadgets from the labelled samples, which can not
uncover the vulnerabilities that are not related to key APIs. By
contrast, VGDETECTOR extracts all the methods in the source
code, so theoretically it can detect all types of vulnerabilities
as long as the dataset is large enough to learn from practice.

D. False Positives and False Negatives of VGDETECTOR

Although our extensive experiments suggest that VGDETEC-
TOR outperforms all the traditional tools and machine-learning
based frameworks, VGDETECTOR still reports false positives
(roughly 6%) and false negatives (10% to 15%) across different
vulnerability categories.

By manually examining some exceptional cases, we found
that the following reasons may lead to the outlier. First,
the pre-processing procedure is not perfect, as we manually
summarized a list of rules to unify the codes that preserves the
same semantics, which is quite possible to be incomplete. This
may have bad influence on the result. Moreover, VGDETECTOR
directly learns from source code using a general representation
(i.e. CFG) but with “noise” in it. As some tokens and statements
are not related to bug detection, we need to identify and
eliminate such information to perform better feature abstraction.
However, it is non-trivial for us to filter such information in
practice. Besides, as the goal of this work is to characterize
control-flow-related bugs, we mainly focus on control-flow
semantics during the abstraction and embedding process,
without performing the data-flow analysis (e.g., reaching
definition analysis). As some vulnerabilities are both control-
flow and data-flow related, it is a major limitation for us to
detect such vulnerabilities.

V. THREATS TO VALIDITY

This section discuss several limitations of our approach to
give insights for future research.

First, we mainly focus on dealing with control-flow-related
vulnerabilities in this paper. For traditional type of memory
errors such as buffer overflows and null pointers are out of
scope of this work. Incorporating data-flow with control-flow

information to enhance our vulnerability detection can also be
an interesting research direction. Second, our experiments focus
on dealing with vulnerabilities that happen in C/C++ programs.
However, it is easy to extend our framework to support other
programming languages, e.g., Java and Python. Third, the
current implementation of VGDETECTOR is limited to the
graph convolution network. Exploring other type of neural
networks is also an interesting research direction. Finally, it is
also interesting to investigate how to cope with varying lengths
of the vector representation of a basic block without losing the
information caused by the truncation.

VI. RELATED WORK

There are a wide variety of analysis tools and researches
in the area of software vulnerability detection. We discuss
two main dimensions of static analysis (closely related to
this paper) for detecting software vulnerabilities, including
traditional approaches and machine learning-based approaches.

There are plenty of traditional static program analyzers for
analyzing large software systems (e.g. SVF [19], Clang [34],
Coverity [3], Fortify [5], Flawfinder [4], ITS4 [30], RATS [6],
Checkmarx [2]). They have been show their effectiveness
in detecting well-defined low-level bugs, such as memory
errors. However, they often suffer from a large number of
false positives and/or false negatives in detecting high-level
vulnerabilities, such as CFR bugs. These traditional static ana-
lyzers heavily rely on conventional static analysis theories (e.g.,
data-flow, abstract interpretation and taint analysis), which are
difficulies in understanding and identifying CFR vulnerabilities
manifested as complicated high-level bug patterns.

Another branch for statically detecting vulnerabilities is to
employ code similarity analysis (e.g. detecting vulnerabilities
due to code clones in the forms of software patches [14],
common modifications [15], duplicated product lines [20],
code retrieval [31] and regression bugs [26]). Code similarity
analysis normally extracts each code fragment into an abstract
representation and then computes the similarity between pairs
of abstractions. These approaches, however, require human
experts to define features in order to apply appropriate code
similarity algorithms for different types of vulnerabilities [27].
In contrast, our approach can detect vulnerabilities in a fully
automatic manner using graph embedding.

Recently, there are also several static bug detection ap-
proaches to detecting well-defined low-level vulnerabilities
using machine learning techniques. Neuhaus et al. [24] apply
support vector machines to identify bugs in Red hat packages.
Shin et al. [28] selectively apply unsound static analysis to
perform taint and interval analyses to reduce false alarms while
retaining true alarms. Yan et al. [35] perform machine-learning-
guided type state analysis for detecting use-after-frees. Vuldeep-
ecker [22] applies code embedding using data-flow information
of a program for detecting resource management errors and
buffer overflows. Compared with these approaches that mainly
focus on detecting low-level bugs, our approach focuses on
detecting high-level control-flow-related vulnerabilities with
low false positive and negative rates.

(Correct VS. Vulnerable)
Same codegaget!?

line4->5->8->9

Fig. 10. An example of insufficient control flow management vulnerability.

VII. CONCLUSION

This paper presents VGDETECTOR, a new deep-learning-
based graph embedding approach to accurate detection of
control-flow-related vulnerabilities. Our approach makes a new
attempt by applying a recent graph convolutional network to
embed code fragments in a compact and low-dimensional repre-
sentation that preserves high-level control-flow information of a
vulnerable program. Our experiments show that VGDETECTOR
outperforms several popular traditional and machine-learning-
based static detectors. Our observations have shed light on the
promising direction of combining program analysis with deep
learning to address the general static analysis challenges.

VIII. ACKNOWLEDGE

This work is supported by the National Key Research and
Development Program of China (grant No.2018YFB0803603),
the National Natural Science Foundation of China (grants
No.61702045 and No.61897069), and the Australian Research
Grant DE170101081. Prof. Haoyu Wang and Dr. Li Yi are
corresponding authors.

REFERENCES

[1] Antlr. https://www.antlr.org/.
[2] Checkmarx. https://www.checkmarx.com/.
[3] Coverity. https://scan.coverity.com/.
[4] Flawfinder. https://dwheeler.com/flawfinder/.
[5] HP Fortify. https://www.hpfod.com/.
[6] RATS. https://code.google.com/archive/p/

rough-auditing-tool-for-security/.
[7] Tscancode. https://github.com/Tencent/TscanCode.
[8] Software Assurance Reference Dataset, 2017. https://samate.nist.gov/

SARD/index.php.
[9] common weakness enumeration, 2019. https://cwe.mitre.org/index.html.

[10] H. H. AlBreiki and Q. H. Mahmoud. Evaluation of static analysis
tools for software security. In 2014 10th International Conference on
Innovations in Information Technology (IIT), pages 93–98, Nov 2014.

[11] Shadi A. Aljawarneh, Ali Alawneh, and Reem Jaradat. Cloud security
engineering: Early stages of sdlc. Future Generation Computer Systems,
74:385 – 392, 2017.

[12] Matthias Fey and Jan E. Lenssen. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[13] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. Machine-learning-
guided selectively unsound static analysis. In Proceedings of the 39th
International Conference on Software Engineering, ICSE ’17, pages
519–529, Piscataway, NJ, USA, 2017. IEEE Press.

[14] J. Jang, A. Agrawal, and D. Brumley. Redebug: Finding unpatched code
clones in entire os distributions. In 2012 IEEE Symposium on Security
and Privacy, pages 48–62, May 2012.

[15] S. Kim, S. Woo, H. Lee, and H. Oh. Vuddy: A scalable approach for
vulnerable code clone discovery. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 595–614, May 2017.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. arXiv e-prints, page arXiv:1412.6980, Dec 2014.

[17] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv e-prints, page arXiv:1609.02907,
Sep 2016.

[18] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences
and documents. In ICML, volume 32 of JMLR Workshop and Conference
Proceedings, pages 1188–1196. JMLR.org, 2014.

[19] Yuxiang Lei and Yulei Sui. Fast and precise handling of positive weight
cycles for field-sensitive pointer analysis. In SAS ’19, 2019.

[20] J. Li and M. D. Ernst. Cbcd: Cloned buggy code detector. In Proceedings
of ICSE ’12, pages 310–320, 2012.

[21] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu.
Vulpecker: An automated vulnerability detection system based on code
similarity analysis. In Proceedings of ACSAC ’16, pages 201–213, 2016.

[22] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang,
Zhijun Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based
system for vulnerability detection. The Network and Distributed System
Security Symposium (NDSS), 2018.

[23] Charles X. Ling, Jin Huang, and Harry Zhang. Auc: A statistically
consistent and more discriminating measure than accuracy. In Proceedings
of IJCAI’03, pages 519–524, 2003.

[24] Stephan Neuhaus and Thomas Zimmermann. The beauty and the beast:
Vulnerabilities in red hat’s packages. In In Proceedings of the 2009
USENIX Annual Technical Conference (USENIX ATC, 2009.

[25] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai
Xu. A survey on systems security metrics. ACM Comput. Surv.,
49(4):62:1–62:35, December 2016.

[26] Nam H. Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N.
Nguyen. Detection of recurring software vulnerabilities. In Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering, ASE ’10, pages 447–456, 2010.

[27] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone
detection: A systematic review. Information and Software Technology,
55(7):1165 – 1199, 2013.

[28] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne.
Evaluating complexity, code churn, and developer activity metrics as
indicators of software vulnerabilities. IEEE Trans. Software Eng., 37:772–
787, 11 2011.

[29] Yulei Sui and Jingling Xue. SVF: Interprocedural static value-flow
analysis in LLVM. In CC ’16, pages 265–266, 2016.

[30] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. Its4: a static vulnerability
scanner for c and c++ code. In Proceedings 16th Annual Computer
Security Applications Conference (ACSAC’00), pages 257–267, Dec 2000.

[31] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu,
and Philip S. Yu. Multi-modal attention network learning for semantic
source code retrieval. In ASE ’19, 2019.

[32] Mark Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, pages 439–449, Piscat-
away, NJ, USA, 1981. IEEE Press.

[33] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys
Poshyvanyk. Toward deep learning software repositories. In Proceedings
of MSR ’15, pages 334–345, 2015.

[34] Zhongxing Xu, Ted Kremenek, and Jian Zhang. A memory model for
static analysis of c programs. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification, and
Validation, 2010.

[35] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Machine-learning-
guided typestate analysis for static use-after-free detection. In ACSAC

’17, pages 42–54. ACM, 2017.

