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Static analyzers are playing crucial roles in helping find programming mistakes and security vulnerabilities.

The correctness of their analysis results is crucial for the usability in practice. Otherwise, the potential defects

in these analyzers (e.g., implementation errors, improper design choices) could affect the soundness (leading

to false negatives) and precision (leading to false positives). However, finding the defects in off-the-shelf static

analyzers is challenging because these analyzers usually lack clear and complete specifications, and the results

of different analyzers may differ. To this end, this paper designs two novel types of automated oracles to find

defects in static analyzers with randomly generated programs. The first oracle is constructed by using dynamic

program executions and the second one leverages the inferred static analysis results. We applied these two

oracles on three state-of-the-art static analyzers: Clang Static Analyzer (CSA), GCC Static Analyzer (GSA),

and Pinpoint. We found 38 unique defects in these analyzers, 28 of which have been confirmed or fixed by the

developers. We conducted a case study on these found defects followed by several insights and lessons learned

for improving and better understanding static analyzers. We have made all the artifacts publicly available at

https://github.com/Geoffrey1014/SA_Bugs for replication and benefit the community.
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1 INTRODUCTION
Static analysis tools (static analyzers for short), e.g., [9, 13, 22, 31], are widely used for finding

program bugs like common programming mistakes and security vulnerabilities. When integrated
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Listing 1. The program revealing defect #1 in GSA through the dynamic oracle.� �
1 void main() {
2 int e = 42, g = 0;
3 int *f = &e;
4 int *h[2][1];
5 h[1][0] = f;
6 if (g == (h[1][0]))
7 unsigned int *i = 0;
8 printf("NPD_FLAG:%d\n", *f); // GSA gives a warning of NPD
9 }� �

into the software development process, these analyzers can help uncover program bugs at the early

stage (after compilation and before testing). Therefore, whether these analyzers could give correct

analysis results, is crucial for their usability in practice [30]. Otherwise, the potential defects in

these analyzers could affect the soundness (i.e., missing true bugs and thus inducing false negatives)

and precision (i.e., reporting spurious warnings [14] and thus inducing false positives).

However, finding the defects in off-the-shelf static analyzers is challenging. One key difficulty is

the oracle problem, i.e., how to verify whether a static analyzer gives the correct analysis results

on a given program. On one hand, since static analyzers usually do not have clear and complete

specifications, they are difficult to be formally verified like compilers [4]. On the other hand, since

static analyzers usually use different strategies to trade-off the soundness and precision, their

analysis results are difficult to be validated by differential testing [22]. To our knowledge, most of

prior work only tests specific static analyses (e.g., value analysis [10], alias analysis [47], data-flow
analysis [37]) rather than off-the-shelf analzyers, which we will discuss in Section 6.

To this end, in this paper we introduce two novel types of oracles to help find defects in static

analyzers. One of our observations is that that many static analyzers provide checkers [38, 42] to
find specific bugs (e.g., null pointer dereference (NPD)). Thus, our insight is to leverage such checkers

as the handler to test the static analyzers. Ideally, the results inferred by a static analyzer’s checker

on a program should be consistent with the results obtained by running the program. For example,

if an NPD is triggered on some program path by running a given program, the static analyzer’s

NPD checker should report this NPD as well. Otherwise, a soundness bug (i.e., a false negative)
is found. If no NPD is triggered by running the program, the analyzer’s NPD checker should not

report any NPD on the path. Otherwise, a precision bug (i.e., a false positive) is found. We term

this type of oracle which refers to dynamic program execution as the dynamic oracle.
To realize this dynamic oracle, in the case of finding false negatives, we inject a ground-truth

bug such as an NPD into a given program and dynamically execute the program to verify the

NPD. In this case, if the static analyzer’s NPD checker fails to report this injected bug, we find a

false negative. In the case of finding false positives, we dynamically execute a given program to

ensure the absence of a specific bug like an NPD. In this case, if the static analyzer’s NPD checker

reports some NPD warnings, we find a false positive. Note that this dynamic oracle is not limited

to the NPD checker but could be applied to any checker which targets runtime errors (discussed

in Section 5). By using this dynamic oracle, the code in Listing 1 exposes a defect in GCC Static

Analyzer (GSA) [13]. GSA reports a spurious warning of NPD at line 8 (because variable f is not

null). This defect1 has been quickly fixed by the developers after we reported.

Our another observation is that many static analyzers provide debug checks [39, 43] to evaluate

program states. Specifically, such debug checks takes as input a boolean expression (representing

some program state, e.g., “ x==5”) at a given program location, and return TRUE, FALSE or UNKNOWN if

1https://gcc.gnu.org/bugzilla/ show_bug.cgi?id=107345
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Listing 2. The program revealing defect #3 in GSA through the static oracle.� �
1 void foo(){
2 int *b[1] = {};
3 int **c = &b[0];
4 if (c == &b[0]){
5 __analyzer_eval((c+0) == (&b[0]+0)); // TRUE
6 __analyzer_eval((c+1) == (&b[0]+1)); // FALSE
7 }
8 }� �

the expression is evaluated to a non-zero value, a zero or null value, or is not sufficiently constrained.

Thus, our insight is to generate equivalent but different representations of such boolean expressions

to stress test the static analysis results. Ideally, the truth values of equivalent boolean expressions

should be identical. Otherwise, a potential defect is likely found. We term this type of oracle which

only refers to the static analysis results on program states as the static oracle.
To realize this static oracle, we select the conditional expression of some conditional statement in

a given program as the target boolean expression. Note that this boolean expression is evaluated to

be TRUE by construction at the entry of the true branch of its conditional statement. Therefore, we

can instrument debug checks taking equivalent boolean expressions at the entry of same true branch

and to evaluate the truth values. If some debug check returns FALSE, we likely find a potential defect

of the analyzer. Specifically, we design two mutation strategies based on the idea of metamorphic

testing [7] (discussed in Section 3.3) to generate equivalent boolean expressions but with different

representations. By using this oracle, the code in Listing 2 exposes a defect in GSA. In the true

branch of if (c == &b[0]), GSA should evaluate both (c + 1) == (&b[0] + 1) and (c + 0) ==

(&b[0] + 0), the two equivalent boolean expressions of c == &b[0], to be TRUE. However, GSA

evaluates (c + 1) == (&b[0] + 1) to be FALSE. This defect has been confirmed by the developers
2
.

Section 5 discusses that the static and dynamic oracles are complementary in finding defects.

We applied the two types of oracles to test three state-of-the-art static analyzers, i.e., Clang
Static Analyzer (CSA) [18], GCC Static Analyzer (GSA) [13], and Pinpoint [31]. CSA and GSA are

open-sourced and well-maintained by a large community, both of which adopt symbolic execution

[5]. Pinpoint is a commercial analyzer designed for enterprise-level large software based on sparse

value flow analysis [8, 33, 34]. Pinpoint has been integrated into the development process of tens

of FinTech enterprises to improve software quality. We used Csmith [48] to generate random

input programs for testing these analyzers. When a potential defect is found, we use the program

reduction technique [29] to obtain a concise and reproducible test program for bug reporting.

In the testing campaign, we found 38 unique defects in these three state-of-the-art static analyzers,

28 of which have been confirmed and four have been fixed by the developers. Among these 28

confirmed bugs, 24 of them are new, previously-unknown defects, while the other four defects

were also independently reported by others. Additionally, three defect-triggering programs have

been integrated into the regression tests of GSA.

To understand these defects, we carefully classify them into 8 major groups from low-level to

high-level issues (e.g., implementation errors, defects in heuristics, improper design choices) based
on the discussions with developers, fixing patches, and our knowledge on static analysis. We

discuss and illustrate each type of defect with examples. We believe the results of our work is

beneficial to the static analyzers’ developers for improving their tools as well as the analyzers’

users to better understand the tool limitations. To benefit the community, we have made the

2https://gcc.gnu.org/bugzilla/ show_bug.cgi?id=109199
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Table 1. The Three Studied Static Analyzers

Static Analyzer Intermediate Representation Inner Workings Supported Language

CSA Clang AST Symbolic Execution C, C++, Object-C

GSA Gimple IR Symbolic Execution C, C++, D

Pinpoint LLVM IR Sparse Value Flow Analysis C, C++, JAVA

artifacts (including our testing tool and the defect-triggering programs) publicly available at

https://github.com/Geoffrey1014/SA_Bugs.

In summary, the main contributions of our work include:

• We propose two novel types of test oracles to help find defects in off-the-shelf static analyzers.

• We apply the proposed oracles on three static analyzers and found 38 unique defects (28 defects

have been confirmed and four have been fixed by the developers).

• We conduct a case study on the found defects and distill several lessons learned on improving

and better understanding static analyzers.

2 BACKGROUND
2.1 Static Analyzers
In this section, we provide the necessary background on static analyzers. The main objective of

static analyzers is to compute program facts that should hold at a given program location. The

static analyzers usually accept an input program and use different static analyses (e.g., data-flow
analysis, symbolic execution) to derive an abstract representation that encapsulates the program’s

facts. These facts can be used to find program bugs like security vulnerabilities.

Table 1 lists the three static analyzer studied in our work, i.e., Clang Static Analyzer [9], GCC
Static Analyzer [13], and Pinpoint [31]. We selected these analyzers because they are (1) widely-used

in practice, and (2) representatives of static analyzers using different static analyses.

Clang Static Analyzer (CSA) [9] provides a top-tier static analysis platform for scrutinizing

programs written in C, C++, and Objective-C. It has undergone significant development since 2008,

evolving from basic syntactic checkers to advanced tools capable of identifying complex issues by

analyzing code semantics. CSA utilizes symbolic execution with a source code simulator that traces

out possible paths of execution. It runs the inline method to perform inter-procedural analysis (IPA).

CSA can find program bugs such as null-pointer dereference (NPD) and out of bounds (OOB). The

analyzer includes two major parts: symbolic execution of a given program and specially designed

checkers that subscribe to the events they find relevant during analysis .

GCC Static Analyzer (GSA) [13] has been developed since 2019 with the purpose of scanning

the Linux kernel. Like CSA, GSA employs symbolic execution over GCC’s IR (Gimple). Implemented

as an optimization pass, GSA can combine the IRs from different compilation units in various

languages and find program bugs across language boundaries during link-time optimization.

Pinpoint [31] is a commercial static analyzer developed by Ant Group since 2018. The tool

implements the sparse value flow analysis, which is categorized as a “layered” approach. By

first finding local data dependence and delaying costly inter-procedural data dependence analysis,

Pinpoint can reduce the cost of conducting high-precision points-to analysis. This capability enables

Pinpoint to easily scale bug checkers to millions of lines of code. Its commercial version is now

widely used in FinTech businesses [23, 51, 52].

All these three static analyzers include a number of checkers [38, 42] for finding specific program

bugs, and report warnings for user inspection. For example, null-pointer dereference (NPD) and

out of bounds (OOB), and memory leaks are the common targets of these checkers.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 74. Publication date: July 2024.
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Listing 3. The error trace generated by GSA of the program revealing defect #1.� �
<source>:8:1: warning: dereference of NULL 'f'
[CWE-476]
8 | printf("NPD_FLAG: %d\n ", *f);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'main': events 1-4
| 6 | if (g == (h[1][0])) {
| | ^
| | |
| | (1) following 'true' branch...
| 7 | int *i = 0;}
| | ~
| | |
| | (2) ...to here
| | (3) '&e' is NULL
| 8 | printf("NPD_FLAG: %d\n ", *f);
| | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| | |
| | (4) dereference of NULL 'f'� �

Listing 4. Evaluation results of GSA’s debug check __analyzer_eval for defect #3.� �
<source>: In function 'main':
<source>:5:17: warning: TRUE
5 | __analyzer_eval((c + 0) == (&b[0] + 0));
| ^~~~~~~~~~~~~~~~~~~~~~~~
<source>:6:17: warning: FALSE
6 | __analyzer_eval((c + 1) == (&b[0] + 1));
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~� �

2.2 Error Traces and Debug Checks
The static analyzers usually report the warnings (i.e., the found bugs) to users in the form of an

error trace (or named as a diagnostic path) to facilitate bug diagnosing. This trace is composed

of a finite sequence of steps that lead to the reported bug. Each step is represented by a tuple

⟨𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑚𝑒𝑠𝑠𝑎𝑔𝑒⟩, where 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 denotes the file, line, and column associated with the step, and

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 specifies the condition inferred by the analyzer should hold to reach the bug. Listing 3

displays the trace reported by GSA when analyzing the code in Listing 1. The trace gives the steps

leading to the NPD at line 8, and the conditions inferred by the analyzer should hold at each step.

The static analyzers like GSA and CSA provide debug checks [39, 43] to evaluate specific program

states. For example, GSA and CSA provide the __analyzer_eval [43] and clang_analyzer_eval [39]

functions for inspecting the program states at a given program location. At a given program location,

these functions take as input a boolean expression (representing some program state), and return

three possible values: TRUE, FALSE, or UNKNOWN. These three values correspond to the situation when

the static analyzer decides the inspected program state is hold, not hold or unknown. Pinpoint [31]

does not export such debug checks. Thus, we exclude Pinpoint from the static oracle evaluation.

Listing 4 showcases that GSA evaluates lines 5 and 6 of the code in Listing 2 by using its debug

check __analyzer_eval. Through this check, GSA infers that (c + 0) == (&b[0] + 0) is TRUE,

while (c + 1) == (&b[0] + 1) is FALSE at the given program location.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 74. Publication date: July 2024.
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Fig. 1. Workflows of the two types of automated oracles for finding defects in static analyzers.

3 METHODOLOGY
In this section, we introduce the methodology of our two types of oracles. First, we explain why we

use randomly generated programs instead of real-world programs to create oracles in Section 3.1.

In Sections 3.2 and 3.3, we introduce the workflows of our two types of oracles. At last, we explain

how to reduce the defect-triggering programs in Section 3.4.

3.1 Generating Random Programs
We choose Csmith to generate random programs instead of real-world ones for testing static

analyzers because of the following advantages:

(1) Csmith-generated programs incorporate diverse language features. These features can be

enabled or disabled through command-line options. This facilitates us to disable certain language

features that are not well modeled by static analyzers, e.g., global variables and bitfields.
(2) Csmith-generated programs are closed, which does not require external inputs and executes

one single program path. This characteristic ensures that the program’s execution path is

deterministic, which eases bug injection and validation for the dynamic oracle.

(3) Csmith-generated C programs are guaranteed, through Csmith’s inner static analysis, to be

free of undefined or unspecified behaviors. This feature is crucial because, otherwise during

program compilation and analysis, the compiler and static analyzers may exploit undefined or

unspecified behavior in the program in different ways, and thus affects testing static analyzers.

3.2 Dynamic Oracle
The dynamic oracle is designed based on our insight that the results inferred by a static analyzer’s

checker on a program should be consistent with the results obtained by running the program. Thus,

we can use a Csmith-generated random program as a test input and its dynamic execution results

(i.e., the existence of a runtime error on some program path) as the test oracle to validate the static

analyzer. In our study, we selected the NPD checker as the handler to test static analyzers. We

selected the NPD checker because it is one of the most common ones supported by most static

analyzers, including GSA, CSA and Pinpoint. Note that the dynamic oracle can be applied to any

checker which targets runtime errors (e.g., NPDs, OOBs, and division by zero). Figure 1(a) shows

the workflow of constructing the dynamic oracle, which we explain as follows. Note that the left

part (in yellow) of Figure 1(a) indicates the dynamic oralce for finding false positives, while the

right part (in green) of Figure 1(a) indicates the dynamic oralce for finding false negatives.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 74. Publication date: July 2024.
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Algorithm 1 Construct the Static Oracles

Require: input program 𝑃

1: 𝑒, 𝑐 ← GetCandidateExpression(𝑃); // Pick candidate expression 𝑒 of a conditional statement 𝑐

2: 𝑒′← Mutate(𝑒); // Mutate the boolean expression 𝑒

3: 𝑠 ←Wrap(𝑒′); // Wrap 𝑒′ with a debug check

4: 𝑃 ′← InsertAtLocation(𝑃, 𝑠, 𝑐); // Instrument 𝑠 at the true branch of 𝑐 into 𝑃

Ensure: program variant 𝑃 ′

To find false positives of a static analyzer, the program generated by Csmith is compiled

and executed to confirm the absence of an NPD (the step ➊ in Figure 1(a)). Only those non-bug

programs are qualified to be analyzed by the static analyzer (the step ➋ in Figure 1(a)). If the

analyzer reports some NPD warnings (which are presented in the form of error traces), we likely

find some false positives. However, we are only interested in such false positives: (1) the reported

NPD is located on the dynamic program path, and (2) the reported error trace leading to the NPD is

started from function main3. We find the valid false positives satisfying the preceding two conditions

by checking the consistency between the dynamic program path (used as the FP oracle) and the

error traces. We do not require the error trace to exactly match the dynamic path, because the error

trace may not always be precise [22].

To find false negatives of a static analyzer, we inject the bugs of NPDs into the Csmith-

generated programs. To achieve this, we first run a seed program to obtain the dynamic execution

path (the step ➀ in Figure 1(a)), randomly assign null to some local variables of pointer type on

the dynamic path to inject NPDs (the step ➁ in Figure 1(a)), and rerun the instrumented program

to confirm that some NPDs can be triggered on the dynamic path (the step ➂ in Figure 1(a)). Only

those NPD-triggering programs are qualified to be analyzed by the static analyzer (the step ➃ in

Figure 1(a)). If the analyzer fails to report the injected NPDs, we likely find false negatives. Note

that the analyzer successfully finds the injected NPDs only when the following two constraints are

satisfied: 1) the NPDs are reported on the program locations where they are injected, and 2) the

error traces given by the static analyzer should start from function main . If one or both constraints

are not satisfied, the analyzer fails to find the NPD and thus a false negative is found. We filter the

valid false negatives satisfying the preceding constraints by checking the consistency between the

dynamic program path (used as the FN oracle) and the error traces.

3.3 Static Oracle
The static oracle is designed based on the insight that the truth values of equivalent boolean

expressions should be identical when evaluated by the debug checks at a given program location.

Figure 1(b) shows theworkflow of constructing the static oracle.We select the conditional expression

of some conditional statement in a given program as the target boolean expression. This boolean

expression is TRUE by construction at the entry of the true branch of its conditional statement.

Based on this boolean expression, we generate equivalent boolean expressions with different

representations (the step ➀ in Figure 1(b)). Next, we instrument the debug checks taking the

generated equivalent boolean expressions at the entry of same true branch (e.g., lines 5 and 6 show

in Listing 2, the step ➁ in Figure 1(b)), and run the static analyzer to obtain the evaluation results of

boolean expressions (the step ➂ in Figure 1(b)). If the evaluation results of these equivalent boolean

expressions are not consistent with the truth value of target boolean expression (i.e., some debug

check returns FALSE), we likely find a potential defect of the analyzer (as shown in Listing 4).

3
Note that the top-level function for static analysis is not always function main. For example, the static analyzer may report

an NPD bug whose error trace starts from some function foo in the program (foo may not be called by main)

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 74. Publication date: July 2024.
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Table 2. Mutation strategies to generate equivalent boolean expressions for the static oracle.𝑀 and 𝑁 are in
the range of {0,1,2,3}, and 𝑀 <= 𝑁 . 𝑀𝐼𝑁 and 𝑀𝐴𝑋 denote the minimal and maximal values depending on
variable types, respectively.

Operator Expr Tautological Transformation Partial Ordering Transformation

&& a && b

(𝑏&&𝑎) == 𝑡𝑟𝑢𝑒;𝑎 == 𝑡𝑟𝑢𝑒;𝑏 == 𝑡𝑟𝑢𝑒; !𝑎 == 𝑓 𝑎𝑙𝑠𝑒; !𝑏 == 𝑓 𝑎𝑙𝑠𝑒;

!(𝑏&&𝑎) == 𝑡𝑟𝑢𝑒; (!𝑎 | |!𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (!𝑏 | |!𝑎) == 𝑓 𝑎𝑙𝑠𝑒; (!𝑎&&!𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (!𝑏&&!𝑎) == 𝑓 𝑎𝑙𝑠𝑒; –

(𝑏 | |!𝑎) == 𝑡𝑟𝑢𝑒; (𝑎 | |!𝑏) == 𝑡𝑟𝑢𝑒; !𝑏 | |𝑎 == 𝑡𝑟𝑢𝑒; (!𝑏&&𝑎) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎&&!𝑏) == 𝑓 𝑎𝑙𝑠𝑒;

!(𝑎&&𝑏) == 𝑡𝑟𝑢𝑒; (!𝑎 | |𝑏) == 𝑡𝑟𝑢𝑒; (𝑏&&!𝑎) == 𝑓 𝑎𝑙𝑠𝑒; (!𝑎&&𝑏) == 𝑓 𝑎𝑙𝑠𝑒;

|| a||b
(𝑏 | |𝑎) == 𝑡𝑟𝑢𝑒;𝑎 == 𝑡𝑟𝑢𝑒 | |𝑏 == 𝑡𝑟𝑢𝑒; !(𝑎 | |𝑏) == 𝑓 𝑎𝑙𝑠𝑒; –

(!𝑎&&!𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (!𝑏&&!𝑎) == 𝑓 𝑎𝑙𝑠𝑒; !(𝑏 | |𝑎) == 𝑓 𝑎𝑙𝑠𝑒;

< 𝑎 < 𝑏 (𝑏 > 𝑎) == 𝑡𝑟𝑢𝑒; !(𝑎 < 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎 >= 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎 > 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎 == 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; MIN <= a +M < b + N <= MAX
> 𝑎 > 𝑏 (𝑏 < 𝑎) == 𝑡𝑟𝑢𝑒; !(𝑎 > 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎 <= 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎 < 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎 == 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; MAX >= a + N > b +M >= MIN
<= 𝑎 <= 𝑏 (𝑏 >= 𝑎) == 𝑡𝑟𝑢𝑒; !(𝑎 <= 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎 > 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; MIN <= a +M <= b + N <= MAX
>= 𝑎 >= 𝑏 (𝑏 <= 𝑎) == 𝑡𝑟𝑢𝑒; !(𝑎 >= 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; (𝑎 < 𝑏) == 𝑓 𝑎𝑙𝑠𝑒; MAX >= a + N >= b +M >= MIN
== 𝑎 == 𝑏 (𝑏 +𝑀 == 𝑎 +𝑀) == 𝑡𝑟𝑢𝑒; (𝑎 −𝑀 == 𝑏 −𝑀) == 𝑡𝑟𝑢𝑒; (𝑎 ∗𝑀 == 𝑏 ∗𝑀) == 𝑡𝑟𝑢𝑒; MIN <= a +M < b + N <= MAX

Algorithm 1 explains constructing the static oracle. Given an input program 𝑃 , we pick a boolean

expression 𝑒 (e.g., c == &b[0] at line 4 in Listing 2) from a conditional statement 𝑐 as the target.

To ease generating equivalent boolean expressions, we require 𝑒 to be free of side effect on the

program state. For example, if 𝑒 does some computation (e.g., containing the += and -= operators),

we give up 𝑒 and select others. When we have a qualified 𝑒 , we use the two mutation strategies in

Table 2 to generate equivalent 𝑒′ from 𝑒 . Next, we wrap the mutated expression 𝑒′ with the debug

check, e.g., __analyzer_eval(), to get a new statement 𝑠 . Finally, we insert 𝑠 at the entry of the true

branch of the conditional statement 𝑐 , and obtain a mutated program 𝑃 ′.
The generated equivalent boolean expression should be evaluated as TRUE. When the analyzer

analyzes 𝑃 ′, if some debug check returns FALSE, we likely find a defect. If some debug check returns

UNKNOWN, it may also indicate a defect. However, in practice, the static analyzers give lots of UNKNOWN,

and thus we focus on the return value FALSE.

Table 2 shows the two mutation strategies, i.e., (1) tautological transformation, and (2) partial
ordering transformation, in terms of logical and relational operators (see Column “Operator”). These

two mutation strategies are designed based on the idea of metamorphic testing [7]. Column “Expr”

gives different forms of target boolean expressions, where a and b represent expressions or variables.

For instance, if we have the boolean expression a && b, we can generate an equivalent boolean

expression !a || !b == false by tautological transformation. On the other hand, we can generate

an equivalent expression by performing arithmetic operations such as addition, subtraction, and

multiplication on the relational expressions. For example, if we have the boolean expression a == b,

we can generate an equivalent boolean expression, a + 1 > b && a < INT_MAX (a is an integer), by

partial ordering transformation. Note that during the partial ordering transformation, we need to

ascertain the types of left and right subexpressions. Fortunately, due to the strong typing of the C

programming language, the types can be obtained during syntactic parsing. For logical expressions,

we can only apply the tautological transformation, while we can use both tautological and partial

ordering transformations for relational expressions.

One advantage of this static approach is that we do not need to use a checker (e.g., NPD checker)

as the handler. One checker may only utilizes limited program facts computed by the static analyzer

because it targets specific runtime error. The static oracle may test different program facts with the

help of debug checks. In addition, the static oracle may reveal the defects of static analyzers when

handling dead code, while the dynamic oracle cannot do that. On the other hand, the disadvantage

is that static analyzers without debug checks cannot be tested by the static oracle.
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3.4 Reducing Defect-triggering Programs
When we find a potential defect of a static analyzer, we need to report it to the developer for

confirmation. To help developers diagnose the defect, we need to provide a concise and reproducible

defect-triggering program. Unfortunately, the programs generated by Csmith are difficult for

humans to read and reduce. Therefore, we use C-Reduce [29] to reduce the program.

Specifically, C-Reduce requires a script to decide whether the program during reduction always

hold the desired properties. In our setting, the script should ensure the behaviors of a found defect

always hold during reduction. However, undefined behaviors (UB)may be introducedwhen reducing

the program. In order to avoid UBs, when reducing the defect-triggering programs generated by

the dynamic oracle, we include CompCert [20] into the C-Reduce’s script to interpret the execution

of the reduced program to sanitize UBs. On the other hand, when reducing the defect-triggering

programs generated by the static oracle, we use some checkers in the static analyzer to sanitize

UBs. After we obtain the final reduced program, we use CompCert again to determine whether the

program contains UBs.

4 CASE STUDIES
In this section, we present our experience of applying the two types of oracles to find defects in

CSA, GSA, and Pinpoint. We classify and discuss the defects found by our oracles.

4.1 Experimental Setup
We detail the experimental setups used in our testing campaign. We used Csmith 2.3.0 to generate

seed programs with the options “–max-pointer-depth 2 –no-bitfields –no-global-variables”.

These three options limit the indirect depth of pointers to 2 and disable full-bitfields structs and

global variables
4
when generating the seed programs, respectively. During the testing campaign,

we tested the latest versions of CSA (Clang commit 0c0681b), GSA (GCC commit 8c8ca87), and

Pinpoint (v2.7) at the time of our study. CSA, GSA, and Pinpoint were run with their default

settings, respectively: CSA uses “clang –analyze”, GSA uses “gcc -fanalyzer”, and Pinpoint uses

“pp-check”. In the testing scenario of dynamic oracle, we use the NPD checkers of these three

analyzers as the handler to find defects. In Section 5, we discuss the results of using other checkers

like OOB checkers. In the testing scenario of static oracle, CSA was additionally given the op-

tion “-analyzer-checker=debug.ExprInspection” to enable the debug checks, while GSA by default

enables the debug checks. Pinpoint does not support debug checks and thus was not tested.

We implemented the testing framework for static analyzers in Python and C++. Specifically,
the fuzzing and reduction scripts contain about 2000 lines of Python code. We used C-Reduce

(v2.11.0) as the reduction tool. We used Libtooling [44] for generating and instrumenting the static

oracle into the seed programs. This module contains about 1100 lines of C++ code. Additionally,

considering GSA, implemented as an IPA pass in GCC, could be affected by compiler optimization,

we performed a separate testing campaign for GSA with the optimization levels of -O0, -O1, and
-O2, respectively. Since CSA and Pinpoint are implemented as independent analysis tools, and thus

are not affected by compiler optimization.

Our experiment was conducted on a 2.2 GHz Intel dual-CPU 64-core machine with 128GB

memory running 64-bit Ubuntu 20.04.3 LTS. We started our testing campaign in September 2022 and

continued until July 2023. During this time duration, the testing process was iteratively conducted:

4
After a preliminary testing campaign, we find that the three static analyzers report too many duplicated false positives

due to their weaknesses of handling bitfields and global variables. Thus, we added the two options –no-bitfields
and –no-global-variables. On the other hand, the option –max-pointer-depth 2 balances the complexity and

readability of the generated seed programs.
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Table 3. Results of the found defects in the studied static analyzers
Static Analyzers Dynamic Oracle Static Oracle Total

CSA 5 7 12

GSA 12 11 23

Pinpoint 3 – 3

total 20 18 38

for example, we generated 1,000K random programs by Csmith at one round, and constructed the

dynamic and static oracles based on these programs to test the analyzers. For those programs whose

oracles were violated by the analyzers, we reduced these programs to report potential defects.

This iterative testing process is useful for testing static analyzers. Because (1) we can know which

program features are not well modeled according to the developers’ feedback and thus should be

disabled in the next round of testing to avoid reporting invalid defects, and (2) we need to wait for

the developers to confirm and fix the reported defects, and thus we can avoid reporting and finding

duplicated defects. This process explains why our experiment lasted for a long time.

In the whole testing process, we generated about 7,910K seed programs in total by Csmith.

Among these seeds programs, 7,700K programs were used to generate dynamic oracles, and 210K

programs were used to generate static oracles. In total, 13,500 programs with the dynamic oracles

and 4,600 programs with the static oracles, respectively, reveal potential defects of the analyzers. We

reduced these defect-triggering programs, filtered the programs with duplicated defects, manually

inspected about 200 defects, and reported those unique defects.

4.2 Results of the Found Defects
Table 3 gives the results of found defects in CSA, GSA, and Pinpoint. Specifically, the dynamic

oracle found 5, 12, and 3 defects in CSA, GSA, and Pinpoint, respectively, while the static oracle

found 7 and 11 defects in CSA and GSA, respectively. Overall, the dynamic and static oracle found

20 and 18 defects, respectively. The number of defects found in CSA, GSA, and Pinpoint are 12, 23,

and 3, respectively. In total, we found 38 defects in the three static analyzers.

Table 4 lists these found defects. Specifically, to facilitate understanding and discussion of these

found defects, we classified them into different categories. To build the bug categories, we use

open-card sorting approach [32]. To achieve this, two co-authors independently labeled the 38

defects with the categories which they felt accurately describes the root cause based on (1) the

developers’ feedback on these defects, (2) the fixing patch (if available) and (3) their own knowledge

of these studied static analyzers. After the labeling, they discussed and cross-validated the labels. In

this process, the authors followed the operational bug classification strategy [21, 36] to adjust the

categories and achieve disjoint classification from low-level to high-level: a defect that is classified

into the lower-level category indicating a narrower scope (e.g., implementation errors) will not be

considered in the higher-level one indicating a wider scope (e.g., design choices). When the two

co-authors could not reach consensus, the other co-authors participated in the discussion to help

make the final decision. Finally, we built eight major categories from low-level to high-level issues,

including “Implementation Errors”, “Defects in Heuristics”, “Defects in Handling Loops”, “Mishandling
Language Features”, “Overly Eager Assumption”, “Defects Induced by Design Choices”, “Defects Induced
by Compiler Optimizations”, and “Others”. In Table 4, column “Class" gives the classification of the

defect. Column “Status" gives the status of the defect, including “fixed”, “confirmed”, “duplicated”
(independently found by us but also reported by others), and “pending” (under active discussion
between developers). Column “Oracle” indicates which type of oracle found this defect. Specifically,

for the dynamic oracle type, the annotation of the “-” sign indicates that the corresponding defect

is a false negative (FN), while the annotation of the “+” sign indicates that the corresponding
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Table 4. Details of the 38 found defects. The classes include “Implementation Errors” (I), “Defects in Heuristics”
(II), “Defects in Handling Loops” (III), “Mishandling Language Features” (IV), “Overly Eager Assumption”
(V), “Defects Related to Design Choice” (VI), “Defects Related to Optimizations” (VII), and “Others” (VIII),
respectively. The “-” sign indicates that the defect is a false negative, while “+” sign a false positive.

# Class Status Oracle Analyzer Defect Description

1 I fixed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ GSA missed the logic for spotting comparison of &VAR against NULL.
2 I fixed 𝑆𝑡𝑎𝑡𝑖𝑐 GSA missed the logic that -X <= 0 is equivalent to X >= 0, where X is a integer.

3 I confirmed 𝑆𝑡𝑎𝑡𝑖𝑐 GSA does not treat the two pointers &b and &b[(int)0] as identical.

4 I fixed 𝑆𝑡𝑎𝑡𝑖𝑐 CSA does not treat c >= b and b <= c as the same in the true branch of c >= b where b and c are both pointers.

5 I pending 𝑆𝑡𝑎𝑡𝑖𝑐 GSA evaluates e == d + 1 to be UNKNOWN with the fact that e == &d, d is an array and e is a pointer.

6 I confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ Pinpoint mishandles modeling of intended two-dimensional array.

7 II duplicated 𝑆𝑡𝑎𝑡𝑖𝑐 GSA evaluate a+3 > b+1 to be UNKNOWN but evaluate a+2 > b+1 to be TRUE in the true branch of if (a > b).
8 II pending 𝑆𝑡𝑎𝑡𝑖𝑐 GSA evaluates a > b to be TRUE but evaluates b < a to be UNKNOWN under the context that a = c + 2 and b = c + 1.
9 II confirmed 𝑆𝑡𝑎𝑡𝑖𝑐 CSA evaluates the b == 0 as TRUE, but evaluates b+1 == 1 as FALSE, where b is a pointer.

10 II confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐− CSA inline defensive checks suppression heuristic.

11 III confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ CSA limitation of modeling only 3 iterations of loops leads to CSA making assumptions, which lead to FP.

12 III confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ CSA widen-loop=true option causes CSA to make a wrong assumption.

13 III pending 𝐷𝑦𝑛𝑎𝑚𝑖𝑐− GSA limitation in tracking variable reassignment in the for loop.

14 III confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐− GSA limitation in handling the initialization of an array with a for loop.

15 III pending 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ GSA assumes it enters a for loop for twice which actually it can only enter it for once.

16 III confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐− GSA does not know the value of the iterator d after a vacant loop for (d = -1; d !=0; ++d) {;}.
17 III pending 𝑆𝑡𝑎𝑡𝑖𝑐 GSA evaluates (c <= b) && (c != b) == false to be FALSE with the fact c >= b within goto statement.

18 IV confirmed 𝑆𝑡𝑎𝑡𝑖𝑐 GSA gets confused about conditionals involving bit-fields.

19 IV pending 𝑆𝑡𝑎𝑡𝑖𝑐 GSA misses handling of || logic.

20 IV confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ Pinpoint mishandles alias analysis because of global variables.

21 IV confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ Pinpoint mishandles the two-dimensional array initialization in the form of int a[2][7] = {9}.
22 IV fixed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐− GSA gives up exploring execution paths at the computed goto.

23 V confirmed 𝑆𝑡𝑎𝑡𝑖𝑐 CSA evaluates if(-g.e && g.e) to be FALSE, but it continues to do analysis of the code inside the if statement.

24 V pending 𝑆𝑡𝑎𝑡𝑖𝑐 CSA do not handle infinite recursion.

25 V pending 𝑆𝑡𝑎𝑡𝑖𝑐 CSA takes the true branch of if(255UL == b) with the fact that b is int8_t type.

26 VI confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ GSA arguably improper design that every function could be top level function.

27 VI confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ CSA improper assumption because of dead code.

28 VII confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐− GSA gives misleading messages at -O2 && False Nagetive at -O1 and -O0.
29 VII confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ GSA -O2 optimization leads to the false positive NPD warning in a loop.

30 VII confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐− GSA –Wanalyzer-out-of-bounds false negative with return arr[9]; at -O1 and above.

31 VIII duplicated 𝑆𝑡𝑎𝑡𝑖𝑐 GSA does not know b > 0 under the if condition that a>0 && b > a.
32 VIII pending 𝑆𝑡𝑎𝑡𝑖𝑐 CSA does not know b > 0 under the if condition that a>0 && b > a.
33 VIII confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ GSA effected by deleting the unrelated code int *d = 0;.
34 VIII duplicated 𝑆𝑡𝑎𝑡𝑖𝑐 GSA div-by-zero false negative with (d.b = 1) / f and (c = 1) % f where f is zero.

35 VIII confirmed 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ CSA does not support some C-library functions.

36 VIII duplicated 𝐷𝑦𝑛𝑎𝑚𝑖𝑐+ GSA does not support some C-library functions.

37 VIII confirmed 𝑆𝑡𝑎𝑡𝑖𝑐 GSA evaluates __analyzer_eval((a()<0)||(a()==0)) to be TRUE, but function a() is a unknown function.

38 VIII pending 𝑆𝑡𝑎𝑡𝑖𝑐 CSA assumes that a()< 0||a()==0 to be TRUE in the true brach of if(a()<= 0) where a() is a external function.

defect is a false positive (FP). In total, by using the dynamic oracle, we found 7 false negatives and

13 false positives. Column “Analyzer” denotes which static analyzer is affected. Column “Defect

Description” gives a brief description of the defect.

Among all the 38 found defects, 28 have been confirmed by developers. Of these 28 confirmed

defects, four were confirmed as duplicated (which were also reported by others) and four defects

have been quickly fixed. In Section 4.3, we select some representative defects from each classified

group to understand the limitations of the studied static analyzers.

4.3 Understanding the Found Defects

Implementation Errors (Class I). Some defects are caused by implementation errors, such as

failing to handle certain logic. We give two examples:

(1) Mishandling the comparison between &var and NULL. The defect #1 was found in GSA by the

dynamic oracle. As illustrated in Listing 1, at line 5, h[1][0] is assigned by the variable f (i.e., the
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Listing 5. Program revealing defect #2.� �
1 void foo(int a) {
2 if (a >= 0) {
3 __analyzer_eval(a >= 0); // TRUE
4 __analyzer_eval(a-0 >= 0); // TRUE
5 __analyzer_eval(0-a <= 0); //

UNKNOWN
6 }
7 }� �

Listing 6. Program revealing defect #7.� �
1 void foo(int a, int b) {
2 if (a > b) {
3 __analyzer_eval(a+0 > b+0); // TRUE
4 __analyzer_eval(a+1 > b+1); // TRUE
5 __analyzer_eval(a+2 > b+1); // TRUE
6 __analyzer_eval(a+3 > b+1); // UNKNOWN
7 }
8 }� �

memory address of e). Thus, the comparison expression at line 6 is equivalent to NULL == &e (note

that g equals 0). However, GSA only handles the comparisons between &e and NULL when NULL is on

the right-hand side (i.e., &e == NULL). It mishandles when NULL is on the left-hand side of the equality
operator (i.e., NULL == &e), and thus assumes that NULL == &e could be true (see the error traces

outputted by GSA in Listing 3). As a result, f is assumed as NULL and a false positive is warned at

line 8. The developer fixed this defect by adding the logic to handle the case of left-hand side.

(2) Miss handling comparisons against negated symbolic values. This defect #2 was found in GSA

through the static oracle. As Listing 5 shows, in the true branch of if (a >= 0), 0 - a <= 0 is always

true. However, GSA evaluates the expression at line 3 and line 4 both to be TRUE, but evaluates line

5 as UNKNOWN5. This means that GSA knows the facts that a >= 0 and can infer a - 0 >= 0 is true,

but fails to infer that 0 - a <= 0 is also true. Evaluating 0 - a <= 0 to be UNKNOWN may result in FPs

because static analyzers would assume 0 - a <= 0 could be TRUE or FALSE. The root cause of this

defect is that the developer did not handle the comparisons against negated symbolic values. The

developer fixed this defect by folding 0 - VAL to -VAL and treating -VAL <= 0 as equivalent to VAL

>= 0. The defect #4 found in CSA is similar to this one. Specifically, CSA does not treat c >= b and

b <= c as equivalent in the true branch of c >= b (b and c are the variables of pointers). To fix this

defect, CSA’s developers added a patch to the constraint manager by looking up the commutative

forms of the expressions like c >= b and treats these expressions as equivalent.

Defect #1∼#6 are all due to some implementation errors. Of these, defect #1, #3, #4, and #5 are all

related to legal pointer or array operations. Defect #2 is related to arithmetic operations. Pinpoint

also has implementation errors. In defect #6, Pinpoint intended to model the first two elements of

each dimension of the two-dimensional array, but dropped the information of the second element

when encountering the complex loop logic. These implementation errors in these static analyzers

lead to incorrect evaluation of boolean expressions, which could lead to false positives or negatives.

Defects in Heuristics (Class II). The developers may adopt some heuristics in handling specific

cases in static analysis which however may lead to unexpected effects. Here are the two examples:

(1) GSA’s heuristics for handling a+N > b+M. Defect #7 (see Listing 6) is found by the static oracle.

Under the condition a > b (line 2), GSA infers that a+0 > b+0, a+1 > b+1 and a+2 > b+1 to be TRUE
(lines 3, 4, and 5), but evaluates a+3 > b+1 to be UNKNOWN. These evaluation results are inconsistent.

The root cause is that GSA’s constraint manager plays fast-and-loose in places. The GSA’s developer

confess that the heuristics used to infer a+N > b+M when a > b and N >= M is imprecise. Because in

strict sense a+1 > b+1 is not always true. For example, if a == INT_MAX and b == INT_MAX-1, a > b

is TRUE, but a+1 becomes an undefined behavior (a+1 should be treated as INT_MIN). In this case,

a+1 > b+1 becomes INT_MIN > INT_MAX, which should be evaluated to be FALSE. Due to this defect,

the developer is going to hand this constraint tracking off to an SMT solver.

5
We catch the FALSE evaluation in the original program. After reducing, we find that the root cause is that GSA evaluates 0
- a <= 0 as UNKNOWN, leading to some complex expressions are evaluated to be FALSE in the original program.
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Listing 7. Program revealing defect #9.� �
1 void foo() {
2 int *b = (void *)0;
3 if (b == (void *)0) {
4 clang_analyzer_eval(b == (void *)0); // TRUE
5 clang_analyzer_eval(b+1 == (void *)1 ); // FALSE
6 int *p = (void *)0;
7 if (b + 1 != (void *)1)
8 *p = 100;
9 }}� �

Listing 8. Program revealing defect #11.� �
1 void foo(int *e) {
2 *e = (0 == e); // warning of NPD
3 }
4

5 void main(){
6 int d[4];
7 for (int c = 0; c < 4; c++){}
8 foo(d);
9 }� �

(2) CSA’s heuristics for assisting null pointer dereference. Defect #9 (see Listing 7) was found by

the static oracle. CSA evaluates the condition b == (void*)0 on line 4 as TRUE, but evaluates b+1

== (void *)1 on line 5 as FALSE. However, in reality b+1 == (void *)1 should be TRUE. Due this

incorrect evaluation, CSA concludes that line 8 is reachable and reports a false positive of NPD on

line 8. The CSA’s developer confess that this an “ugly hack” that was implemented to assist the

NPD analysis. The developer implemented any arithmetic operation on a concrete null pointer as

always resulting in a literal concrete null pointer. Due to this heuristic, b+1 is treated as an NPD

because b is a null pointer and the data behind b is accessed. The developer responded that “Some
effort is required to undo this heuristic while preserving the null dereference checker behavior.” We

find that Pinpoint also implements the similar heuristic, while GSA does not have this issue.

In summary, some heuristics in the constraint manger may lead to imprecise analysis results

when handling numerical comparisons (see defect #7 and #8). Some heuristics in handling pointer

arithmetic operations may also lead to imprecision (see defect #9). In addition, defect #10 shows

that some heuristics intending to suppress false positives may unexpectedly bring false negatives.

Defects in Handling Loops (Class III). Handling loops is difficult for static analysis. The static

analyzers face the problems of determining the iterations of loops, the complex logic within loops,

and the dependency on the input data. The analyzers usually use some strategies to mitigate the

challenges, but these strategies may bring some unexpected effects. Here are the three examples:

(1) Defects in modeling the iterations of loops. Defect #11 (see Listing 8) was found by the dynamic

oracle. CSA reports a warning of NPD at line 2 by assuming e is null. However, since function foo

is called by main with the argument d, e cannot be null. Thus, this warning is spurious. On the

other hand, we find that CSA will not give this warning if the loop condition (at line 7) is set to c

< 3. This inconsistency may confuse the CSA’s users. The developers explained the root cause of

the defect: CSA by default models at most three iterations of loops before stopping on that path.

In Listing 8, since the number of loop iterations at line 7 exceeds three, the function call foo(d)

will not be analyzed. In this case, function foo will be treated as a top-level function. When foo is

analyzed as a top-level function, CSA assumes that e can be given any value (including null).

(2) Defect in widening loops. Defect #12 (see Listing 9) was found by the dynamic oracle. When the

“widen-loops=true” option is enabled, CSA reports a false positive warning of NPD at line 10. We

can see that variable f refers to the address of variable e at line 7, and thus f cannot be null at line

10 (f is never overwritten). The defect is caused by some bug in widening loops (this false positive

will not appear without enabling the “widen-loops=true” option). During widening loops, CSA
sees a reference to variable f (line 10) which is part of the expression *f = a(f==0) within the

innermost loop. However, CSA does not consider that the expression f==0 never overwrites the

value of f, so CSA assumes f may get overwritten by a fresh symbol. Then, when CSA reaches the
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Listing 9. Program revealing defect #12.� �
1 int *a(int i) {
2 int *n = (void *)0;
3 return n;
4 }
5 void main() {
6 int d, *e;
7 int **f = &e;
8 for (int g = 0; g < 3; g++) {
9 for (d = 2; d; d--) {
10 *f = a(f == 0); // warning of NPD
11 }}}� �

Listing 10. Program revealing defect #13.� �
1 void main() {
2 int e = 1; int *f;
3 for (int i = 0; i < 1; i++) {
4 e = 0;
5 __analyzer_eval(0 == e); // TRUE
6 }
7 __analyzer_eval(0 == e); // UNKNOWN
8 f = e;
9 __analyzer_eval(0 == f); // UNKNOWN
10 *f = 1; // miss reporting NPD
11 }� �

expression f==0, it no longer knows that f refers to &e, and f is not null; so CSA splits the path,

and it ends up on a path where f is assumed to be null.

(3) Defect in loosely handling of loops. Defect #13 (see Listing 10) is a false negative of GSA found

by the dynamic oracle (we give some debug checks in Listing 10 to facilitate understanding this

defect). An NPD error exists at line 10, but GSA misses this NPD. GSA evaluates 0 == e (line 5)

to be TRUE, but evaluates 0 == e (line 7) and 0 = f (line 9) to be UNKNOWN. This case shows that

GSA lacks the ability to track the reassignment of variable e within the loop. GSA symbolically

executes the loop body once, so it should know the value of e in the loop body. However GSA does

not retain the symbolic state after the loop, so it loses the value of e after the loop body. Even if

the optimization option -O2 is enabled, GSA still cannot find this NPD because the optimization

passes do not optimize the loop out. In contrast, CSA can find this NPD because it fully unrolls

such simple loops that satisfy the attributive condition [35].

In summary, the static analyzers use different strategies to mitigate the challenges of analyzing

loops. For instance, CSA sets the default number of iterations for loops as three (revealed by defect

#11). CSA also adopts some strategies to widen loops [35], but these strategies have some faults

(revealed by defect #12). Pinpoint by default unrolls loops for at most two iterations (revealed by

defect #6). GSA handles loops in a different yet simpler manner. It performs the symbolic execution

on the loop body once, but does not retain the symbolic state after the execution (revealed by defect

#13). Additionally, since GSA is implemented as an inter-procedural optimization (IPA) pass, and

some code optimizations will be performed before static analysis. With -O2 optimization, defect

#14, #15, and #16 will not appear, while defect #13 always exists on different levels of optimizations.

Mishandling Language Features (Class IV). Mishandling some language features may lead to

false negatives or positives of static analyzers. Here are the three examples:

(1) Mishandling of bit-fields. Defect #18 (see Listing 11) was found in GSA by the static oracle. The

variable b.d is assigned as zero at line 5. GSA evaluates b.d (line 8) to be FALSE, which is correct. But

GSA evaluates b.d == 0 (line 9) and b.d != 0 (line 10) to be UNKNOWN, which is imprecise. Moreover,

if we use __analyzer_dump_path() to compute the reachability of the true branch of if(b.d), GSA

says it is reachable. This conclusion is contradictory with the fact that b.d is zero. This phenomenon

indicates that GSA mishandles bit-fields. This mishandling could lead to a false positive warning of

NPD at line 12. In fact, GSA only handles specific widths of bit-field. Specifically, if the bit-field at

line 2 is modified to 1, 8, 16, or 32, GSA can give correct conclusion that the true branch of if(b.d)

is not reachable. However, it cannot handle other widths of bit-field.

(2) Mishandling of the logical OR (||). Defect #19 (see Listing 12) was found in GSA by the static

oracle. GSA assumes line 12 is reachable, and thus gives a warning of NPD against variable d at line

12. However, this warning is a false positive. Because taking the true branches of if(!a) (line 9) and
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Listing 11. Program revealing defect #18.� �
1 struct a{
2 int d: 10;
3 } b;
4 void foo(){
5 b.d = 0;
6 int * p;
7 if (b.d){
8 __analyzer_eval(b.d); // FALSE
9 __analyzer_eval(b.d==0); // UNKNOWN
10 __analyzer_eval(b.d!=0); // UNKNOWN
11 __analyzer_dump_path(); // Reachable
12 *p = 42; // warning of NPD
13 }
14 }� �

Listing 12. Program revealing defect #19.� �
1 int foo(bool a, bool b) {
2 int *c = 0;
3 int *d = 0;
4 if (a || b){
5 __analyzer_eval(a); // UNKNOWN
6 __analyzer_eval(b); // UNKNOWN
7 __analyzer_eval(a||b); // UNKNOWN
8

9 if (!a){
10 if (!b){
11 __analyzer_eval(a||b); // UNKNOWN
12 *d = 0; // warning of NPD
13 }
14 }}}� �

if(!b) (line 10) is contradictory with the GSA’s assumption that a || b (line 4) could be true. In

addition, GSA correctly evaluates the expressions at lines 5 and 6 to be UNKNOWN, but it imprecisely

evaluates the expressions at lines 7 and 11 to be UNKNOWN. This phenomenon means GSA’s constrain

manager does not properly handle the logical OR. In contrast, both CSA and Pinpoint correctly

conclude that line 12 is dead code and do not report the NPD warning.

(3) Mishandling of computed gotos. Defect #22 (see Listing 13) was found in GSA by the dynamic

oracle. At line 2, array arr is initialized with the addresses of two goto labels x and y. We can see

that label x is reachable, and there is an NPD error at line 7. However, GSA does not report this

NPD because GSA gives up exploring execution paths at the computed gotos. GSA ignores the CFG

edges with the flag EDGE_ABNORMAL. This bug has been fixed by the GSA’s developer.

In summary, the static analyzers may mishandle some language features, e.g., bit-fields (defect
#18), logical OR (defect #19), global variables (defect #20), the array initialization by brace-enclosed

lists (defect #21) and computed gotos (defect #22). Among these features, global variables are one

of the main reasons of inducing false positives, because the analyzers usually assume that global

variables could be any value at any place when used.

Overly Eager Assumption (Class V). In order to guarantee the soundness, the analyzers usually

make assumptions when they cannot find all the necessary information. However, we find that the

analyzers may still make assumptions when sufficient information is available (revealed by defect

#23, #24, and #25). This kind of overly eager assumption can lead to false positives.

For example, CSA sometimes assume both branches of a conditional statement are reachable.

Here are the two examples. Defect #23 (see Listing 14) was found in CSA by the static oracle. This

defect leads to a false positive warning of NPD at line 9. CSA can correctly evaluate the expression

-g.e && g.e at line 7 to be FALSE, but it simply assumes the true branch of the conditional statement

if (-g.e && g.e) (line 8) to be reachable and reports the NPD warning. This is a typical overly

eager assumption in CSA. We tried this case with GSA and Pinpoint. Both GSA and Pinpoint do

not make such eager assumptions on this case.

Defect #25 (see Listing 15) was also found in CSA by the static oracle. Since the value range

of type int8_t is from -128 to 127, only the false branch of if(255UL == b) (line 3) is reachable.

However, CSA assumes that both branches are reachable even if CSA knows that the expression

255UL == b (either at line 4 or line 6) is evaluated to be FALSE.

Defects Related to Design Choices (Class VI). The design choices made by the static analyzers’

developers may induce false positives or negatives. For example, GSA treats every function as
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Listing 13. Program revealing defect #22.� �
1 void foo(int b) {
2 int *arr[2] = {&&x, &&y};
3 goto *arr[b];
4

5 x:
6 arr[0] = (void *)0;
7 *arr[0] = 42; // miss reporting NPD
8 return;
9 y:
10 return;
11 }
12 int main() { foo(0); }� �

Listing 14. Program revealing defect #23.� �
1 union d {
2 int e;
3 };
4

5 int main() {
6 union d g = {};
7 clang_analyzer_eval(-g.e && g.e); // FALSE
8 if (-g.e && g.e){
9 *(int *)0; // warning of NPD
10 }
11 }� �

Listing 15. Program revealing defect #25.� �
1 void foo(int8_t b) {
2

3 if (255UL == b)
4 clang_analyzer_eval(255UL==b); // FALSE
5 else
6 clang_analyzer_eval(255UL==b); // FALSE
7 }� �

Listing 16. Program revealing defect #26.� �
1 int a = 1; int *b = &a;
2 void c() { int f; f = *b; } // warning of NPD
3 void e() {
4 if (0 == b)
5 int *g = (void *)0;
6 }
7 void main() { e(); c(); }� �

an entry point for static analysis. This design choice may lead to false positives. Defect #26 (see

Listing 16) was found in GSA by the dynamic oracle. We can see that function e and c are called

by function main. However, GSA warns an NPD (corresponding to f = *b) at line 2. Because GSA

treats function c might be called externally, and thus does not consider the constraint b == &a (line

1). In this way, the global variable b could be NULL (at line 2). In contrast, CSA conducts a topology

analysis between function calls. CSA treats main as the entry point of static analysis and other

functions called by main would not be treated as top-level functions. Pinpoint also does a similar

topology analysis but analyzes the functions in a bottom-up matter. Both CSA and Pinpoint do not

give the false positive warning on this case.

Defects Related to Optimizations (Class VII). Defect #30 (see Listing 17) shows that the optimizer

may affect the static analysis results of GSA. This defect was found by applying the dynamic oracle

to the out-of-bound (OOB) checker. The code at line 5 in Listing 17 contains an OOB. With the -O0
optimization option, GSA can successfully report this OOB. However, with the -O1 or -O2 option,

GSA misses this OOB. The developer confirmed this defect and pointed out that “this is a side-effect

of how late the analyzer runs after optimizations”. By inspecting the GIMPLE IR, we find that

the expression arr[9] has been optimized out before GSA sees it when the -O1 or -O2 option is

given. Due to this defect reported by us, the GSA’s developers opened a dedicated thread to discuss

the topic “should the analyzer run earlier?”. Since the optimizer may remove the code containing

undefined behavior before GSA ever sees it, various program bugs are showing up where GSA fails

to warn on clearly wrong code. Thus, there is a tension between the warnings and optimization:

the optimizer takes advantage of undefined behavior (assuming it’s not present), while the static

analyzer should complain about the presence of undefined behavior. On the other hand, it is better

to report warnings to the users in a form closer to that in which they wrote the code. Therefore, it

is preferable to run GSA at an earlier stage.
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Listing 17. Program revealing defect #30.� �
1 static int f();
2 int f() {
3 int arr[1];
4 for (int h = 0; h < 1; h++) arr[h] = 3;
5 return arr[9]; // miss reporting OOB
6 }
7 int main() { f(); }� �

Listing 18. Program revealing defect #33.� �
1 void foo(int* e) {
2 if(e == 0){
3 int *d = 0; // the extraneous code
4 *e = 1; // an NPD warning
5 }
6 }� �

Others (Class VIII). There are other types of defects that cannot be classified into the categories

discussed before. We briefly illustrate these defects. Defect #31 and #32 are respectively caused by

the limitations of the constraint managers in GSA and CSA. The managers are usually designed as

lightweight solvers and are difficult to solve complex constraints. Defect #35 and #36 were found in

CSA and GSA since they fail to model C-library functions like printf. Because function printf is a

variadic function which is not easy to model. In defect #33 (see Listing 18), GSA warns an NPD at

line 4 assuming variable e could be null. However, if we remove the extraneous code int *d = 0 at

line 3, the NPD warning disappears, which is unexpected.

5 DISCUSSION AND LESSONS LEARNED
This section discusses our additional experience of finding defects in the three studied static

analyzers and summarizes some lessons learned.

Static analyzers should clarify the nature and extent of unsoundness. Virtually all modern

static analyzers, including CSA, GSA and PinPoint which we studied, are unsound in practice [24].

It means, on the one hand, these static analyzers over-approximate most common language features

(i.e., modeling all the possible program behaviors) to ensure soundness. On the other hand, some

specific language features, well known to experts in the area, are deliberately under-approximated

to improve precision and/or scalability — such engineering compromises undermine the soundness.

For example, defect #9 in our study is caused by the under-approximation of pointer arithmetic in

CSA; defect #18 is induced because GSA only models some specific width of bit-field. Thus, static

analyzers’ developers (researchers) should clarify the nature and extent of unsoundness so that the

wider community of users who expects to use static analyzers as black-box can better understand

the tool limitations [24]. Our work also contributes in this regard to help the users gain a better

understanding of these static analyzers (and static analysis).

Compiler optimizations affect GSA’s static analysis results. GSA is implemented as an inter-

procedural analysis (IPA) pass like many compiler optimizations in GCC. Its static analysis results

could be affected by the optimizations precedingGSA. Because different optimization levels (e.g., -O0,
-O1 and -O2) will enable different optimization passes before GSA is invoked. On the positive side,

GSA can leverage the optimization passes, such as dead code elimination and constant propagation,

to simplify the code before doing static analysis. For example, in our study, when -O2 is enabled,
GSA can successfully avoid false negatives (defects #14, #16) and positives (defect #15) because

some code in the loops are simplified. On the negative side, the optimization passes may introduce

false negatives by optimizing out important code snippet. For example, defect #30 (which induces a

false negative) only appears when -O1 and -O2 are enabled. One GSA developer commented in the

bug report of defect #30 that “that’s a strong argument that the analyzer should run earlier.” As a
side note, CSA and Pinpoint do the static analysis on the unoptimized LLVM bitcode.

Constraint solving in static analyzers.GSA and CSA use internal (lightweight) constraint solvers

to analyze path feasibility in their default settings. In the case of complex path constraints, the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 74. Publication date: July 2024.



74:18 Weigang He, Peng Di, Mengli Ming, Chengyu Zhang, Ting Su, Shijie Li, and Yulei Sui

solvers may give up and thus induce spurious warnings (i.e., false positives). To counter this issue,

CSA can be configured with Z3 [11], a potent constraint solver, to refute spurious warnings [28].

To examine whether the 12 defects found in CSA (see Table 3) could be refuted by Z3, we ran CSA

with Z3 on the 12 corresponding defect-triggering programs. We find that only defect #25 can be

eliminated. It indicates that the remaining 11 defects are non-trivial because they are only relevant

to the core analysis module rather than the internal solver. As a side note, GSA is incorporating Z3

to address the defects similar to defect #7 reported by us, while Pinpoint uses Z3 by default.

Implementation errors should be avoided. All the three studied analyzers are affected by imple-

mentation errors. We discuss some cases of the category Implementation Errors in detail in Section

4.3. Upon examining these implementation errors, we observe that developers may overlook cer-

tain intricate analysis logic, thereby rendering static analyzers incapable of analyzing code that

encompasses such complexities. However, in such cases, static analyzers will designate the logically

interrelated expression as UNKNOWN to ensure the soundness, thus leading to false positives.

Cross-checking the three analyzers on the defect-triggering programs. We used the 38 defect-

triggering programs to compare the capabilities of three static analyzers. Because of Pinpoint’s

lack of debugging checkers, for those static oracles, we insert NPDs into those defect-triggering

programs to find whether Pinpoint shows up FPs or FNs. The results are given in Table 1 in the
supplementary material [46]. Apart from its own three defects, Pinpoint also fails on defect #9,

#14, #16, and #24. Overall, Pinpoint produces fewer numbers of false positives. Interestingly, the

programs revealing defect #14 and #16 in GSA trigger different defects in Pinpoint. In addition to

its own defects, CSA is also affected by defect #7, #31, and #36. These three defects are included in

its own defects. Additionally, CSA is also affected by defect #20, which is related to global variables.

Similarly, GSA is also affected by defect #32 and #35, which are also included in its own defects.

The dynamic and static oracles are complementary in finding defects. The two types of

oracles used in our work are complementary in finding defects in static analyzers. For example, the

dynamic oracle can never find the defect like defect #19, because it requires a dynamic execution

path reaching line 12. But line 12 (in Listing 12) is not reachable. On the other hand, the fault

detection ability of the static oracle is limited to generating equivalent boolean expressions from

selected conditional statements. The static oracle is difficult to find the defects of handling the for

loops (e.g., defect #11). Because these analyzers face challenges in modeling the iterations of loops.

Testing coverage of the automated oracles. The 38 defects found by our work have demonstrated

the effectiveness of the two automated oracles. To investigate the testing coverage of these two

automated oracles, we measured (1) the achieved code coverage of the studied static analyzers, and

(2) the number of checkers which can be tested by the dynamic oracle.

We used Gcov [41] to measure the line coverage achieved by the randomly generated programs

with the dynamic and static oracles based on the setup in Section 4.1. We measured the coverage of

core analysis modules in CSA (tools/clang/lib/StaticAnalyzer/Core/) and GSA (gcc/analyzer/).

The dynamic oracle achieved 49.6% and 44.6% of the line coverage of CSA and GSA respectively.

The static oracle achieved 45.9% and 43.5% of the line coverage of CSA and GSA respectively.

The dynamic oracle is not limited to the NPD checker used in Section 4.1. In theory, the dynamic

oracle can leverage any checker whose targeted bugs can be caught at runtime or transformed

into runtime errors. We find that 40 out of all the 48 checkers (83.3%) in GSA and 14 out of all the

14 core checkers (100%) in CSA can be tested by the dynamic oracle. It shows that most checkers

in CSA and GSA can be tested by the dynamic oracle. To demonstrate the feasibility, we used the

out-of-bound (OOB) checkers of CSA and GSA for additional experiments. The OOB checkers

found some similar defects which were found by the NPD checkers. But the OOB checkers also

found one unique defect #30 in GSA, which cannot be found by the NPD checkers.
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Table 5. Key Differences between the prior work and ours in testing static analyses.

Work Which static analyses were tested? What kinds of test oracles [2] are used?
Cuoq et al. [10] value analysis, constant propagation, slicing Pseudo-oracles

Wu et al. [47] alias analysis Pseudo-oracles

Taneja et al. [37] data-flow analysis Pseudo-oracles

Midtgaard et al. [27] type analysis Specification

Bugariu et al. [3] abstract domain Specification

Our work off-the-shelf static analyzers Pseudo-oracles & Metamorphic Relations

Both False negatives and positives are important. Both false negatives and positives are impor-

tant to be tackled in building reliable static analzyers. On one hand, it is important to mitigate the

false negatives to avoid missing true program bugs. On the other hand, the issue of false positives

is one of the main reasons that engineers ignore the tool’s warnings, which is the lesson Caitlin et

al. [30] learned from building static analysis tools at Google. In our study, we benefit from both

false positives and false negatives to have a deep understanding of static analyzers. For example,

the false positive of defect #9 is caused by the under-approximation of pointer arithmetic in CSA.

The false negative of defect #30 is caused by the optimization passes in GSA.

6 RELATEDWORK
In the literature, a number of work has been conducted in finding soundness and precision bugs of

static analyses. Table 5 illustrates the key differences between the prior work with ours in terms of

(1) which static analyses were tested and (2) what kinds of test oracles [2]6 are used. Cuoq et al. [10]
use Csmith to generate random programs to test some specific static analyses in Frama-C [40]

7
, i.e.,

value analysis (based on abstract interpretation), constant propagation (a program transformation

plugin based on value analysis), and the slicing plugin. Specifically, Cuoq et al. compare the values

inferred by static analyses with those from actual program executions as test oracles to find bugs.

Since Cuoq et al. test low-level static analyses rather than off-the-shelf static analyzers like CSA,

GSA and Pinpoint. Their oracles cannot be applied in our setting. Moreover, the bugs found by

Cuoq et al. are different from those found by us. For example, Cuoq et al. find the bugs in or related
to the front-end, alarm emission, program pretty-printing and slicing. In contrast, the bugs found

by us are much more diverse. Cuoq et al. do not discuss the found bugs in detail, while we carefully

classify and illustrate the found bugs.

There are work testing other specific static analyses, e.g., alias analysis [47], data-flow anal-

ysis [37], type analysis [27] and abstract domains [3, 6, 26]. Wu et al. [47] compare the pointer

addresses inferred by LLVM’s alias analyses with those dynamically tracked by running programs

as test oracles to find errors. Taneja et al. [37] compute sound and maximally precise static analysis

results by using an SMT solver, and cross-check against the analysis results of LLVM’s data-flow
analyses to find bugs. Midtgaard et al. [27] use several algebraic lattice properties as test oracles to
test a type analysis for the Lua programming language. Bugariu et al. [3] use several mathematical

properties of abstract domains as test oracles to validate the soundness and precision of numerical
abstract domains, the core of all static analyzers based on abstract interpretation.

Our work has two key differences with these preceding prior work in Table 5. First, our work

tests off-the-shelf static analyzers for finding bugs rather than specific static analyses. Second,

our work proposes two types of novel automated oracles. At the high-level, the dynamic oracle

compares the static analysis results with the results obtained by dynamically running programs

6
We use the terms of different types of test oracles defined in [2] to name the test oracles used by these work in Table 5. We

will discuss the concrete test oracles used by these work in Table 5 in detail.

7
Note that Frama-C is an analysis framework for C language including multiple static analyses. It is not an off-the-shelf

static analyzer for finding bugs like CSA, GSA, and Pinpoint.
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like [1, 6, 10, 47]. But the concrete forms of test oracles are different. The static oracle is constructed

based on metamorphic relations, which have not been explored by these prior work.

In the literature, Wang et al. [45] and Zhang et al. [50] test some off-the-shelf static code analyzers

like PMD, SpotBugs and SonarQube. However, these analyzers are only linters [25] which mainly

adopt syntax-based pattern matching to find program flaws like best practice violations and coding

issues, while the analyzers studied in our work adopt flow-based analysis techniques to find deep

program bugs. Therefore, all the bugs found in these linters are caused by inadequate syntactic

pattern matching (see Section 3.2/3.3 in [45] and Section 5.2 in [50]), which are different from ours.

Finding the defects in these static analyzers can help improve the soundness and precision. A recent

survey summarizes different techniques to mitigate spurious static analysis warnings [14].

There are also some work on testing compilers [12, 19] and program analyzers (e.g., software
model checkers [17, 49], symbolic execution engines [16]). Vu Le et al. [19] propose an approach for

validating optimizing compilers by exploiting the close interplay between dynamically executing a

program on some test inputs and statically compiling the program to work on all possible inputs.

Even-Mendoza et al. [12] apply coverage-guided gray-box fuzzing to find crashing bugs in compilers

and program analyzers. Zhang et al. [49] propose a fully-automated branch reachability fuzzing

approach to test the soundness of software model checkers. Klinger et al. [15] use differential testing
to find soundness and precision bugs in software model checkers. Kapus et al. [16] find bugs in

symbolic execution engines by crosschecking the symbolic execution runs against native runs.

7 CONCLUSION
We introduce two novel types of automated oracles by leveraging the dynamic program execution

and inferred static analysis results to help find the defects in static analyzers. We applied the two

oracles on three state-of-the-art static analyzers which adopt different static analysis techniques. We

found 38 unique defects in these analyzers, 28 of which have been confirmed and 4 have been fixed.

The results demonstrate the effectiveness of the two oracles. We conducted a case study to illustrate

these found defects followed by several lessons learned for improving and better understanding

these static analyzers.
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