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C++ is crucial in software development, providing low-level memory control for performance and supporting
object-oriented programming to construct modular, reusable code structures. Consequently, tackling pointer
analysis for C++ becomes challenging, given the need to address these two fundamental features. A relatively
unexplored research area involves the handling of C++ member function pointers. Previous efforts have tended
to either disregard this feature or adopt a conservative approach, resulting in unsound or imprecise results.

C++ member function pointers, handling both virtual (via virtual table indexes) and non-virtual functions
(through addresses), pose a significant challenge for pointer analysis due to the mix of integers and pointers,
often resulting in unsound or imprecise analysis. We introduce Tips, the first pointer analysis that effectively
manages both pointers and integers, offering support for C++ member function pointers by tracking their
value flows. Our evaluation on Tips demonstrates its accuracy in identifying C++ member function call targets,
a task where other tools falter, across fourteen large C++ programs from SPEC CPU, Qt, LLVM, Ninja, and
GoogleTest, while maintaining low analysis overhead. In addition, our micro-benchmark suite, complete with
ground truth data, allows for precise evaluation of points-to information for C++ member function pointers
across various inheritance scenarios, highlighting Tips’s precision enhancements.
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1 INTRODUCTION

Pointers are crucial in system programming languages like C and C++, enabling efficient memory
management, data manipulation, and low-level operations for optimized software development.
Pointer analysis [Hardekopf and Lin, 2009, Li et al., 2018, Liu et al., 2022, Shi et al., 2018, Sui and
Xue, 2016b, Yu et al., 2010], a key static analysis technique, aims to over-approximate a pointer’s
potential targets, supporting diverse applications such as bug detection [Cai et al., 2021, Liu et al.,
2016, Livshits and Lam, 2003, Yan et al., 2018], information flow analysis [Arzt et al., 2014, Schubert
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01 class DD{
02 public:
03 long dd;
04 virtual void ff(){ }
05 virtual void gg(){ } 
06 virtual void hh(){ } 
07 void kk() { }
08 };

09 typedef void (DD::*MptrTy)(); 

10 void test1(DD *dptr){
11 dptr->hh(); 
12 }

// mfptr is a fat pointer:
//    {i64 pointer, i64 adjustment}

13 void test2(DD *dptr, MptrTy mfptr){
14 (dptr->*mfptr)();
15 }
16 int main(){
17 DD dobj;
18 test1(&dobj);

// &dobj, {VtableIndex, 0}
19 test2(&dobj, &DD::gg);//virtual 

// &dobj, {(ptrtoint) (&DD::kk), 0}
20 test2(&dobj, &DD::kk);//non-virtual
21 return 0;
22 }

Function
dptr->hh() (dptr->*mfptr)()

SVF TIPS SVF TIPS

DD::ff() ✓

DD::gg() ✓ ✓

DD::hh() ✓ ✓ ✓

DD::kk() ✓

Sound Y Y N Y

Precise Y Y N Y

Target Functions Reported 

Fig. 1. A motivating example comparing targets reported by the state-of-the-art pointer analysis tool, SVF,

and our tool, Tips, for the virtual call dptr->hh() and the member function call (dptr->*mfptr)().

et al., 2019, Trabish et al., 2018], symbolic execution [Cadar et al., 2008, Trabish et al., 2018], and
compiler optimization [Lattner and Adve, 2004, Lattner et al., 2007, Sui et al., 2013]. However,
existing algorithms and frameworks for C and C++ like SVF [Sui and Xue, 2016b, 2024, Sui et al.,
2014] and Pinpoint [Shi et al., 2018] typically focus on pointer variables, often overlooking integer
variables involved in pointer casting, resulting in unsound or overly conservative analyses.

In this paper, we address the challenge of resolving C++ member function calls, emphasizing
the need to track flows between integers and pointers. In C++, indirect calls are categorized into
C-style, virtual, and member function calls. C-style calls are conventionally analyzed [Hardekopf
and Lin, 2009, Li et al., 2018, Liu et al., 2022, Shi et al., 2018, Sui and Xue, 2016b, Yu et al., 2010].
Virtual calls (e.g., line 11 in Figure 1) add a layer of indirection, where the target function of a virtual
call is determined by accessing the class’s virtual table via the object’s virtual table pointer, then
using a constant integer offset for a virtual table lookup to identify the specific virtual function.
However, member function calls involving integer variables, exemplified by line 14 in Figure 1,

challenge existing pointer analysis algorithms [Hardekopf and Lin, 2009, Li et al., 2018, Liu et al.,
2022, Shi et al., 2018, Sui and Xue, 2016b, Yu et al., 2010]. These indirect calls, using member
function pointers for both virtual and non-virtual functions, are often represented as fat pointers in,
e.g., LLVM [LLVM, 2024], merging a function pointer with byte-level object pointer adjustments.
This demands the tracking of virtual table indexes for virtual functions and direct addresses for
non-virtual functions. However, existing pointer analyses like SVF [Sui and Xue, 2024] struggle
with accurately resolving these calls as it does not track integer-pointer flows, highlighted by the
blue dotted lines in Figure 1. Thus, typical prior work in the field misses the non-virtual function
DD::kk() (unsoundness) and wrongly identifies all three virtual functions as potential targets
(imprecision).

To address the complexities of analyzing C++ member function pointers, particularly amidst
C++’s challenging multiple and virtual inheritance structures, we introduce Tips (Tracking Integer-
Pointer value flows), an open-source framework [Zou, 2024] developed in LLVM. Tips elevates
pointer analysis in C++ through a field-, flow-, and context-sensitive approach, uniquely tracking
both pointer and integer value flows. This is achieved through the modeling of integer constants
as the initial points-to information for integer variables and the representation of casts between
integers and pointers using the classic Copy rule (as detailed in Section 3.1).
Moreover, Tips adeptly handles byte-level pointer adjustments critical for multiple inheritance

by utilizing the Gep𝑐 rule (p = gep q, c), leveraging LLVM’s getelementptr instruction for
precise tracking and transformation into flattened field indexes, where q represents a pointer and c
denotes a constant integer. As a result, Tips can precisely identify correct virtual tables for class
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objects in complex initialization scenarios, including those with multiple virtual table pointers
implicitly generated by C++ compilers like LLVM (as described in Section 3.2).
Finally, Tips handles byte-level pointer adjustments manifested as integer variables, especially

in member function pointers with virtual inheritance. It uses the Gep𝑘 rule (p = gep q, k), with q
as a pointer and k as an integer variable, to refine points-to sets by treating integers as pointers
(PointsTo(k)). This approach converts Gep𝑘 into several Gep𝑐 instances (p = gep q, c𝑖 , where
c𝑖 is a pointed-to element in PointsTo(k)), introducing field sensitivity into Gep𝑘 and addressing
the imprecision of previous field-insensitive approaches [Hardekopf and Lin, 2009, Li et al., 2018,
Liu et al., 2022, Shi et al., 2018, Sui and Xue, 2016b, 2024, Yu et al., 2010].
Our evaluation shows that Tips can precisely resolve C++ member function calls missed by

current leading solutions in large C++ applications, imposing small overhead. It underscores the
significance of C++ member function pointers, including in the C++ STL (Standard Template
Library). Additionally, we introduce a micro-benchmark suite that provides a quantitative measure
for evaluating pointer information in C++ inheritance cases, demonstrating enhanced precision.

This paper’s key contributions include: (1) the first pointer analysis for supporting C++ member
function pointers, in all inheritance scenarios, including single, multiple, and virtual inheritance,
field-, flow-, and context-sensitively by tracking integer-pointer value flows, (2) a prototyping im-
plementation of Tips in LLVM; and (3) an evaluation of Tips in terms of its precision improvements
and analysis overhead using both a micro-benchmark suite and fourteen C++ programs.

2 WHY MUSTWE ANALYZE INTEGERS FOR C++ PROGRAMS?

Revisiting our motivating example, initially given in Figure 1 and now in Figure 2, highlights the
crucial role of tracking integer-pointer value flows in analyzing its member function call at line 27.
For class DD, C++ compilers emit a virtual table (lines 45–52) listing the names of all three virtual
functions (lines 48–50) in the order defined in the source code (lines 4–6), with names demangled by
c++filt (line 44). The LLVM-IR representation for DD (line 43) includes two primary data members:
the virtual table pointer initialized in DD’s constructor and the dd data member (line 3).
The typedef statement at line 9 defines a C++ member function pointer type for class DD,

facilitating member function calls like (dptr->*mfptr)() at line 27 in LLVM. Here, mfptr acts as
a fat pointer comprising two fields: (1) a function pointer for non-virtual functions or a virtual table
index for virtual functions, and (2) a byte-level offset for adjusting the object pointer, such as dptr.
For the virtual function DD::gg(), identified at line 37, its virtual table index (1) is encoded as an
odd integer (9) by multiplying with the pointer’s size and adding one, with a zero byte offset for
adjustments. As a result, the arguments passed to test2() become &dobj and the fat pointer {9,
0}. Non-virtual function addresses, like &DD::kk at line 40, are cast to integers using ptrtoint
and paired with a zero byte offset to form a fat pointer. It is worth noting that &DD::kk always
results in an even integer due to the linker’s 16-byte alignment for function code entries.

The pseudo-code at lines 16–26 outlines the low-level steps required for the high-level member
function call (dptr->*mfptr)() at line 27. At line 16, we obtain the encoded virtual index or
non-virtual function address (cast into an integer) and store it in n. Line 17 handles byte-level
object pointer adjustment. We distinguish between virtual and non-virtual functions by checking
if n is odd or even at line 18. If n is odd (representing an encoded virtual table index), line 19
decodes it, with k now representing the actual virtual table index. Subsequently, we load the virtual
table pointer at line 20, adjust it at line 21, and retrieve the corresponding virtual function address
from the virtual table at line 22. If n is even, it is cast back into a function pointer (containing the
non-virtual member function address) at line 24. In both cases, the indirect call is made at line 26.
In the lower section of Figure 2, we highlight in orange the treatment of C++ virtual and non-

virtual member function pointers, &DD:gg and &DD:kk, as integers on a 64-bit system with 8-byte
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01 class DD{ 
02 public:
03  long dd;
04  virtual void ff(){ } //vtable[0]
05  virtual void gg(){ } //vtable[1]
06  virtual void hh(){ } //vtable[2]
07  void kk() { }
08 };
09 typedef void (DD::*MptrTy)(); 
    … 
13 void test2(DD *dptr, MptrTy mfptr){
14   // mfptr is a fat pointer/struct: 
15   //   {i64 ptr,i64 adj}
16   // n = mfptr.ptr;
17   // dptr = (char *) dptr + mfptr.adj;
18 // if ((n & 1) == 1) {
19 //   k = (n - 1) / 8;
20   //   vtable = load dptr
21   //   vtptr_adj = gep vtable, k
22 //   fp = load vtptr_adj
23 // } else {
24 //   fp = (inttoptr) n
25 // }
26 // fp(dptr)
27  (dptr->*mfptr)(); 
28 }

29 int main(){
30  DD dobj;
31  test1(&dobj);
32   // DD::gg()’s vtable index is 1
33   // and encoded as 9 by C++ compiler
34   // where 9 == 1 * sizeof(char*) + 1.
35   // Arguments: 
36   //   &dobj, {9, 0}
37  test2(&dobj, &DD::gg); // 9 == 1 * 8 + 1
38   // Arguments:
39   //   &dobj, {(ptrtoint) (&DD::kk), 0}
40  test2(&dobj, &DD::kk);  
41  return 0;
42 }

43 %DD = type { i32 (...)** vtable, i64 dd}

44 // c++filt _ZTV2DD： vtable for DD
45 @_ZTV2DD = { [5 x i8*] } { 
46 [null,         //top_offset
47   @_ZTI2DD,     //type information
48  @_ZN2DD2ffEv, //vtable[0] for DD::ff()
49   @_ZN2DD2ggEv, //vtable[1] for DD::gg()
50   @_ZN2DD2hhEv  //vtable[2] for DD::hh()
51  ] 
52 }

ConstInt 

9

n

copy/load/store/gep

(n & 1) == 1 ?

9 == 1 * 8 + 1

Indirect 

call

(ptrtoint) &DD::kk

Non-Virtual Function

Virtual Function

     &DD::gg Virtual Function  

Non-Virtual Function

Y

N

The Propagation of C++ Virtual/Non-Virtual Member Function Pointers on a 64-bit System          

k = (n -1) / 8 1 is a vtable index

…

…

fp = (inttoptr) n

fp = vtable[k]
…

Integer-Pointer Value Flows

Fig. 2. Understanding the intricacies of statically analyzing C++ member function pointers in the one-class

example depicted in Figure 1, which emulates the single inheritance scenario for simplicity.

pointers. This exposes a gap in existing pointer analysis algorithms [Hardekopf and Lin, 2009, Li
et al., 2018, Liu et al., 2022, Shi et al., 2018, Sui and Xue, 2016b, 2024, Yu et al., 2010], which often
overlook integer-pointer value flows, leading to inaccuracies. For example, SVF [Sui and Xue, 2024]
tracks only the object pointer &dobj’s value flow, missing virtual table indexes and addresses of
non-virtual member functions. This results in unsound and imprecise analyses, as evidenced in
Figure 1. Notably, because the virtual table index k for DD is an integer variable—not a constant—SVF
and similar field-sensitive analyses become field-insensitive for such scenarios. Consequently, SVF
incorrectly identifies all virtual functions in DD’s virtual table as potential targets for the call at
line 27 and misses the non-virtual function &DD::kk at line 40.

3 TIPS: APPROACH

We introduce Tips, a novel approach for resolving C++ member function pointers. Section 3.1
compares Tips with existing frameworks like SVF [Sui and Xue, 2024], outlining fundamental
differences. Section 3.2 explores the complexities of C++ compilation, particularly byte-level pointer
adjustments (Gep𝑐 in Table 1), and how C++ compilers manage member function calls in multiple
inheritance scenarios, addressing common inaccuracies. Section 3.3 details how Tips tracks points-
to information for integers and pointers, vital for managing C++ member function pointers in
LLVM-IR. Finally, Section 3.4 demonstrates Tips’s effectiveness in handling member function
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Table 1. The key distinction between prior work (exemplified by SVF) and our work (Tips) in modeling five

types of statements in C++ programs, with their inference rules explained in the text (Section 3.1).

Constraint
Pointer Adjustments Prior Work Our Work
in LLVM IR code C-Style Domains IR-Style Domains

AddrOf NO
p = &obj p ∈ Pointer p = alloc obj p ∈ Pointer

i = c i ∈ Integer, c ∈ ConstInt

Copy NO

p = q p, q ∈ Pointer p = q p, q ∈ Pointer
i = j i, j ∈ Integer

p = inttoptr i p ∈ Pointer, i ∈ Integer
i = ptrtoint p i ∈ Integer, p ∈ Pointer

Store NO *q = p p, q ∈ Pointer store p, q p ∈ Pointer ∪ Integer, q ∈ Pointer

Load NO p = *q p, q ∈ Pointer p = load q p ∈ Pointer ∪ Integer, q ∈ Pointer

Gep

Gep𝑖𝑑𝑥 field-index-based

p = &(q->fld) p ∈ Pointer, q ∈ StructPointer

p = gep q, idx[]
p ∈ Pointer, idx ∈ IntegerArrayp = &q[k] p ∈ Pointer, q ∈ ArrayPointer

p = &q[c] k ∈ Integer, c ∈ ConstInt q ∈ ArrayPointer ∪ StructPointer

Gep𝑘 byte-level p = q + k
p ∈ SingleValuePointer

p = gep q, k p, q ∈ SingleValuePointer, k ∈ Integerq ∈ SingleValuePointer
k ∈ Integer

Gep𝑐 byte-level p = q + c
p ∈ SingleValuePointer

p = gep q, c p, q ∈ SingleValuePointer, c ∈ ConstIntq ∈ SingleValuePointer
c ∈ ConstInt

pointers in the complex setting of C++ virtual inheritance, showing enhanced soundness and
precision over SVF.

3.1 Pointer Analysis

There are five key rules for analyzing C++ statements: AddrOf, Copy, Store, Load, and Gep (which
stands for the getelementptr instruction in LLVM [LLVM, 2024], enhancing field-sensitivity).
AddrOf initiates points-to information, with the other rules facilitating its propagation. In Table 1,
we present these statements in C-style for SVF [Sui and Xue, 2024] and LLVM-IR for Tips, using
LLVM-IR in Tips to effectively track integer-pointer value flows within C++ member functions at
the LLVM-IR level. We will later explore their inference rules for both SVF and Tips.
Similar to SVF [Sui and Xue, 2024], Tips is field-, flow-, and context-sensitive. Tips maintains

flow-sensitivity (by adhering to control flow) and context-sensitivity (by distinguishing different
calling contexts of functions). However, what distinguishes Tips from SVF is its approach to field-
sensitive tracking of integer-pointer value flows when analyzing C++ member function calls. In
LLVM-IR, Tips tracks pointer adjustments within objects containing multiple fields, involving two
types of adjustments: field-index-based and byte-level adjustments. Field-index-based adjustments
follow the Gep𝑖𝑑𝑥 rule, where q points to an AggregateType object (e.g., struct or array), and idx
is an IntegerArray representing unflattened field indexes. Byte-level adjustments are managed
by Gep𝑘 and Gep𝑐 , where q refers to a SingleValueType object (e.g., int and char*), with k (an
integer variable) for Gep𝑘 and c (a constant integer) for Gep𝑐 . In C++ programs, ideally, only Gep𝑖𝑑𝑥
should suffice for field-index-based adjustments. However, byte-level adjustments are common, e.g.,
in non-standard macros like container_of() [Koschel et al., 2023]. Additionally, C++ compilers
may generate LLVM instructions requiring byte-level adjustments, e.g., for multiple inheritance
using Gep𝑐 , as illustrated in Figure 4, an aspect ignored by SVF. Analyzing member function
pointers, particularly within the context of virtual inheritance—an area conservatively handled
by SVF—necessitates the use of Gep𝑘 . Utilizing Gep𝑐 to address multiple inheritance, Tips handles
the intricate semantics of initializing C++ virtual table pointers within C++ objects. By treating k
as a pointer, not an integer variable, Tips achieves field-sensitive handling of Gep𝑘 . This involves
tracking k’s points-to information (PointsTo(k)) and converting a single Gep𝑘 application into
several Gep𝑐 instances (p = gep q, c𝑖 where c𝑖 ∈ PointsTo(k)). This refinement rectifies the
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imprecision inherent in SVF [Sui and Xue, 2024], which conservatively approximates this rule with
field insensitivity for C++ member function pointers. SVF assumes that k can represent any virtual
table index in a class’s virtual table (as illustrated in Figure 2).
Let us examine Table 1 to highlight the main differences between SVF [Sui and Xue, 2024] and

Tips, while also defining the functionality of each inference rule used.
AddrOf. In Tips, constant integers, such as the one represented by 9 in Figure 2, are treated as
constant objects. To achieve this, Tips introduces an additional rule, AddrOf (i = c), where i is
an integer variable and c is a constant integer. This rule initializes the points-to information for i,
ensuring that c belongs to the points-to set of i, denoted as PointsTo(i).
Copy. Compared to SVF, Tips addresses three additional copy statements. For the assignment i =
j, Tips transfers the points-to information from one integer variable j to another, i, ensuring that
PointsTo(j) ⊆ PointsTo(i). The remaining two cases, p = inttoptr i and i = ptrtoint
p, handle the LLVM instructions inttoptr and ptrtoint used for casting between integers and
pointers. In the case of p = inttoptr i, the points-to information is copied from i to p, while i
= ptrtoint p requires transferring the points-to information from p to i.
Store. The Store rule for handling a store statement “store p, q” in previous work [Hardekopf
and Lin, 2009, Li et al., 2018, Liu et al., 2022, Shi et al., 2018, Sui and Xue, 2016b, 2024, Yu et al.,
2010] applies exclusively to pointers. In contrast, in Tips, p can be either an integer or a pointer,
while q is always a pointer. For every object obj pointed to by q, Tips propagates the points-to
information from p to obj, ensuring that PointsTo(p) ⊆ PointsTo(obj).
Load. Load statements, just like store statements, have been traditionally restricted to pointers in
prior research [Hardekopf and Lin, 2009, Li et al., 2018, Liu et al., 2022, Shi et al., 2018, Sui and Xue,
2016b, 2024, Yu et al., 2010]. However, Tips broadens this by allowing p in p = load q to be an
integer or a pointer, with q being a pointer. For each obj that q points to, Tips updates p’s points-to
set to include obj’s points-to information, maintaining PointsTo(obj) ⊆ PointsTo(p).
Gep. Both Tips and SVF handle field-index-based field accesses similarly, using Gep𝑖𝑑𝑥 . However,
when it comes to byte-level field accesses, SVF is field-insensitive in Gep𝑘 (assuming that k ranges
over all possible field offsets) and field-sensitive only in Gep𝑐 . In contrast, Tips maintains field
sensitivity in both cases. Tips consistently tracks byte offsets along with flattened field indexes
field-sensitively (as shown in Figure 5). To enable field-sensitive analysis for cases like vtable[k]
in Figure 2, where k is an integer variable, Tips maintains points-to information for k in the Gep𝑘
rule. In addition, in the Gep𝑐 rule, Tips handles byte-level pointer adjustments, often necessary for
C++ multiple inheritance, where q is a char pointer and c is a constant integer. Here, Tips tracks
byte-level offsets and converts them into flattened field indexes for field-sensitive analysis.

Table 2. Unflattened/flattened field indexes and byte offsets in the layered object model.

Object/Sub-Object Field
Unflattened Field Index in an Object

Flattened Field Index in DD Byte Offset in DDDD BB CC Array

DD

BB
vtable

0
0 0 0

bb 1 1 8

CC

vtable

1

0 2 16

cc[0]
1

0 3 24

cc[1] 1 4 28

dd 2 5 32

The field indexes utilized in Gep𝑖𝑑𝑥 are in an unflattened form. C++ adopts a distinct object model
compared to Java, where a sub-object can be embedded within its containing object in C++, while
in Java, only the reference/pointer to the sub-object is contained within the containing object.
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01 struct BB {
02   long *bb;
03   virtual void gg() { }  
04 };
05 struct CC {
06   int cc[2];
07   virtual void hh() { }
08 };
09 struct DD: public BB, public CC {
10   long dd;
11   virtual void ff() { }  
12 };
13 void test1(BB *bptr) {
14   bptr->gg(); //(bptr->vtable)[0]
15 }
16 void test2(CC *cptr) {
17   cptr->hh(); //(cptr->vtable)[0]  
18 }
19 void test3(DD *dptr) {
20   dptr->ff(); //(dptr->vtable)[1]  
21 }
22 typedef void (DD::*MptrTy)();
23 void test4(DD *dptr, MptrTy mfptr) {
24   (dptr->*mfptr)();
25 }
26 int main() {
27   DD dobj;  
28   BB *bptr = static_cast<BB*>(&dobj);
29   test1(bptr);
30   CC *cptr = static_cast<CC*>(&dobj);
31   test2(cptr);
32   test3(&dobj);
33     test4(&dobj, &DD::ff);
34   return 0;
35 }

36 %BB = type { i32 (...)**, i64* }

37 %CC = type { i32 (...)**, [2 x i32] }

38 %DD = type { %BB, %CC, i64 }

   // DD’s vtable
39 @_ZTV2DD = { [4 x i8*], [3 x i8*] } {
     // DD’s vtable for BB
40  [null,           // top_offset
41  @_ZTI2DD,       // Type Info of DD
42  @_ZN2BB2ggEv,   // vtable[0] for BB::gg() 
43  @_ZN2DD2ffEv    // vtable[1] for DD::ff()
44  ], 
     // DD’s vtable for CC
45  [inttoptr (-16), // top_offset
46  @_ZTI2DD,       // Type Info of DD
47  @_ZN2CC2hhEv    // vtable[0] for CC::hh() 
48  ]
49 }

   // BB’s vtable
50 @_ZTV2BB = { [3 x i8*] } { 
51  [null,           // top_offset
52  @_ZTI2BB,       // Type Info of BB
53  @_ZN2BB2ggEv    // vtable[0] for BB::gg()
54  ] 
55 }
   // CC’s vtable
56 @_ZTV2CC = { [3 x i8*] } {
57  [null,           // top_offset
58  @_ZTI2CC,       // Type Info of CC
59  @_ZN2CC2hhEv    // vtable[0] for CC::hh()
60  ]
61 }

Function
bptr->gg() cptr->hh() dptr->ff() (dptr->*mfptr)()

SVF TIPS SVF TIPS SVF TIPS SVF TIPS

BB::gg() ✓ ✓

CC::hh() ✓ ✓ ✓ ✓ ✓

DD::ff() ✓ ✓ ✓

Sound N Y Y Y N Y Y Y

Precise N Y Y Y N Y N Y

(c) Target functions resolved by SVF and TIPS

Object Field t1 t2 t3 t4

DD

BB
vtable BB's DD's for BB

bb

CC

vtable CC's DD's for CC

cc[0]

cc[1]

dd

Constructor
DD( )

BB( ) CC( )

(a) The original semantics 

Object Field t1 t2 t3 t4

DD

BB
vtable BB's CC's DD's for BB DD's for CC

bb

CC

vtable

cc[0]

cc[1]

dd

Constructor
DD( )

BB( ) CC( )

(b) The modeled semantics in SVF 

Fig. 3. Target functions resolved more precisely by Tips than SVF in multiple inheritance.

To illustrate the contrast between unflattened and flattened indexes, let us consider a DD object
created at line 27 in Figure 3, with its layered object model outlined in Table 2. The DD object
contains three elements (line 38): a BB sub-object, a CC sub-object, and an integer. Their unflattened
indexes range from 0 to 2. Similarly, the BB sub-object (line 36) has two of its own elements (a
virtual table pointer and bb), and the CC sub-object (line 37) also possesses two elements (a virtual
table pointer and cc[2]), where the array cc takes up two elements (cc[0] and cc[1]). To facilitate
field-index-based field-sensitive accesses within the containing DD object, all these unflattened
indexes must be transformed into flattened indexes. In total, there are six flattened indexes, ranging
from 0 to 5. The corresponding byte offsets for these flattened indexes are also listed in Table 2. On
a 64-bit system, a BB object (line 36) occupies 16 bytes. If the size of an int is 4, then the size of a
CC object (line 37) is also 16 bytes. Consequently, the size of a DD object is 40 bytes.

Given that Gep𝑐 introduces byte-level offsets, Tips naturally incorporates a recursive algorithm
to convert a byte offset within an object into its corresponding flattened index.
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Table 3 outlines the principal rules Tips employs for managing integer-pointer value flows.
The rules [PtrToInt] and [IntToPtr] are pivotal for tracing non-virtual member function point-
ers, [ConstToInt] specifically addresses the tracking of virtual member function pointers, while
[IntToInt] is versatile, applicable to both non-virtual and virtual function pointers alike. Crucially,
the Gep𝑘 undergoes decomposition into multiple Gep𝑐 instances, a strategic move to achieve
field-sensitivity, thus significantly refining the precision in resolving member function calls.

Table 3. Tips’s key rules for tracking integer-pointer value flows.

[IntToPtr]
p = i, i ∈ Integer, p ∈ Pointer

[PtrToInt]
i = p, i ∈ Integer, p ∈ Pointer

[IntToInt]
i = j, i ∈ Integer, j ∈ Integer

PointsTo(i) ⊆ PointsTo(p) PointsTo(p) ⊆ PointsTo(i) PointsTo(j) ⊆ PointsTo(i)

[ConstToInt] [Gep𝑘 ]
p = gep vtable, k

i = c, i ∈ Integer, c ∈ ConstInt p ∈ Pointer, vtable ∈ Pointer, k ∈ Integer, c ∈ PointsTo(k), c ∈ ConstInt

c ∈ PointsTo(i) p = gep vtable, c

3.2 Byte-Level Pointer Adjustments in Multiple Inheritance

C++’s multiple inheritance allows classes to inherit from several base classes, complicating object
memory layouts and posing challenges for pointer analysis, particularly during base-to-derived (or
reverse) type casts that require Gep𝑐 -guided pointer adjustments. Existing frameworks like SVF fail
to account for these adjustments. SVF, despite its flow-sensitive analysis demonstrated in Figure 3,
incorrectly identifies CC::hh() calls at lines 14 and 20, besides the correct identification at line 17.
Below we explore the semantics of C++ multiple inheritance, how disregarding byte-level pointer
adjustments affects call resolution precision, and Tips’s strategy for addressing these inaccuracies.

As shown in Figure 3, class DD inherits from two base classes: BB and CC, resulting in a DD object
containing two virtual table pointers (line 38). Object dobj is created at line 27 and initialized
using constructors for BB, CC, and DD. Figure 3(a) summarizes the initialization sequence of its two
virtual table pointers when dobj is created via DD’s constructor DD(). At t1, the constructor BB()
is called to initialize the BB sub-object, setting its virtual table pointer to BB’s virtual table (line 53).
Then, at t2, the underlying object pointer is adjusted to the CC sub-object, and the constructor CC()
initializes it, setting its virtual table pointer to CC’s virtual table (line 59). Once both sub-objects are
ready, DD() proceeds to initialize its own data. At t3, the virtual table pointer in the BB sub-object
is adjusted to point to DD’s virtual table for BB (line 42). Finally, at t4, the virtual table pointer in
the CC sub-object is adjusted to point to DD’s virtual table for CC (line 47).
Upon returning to the main() function, the DD object represented by dobj undergoes explicit

casting into a BB object at line 28 and a CC object at line 30. Since the BB sub-object of dobj begins
at byte offset 0, no pointer adjustment is required at line 28. However, dobj’s CC sub-object is
located at byte offset 16, prompting LLVM to implicitly generate a Gep𝑐 instruction to adjust the
object pointer, enabling cptr at line 30 to point to the CC sub-object. Concerning the parameters of
test1(), test2(), and test3(), both bptr (line 13) and dptr (line 19) point to byte offset 0 of the
DD object, while cptr (line 16) points to the CC sub-object. Thus, the three virtual calls at lines 14,
17, and 20 are anticipated to indirectly invoke BB::gg(), CC::hh(), and DD::ff(), respectively.

However, existing pointer analysis techniques [Hardekopf and Lin, 2009, Li et al., 2018, Liu et al.,
2022, Shi et al., 2018, Sui and Xue, 2016b, Yu et al., 2010], including SVF [Sui and Xue, 2024], do
not precisely model this complex semantics. For example, SVF’s approximation is illustrated in
Figure 3(b). SVF neglects Gep𝑐 , resulting in no pointer adjustments being made. Consequently, only
the virtual table pointer of the BB sub-object is updated from t1 to t4. Furthermore, due to SVF’s
flow-sensitive nature with strong updates [Sui and Xue, 2016a], only the virtual table for CC remains
after t4, with the previous three being killed. Thus, SVF reports that CC::hh() is called at line 17
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1 // container to sub-object
2 %p2 = bitcast %DD* dptr to i8*
3 %p3 = getelementptr i8* %p2, i64 16
4 cptr = bitcast i8* %p3 to %CC*

5 // sub-object to container
6 %p5 = bitcast %CC* cptr to i8*
7 %p6 = getelementptr i8* %p5, i64 -16
8 %p7 = bitcast i8* %p6 to %DD*

Pointer Object
GEPc

PointsTo Rule
Byte Offset Flattened Field Index

dptr dobj (dobj, 0, 0) ADDROF

%p2 dobj (dobj, 0, 0) COPY

%p3 dobj 16 2 (dobj, 16, 2) GEPc

cptr dobj (dobj, 16, 2) COPY

%p5 dobj (dobj, 16, 2) COPY

%p6 dobj -16 -2 (dobj, 0, 0) GEPc

%p7 dobj (dobj, 0, 0) COPY

Fig. 4. Tips’s pointer analysis for byte-level pointer adjustments in C++ multiple inheritance.

(cptr->hh()) correctly, as expected, but also at line 14 (bptr->gg()) and line 20 (dptr->ff()) in
Figure 3 erroneously. On the other hand, if SVF is configured to run in flow-insensitively, all four
virtual tables in Figure 3(b) are conflated, resulting in sound but imprecise results.

The LLVM IR instructions used to perform byte-level pointer adjustments for casting a pointer
from a DD object to a CC object, and vice versa, are detailed in Figure 4. These instructions consist
of two getelementptr instructions (lines 3 and 7), which are modeled by Gep𝑐 (Table 1), and four
bitcast instructions (lines 2, 4, 6, and 8) used for type casting, which are modeled by the Copy
rule. For instance, let us assume that dptr (line 2) is initially set to point to a DD object, as defined
in Table 2. To cast it into a pointer to a CC object, the byte offset of 16 at line 3 is converted into
a flattened index of 2. This means that %p3 now points to the field represented as a tuple (dobj,
16, 2), specifically, the virtual table pointer (referred to as vtable) within the CC sub-object (as
specified in Table 2). Conversely, when dealing with the byte offset of −16 at line 7, it needs to be
converted into a flattened index of −2. As a result, %p6 points to the field (dobj, 16 − 16, 2 − 2),
which simplifies to (dobj, 0, 0). When applying Gep𝑖𝑑𝑥 in the classic field-index-based pointer
analysis (Table 1), all such converted field indexes are accumulated throughout the pointer analysis
process. Similarly, Tips also handles the conversion of byte-level pointer adjustments within the
C-style macro container_of() [Koschel et al., 2023] into flattened field indexes. For the sake of
brevity, we have omitted a detailed discussion on the workings of container_of().
When member function pointers are involved at line 33 in Figure 3, Gep𝑘 is applied to analyze

the member function call at line 24, adjusting object and virtual table pointers for proper analysis.
However, SVF’s field-insensitivity in this context, as discussed earlier, causes it to report all three
virtual functions from the two virtual tables in the DD class as potential targets for the member
function call (Figure 3(c)). While regressing to field-insensitivity is sound, it yields imprecise results,
due to the imprecision in modeling the semantics of object initialization, as depicted in Figure 3(b).
In contrast, Tips’s precise tracking of byte-level pointer adjustments in both Gep𝑐 and Gep𝑘 allows
it to accurately identify DD::ff() as the sole target for the member function call (Figure 3(c)).

3.3 Analyzing C++ Member Function Pointers at the LLVM-IR Level

Let us explore the handling of C++ member function pointers at the LLVM-IR level, as illustrated
in Figure 5, by utilizing our earlier motivating example from Figure 1. The LLVM-generated IR
instructions are presented at lines 24–58. It is worth noting that while test2() (lines 13-15) in the
source code has two parameters, its LLVM IR-level counterpart (lines 24-38) has three parameters.
The member function pointer mfptr (line 13) is a fat pointer, which is dissected into two distinct
integer parameters: mfptr_ptr, representing either a virtual table index or a non-virtual function
address, and mfptr_adjust, accounting for object pointer adjustments (line 25).
In the main() function, the alloca instruction (line 40) is modeled by AddrOf (Table 1). It

creates a virtual register, %dobj, pointing to a locally allocated DD object. At the source code
level, dobj (line 17) is a local object. To obtain its address, &dobj (lines 18–20) corresponds
to the virtual register %dobj in LLVM-IR. The DD object pointed to by %dobj is then initialized by
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01 class DD{
...
04 virtual void ff(){ } //vtable[0]
05 virtual void gg(){ } //vtable[1]
06 virtual void hh(){ } //vtable[2]
07 void kk() { }
...}
13 void test2(DD *dptr, MptrTy mfptr){
14 (dptr->*mfptr)(); 
15 }
16 int main(){
17 DD dobj;
18 test1(&dobj);
19 test2(&dobj, &DD::gg); // 9 == 1 * 8 + 1
20 test2(&dobj, &DD::kk); // ptrtoint
21 return 0;
22 }

23 %DD = type { i32 (...)**vtable, i64 dd}

24 define void @_Z5test2P2DDMS_FvvE( // test2()
25 DD *dptr, i64 mfptr_ptr, i64 mfptr_adjust){
26 // %mfptr = alloca { i64, i64 }
27 // ...
28 // %p9 = bitcast %DD* dptr to i8*
29 // %p10 = getelementptr i8* %p9, i64 mfptr_adjust
30 // thisAdjusted = bitcast i8* %p10 to %DD*
31 DD * thisAdjusted = (DD *)(((char *) dptr) + mfptr_adjust);
32 if((mfptr_ptr & 1) == 1) { // virtual function 
33 fptr = thisAdjusted->vtable[(mfptr_ptr - 1) / 8]
34 } else { // non-virtual function 
35 fptr = (inttoptr) mfptr_ptr;
36 }
37 fptr(thisAdjusted);
38 }

39 define i32 @main() {
40 %dobj = alloca %DD             // obj40
41 %coerce = alloca { i64, i64 }  // obj41
42 %coerce1 = alloca { i64, i64 } // obj42
43 call void @_ZN2DDC2Ev(%DD* %dobj)
44 call void @_Z5test1P2DD(%DD* %dobj)

45 store { i64 9, i64 0 }, { i64, i64 }* %coerce
46 %p0 = getelementptr { i64, i64 }* %coerce, i32 0, i32 0
47 %p1 = load i64, i64* %p0
48 %p2 = getelementptr { i64, i64 }* %coerce, i32 0, i32 1
49 %p3 = load i64, i64* %p2
50 call void @_Z5test2P2DDMS_FvvE(%DD* %dobj, i64 %p1, i64 %p3)

51 store {ptrtoint (@_ZN2DD2kkEv), i64 0}, { i64, i64 }* %coerce1
52 %p5 = getelementptr { i64, i64 }* %coerce1, i32 0, i32 0
53 %p6 = load i64, i64* %p5
54 %p7 = getelementptr { i64, i64 }* %coerce1, i32 0, i32 1
55 %p8 = load i64, i64* %p7
56 call void @_Z5test2P2DDMS_FvvE(%DD* %dobj, i64 %p6, i64 %p8)
57 ret i32 0
58 }

Pointer PointsTo Rule Line
%dobj (obj40, 0, 0) ADDROF 40

%coerce (obj41, 0, 0) ADDROF 41
%coerce1 (obj42, 0, 0) ADDROF 42

(obj41, 0, 0) 9 STORE 45
(obj41, 8, 1) 0 STORE 45

%p0 (obj41, 0, 0) GEPidx 46
%p1 9 LOAD 47
%p2 (obj41, 8, 1) GEPidx 48
%p3 0 LOAD 49

(obj42, 0, 0) DD::kk() STORE 51
(obj42, 8, 1) 0 STORE 51

%p5 (obj42, 0, 0) GEPidx 52
%p6 DD::kk() LOAD 53
%p7 (obj42, 8, 1) GEPidx 54
%p8 0 LOAD 55
dptr (obj40, 0, 0) COPY 25

mfptr_ptr 9, DD::kk() COPY 25
mfptr_adjust 0 COPY 25

%p9 (obj40, 0, 0) COPY 28
%p10 (obj40, 0, 0) GEPk 29

Fig. 5. Applying Tips to analyze the member function pointers at the LLVM-IR level in our example (Figure 1).

DD’s constructor at line 43. At lines 19–20, two member function pointers, &DD::gg and &DD::kk,
generate two local objects, coerce and coerce1 (lines 41–42) for storage. coerce is initialized
(line 45) with 9 (the encoded virtual table index for DD::gg()) and 0 (a byte offset for the object
pointer adjustment). At line 51, _ZN2DD2kkEv (i.e., &DD::kk) is cast into an integer and used to
initialize coerce1. Since the operands in a store instruction are structs rather than pointers or
integers, an LLVM pass is employed by Tips to normalize these instructions, ensuring they adhere
to the inference rules governing pointer analysis in Section 3.1. Four instructions (lines 46–49)
load two integers from coerce and pass them as arguments when calling test2() (line 50). The
getelementptr instruction (line 46) is modeled by Gep𝑖𝑑𝑥 (Table 1) in SVF [Sui and Xue, 2024]
and Tips. However, prior work ignores the load instruction (line 47), resulting in a loss of data flow
information. The code at lines 52–55 follows a similar pattern. By tracking integer-pointer value
flows, Tips uses the Load and Store rules (Section 3.1) to model these load and store instructions,
correctly propagating the points-to information that would otherwise be missed.

Figure 5 illustrates the points-to information for pointers identified by Tips, with objects allocated
at lines 40-42 labeled as obj40, obj41, and obj42. An object field is denoted as (obj, btOffset,
fldIdx), where btOffset is the byte offset and fldIdx is the flattened field index for object Obj.
The bold rows highlight the points-to information uniquely identified by Tips, demonstrating its
ability to manage integer-pointer value flows as detailed in Table 1.
In test2(), LLVM allocates a local object mfptr at line 26 and initializes it using the two

parameters mfptr_ptr and mfptr_adjust, with the initialization instructions omitted. The pro-
cess for making byte-level object pointer adjustments is simplified and presented at lines 28–30.
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The getelementptr instruction at line 29 is governed by Gep𝑘 (p = gep q, k) in Tips, where
mfptr_adjust is represented as k. By treating integers as pointers and propagating their points-to
information, PointsTo(mfptr_adjust) = {0} holds at line 29. Here, Gep𝑘 is converted into a
Gep𝑐 rule (p = gep q, c), where c is 0, indicating that no pointer adjustment is required. If c is
non-zero, Tips will adjust the object pointer at line 29 and convert the byte offset into a flattened
field index (Table 2). The if statement at lines 32–36 (Figure 5) assesses whether mfptr_ptr is odd,
corresponding to the orange part in Figure 2. As Tips is not path-sensitive, PointsTo(mfptr_ptr)
= {9, DD::kk()} at lines 32, 33, and 35. Similar to earlier pointer analysis approaches [Lhoták and
Hendren, 2003, Sui and Xue, 2016b], using type information can refine imprecise points-to informa-
tion. For instance, at line 33, only the constant integer 9 in PointsTo(mfptr_ptr) is treated as an
encoded virtual table index. After decoding 9 to obtain the virtual table index 1, the virtual function
address (&DD::gg) is loaded from DD’s virtual table. By merging {DD::gg()} (line 33) with {9,
DD::kk()} (i.e., PointsTo(mfptr_ptr) at line 35), we derive PointsTo(fptr) = {9, DD::kk(),
DD::gg()} at line 37. Type information helps filter out the constant integer 9. Ultimately, Tips
identifies DD::gg() and DD::kk() as the targets for the member function call at line 14.

3.4 C++ Member Function Pointers in Virtual Inheritance

In C++, diamond inheritance occurs when two classes, BB and CC (lines 5–12 in Figure 6), inherit
from a common base class, AA (lines 1–4), and a child class, DD (lines 13–17), inherits from both
BB and CC. To ensure that only one instance of the AA sub-object exists within a DD object, virtual
inheritance (lines 5 and 9) is introduced in C++. This adds complexity to the memory layout of C++
objects and poses significant challenges for pointer analysis of C++ member function pointers. In
the context of the member function call at line 20, Tips provides precise information by reporting
that only DD::ff() is called. In contrast, SVF considers all functions in the virtual tables as possible
target functions (a total of seven), leading to sound but imprecise results. To explore the intricate
semantics associated with virtual inheritance in this C++ program, let us examine how Tips utilizes
Gep𝑐 and Gep𝑘 to handle the complexities introduced by C++’s virtual inheritance.

The LLVM-IR type definitions for AA, BB, CC, and DD are provided at lines 28–33. At the LLVM-IR
level, both BB (line 29) and CC (line 30) contain a single instance of the AA sub-object. In addition,
LLVM introduces two auxiliary classes, BB.base and CC.base, at lines 31 and 32. These auxiliary
classes play an important role in DD’s definition, ensuring that a DD object contains only one instance
of the AA sub-object (line 33). In simpler terms, if BB and CC were directly used in DD’s definition, a
DD object would contain three instances of the AA sub-object, which is a situation we want to avoid.

The AA sub-object within a containing object is commonly referred to as a vbase object, and the
distance from the beginning of the containing object to the vbase object is known as the vbase
offset. C++ compilers store vbase offsets in virtual tables. For instance, both a DD object and its
BB sub-object have vbase offsets of 40 bytes. In the case of the CC sub-object within a DD object
(Figure 6(a)), it has a vbase offset of 24 (calculated as 40 − 16). Interestingly, an independent CC
object (Figure 6(b)) has its vbase offset at 16, which differs from that of the CC sub-object within
a DD object. Moreover, the CC sub-object is a part of dobj, and its virtual table differs from that
of cobj. To address this problem, LLVM generates two constructors for CC: CC(CC *cptr) for
initializing cobj (line 24) and CC(CC *cptr, char **vtt) for initializing the CC sub-object within
DD. In this context, vtt is short for Virtual Table Table (VTT), which contains the virtual table
pointers required to initialize the CC sub-object within a DD object. If there are other derived classes
from class CC, they can reuse the constructor CC(CC *cptr, char **vtt) to initialize their CC
sub-objects, provided that they supply their own VTTs. Similarly, C++ compilers also generate a
constructor BB(BB *bptr, char **vtt) for initializing the BB sub-object within a DD object.
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01 struct AA {
02   char *aa;
03   virtual void ff() { }  
04 };
05 struct BB: public virtual AA {
06   long *bb;  
07   virtual void gg() { }  
08 };
09 struct CC: public virtual AA {
10   int cc[2];  
11   virtual void hh() { }
12 };
13 struct DD: public BB, public CC{
14   long dd;
15   virtual void hh() { }
16   virtual void ff() { }  
17 };
18 typedef void (DD::*MptrTy)();
19 void test4(DD *dptr, MptrTy mfptr){
20   (dptr->*mfptr)(); 
21 }
22 int main() {
23   DD dobj;
24   CC cobj;
25   test4(&dobj, &DD::ff); 
26   return 0;
27 }

28 %AA = type { i32 (...)**, i8* }

29 %BB = type { i32 (...)**, i64*, %AA }

30 %CC = type { i32 (...)**, [2 x i32], %AA}

31 %BB.base = type { i32 (...)**, i64* }

32 %CC.base = type { i32 (...)**, [2 x i32]}

33 %DD = type {%BB.base, %CC.base, i64,%AA}

Function
(dptr->*mfptr)()

SVF TIPS

AA::ff() ✓

BB::gg() ✓

CC::hh() ✓

DD::hh() ✓

DD::ff() ✓ ✓

non-virtual thunk to DD::hh() ✓

virtual thunk to DD::ff() ✓

#Functions Reported 7 1

Sound Y Y

Precise N Y

(c) Target functions reported

Object Field Byte Offset

DD

BB.base
vtable 0

bb 8

CC.base
vtable 16
cc[0] 20
cc[1] 24
dd 32

AA
vtable 40

aa 48

(a) The DD object dobj

Object Field Byte Offset

CC

vtable 0

cc[0] 8
cc[1] 12

AA
vtable 16

aa 24

(b) The CC object cobj

Fig. 6. Precision gains of Tips over SVF in analyzing C++ member function pointers in virtual inheritance.

Figure 7 gives a list of seven virtual tables and the VTT for DD (lines 31–39) used to initialize
dobj when invoking DD(&dobj). The constructor DD(DD *dptr) sequentially calls AA(AA *aptr),
BB(BB *bptr, char **vtt), and CC(CC *cptr, char **vtt) to initialize the vbase object, the
BB sub-object, and the CC sub-object, respectively. The virtual table for AA is provided at lines 25–30.
In addition, C++ compilers generate virtual tables for CC-in-DD (lines 1–12) and BB-in-DD (lines
13–24). DD’s virtual table, outlined at lines 40–58, is divided into three sub-virtual tables: one for
DD’s relationship with BB (lines 41–47), one for CC (lines 48–52), and one for AA (lines 53–57).
At t1, we apply Gep𝑐 to acquire the address of the AA sub-object within a DD object and subse-

quently call AA(AA *aptr). We begin by setting the virtual table pointer of the vbase object to
point to AA’s virtual table (line 28). Since the BB sub-object is located at byte offset 0, no adjustment
is required for the parameter bptr in BB(BB *bptr, char **vtt). Moving to t2, the virtual table
pointer at byte offset 0 now points to BB-in-DD’s virtual table for BB. To obtain the address of its
base object, we load the vbase offset of 40 (by utilizing the Load rule) and then apply Gep𝑘 to adjust
the object pointer, resulting in (char *) bptr + 40. Finally, at t3, we update the vbase object’s virtual
table pointer to point to BB-in-DD’s virtual table for AA (line 22).

After initializing the BB sub-object, control flow returns to DD(DD *dptr). Here, we use Gep𝑐 to
obtain the CC sub-object’s address and pass it to cptr in CC(CC *cptr, char **vtt). At t4, we
set the virtual table pointer for the CC sub-object (at byte offset 16) to point to CC-in-DD’s virtual
table for CC (line 5). We then load its vbase offset of 24 (line 2) by using the Load rule and apply the
Gep𝑘 rule to obtain the vbase object’s address. Finally, we proceed to set the virtual table pointer
for the AA sub-object to point to CC-in-DD’s virtual table for AA at t5 (line 10).
Once all the sub-objects are initialized, DD(DD *dptr) proceeds to set its three virtual table

pointers. At t6, it assigns them to point to DD’s virtual table for BB (line 44). This is followed by
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// construction vtable for CC-in-DD
01 @_ZTC2DD16_2CC = { [4 x i8*], [4 x i8*] } { 
     // CC-in-DD’s vtable for CC
02  [inttoptr(24),    // vbase_offset
03  null,        // top_offset
04  @_ZTI2CC,      // Type info of CC
05  @_ZN2CC2hhEv     // vtable[0] for CC::hh()
06  ], 
     // CC-in-DD’s vtable for AA
07  [null,        // vbase_offset
08  inttoptr(-24),    // top_offset
09  @_ZTI2CC,      // Type info of CC
10  @_ZN2AA2ffEv     // vtable[0] for AA::ff()
11  ] 
12 }

   // construction vtable for BB-in-DD
13 @_ZTC2DD0_2BB = { [4 x i8*], [4 x i8*] } {
     // BB-in-DD’s vtable for BB
14  [inttoptr(40),    // vbase_offset
15  null,        // top_offset
16  @_ZTI2BB,      // Type info of BB
17  @_ZN2BB2ggEv     // vtable[0] for BB::gg()
18  ], 
     // BB-in-DD’s vtable for AA
19  [null,        // vbase_offset
20  inttoptr(-40),    // top_offset
21  @_ZTI2BB,      // Type info of BB
22  @_ZN2AA2ffEv     // vtable[0] for AA::ff()
23  ] 
24 }

   // AA’ vtable
25 @_ZTV2AA = { [3 x i8*] } { 
26  [i8* null,       // top_offset
27  @_ZTI2AA,       // Type info of AA
28  @_ZN2AA2ffEv    // vtable[0] for AA::ff()
29  ] 
30 }

// VTT (Virtual Table Table) for DD 
31 @_ZTT2DD = [7 x i8*] [
32   getelementptr @_ZTV2DD, i32 0, i32 0, i32 3, 
33   getelementptr @_ZTC2DD0_2BB, i32 0, i32 0, i32  3, 
34   getelementptr @_ZTC2DD0_2BB, i32 0, i32 1, i32  3, 
35   getelementptr @_ZTC2DD16_2CC, i32 0, i32 0, i32 3, 
36   getelementptr @_ZTC2DD16_2CC, i32 0, i32 1, i32 3, 
37   getelementptr @_ZTV2DD, i32 0, i32 2, i32 3, 
38   getelementptr @_ZTV2DD, i32 0, i32 1, i32 3
39 ]

   // vtable for DD
40 @_ZTV2DD = { [6 x i8*], [4 x i8*], [4 x i8*] } {

     // DD’s vtable for BB 
41  [inttoptr(40),    // vbase_offset
42  null,        // top_offset
43  @_ZTI2DD,      // Type info of DD
44  @_ZN2BB2ggEv,    // vtable[0] for BB::gg()
45  @_ZN2DD2hhEv,    // vtable[1] for DD::hh()
46  @_ZN2DD2ffEv     // vtable[2] for DD::ff()
47  ], 

     // DD’s vtable for CC
48  [inttoptr(24),    // vbase_offset
49  inttoptr(-16),    // top_offset
50  @_ZTI2DD,      // Type info of DD
51  @_ZThn16_N2DD2hhEv  // vtable[0] for non-virtual
                           // thunk to DD::hh()
52  ], 

     // DD’s vtable for AA
53  [inttoptr(-40),    // vbase_offset
54  inttoptr(-40),    // top_offset
55  @_ZTI2DD,      // Type info of DD
56  @_ZTv0_n24_N2DD2ffEv // vtable[0] for 
                           // virtual thunk to DD::ff()
57  ] 
58 } 

Object Field Byte Offset t1 t2 t3 t4 t5 t6 t7 t8

DD

BB.base
vtable 0

BB-in-DD's DD's

for BB for BB

bb 8

CC.base

vtable 16
CC-in-DD's DD's

for CC for CC

cc[0] 20

cc[1] 24

dd 32

AA
vtable 40 AA's 

BB-in-DD's CC-in-DD's DD's 

for AA for AA for AA

aa 48

Constructor
DD(DD *dptr)

AA(AA* aptr) BB(BB* bptr, char **vtt) CC(CC* cptr, char **vtt)

Fig. 7. Initialization sequence for the three virtual table pointers in a DD Object in Figure 6.

t7, where the virtual table pointer for AA (line 56) is configured, and t8, where the pointer for CC
(line 51) is established. In two time steps, t7 and t8, Gep𝑐 is once again applied to perform pointer
adjustments for locating the two virtual table pointers, located at byte offsets 40 and 16.

Pointer adjustments are also relevant within virtual and non-virtual thunk functions, which are
automatically introduced by C++ compilers. In the case of class DD, DD::ff() overrides AA::ff()
(line 16 in Figure 6), where AA serves as a virtual base class, a virtual thunk function (line 56 in
Figure 7) is generated. This function adjusts a AA * pointer by adding the virtual base offset (−40)
stored at line 53. This adjustment allows us to obtain a DD * pointer, facilitating access to the data
within a DD object. In addition, a non-virtual thunk function is introduced for DD::hh() (line 51)
because DD::hh() is found to also override CC::hh() (line 15 in Figure 6). It is worth noting that
while DD::hh() is a virtual function, CC is not a virtual base class. Consequently, Gep𝑐 is employed
within the non-virtual thunk function to perform necessary pointer adjustments.

The object pointer adjustments made during the execution of the constructor DD(DD *dptr)
involve the application of the Gep𝑐 and Gep𝑘 rules, which are summarized in Table 4. Specifically,
within the constructor, Gep𝑐 is utilized in the type casts from DD * to CC * and AA *. However, in
the contexts of BB(BB *bptr, char **vtt) and CC(CC *cptr, char **vtt), Gep𝑘 is applied
for the purpose of making pointer adjustments to access the vbase object.
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Table 4. Object pointer adjustments in the initialization of a DD object, named dobj, in Figure 6.

==> BB ∗bptr CC ∗cptr AA ∗aptr Inside Constructor

DD ∗dptr Casting but No Pointer Adjustment Gep𝑐 Gep𝑐 DD(DD ∗dptr)
BB ∗bptr Gep𝑘 BB(BB ∗bptr, char ∗∗vtt)
CC ∗cptr Gep𝑘 CC(CC ∗cptr, char ∗∗vtt)
AA ∗aptr AA(AA ∗aptr)

By converting one application of Gep𝑘 into multiple applications of Gep𝑐 , Tips can eliminate
the imprecision resulting from the field-insensitive application of Gep𝑘 in the context of virtual
inheritance. When constructing constraint graphs for analyzed programs, null pointers (e.g., line 7
in Figure 7) within virtual tables should be represented as inttoptr(0) rather than nullptr. This
allows Tips to treat null as a virtual base offset of 0 and propagate it as points-to information for
integer variables. Thanks to enhanced field-sensitivity, Tips can differentiate between the three
virtual table pointers within a DD object in a flow- and context-sensitive pointer analysis. Ultimately,
as illustrated in Figure 6(c), Tips offers more precise analysis of C++ member function pointers in
virtual inheritance compared to the state of the art [Hardekopf and Lin, 2009, Li et al., 2018, Liu
et al., 2022, Shi et al., 2018, Sui and Xue, 2016b, 2024, Yu et al., 2010], as explained above.

4 TIPS: DESIGN AND IMPLEMENTATION

WLLVM &

Normalization

WLLVM &

Normalization

C++ Code LLVM IR Integer-Included

CG Builder

Integer-Included

CG Builder

Integer-Included

Andersen Pointer Analysis 

Integer-Included

Andersen Pointer Analysis 

Integer-Included  Demand-Driven 

Flow- and Context- Sensitive

Pointer Analysis 

Integer-Included  Demand-Driven 

Flow- and Context- Sensitive

Pointer Analysis 

Points-to

Refined 

Points-to
Constraint

Graph

Fig. 8. The workflow of Tips.

We developed Tips as an extension to LLVM 14.0, built atop SVF [Sui and Xue, 2024], shown
in Figure 8. C++ source files are compiled using WLLVM [Ravitch, 2024], which generates whole-
program LLVM bitcode files. Tips features an LLVM ModulePass [LLVM, 2024] that normalizes
LLVM instructions like load, store, and extractvalue [LLVM, 2024], aligning them with pointer
analysis rules outlined in Section 3.1. For instance, a store instruction “store val, ptr”, where
val is a ConstantStruct (i64, i64), is transformed to apply Gep twice to determine the structure’s
two fields pointed by ptr, and Store twice to store the two integers from val into these fields.

After normalizing LLVM instructions, we create an integer-inclusive constraint graph based on
the pointer analysis inference rules from Table 1. We employ a modified version of Andersen’s
inclusion-based pointer analysis [Andersen, 1994] as a pre-analysis to obtain the initial points-to
information for integers and pointers required for building such a constraint graph. This pre-
analysis forms the basis for refining points-to information using our integer-inclusive, demand-
driven, flow- and context-sensitive pointer analysis in Tips. Additionally, we leverage the Spare
Value Flow Graphs (SVFGs) from the open-source SVF [Sui and Xue, 2016b, 2024] to support
flow-sensitivity. Our context-sensitive analysis relies on call-sites, a common approach in C/C++
pointer analysis [Jeon and Oh, 2022, Li et al., 2023, Oh et al., 2014, Yu et al., 2010].

5 EVALUATION

In Section 5.1, we introduce a micro-benchmark suite with ground truth data, highlighting Tips’s
precision gains over SVF in analyzing C++ member function pointers across diverse inheritance
scenarios. In Section 5.2, we evaluate Tips’s precision and efficiency trade-offs, showing its ability
to accurately identify critical C++ member function call targets, including thread entry functions,
while maintaining acceptable analysis overhead in fourteen C++ programs.
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Table 5. Precision achieved by Tips and SVF in resolving member function calls in a micro-benchmark suite

(where VF and NVF stand for Virtual Functions and Non-Virtual Functions, respectively).

Test Cases

#Number of Target Functions Reported by Pointer Analysis for the Member Function Pointer in Each Test Case
Single Inheritance Multiple Inheritance Virtual Inheritance

VF Only NVF Only Both VF Only NVF Only Both VF Only NVF Only Both
SVF Tips SVF Tips SVF Tips SVF Tips SVF Tips SVF Tips SVF Tips SVF Tips SVF Tips

#F=10, #T = 2 20 2 0 2 20 2 51 2 0 2 40 2 68 2 0 2 65 2
#F=10, #T = 4 23 4 0 4 20 4 52 4 0 4 43 4 65 4 0 4 61 4
#F=10, #T = 8 27 8 0 8 21 8 44 8 0 8 41 8 62 8 0 8 62 8
#F=20, #T = 2 46 2 0 2 58 2 66 2 0 2 88 2 138 2 0 2 144 2
#F=20, #T = 4 49 4 0 4 57 4 82 4 0 4 81 4 121 4 0 4 136 4
#F=20, #T = 8 54 8 0 8 54 8 95 8 0 8 99 8 85 8 0 8 108 8
#F=30, #T = 2 64 2 0 2 60 2 104 2 0 2 105 2 169 2 0 2 187 2
#F=30, #T = 4 64 4 0 4 82 4 164 4 0 4 159 4 219 4 0 4 176 4
#F=30, #T = 8 72 8 0 8 73 8 153 8 0 8 132 8 205 8 0 8 181 8

Sound Y Y N Y N Y Y Y N Y N Y Y Y N Y N Y
Precise N Y N Y N Y N Y N Y N Y N Y N Y N Y

Our micro-benchmark suite includes 81 test cases, encompassing various scenarios involving
different quantities of virtual and non-virtual member functions, spanning single, multiple, and
virtual inheritance contexts. We also analyzed all seven C++ benchmarks from SPEC CPU 2006,
focusing on three major ones: 447.dealii, 453.povray, and 483.xalan, which use C++ member
function pointers. Due to the lack of support for placement new in C++—a key feature in 483.xalan
discussed in Section 5.3—we excluded 483.xalan from our analysis. We chose 447.dealii (181,847
lines) and 453.povray (155,163 lines) for their size and relevance to real-world inheritance scenarios
(Section 5.2). In addition, we included 12 open-source C++ applications from Qt [Company, 2024],
LLVM [Community, 2024b], Ninja [Community, 2024c], and GoogleTest [Community, 2024a], with
nine (bolded in Table 7) having larger LLVM-IR bitcode files than 453.povray. This selection helps
extensively evaluate Tips’s precision and efficiency against SVF in analyzing large C++ programs.
All C++ programs were compiled using WLLVM [Ravitch, 2024] with the “-O0” option, widely

employed for static analysis purposes. Both Tips and SVF conducted their demand-driven,
flow-, and context-sensitive pointer analyses with identical configurations (“-flow-bg=100000
-cxt-bg=100000 -max-cxt=2”). Our analysis environment consisted of a 3.50 GHz Intel Xeon E5
CPU, equipped with 512 GB of memory, and operated on a 64-bit Ubuntu 20.04 OS.

In our evaluation, we aim to answer two key research questions (RQs):
• RQ1. Can Tips resolve C++ member function pointers in various inheritance scenarios in
our micro-benchmark suite more effectively than SVF?

• RQ2. Does Tips achieve precision gains over SVF in resolving C++ member function pointers
at some acceptable analysis overheads in large C++ programs?

5.1 RQ1: Precision Improvements

In Table 5, our micro-benchmark suite comprises a total of 81 test cases categorized by single,
multiple, or virtual inheritance. Each test case contains one member function call where various
class member functions are invoked via a member function pointer.
Starting with single inheritance, we have 27 test cases, each involving two classes. These test

cases fall into three sub-categories: classes with only virtual functions, classes with only non-virtual
functions, and a mix of both. For each sub-category, we generate 9 test cases, introducing variations
in the number of defined functions (#F ∈ {10, 20, 30}) within each class and determining their
overriding relationships randomly. Furthermore, we introduce variations in the number of member
functions (i.e., targets) invoked via a member function pointer (#T ∈ {2, 4, 8}).

In our motivating example presented in Figure 1, we demonstrated that Tips surpasses SVF due to
SVF’s limitations in handling virtual and non-virtual function calls. SVF’s field-insensitive handling
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Table 6. Efficiency of Tips and SVF in resolving member function calls in 447.dealii and 453.povray.

Analysis Stage Metrics
447.dealii 453.povray

SVF Tips Tips
SVF SVF Tips Tips

SVF

Pre-Analysis

AnalysisTime (Secs) 51.254 205.291 4.005 20.656 79.265 3.837
#Addr 44,105 44,639 1.012 7,322 9,386 1.282
#Copy 285,171 448,333 1.572 48,747 100,997 2.072
#Gep 190,029 190,127 1.001 119,890 119,950 1.001
#Load 20,800 30,151 1.450 13,033 19,597 1.504
#Store 24,155 86,033 3.562 9,829 73,890 7.518

Demand-Driven

#SVFGNode 997,730 1,312,816 1.316 311,044 509,366 1.638
#SVFGEdge 1,363,076 1,904,031 1.397 446,893 815,474 1.825

AvgTimePerQuery (Sec) 2.645 2.981 1.127 0 3.469 NA
AvgPtsSize 324 1.250 0.004 0 7 NA

of Gep𝑘 leads to sound but imprecise results for virtual function call targets. Simultaneously, SVF’s
neglect of integer-pointer value flows results in unsound results for non-virtual function call targets.
When a test case exclusively contains virtual functions, SVF lists all virtual functions in a class’s
virtual table as possible targets for a member function call, resulting in imprecision. Conversely, in
cases with only non-virtual functions, SVF becomes unsound, missing all target functions. Moreover,
when a test case combines both virtual and non-virtual functions, SVF incorrectly identifies all
virtual functions as targets for member function calls that should invoke non-virtual functions. In
contrast, Tips maintains both soundness and precision across all 27 test cases.

When transitioning to multiple and virtual inheritance, we observe similar patterns as in single
inheritance. We analyze 27 test cases for each inheritance scenario: three classes per test case for
multiple inheritance (Figure 3) and four classes per test case for virtual inheritance (Figure 6). These
test cases are generated similarly to single inheritance, with variations in the number of defined
functions (#F ∈ {10, 20, 30}) within each class and random determination of overriding relationships.
The number of functions invoked via a member function pointer also varies (#T ∈ {2, 4, 8}).

In tests with only virtual functions, SVF becomes imprecise (yet sound) compared to single-
inheritance scenarios due to its field-insensitive Gep𝑘 , exacerbated by multiple virtual tables
(Figures 3 and 7). When only non-virtual functions are involved, SVF fails to identify any targets,
similar to its performance in single-inheritance scenarios. In mixed tests, SVF wrongly identifies
all virtual functions as targets, ignoring intended non-virtual calls. Conversely, Tips consistently
achieves soundness and precision in all 54 test cases.

5.2 RQ2: Precision and Efficiency Tradeoffs

5.2.1 SPEC CPU 2006. Table 6 shows Tips’s precision improvement over SVF in analyzing
447.dealii and 453.povray, despite longer pre-analysis phases due to its tracking of pointer and
integer value flows. The pre-analysis for 447.dealii takes 205.291 seconds (4.005× longer) and
for 453.povray 79.265 seconds (3.837× longer), resulting in larger constraint graphs with more
AddrOf, Copy, Store, Load, and Gep edges. This increase in graph size is also due to instruction
normalization (Figure 8). Thus, Tips’s SVFGs have more nodes than SVF’s, by 1.316× in 447.dealii
and 1.638× in 453.povray, which are acceptable overheads given the precision gains.
Both Tips and SVF perform points-to queries for the member function pointers in these two

programs on-demand using the SVFGs constructed during pre-analysis.
In the case of 447.dealii, Tips reports an average of only 1.250 target functions per mem-

ber function pointer, a significant reduction compared to SVF’s 324 targets. The average query
time (AvgTimePerQuery) are similar, with Tips taking 2.981 seconds and SVF 2.645 seconds. For
453.povray, SVF fails to report any target functions, rendering it unsound. SVF’s pre-analysis sets
all member function pointers to null, preventing on-demand refinement of points-to information.
In contrast, Tips reports an AvgPtsSize of 7 and an AvgTimePerQuery of 3.469 seconds.
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Table 7. Efficiency of Tips and SVF in resolving member function calls in 12 open-source C++ programs, where

nine of which (with larger LLVM-IRs to be analyzed than 453.povray) are marked in bold.

Open-Source C++ Programs
Pre-Analysis Time #SVFGNode #SVFGEdge AvgTimePerQuery AvgPtsSize

SVF Tips SVF Tips SVF Tips SVF Tips SVF Tips

LLVM

llvm-config 70.367 183.597 585,021 821,341 734,221 1,166,045 9.103 10.514 416.000 4.000
llvm-ml 1,163.700 4,180.240 3,244,376 5,498,863 3,729,991 8,777,931 0.467 0.540 104.615 1.231
FileCheck 119.932 331.657 649,342 944,214 793,082 1,333,502 2.014 1.990 183.000 2.667
llvm-mt 64.572 208.485 550,636 888,408 662,091 1,259,724 2.318 1.763 427.000 4.000

Qt

cmake_automoc_parser 60.281 162.899 1,120,003 1,923,808 1,345,662 3,181,915 0.003 0.017 0.000 1.000
moc 73.235 198.442 1,373,555 2,236,289 1,674,963 3,646,680 0.003 0.018 0.000 1.000

tracegen 60.094 154.167 1,059,216 1,779,135 1,262,519 2,977,068 0.003 0.012 0.000 1.000
tracepointgen 54.701 142.359 1,023,327 1,737,779 1,210,535 2,906,594 0.002 0.011 0.000 1.000

Ninja/GoogleTest

ninja 7.644 8.707 134,104 174,825 166,363 236,430 0.775 1.117 40.500 11.500
ninja_test 488.123 817.214 890,832 1,371,169 1,194,944 2,148,449 0.582 0.584 519.800 159.300

build_log_perftest 5.448 5.522 107,651 133,850 133,300 174,170 0.008 0.013 0.000 1.000
manifest_parser_perftest 5.651 5.772 107,547 134,088 132,725 174,183 0.008 0.013 0.000 1.000

We manually inspected the source code of the two large benchmarks, 447.dealii and
453.povray, and confirmed that all address-taken member functions are covered by Tips.

For 453.povray, the address-taken member functions are exclusively non-virtual, and the classes
in which they are defined do not contain any virtual functions. This scenario aligns with the non-
virtual function-only micro-benchmarks included in Table 5, where SVF consistently scores 0,
highlighting why SVF fails to identify such target functions in 453.povray.
For 447.dealii, virtual inheritance is used in its classes, exemplified by instances like "class

Solver : public virtual Base<dim>" in step-14.cc. This corresponds to the virtual inheritance
category listed in Table 5, where SVF exhibits significant imprecision. Some member func-
tion pointers in 447.dealii, such as those pointing to crucial thread entry functions, ne-
cessitate precise resolution. For instance, the non-virtual template member function "Laplace-
Solver::WeightedResidual<3>::solve_primal_problem()" in step-14.cc is one such critical thread
entry function reported by Tips but missed by SVF. Resolving these member function pointers
accurately is vital for analyzing these large C++ programs.

5.2.2 Twelve Open-Source C++ Programs. We begin by evaluating the precision enhancements of
Tips compared to SVF, followed by case studies to explore the reasons behind these improvements.
Precision Improvements. Table 7 demonstrates Tips’s superior precision over SVF across 12
open-source C++ applications, showing two trends in the "AvgPtsSize" column. Firstly, in scenarios
similar to 453.povray (shown in Table 6), where classes defining address-taken member functions
lack virtual functions, SVF fails to identify non-virtual member function call targets. This is
evident in all four Qt programs and two Ninja/GoogleTest programs (build_log_perftest and
manifest_parser_perftest), where SVF’s average points-to set size is zero, while Tips accurately
identifies these pointers, usually with a slight increase in analysis time. Tips slightly outperforms
SVF in FileCheck and llvm-mt, as SVF traverses many imprecisely introduced call edges during its
pre-analysis. Secondly, for classes with virtual functions, as seen in the other six C++ programs from
Table 7 and resembling the pattern in 447.dealii, SVF’s average points-to set size significantly
exceeds that of Tips. This precision gain in Tips is attributed to the Gep𝑘 rule (Table 3), and similar
to the first pattern, SVF misses all non-virtual member function call targets, whereas Tips does not.
Case Studies. We performed manual analysis to evaluate Tips’s precision advantage over SVF
and to confirm the correctness of Tips’s implementation. Let us examine GoogleTest’s use in
ninja_test. Due to multiple instantiations of class/function templates in C++, we found searching
human-readable LLVM-IR text files useful for manual verification, while Tips automatically analyzes
the equivalent LLVM-IR bitcode. To facilitate this, we crafted a Python script to embed line numbers
and filenames into the LLVM-IR text files, leveraging existing debug information. This allows us

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 72. Publication date: July 2024.



72:18 Changwei Zou, Dongjie He, Yulei Sui, and Jingling Xue

01 # TIPS reports: The indirect member function call at (1250, "stl_function.h") calls
  # _ZNK4Node5dirtyEv (i.e., Node::dirty() at (97, "src/graph.h")) in ninja_test.

   // C++ member function indirect call sites
02 $ grep -n "%memptr.virtualfn" ninja_test.pre.com.ll | grep "phi" 
03 ...
04 %8 = phi [ %memptr.virtualfn, ...], [%memptr.nonvirtualfn, ...]; 1250,"stl_function.h“

   // Virtual member function pointers
05 $ grep -nE "{ i64 [[:digit:]]{1,}, i64 [[:digit:]]{1,}" ninja_test.pre.com.ll 
06 ...
07 store { i64, i64 } { i64 17, i64 0 }, %coerce; 2503,"gtest.cc",  VtableIndex = (17 – 1) / 8 
   
   // Non-virtual member function pointers
08 $ grep -n "ptrtoint" ninja_test.pre.com.ll | grep "{ i64, i64 }" | grep "@_Z"
09 ...
10 store { i64, i64 } {i64 ptrtoint (@_ZNK4Node5dirtyEv), i64 0}, %ptr; 277, "src/build.cc"

11 // "src/graph.h",  _ZNK4Node5dirtyEv
12 bool dirty() const { return dirty_; }   // Line: 97

13 // "src/build.cc"
14 #define MEM_FN mem_fun          
15 bool Plan::CleanNode(DependencyScan* scan, Node* node, string* err) { 
16   if (find_if(begin, end, MEM_FN(&Node::dirty)) == end) { // 277, "src/build.cc"
          ...
17   }
18 }

19 // "/usr/include/c++/11/bits/stl_function.h"
20 inline const_mem_fun_t<_Ret, _Tp>
21   mem_fun(_Ret (_Tp::*__f)() const)
22   { return const_mem_fun_t<_Ret, _Tp>(__f); } // Line: 1367

23 // "/usr/include/c++/11/bits/stl_algo.h"
24 find_if(_InputIterator __first, _InputIterator __last,  
25   _Predicate __pred) {
26    return std::__find_if(__first, __last,     // Line: 3910
27       __gnu_cxx::__ops::__pred_iter(__pred)); 
28 }
29 // "/usr/include/c++/11/bits/stl_algobase.h"
30 __find_if(_Iterator __first, _Iterator __last, _Predicate __pred) {
31  return __find_if(__first, __last, __pred,     // Line: 2112
32                std::__iterator_category(__first));
33 }
34 // "/usr/include/c++/11/bits/stl_algobase.h"
35 __find_if(_RandomAccessIterator __first, _RandomAccessIterator __last, 
36  _Predicate __pred, random_access_iterator_tag) {
37  if (__pred(__first))  // Line: 2069
38    return __first;
39 } 
40 // "/usr/include/c++/11/bits/stl_algobase.h"
41 template<typename _Predicate> struct _Iter_pred {
42  _Predicate _M_pred;
43  bool operator()(_Iterator __it)
44  { return bool(_M_pred(*__it)); } // Line: 318
45 };  

46 // "/usr/include/c++/11/bits/stl_function.h"
47 template<typename _Ret, typename _Tp>
48 class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
49 {
50 public:
51  _Ret operator()(const _Tp* __p) const
52  { return (__p->*_M_f)(); }   // 1250,"stl_function.h"
53 private:
54   _Ret (_Tp::*_M_f)();
55 };

Fig. 9. Manual tracking of Tips’s analysis on one member function call in ninja_test.

to accurately locate member function call sites and pointers in ninja_test, as demonstrated in
Figure 9. For instance, as shown at line 1, Tips identifies a member function call in stl_function.h
(line 1250) that may target Node::dirty() in src/graph.h (line 97). According to the information
dumped at line 10, we determined the non-virtual function pointer (&Node::dirty) is declared
in src/build.cc (line 277). By cross-referencing mangled and demangled function names from
LLVM-IR texts to C++ source code, we could trace control and data flows from src/build.cc
(line 277) to stl_function.h (line 1250), across the values depicted in bolded purple color in
Figure 9. Thus, the non-virtual function pointer &Node::dirty at line 277 in src/build.cc may
be invoked at line 1250 in stl_function.h. As both SVF and Tips are path-insensitive (to avoid
the path-explosion problem), we ignored path conditions in our manual analysis.
Similarly, we manually tracked the value flows of additional member function point-

ers in ninja_test. As illustrated in Figure 10, there are 13 non-virtual member function
pointers—targets missed by SVF—including the one in src/build.cc previously discussed
and 12 in src/gtest.cc, along with 4 virtual member function pointers also located in
src/gtest.cc. The pointers correspond to 10 call sites: CS1 in src/stl_function.h and CS2-
CS10 in src/gtest.cc, with dashed arrows indicating usage. Analysis of LLVM-IR text files
showed that two function templates, HandleExceptionsInMethodIfSupported() and Handle-
SehExceptionsInMethodIfSupported(), were instantiated four times each, covering CS3-CS10.
When C++ developers employ the TEST_F(test_fixture, test_name) macro (omitted in

Figure 10) in gtest.h to introduce a test, GoogleTest generates a subclass of testing::Test
with an overridden TestBody() function, executed at the two member function call sites,
CS3 and CS4, at lines 2414 and 2491, respectively (gtest.cc). The object pointer from
TestFactoryBase::CreateTest() reaches these two call sites, introducing different overrid-
den virtual tables. Our tracking of four member function pointers—&Test::DeleteSelf_,
&Test::SetUp, &Test::TestBody, and &Test::TearDown—revealed that Tips identified 403 po-
tential target member functions at these two call sites. This includes 10 instances of SetUp(), 386
of TestBody(), and 6 of TearDown(), plus the non-virtual function Test::DeleteSelf_().

These findings align with the manual analysis’s reachability data from the four member function
pointers to call sites CS3 and CS4, as illustrated in the top section of Figure 10. Indirect confirmation
of Tips’s soundness in analyzing ninja_test was further obtained by enumerating function defi-
nitions in the LLVM-IR text files using grep, as shown in the bottom-left section of Figure 10. For

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 72. Publication date: July 2024.



TIPS: Tracking Integer-Pointer Value Flows for C++ Member Function Pointers 72:19

13 Non-Virtual Member Function Pointers in ninja_test
Location Member Function Pointer

277, build.cc &Node::dirty
770, gtest.cc &TestSuite::successful_test_count
775, gtest.cc &TestSuite::skipped_test_count
780, gtest.cc &TestSuite::failed_test_count
786, gtest.cc &TestSuite::reportable_disabled_test_count
791, gtest.cc &TestSuite::disabled_test_count
796, gtest.cc &TestSuite::reportable_test_count
801, gtest.cc &TestSuite::total_test_count
806, gtest.cc &TestSuite::test_to_run_count
2691, gtest.cc &Test::DeleteSelf_
2812, gtest.cc &TestSuite::RunSetUpTestSuite
2822, gtest.cc &TestSuite::RunTearDownTestSuite
4927, gtest.cc &internal::UnitTestImpl::RunAllTests

4 Virtual Member Function Pointers in ninja_test
Location Member Function Pointer Vtable Index

2503, gtest.cc &Test::SetUp 2
2509, gtest.cc &Test::TestBody 4
2517, gtest.cc &Test::TearDown 3
2675, gtest.cc &TestFactoryBase::CreateTest 2

Call Site ID Location In Function (Demangled)

CS1 1250, stl_function.h
std::const_mem_fun_t<bool, Node>::

operator( ) (Node const*)  const
CS2 362, gtest.cc testing::internal::SumOverTestSuiteList (...)

CS3 2414, gtest.cc
HandleSehExceptionsInMethodIfSupported

<testing::Test, void> (testing::Test*, void (testing::Test::*)(), char const*)

CS4 2491, gtest.cc
HandleExceptionsInMethodIfSupported

<testing::Test, void> (testing::Test*, void (testing::Test::*)(), char const*)

CS5 2414, gtest.cc
HandleSehExceptionsInMethodIfSupported

<testing::internal::TestFactoryBase, testing::Test*> (...)

CS6 2491, gtest.cc
HandleExceptionsInMethodIfSupported

<testing::internal::TestFactoryBase, testing::Test*> (...)

CS7 2414, gtest.cc
HandleSehExceptionsInMethodIfSupported

<testing::TestSuite, void> (...)

CS8 2491, gtest.cc
HandleExceptionsInMethodIfSupported

<testing::TestSuite, void> (...)

CS9 2414, gtest.cc
HandleSehExceptionsInMethodIfSupported
<testing::internal::UnitTestImpl, bool> (...)

CS10 2491, gtest.cc
HandleExceptionsInMethodIfSupported

<testing::internal::UnitTestImpl, bool> (...)

Tool
Number of Target Member Functions Reported

CS1 CS2
CS3/CS4 CS5/CS6

CS7 CS8 CS9 CS10 Average
Setup TestBody TearDown DeleteSelf_ CreateTest

TIPS 1 8
10 386 6 1

386 2 2 1 1 159.300 
403

Number of Function Definitions in ninja_test
$ grep -n "5SetUpEv" ninja_test.ll | grep "define" | wc –l
10
$ grep -n "8TestBodyEv" ninja_test.ll | grep "define" | wc –l
386
$ grep -n "8TearDownEv" ninja_test.ll | grep "define" | wc –l
6
$ grep -n "11DeleteSelf_Ev" ninja_test.ll | grep "define" | wc –l
1

$ grep -n "10CreateTestEv" ninja_test.ll | grep "define" | wc -l
386

template <class T, typename Result>
Result HandleExceptionsInMethodIfSupported(
  T* object, Result (T::*method)(), const char* location) { // simplified
 if (internal::GetUnitTestImpl()->catch_exceptions())
  return HandleSehExceptionsInMethodIfSupported(object, method, location);
 else   
  return (object->*method)();  // 2491, gtest.cc

}

Fig. 10. Manual tracking of Tips’s analysis on all member function calls in ninja_test.

instance, 5SetUpEv is the mangled name for SetUp(). Consequently, we verified that Tips compre-
hensively covers all overridden SetUp(), TestBody(), and TearDown() functions in ninja_test,
with similar manual checks conducted for other call sites in this C++ program.

Our analysis shows the vital role of C++member function pointers in real-world C++ applications.
Tips outperforms SVF in resolving these pointers, prioritizing precision with small overhead.

5.3 Limitations

Currently, Tips only models integer arithmetic involved in C++member function pointers. However,
it does not yet handle more complex integer arithmetic operations like addition, multiplication,
or division in other contexts (e.g., a * a + b * b). Furthermore, Tips is primarily designed for
analyzing C/C++ programs on modern operating systems like Linux, where features like Memory
Management Units (MMUs) and Address Space Layout Randomization (ASLR) are present. It
is not directly suitable for analyzing bare metal programs on embedded systems (e.g., STM32),
where physical memory addresses are hardcoded and cast into pointers for accessing different
peripheral devices. Analyzing such systems would require domain-specific knowledge to model
these hardcoded physical addresses accurately. Inline assembly code contained within C/C++ is also
outside the scope of Tips since it operates at the LLVM-IR level (Figure 8). Finally, for handling C++
placement new, which is currently ignored, modifications to C++ compiler frontends to provide
reliable type information would be necessary.

6 RELATEDWORK

Below we summarize previous research on field-, flow-, and context-sensitive pointer analysis,
and outline prospective client applications that could leverage Tips for improved accuracy and
functionality.
Field-Sensitivity. Field-sensitive pointer analysis [Balatsouras and Smaragdakis, 2016, Pearce
et al., 2007], discerns distinct fields within an object. Earlier, Andersen’s pointer analysis lacks
field sensitivity. Pearce et al. [Pearce et al., 2007] later introduced an exemplary field-sensitive
pointer analysis by employing a field-index-based abstraction to represent different fields. This
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approach is representative of field-sensitive techniques. Both SVF [Sui and Xue, 2024] and our tool,
Tips, employ field-index-based field-sensitive analysis. However, Tips represents an advance that
expands the domain of pointer analysis to include integers. It maintains field-sensitivity, even when
processing the Gep𝑘 rule, crucial for precise handling of virtual inheritance and member function
pointers in C++, as demonstrated in Figure 6.
Flow-Sensitivity. Flow-sensitive pointer analysis [Hardekopf and Lin, 2011, Kusano and Wang,
2016] respects program execution order through either a dense control flow graph or a sparse value
flow graph for program representation. Initially, semi-sparse flow-sensitive analysis leveraged def-
use chains for top-level pointers (e.g., virtual registers in LLVM-IR), often available in Static Single
Assignment (SSA) form [Hardekopf and Lin, 2009, Zhao et al., 2018]. Recent developments have
facilitated full-sparse flow-sensitive analysis, encompassing both top-level pointers and address-
taken variables, achieved by creating SSA for address-taken variables based on pre-analysis [Sui
et al., 2012]. Similar to SVF [Sui and Xue, 2024], our tool (Tips) adopts flow-sensitivity using
the Sparse Value Flow Graph (SVFG) representation. By concurrently tracking both pointers and
integers, Tips incorporates byte-level pointer adjustments for precise modeling of virtual table
pointers, integrating strong updates in flow-sensitive pointer analysis for C++ (Figure 3).
Context-Sensitivity. Two main forms of context-sensitivity exist: call-site sensitivity [He et al.,
2022, Jeon and Oh, 2022, Li et al., 2023, Oh et al., 2014, Yu et al., 2010] and object-sensitivity [He et al.,
2022, Li et al., 2018, Liu and Huang, 2022, Lu and Xue, 2019, Ma et al., 2023, Milanova et al., 2005,
Smaragdakis et al., 2011]. Call-site sensitivity suits system languages like C/C++, where objects
can be allocated in various regions (heap, stack, and global memory), while object-sensitivity is
better for languages like Java, where all objects are in the heap. Similar to SVF [Sui and Xue, 2016a,
2024], the context-sensitivity in our tool, Tips, is based on call-sites. However, we enhance our
approach by incorporating integers into the domain and implementing the rules for integer-included
context-sensitivity (Section 3.1) in our demand-driven context-sensitive pointer analysis for C++.
Client Applications. Pointer analysis, crucial for various static analysis techniques, supports
applications like bug detection [Cai et al., 2021, Liu et al., 2016, Livshits and Lam, 2003, Yan et al.,
2018], taint analysis [Arzt et al., 2014, Schubert et al., 2019, Wang et al., 2023], symbolic execu-
tion [Cadar et al., 2008, Guo et al., 2018, Trabish et al., 2020, 2018], and compiler optimization [Sui
et al., 2013]. For instance, PhASAR [Schubert et al., 2019], an IFDS-based taint analysis framework
using LLVM, utilizes pointer analysis to derive points-to information and construct improved call
graphs, enhancing taint analysis for C++ programs. Additionally, in decompilers [Avast, 2024, Kang
et al., 2015]—where integer-pointer casts are prevalent in lifted LLVM IRs—Tips’s ability to track
integer-pointer value flows is valuable for analyzing these IRs and advancing binary reverse engi-
neering efforts [Erinfolami and Prakash, 2020, Fourtounis et al., 2020]. Tips can bolster control-flow
integrity [Abadi et al., 2005, Fan et al., 2017, Jeon et al., 2017] for member function calls, addressing
the shortcomings of existing unsound or imprecise pointer analyses [Hardekopf and Lin, 2009, Li
et al., 2018, Liu et al., 2022, Shi et al., 2018, Sui and Xue, 2016b, Yu et al., 2010] (Figures 3 and 6).

7 CONCLUSION

We introduce Tips, the first field-, flow-, and context-sensitive pointer analysis for effectively
resolving member function pointers in C++ programs. It enhances both soundness and precision
in various inheritance scenarios, with small overhead. We also acknowledge plans for addressing
limitations in future work.
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