
Fast Graph Simplification for Path-Sensitive Typestate
Analysis through Tempo-Spatial Multi-Point Slicing

XIAO CHENG, University of New South Wales, Australia

JIAWEI REN, University of New South Wales, Australia

YULEI SUI, University of New South Wales, Australia

Typestate analysis is a commonly used static technique to identify software vulnerabilities by assessing if
a sequence of operations violates temporal safety specifications defined by a finite state automaton. Path-
sensitive typestate analysis (PSTA) offers a more precise solution by eliminating false alarms stemming from
infeasible paths. To improve the efficiency of path-sensitive analysis, previous efforts have incorporated sparse
techniques, with a focus on analyzing the path feasibility of def-use chains. However, they cannot be directly
applied to detect typestate vulnerabilities requiring temporal information within the control flow graph like
use-to-use information.

In this paper, we introduce FGS, a Fast Graph Simplification approach designed for PSTA by retaining
multi-point temporal information while harnessing the advantages of sparse analysis. We propose a new
multi-point slicing technique that captures the temporal and spatial correlations within the program. By doing
so, it optimizes the program by only preserving the necessary program dependencies, resulting in a sparser
structure for precision-preserving PSTA. Our graph simplification approach, as a fast preprocessing step,
offers several benefits for existing PSTA algorithms. These include a more concise yet precision-preserving
graph structure, decreased numbers of variables and constraints within execution states, and simplified path
feasibility checking. As a result, the overall efficiency of the PSTA algorithm exhibits significant improvement.

We evaluated FGS using NIST benchmarks and ten real-world large-scale projects to detect four types
of vulnerabilities, including memory leaks, double-frees, use-after-frees, and null dereferences. On average,
when comparing FGS against ESP (baseline PSTA), FGS reduces 89% of nodes, 86% of edges, and 88% of calling
context of the input graphs, obtaining a speedup of 116× and a memory usage reduction of 93% on the large
projects evaluated. Our experimental results also demonstrate that FGS outperforms six open-source tools
(IKOS, ClangSA, Saber, Cppcheck, Infer, and Sparrow) on the NIST benchmarks, which comprises 846
programs. Specifically, FGS achieves significantly higher precision, with improvements of up to 171% (42% on
average), and detects a greater number of true positives, with enhancements of up to 245% (52% on average).
Moreover, among the ten large-scale projects, FGS successfully found 105 real bugs with a precision rate of
82%. In contrast, our baseline tools not only missed over 42% of the real bugs but also yielded an average
precision rate of just 13%.

CCS Concepts: • Software and its engineering→ Automated static analysis; Model checking.

Additional Key Words and Phrases: Graph simplification, multi-point slicing, path-sensitive typestate analysis

ACM Reference Format:

Xiao Cheng, Jiawei Ren, and Yulei Sui. 2024. Fast Graph Simplification for Path-Sensitive Typestate Analysis
through Tempo-Spatial Multi-Point Slicing. Proc. ACM Softw. Eng. 1, FSE, Article 23 (July 2024), 23 pages.
https://doi.org/10.1145/3643749

Authors’ addresses: Xiao Cheng, University of New South Wales, Sydney, Australia, xiao.cheng@unsw.edu.au; Jiawei Ren,
University of New South Wales, Sydney, Australia, jiawei.ren@student.unsw.edu.au; Yulei Sui, University of New South
Wales, Sydney, Australia, y.sui@unsw.edu.au.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).
ACM 2994-970X/2024/7-ART23
https://doi.org/10.1145/3643749

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

23:2 Xiao Cheng, Jiawei Ren, and Yulei Sui

1 INTRODUCTION

Typestate analysis [30, 68] aims at determining whether a sequence of program operations violates
a safety specification given a finite state automaton. This approach has shown success in identifying
a spectrum of vulnerabilities, including use-after-frees/double-frees [72, 76], memory/resource
leakages [45, 50], access controls [59], and concurrency bugs [32, 38]. Path-sensitive typestate
analysis (PSTA) [30, 33, 50] elevates the precision of its path-insensitive counterpart by capturing
inter-branch correlations and reducing false alarms arising from infeasible paths. PSTA typically
requires maintaining an execution state that captures the values of program variables and path
constraints, and it validates path feasibility when encountering branches.

Existing efforts and limitations. ESP [30, 33] is a representative instance of PSTA that scales
to large programs. Unlike full path-sensitive analyses that compute a solution through a meet-over-
all-path approach, ESP takes a partially path-sensitive approach to avoid examining a potentially
unbounded number of program paths. It employs a symbolic state, incorporating both an execution
state and an automaton’s "property state" (typestate) [30] as a data-flow fact. At a control-flow
joint point, ESP merges execution states with identical typestates, yielding a single symbolic state
and thus achieving a maximal-fixed-point solution with program paths sensitive to typestate
preserved. Subsequently, several approaches [37, 44, 50, 80] propose more effective analysis based
on optimizing the typestate transitions. Their main focus is to improve the precision of alias
analysis and eliminate spurious typestate transitions on non-aliased objects. For instance, Fink et
al. [37] propose incorporating typestate analysis with alias analysis and concentrating precise alias
analysis only on relevant typestate properties. Additionally, there are hybrid typestate analysis
approaches attempting to combine static typestate analysis with the dynamic residual runtime
monitor [15, 16, 35] or fuzzing [72] to detect typestate vulnerabilities.
To the best of our knowledge, all previous efforts in PSTA primarily focused on enhancing the

precision of alias analysis or exploring opportunities for integrating dynamic analysis techniques.
Nonetheless, there remains considerable potential for optimizing PSTA’s efficiency, which is a hard
but relatively unexplored research area. Recently, several approaches propose sparse path-sensitive
analyses [64, 65, 71] to improve the efficiency of path-sensitive analysis. The key idea is to propagate
data flow facts along def-use chains and skip unnecessary control flows. For example, Fusion [65]
proposes a fused approach to validate path feasibility for def-use chains efficiently. However, the
def-use chains lack information on the temporal execution order within the control flow graph,
such as use-to-use information. Hence, the existing sparse approaches cannot be directly applied to
detect vulnerabilities associated with typestate concerns. Moreover, in contrast to the focus of the
sparse analysis on solving a reachability problem from sources to sinks, typestate analysis often
requires tracking multiple sequential program points to identify potential error states, such as
detecting use-after-frees. It becomes necessary to consider the multi-point temporal and spatial
correlations in the typestate analysis process.
Insights and challenges. To preserve the multi-point temporal and spatial correlations while

harnessing the benefits of sparse analysis, we focus on graph simplification, a more general and
practical approach by reducing the size of the control flow graph, yielding a sparser structure used
by the same PSTA without modifying the underlying analysis algorithm. Our insight comes from
slicing techniques [51, 61, 67], which can simplify the analysis by selectively considering the code
fragment related to specific program points of interest. However, most of these slicing techniques
are designed for path-insensitive analysis and are for different purposes, e.g., program debugging
and comprehension. No prior works have explored slicing to improve the PSTA’s scalability. The
primary technical challenge lies in devising an effective and efficient multi-point slicing algorithm.
Effectiveness refers to the ability of the algorithm to eliminate as many irrelevant nodes as possible,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:3

3

2

12

1

3

1 2 3

(b) Multi-point markers
extraction

Temporal
multi-point

slicing (TMS)

Spatial
multi-point
slicing (SMS)

(c) Tempo-spatial multi-point slicing(a) Input

Program

LLVM IR
LLVM

SVF

Automaton

PSTA
Solver

Memory leaks
Double-frees

Use-after-frees
Null dereferences

...

Clients

(d) Path-sensitive typestate analysis

Fig. 1. Overview of our approach.

maximizing the extraction of relevant information. For example, an intuitive approach that performs
a backward slicing on the sparse value-flow graph [70] does not consider the multi-point temporal
and spatial properties of a typestate analysis, which significantly limits the slicing effectiveness.
The ideal algorithm should also operate efficiently, serving as a pre-processing step that executes
significantly faster than the PSTA algorithm itself. Furthermore, it is crucial to ensure that the
soundness and precision of PSTA are not compromised after applying the slicing technique.
Our solution.We present FGS, a fast graph simplification approach for PSTA through tempo-

spatial multi-point slicing that effectively compacts the interprocedural control flow graph (ICFG).
Our graph simplification approach is not dependent on later typestate algorithms and can be
applied across various PSTA solvers, also accommodating different alias analyses or dynamic
approaches. The process initiates with a fast path-insensitive multi-point markers extraction,
soundly identifying all potentially vulnerable operation sequences (aka multi-point markers).
Guided by these multi-point markers, we present a new slicing technique that accounts for the
temporal orders of these markers while retaining only the necessary spatial program dependencies
(i.e., control and data dependencies) within the ICFG. Eliminating unnecessary ICFG nodes results
in significant compaction of the control flow graph, resulting in a sparser structure with fewer
edges and calling contexts. Consequently, a PSTA algorithm benefits from this graph simplification
through a more compact ICFG with reduced variables and path constraints in execution states
and fast SMT solving. Importantly, the soundness and precision of the PSTA algorithm remain
unchanged because (1) the multi-point markers extracted from the path-insensitive analysis is an
over-approximation of the sequences under path-sensitive analysis, and (2) all essential temporal
and spatial information for determining the feasibility of the markers is preserved within the
simplified ICFG.
Framework overview. Figure 1 provides an overview of our framework. The input of our

framework is a finite-state automaton, and LLVM’s intermediate representation (IR) [48], as formally
defined in Section 2.1. This IR is then passed to a static analysis tool SVF [70], which produces
GICFG an interprocedural control flow graph (ICFG), a program dependence graph GPDG and a call
graph GCallGraph. We first extract multi-point markers (i.e., path-insensitive vulnerable operation
sequences) on GICFG according to the automaton using a fast path-insensitive typestate analysis by
treating all GICFG edges without considering branch conditions. The markers are used to guide our
multi-point slicing module to acquire the program statements necessary for the costly path-sensitive
analysis and guarantee that the vulnerable operation sequences are equivalent to the original PSTA.
The multi-point slicing module consists of two key parts: a temporal multi-point slicing (TMS)
and a spatial multi-point slicing (SMS). TMS acquires the statements from all the temporal paths
with each containing at least one marker. SMS works on GPDG to capture all the control and data
dependencies of the program points in the markers. TMS and SMSwork collectively to preserve the
temporal and spatial correlations within the program. PSTA can then work on a more compacted
graph G′

ICFG produced based on the tempo-spatial slice, an intersection of the temporal and spatial

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:4 Xiao Cheng, Jiawei Ren, and Yulei Sui

slices, and efficiently validate the feasibility of multi-point markers according to their temporal and
spatial dependencies. The PSTA solution on G′

ICFG supports subsequent typestate-related clients,
such as detecting memory leaks, double-frees, use-after-frees, and null dereferences.
Our major contributions are as follows:

• We present FGS, a fast graph simplification approach for path-sensitive typestate analysis
utilizing tempo-spatial multi-point slicing.

• We formulate the multi-point markers extraction as a graph reachability problem based on
the IFDS framework [60].

• We propose a new multi-point slicing technique that efficiently captures the temporal and
spatial correlations necessary for a path-sensitive typestate analysis.

• We conduct a comprehensive evaluation of our approach’s performance using 846 programs
from theNIST dataset and ten real-world open-source projects. Experimental results show that
our approach reduces ICFG nodes by 89% and calling context by 88% on average, resulting in a
116× speedup and 93% reduced memory usage. Our approach also outperforms our baselines,
namely IKOS [17], Saber [71], Infer [43], Cppcheck [25], ClangSA [47] and Sparrow [56],
with 42% higher precision (up to 171%) and more true positives (up to 245%) on NIST dataset.
In ten large-scale projects, FGS identified 105 real bugs with impressive precision (82%),
outperforming baseline tools.

2 PRELIMINARIES AND PROBLEM FORMULATION

We introduce the preliminary knowledge including the target language, typestate and PSTA.

2.1 LLVM-like Language

Table 1. Analysis domain and LLVM-like language.

c,fld ∈ C Constants
p,q,r ∈ S Stack virtual registers
g ∈ G Global pointer variables
p,q,r,g ∈ P = S ∪ G Top-level Variables
o, a, af, a.fld, a[c] ∈ O Abstract objects
v ∈ V = P ∪ O Program variables

ℓ ::= Stmt
p = c ConsStmt
p = alloco AddrStmt
p = &(q→fld) GepStmt (Field)
p = &q[c] (constant) GepStmt (Array-C)
p = &q[v] (variable) GepStmt (Array-V)
p = ∗q LoadStmt
∗p = q StoreStmt
p = q CopyStmt
p = phi(p1, p2, ...pn) PhiStmt
p = ¬q UnaryStmt
r = p ⊙ q BinaryStmt

⊙ ∈ {+, -, ∗, /, %, <<, >>, <, >, &, &&, <=,>=, ≡, ∼, | , ∧ }

Table 1 gives the LLVM-like language [48] for
conducting path-sensitive typestate analysis.
The set of all variables V is divided into two
distinct subsets: O, including all possible ab-
stract objects, i.e., address-taken variables of a
pointer and P, representing all top-level vari-
ables. In LLVM’s language, a top-level variable,
such as p, q, r ∈ P, can be defined only once.
An address-taken object, such as o ∈ O, can
be read/modified only through dereferencing
top-level pointers within StoreStmt and Load-
Stmt. A constant value c is consistently allo-
cated to a top-level variable as its initial assign-
ment at ConsStmt. ForAddrStmt p = alloco,
o pertains to either a stack or global variable,
or it takes the form of an abstract heap object
created dynamically. GepStmt serves as a representation for accessing fields within a struct ob-
ject, whereby its field offset fld is maintained as a constant value. FGS uses a field-index-based
approach to field-sensitivity similar to [13, 57]. The distinction between fields within a struct object
is established through their individual and unique indices. PhiStmt is a standard SSA instruction
introduced at a confluence point on the control-flow graph to facilitate the selection of variable
values from different branches. Lastly, passing parameters to a callee or returning from it at a
specific callsite is represented by CopyStmts. In the following sections, we may use program
statements and instructions interchangeably.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:5

alloc free use

use

Fig. 2. g for detecting use-a�er-frees.

2.2 Typestate Analysis

Typestate [68] expands the scope of standard immutable types for potential state changes by
representing the different states of a given type and its state transitions through a typestate
finite-state automaton (Definition 1). Typestates define valid sequences of operations that can be
performed upon an instance of a given type. Typestate analysis is well-suited for specification-based
bug detection, protocol analysis and so on.

Definition 1 (Typestate finite-state automaton). A typestate finite-state automaton g =

⟨Σ,T,)0, X,)4⟩ has five tuples. The language Σ denotes the operations or instructions (e.g., function
calls) that can be performed on the typestates. T represents all the possible typestates, and)0 ∈ T
is the initial state. The state-transition table X ∈ (T × Σ) → T consists of all the state-transition
functions encoding the effects of operations in Σ, which maps one state to another given an in-
struction.)4 is the error typestate indicating a potential bug detected. The error state is a trap state
with a self-loop transition.

Example 1 (Use-after-free (UAF) typestate analysis). Figure 2 shows the typestate finite-state
automaton for detecting use-after-free vulnerability [28]. The language Σ consists of memory
allocation (alloc), memory free (free) and memory usage (use). T = {)0,)0,)5 ,)4 } includes an
initial state)0, an allocated state)0 , a freed state)5 and an error state)4 .)0 transfers to)0 when
encountering a memory allocation.)0 changes to)5 if the allocated memory is released. The error
state)4 is reached when using the memory object holding a)5 state.

Definition 2 (Operation sequence). An operation sequence is a sequence of instructions ℓ1 ⇝
· · ·⇝ ℓ= on GICFG , where ℓ1 . . . ℓ= ∈ Σ are the operations in Σ of a given g . The order of operations
on the sequence should follow the temporal execution order of the target program.

Definition 3 (Vulnerable operation sequence). A vulnerable operation sequence c is an operation
sequence ℓ1 ⇝ · · ·⇝ ℓ= that leads to an error typestate. An initial typestate)0 changes into the
error state)4 when sequentially performing each instruction on c . In the following sections, we
may use sequence(s) as the shorter form of vulnerable operation sequence(s) for brevity.

Example 2 (Vulnerable operation sequence for UAF). Suppose that we have three consecutive
program instructions ℓ1 : p = malloc(); ℓ2 : free(p); ℓ3 : print(p);. There is a vulnerable operation
sequence ℓ1 ⇝ ℓ2 ⇝ ℓ3, which follows the temporal order of the program and leads to an error
state at the end of the instructions.

2.3 Path-Sensitive Typestate Analysis

We use ESP [30], a prime instance of PSTA implemented in the IFDS framework [60], as the
baseline PSTA used in our paper. As in Definition 5, ESP computes and maintains symbolic states
(a combination of typestates and execution states) as data-flow facts when analyzing the target
program. At a joint point in ICFG, ESP merges the symbolic states with the same typestate, while
the symbolic states with different typestates are propagated and analyzed independently in a
path-sensitive manner. We first introduce the symbolic state and then present the flow functions
for handling program instructions and then the PSTA algorithm.

Definition 4 (Execution state). We define the execution state for a given program as a composition
of a map V → A from program variables V to an abstract domain A, an over-approximated

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:6 Xiao Cheng, Jiawei Ren, and Yulei Sui

abstraction of the concrete domain [24], and a path constraint [18] that captures the conditions
that must hold for a specific execution path to be taken.

Definition 5 (Symbolic state). A symbolic state S ∈ S is a pair of typestate (Definition 1) and
execution state (Definition 4). We use ts(() and es(() to retrieve the typestate and the execution
state of the symbolic state (, respectively.

Flow functions. A flow function encodes how symbolic states transit given a program instruction
ℓ . Equation 1 shows the flow functions used in ESP (Fm, Fb and Fo) and a grouping function (U),
which merges the symbolic states with equivalent typestate. Fm handles the control-flow joint point.
It first joins the symbolic states from the two incoming branches and calls U to group symbolic
states. Fb handles the branch instruction. It checks path feasibility according to the branch condition
(cond) for each symbolic state using an SMT solver and only keeps symbolic states with a feasible
execution state. Fo handles the other program instructions. It updates the execution state based on
the semantics of the instruction ℓ . The typestate will also be updated if the instruction is in the
language, i.e., ℓ ∈ Σ. In the end, U is applied to the updated symbolic states.

Fm (ℓ, SS1, SS2) = U (SS1 ∪ SS2)

Fb (ℓ, SS, cond) = {(′ | (′ = fb (ℓ, (, cond) ∧ (∈ SS ∧ es((′) ≠ ⊥}

Fo (ℓ, SS) = U ({fo (ℓ, () | (∈ SS})

U (SS) = {⟨),⊔(∈SS[)]4B (()⟩ |) ∈ T ∧ SS[)] ≠ ∅}

SS[)] = {(| (∈ SS ∧) ∈ ts(()}

(1)

PSTA algorithm. ESP is a typical worklist algorithm that works on the �ICFG by propagating
each pair ⟨=,) ⟩ consisting of an ICFG node = and typestate) along �ICFG . ESP then derives a
symbolic state map that maps from a control-flow edge and typestate pair to symbolic states
Info : � × T → �(S), where �(S) denotes the powerset of S. The algorithm terminates when
a fixed point is reached, i.e., Info remains unchanged. A bug is recorded if there exists an error
typestate in Info.

1

2

entry

alloc

3
4

5

6
7

8

9

free

use

exit

merge

merge

Fig. 3. An example of intraprocedural PSTA.

Once an item ⟨=,) ⟩ is selected from thework-
list, the analysis will employ the corresponding
flow functions based on =’s type (i.e., different
kinds of program instructions) in Equation 1 in
order to derive symbolic states and update Info.
For the control-flow joint point, ESP groups the
symbolic states using the merge flow function
Fm. When encountering program branches, we
apply Fb to check path feasibility. For the other
nodes, we call Fo to update the execution state
and/or typestate.

Example 3. Figure 3 shows an example of in-
traprocedural PSTA. A memory object is cre-

ated at 2○, released at 4○ and used at 7○. We analyze the program with automaton g in Figure 2 and
the flow functions in Equation 1. For the memory allocation at 2○, we apply Fo to produce ⟨)0,⊤⟩
from ⟨)0,⊤⟩. For the conditional branch at 3○, we check path feasibility and encode path constraints

in the execution state according to Fb, yielding ⟨)0, 2⟩ and ⟨)0,¬2⟩ at 3○
2
→ 4○ and 3○

¬2
→ 5○ respec-

tively. For the control-flow joint point 5○, we merge its incoming symbolic states using Fm and
produce {⟨)0,¬2⟩, ⟨)5 , 2⟩}. Note that, 2○⇝ 4○⇝ 7○ would form a vulnerable operation sequence

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:7

(Definition 3) if using a path-insensitive typestate analyis. However, this is a false alarm because

the control-flow guards 3○
2
→ 4○ and 6○

¬2
→ 7○ contradict each other. PSTA can eliminate this false

alarm because ⟨)0,¬2⟩ and ⟨)5 , 2⟩ are analyzed independently and precisely at 6○. ⟨)5 , 2⟩ does not
pass to 7○ due to infeasible path given the conjunction of contradictory constraints 2 ∧ ¬2 .

Interprocedural PSTA and IFDS. The interprocedural PSTA algorithm is also a worklist al-
gorithm similar to intraprocedural PSTA. The flow functions Fm, Fb and Fo are the same as the
intraprocedural PSTA. In addition, interprocedural PSTA considers function calls by handling
callsites and function exits in a context-sensitive manner.

The algorithm is implemented based on the IFDS framework [60], where the data flow facts are
symbolic states. A summary map is used to summarize and cache the symbolic states generated by
each function by mapping dataflow facts at the entry to the exit. At each call site, the algorithm
checks whether the summary of the callee has been created, and reuses the summarized symbolic
states if the summary exists. At each function exit, the algorithm generates the summary of the
corresponding function.

2.4 Problem Formulation

Our objective is to boost the efficiency of the path-sensitive typestate algorithm while maintaining
the same precision. This improvement can be done by focusing on simplifying GICFG , which, in
turn, contributes to the reduction of execution states and alleviates the computational cost of SMT
solving, which represents a significant portion of the algorithm’s overhead.
Intuitively, an ideal graph simplification approach should aim to remove as many ICFG nodes

as possible. However, simply eliminating nodes without considering the temporal and spatial
correlations between variables can alter the sequences of operations in the typestate language.
This disruption can lead to either a false alarm or a false negative, resulting in an incorrect PSTA
solution. For instance, when control-flow nodes that affect branch conditions are eliminated, they
can influence path feasibility and may result in spurious sequences of operations in the simplified
graph. A correct graph simplification approach must ensure the equivalence of vulnerable operation
sequences (Definition 3) between the original ICFG and the simplified ICFG. Hence, it is important
to preserve relevant instructions (or ICFG nodes) when evaluating the path feasibility within
the simplified graph. Note that our approach does not aim to retain non-vulnerable operation
sequences as they do not contribute to bug detection. In the following sections, we useΠ to represent
path-sensitive sequences and Π̂ to denote path-insensitive sequences (multi-point markers).

Definition 6 (Typestate reachability equivalence). Let�ICFG be the original interprocedural control-
flow graph, and let � ′

ICFG be the simplified graph. Given an automaton g , let Πg be the vulnerable
operation sequences extracted from the �ICFG and Π

′
g be the sequences extracted from � ′

ICFG

under the same path-sensitive analysis. �ICFG and � ′
ICFG are typestate reachability equivalent iff

(∀c ∈ Πg : c ∈ Π
′
g) ∧ (∀c ′ ∈ Π

′
g : c ′ ∈ Πg) ∧ (c ∉ Πg ⇔ c ∉ Π

′
g).

We formulate our graph simplification problem as follows:

Given an interprocedural control-flow graph GICFG and an automaton g , our approach aims to
generate a smaller graph G′

ICFG by removing redundant nodes on GICFG via multi-point slicing
and guarantee that GICFG and G′

ICFG are typestate reachability equivalent.

3 A MOTIVATING EXAMPLE

We present an example in Figure 4 to illustrate how FGS speedups ESP [30] a traditional PSTA by
simplifying �ICFG through tempo-spatial multi-point slicing using a use-after-free vulnerability.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:8 Xiao Cheng, Jiawei Ren, and Yulei Sui

(a) Source code (c) Our approach

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

No Summary

(b) ESP

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use

Call
Return

1 void foo(T t) {
2 int *p = malloc(10);
3 int *q = malloc(10);
 ...
4 if (t > 1) {
5 free(p);
6 if (t < 3)
7 free(q);
8 } else {
9 free(q);
10 p = bar(p);
11 }
 ...
12 if (t <= 1)
13 printf("%d\n", *p);
14 else
15 log_error(*p);
16 }

15
13 use

15use

16

use

16

Fig. 4. ESP vs PSTA on the simplified ICFG. The code fragment contains a use-a�er-free bug at ℓ15 for the
memory object p allocated at ℓ2.

The UAF-related source code snippet is depicted in Figure 4(a). Our analysis focuses on the allocated
object p at 2○. The UAF bug is triggered at the memory usage *p at 15○, which is allocated with
malloc at 2○ but is released with free at 5○ before being accessed at 15○. Note that, a path-
insensitive typestate analysis would report another (false) use-after-free bug at 13○. This produces
two multi-point markers Π̂ : { 2○⇝ 5○⇝13○, 2○⇝ 5○⇝15○}. The first sequence is infeasible under a

path-sensitive analysis because the branch condition 4○
20
→ 5○ and 12○

¬20
→13○ contradict each other.

Hence there is only one true vulnerable operation sequence, that is Π = { 2○⇝ 5○⇝15○}.

Sparse analysis, ESP and their limitations. The current sparse path-sensitive analysis cannot
distinguish between use-after-free and free-after-use because the value-flow graph used in the
sparse path-sensitive analysis does not have information on the temporal order from 5○ to 13○

and to 15○ (use-to-use relation). Hence, reporting "free-after-use" as a vulnerability can cause false
positives. In contrast, ESP can track the use-to-use temporal order from 5○ to 13○ and to 15○. The ESP
approach in Figure 4(b) involves traversing �ICFG and deriving symbolic states at each program
point. In comparison, an ideal simplified graph � ′

ICFG is shown in Figure 4(c), which is significantly
smaller than �ICFG . Meanwhile, � ′

ICFG is typestate reachability equivalent (Definition 6) as �ICFG

because the path-sensitive sequences are equivalent, i.e., Π ≡ Π
′ (both are { 2○⇝ 5○⇝15○}). Note

that, removing any nodes on � ′
ICFG would alter the sequences (e.g., removing 2○, 5○, 13○ or 15○) or

influence the path feasibility (e.g., removing 1○ , 4○ or 12○).

FGS approach. Our graph simplification captures temporal and spatial correlations by preserving
the temporal information while leveraging sparse analysis to keep necessary spatial and temporal
dependencies. This can boost the efficiency of PSTA while not compromising the analysis precision.
In Figure 4(b), we contrast the ESP performed on the original ICFG, introduced in Section 2.3, with
the PSTA on the simplified ICFG via multi-point slicing illustrated in Figure 4(c). FGS first runs
a fast yet cheap path-insensitive analysis to extract Π̂ : { 2○⇝ 5○⇝13○, 2○⇝ 5○⇝15○}. Guided by
Π̂, a multi-point slicing is conducted to capture temporal and spatial dependencies of Π̂. These
dependencies produced by slicing facilitate PSTA to efficiently validate the feasibility of Π̂ and

yield equivalent sequences as ESP Π = { 2○⇝ 5○⇝15○} because 2○⇝ 5○⇝13○ is infeasible (4○
20
→ 5○

and 12○
¬20
→13○ contradict each other). Temporal multi-point slicing (TMS) extracts all execution paths

with each containing at least one vulnerable operation sequence. 9○, 10○ and 16○ can be excluded on
the temporal slice because no program executions containing at least one ĉ ∈ Π̂ would pass 9○, 10○

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:9

and 16○. The absence of TMS would require feasibility checking at 4○→ 9○, resulting in additional
overhead. Furthermore, it also requires analyzing the function bar at the callsite 10○. Spatial multi-
point slicing (SMS) identifies control and data dependencies related to the sequence. 3○, 6○, 7○,
8○, and 11○ can be excluded on the spatial slice because they have no control or data dependence
relation with the nodes on Π̂. The absence of SMS would need to compute the execution state
and feasibility checking at 6○→ 7○ and 6○→ 8○. The path constraint would include the redundant
branch condition 21 at 6○. The tempo-spatial slice, an intersection of the temporal and spatial slices,
consists of only seven nodes, 1○, 2○, 4○, 5○, 12○, 13○ and 15○.

Benefits. A smaller graph� ′
ICFG can contribute to fewer symbolic state propagations during PSTA.

While ESP yields 18 symbolic states on the original ICFG and yields just 6 on the simplified ICFG.
This translates to significant computational savings, particularly in terms of function summaries
at irrelevant callsites (e.g., 10○) and faster convergence to a fixed-point in the PSTA algorithm,
due to the simplified graph structure with fewer control-flow joint nodes. Furthermore, execution
states become more compact as irrelevant variables and path constraints are eliminated. Our graph
simplification approach not only improves time and space during symbolic state propagation but
also reduces the cost of SMT solving, given the simplified path constraints.

4 FGS APPROACH

In this section, we provide details for extracting multi-point markers Π̂ in Section 4.1, followed
by the tempo-spatial multi-point slicing approach in Section 4.2. We discuss the correctness and
complexity of each component, and several properties to state FGS’s correctness and the efficiency
improvement it delivers.

4.1 Multi-Point Markers Extraction

Intuitively, we can either enumerate the instructions in the typestate language Σ or utilize
depth/bread-first search on GICFG to extract multi-point markers Π̂ (path-insensitive vulnerable
operation sequences). However, enumerating instructions may yield unrealizable sequences that do
not exist on GICFG , while depth/bread-first search may result in an exponential blowup of program
paths [51]. This is almost as expensive as solving all path feasibility and clearly undermines the
goal of improving scalability as a pre-analysis. We propose Π̂-extraction by identifying multi-point
markers in a context-sensitive but path-insensitive manner by solving an IFDS data-flow prob-
lem [30], where the data flow facts are in the form of symbolic chains Q (Definition 7). Symbolic
chains contain information of the multi-point markers. Hence, we collect symbolic chains using
the fast IFDS algorithm to obtain multi-point markers for later multi-point slicing. In the following
sections, we will give the definition of symbolic chains and present the flow functions specifically
designed to extract symbolic chains.

Definition 7 (Symbolic chains Q). A symbolic chain Q ∈ Q is a composition of a typestate
(Definition 1) and operation sequences (Definition 2). We use ts(&) and os(&) to represent the
typestate and the operation sequences within the symbolic chain & respectively. We use QS to
represent a set of symbolic chains. The path-insensitive Π̂-extraction can be obtained within the
symbolic chains coupled with an error typestate, i.e., Π̂ =

⋃
⟨)4 ,% ⟩∈Q % .

Flow functions for symbolic chains. Equation 2 shows the flow functions designed for symbolic
chains. Fm joins the symbolic chains from the predecessors of a control flow joint point. When
encountering program branches, Fb does not perform expensive path feasibility checks and simply
transfers the input chains QS to the output. Fo updates the typestate and/or the operation sequences

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:10 Xiao Cheng, Jiawei Ren, and Yulei Sui

within the symbolic chains QS for a given control flow node.

Fm (ℓ,QS1,QS2) = Uos (QS1 ∪ QS2)

Fb (ℓ,QS) = QS

Fo (=,QS) = Uos ({fo (=,&) | & ∈ QS})

(2)

The grouping function Uos merges the operation sequences with equivalent typestate, which is
defined as follows:

Uos (QS) = {⟨),
⋃

&∈QS[)]

os(&)⟩ |) ∈ T ∧ QS[)] ≠ ∅} (3)

where QS[)] = {& | & ∈ QS ∧) ∈ ts(&)}.

En

2
5

13

Ex

alloc
free

use15use

Fig. 5. An example of Π̂-extraction.

Note that, prior to collecting symbolic chains,
we condense GICFG by only retaining those nodes
in Σ that involve objects aliased with the object
of interest. This effectively trims the size of GICFG ,
thereby enhancing the overall efficiency of the
symbolic chains collection algorithm.

Example 4. Figure 5 illustrates how to collect
symbolic chains (⟨)4 , { 2○⇝ 5○⇝13○}⟩ and ⟨)4 ,

{ 2○⇝ 5○⇝15○}⟩) by revisiting our code example
in Figure 4. The condensed GICFG becomes very straightforward because it exclusively encompasses
nodes in Σ that are related to the object p, i.e., 2○, 5○, 13○ and 15○. The initial symbolic chain is ⟨)0, {}⟩.
The typestate)0 changes to)0 at 2○ so 2○ is appended to the symbolic chain to generate ⟨)0, { 2○}⟩.
The symbolic chain passing through 5○, 13○ and 15○ also observe typestate transition, producing ⟨)5 ,

{ 2○⇝ 5○}⟩, ⟨)4 , { 2○⇝ 5○⇝13○}⟩ and ⟨)4 , { 2○⇝ 5○⇝15○}⟩ respectively. We check the symbolic chains
at each error triggering point (13○ and 15○ in our example) and collect all the multi-point markers
2○⇝ 5○⇝13○ and 2○⇝ 5○⇝15○ residing in the symbolic chains coupled with an error typestate, i.e.,
⟨)4 , { 2○⇝ 5○⇝13○}⟩ and ⟨)4 , { 2○⇝ 5○⇝15○}⟩. These markers are used to guide later multi-point
slicing.

Lemma 4.1 (Correctness of Π̂-extraction). Given a GICFG and an automaton g , Π̂-extraction

based on the symbolic chains Q obtains all multi-point markers on GICFG .

Proof Sketch. The symbolic chains are collected using a conservative path-insensitive typestate
analysis built on the IFDS [30], and the flow functions in Equation 2 strictly follow Definitions 2
and 3 to derive the operation sequences in Q. Therefore, it can identify all possible vulnerable
operation sequences (multi-point markers). □

Complexity. The time complexity is $ (|Π̂ | |�− | |T|3), where |�− |< |� | is the number of edges in
the condensed GICFG and |T| is a constant representing the size of all the typestates. $ (|�− | |T|3) is
the time complexity of IFDS [60] and each edge stores at most |Π̂ | markers.

4.2 Tempo-Spatial Multi-Point Slicing

Given the multi-point information in the path-insensitive Π̂, tempo-spatial multi-point slicing
effectively collects only necessary temporal and spatial program dependencies essential for PSTA.
The expensive PSTA can then concentrate on the partial and relevant program slice to derive path-
sensitive Π. Next, we detail the multi-point slicing technique, comprising a temporal multi-point
slicing TMS (Section 4.2.1) which captures the temporal orders of Π̂; and a spatial multi-point
slicing SMS (Section 4.2.2) which includes control and data-dependencies within Π̂.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:11

1

2

3

4
5 9

11

12

10

(a) Bottom-up pass

1

2

3

4
5 9

11

12

10

(b) Top-down pass
Start Here

Start Here
alloc

free

use

alloc

free

use

0 afu fu u

0 afu fu u

0 afu fu u

0 afu fu u

1

2

3

4

5

11

12

alloc

free

use
(c) TMS result

afu: 2 5 13
fu: 5 13
u: 13

13 13 13

Fig. 6. An example of temporal multi-point slicing.

4.2.1 Temporal multi-point slicing (TMS). TMS aims to collect the program instructions from all
realizable control flows with each containing at least one ĉ ∈ Π̂ in the temporal execution order
inherent in ĉ . Every control flow edge is treated non-deterministically, which ensures that any
program instructions not included within the temporal slice are definitively excluded from the
scope of runtime executions that pass through at least one ĉ ∈ Π̂. Consequently, these program
instructions not in the temporal slice are skipped during PSTA.

TMS starts with a bottom-up pass and finishes with a top-down pass. Both passes are performed
(fully) context-sensitively based on the IFDS [51, 60]. The bottom-up pass starts at the error-
triggering point and computes backwards dataflow facts, denoted as buInfo, for each node. The
element in buInfo characterizes the partially anticipable suffixes associated with the marker. The top-
down pass starts at program entry and computes forwards dataflow facts, denoted as tdInfo, for each
node =, which signifies the set of suffixes to represent implicitly the fact that their corresponding
prefixes are partially available at node =. In determining whether a node = is incorporated into the
temporal slice VTMS, a pivotal criterion is applied: the two sets of data flow facts at node = must
possess shared data flow facts, i.e., buInfo(=) ∩ tdInfo(=) ≠ ∅.

Example 5. Figure 6 illustrates TMS on the multi-point marker 2○⇝ 5○⇝13○ by revisiting the
example in Figure 4 (6○, 7○, 8○, 15○ and 16○ are omitted for simplicity). As shown in the TMS result
in Figure 6(c), 9○ and 10○ are excluded because no runtime executions containing 2○⇝ 5○⇝13○

would pass 9○ or 10○. There are a total of three non-empty dataflow facts: {afu, fu, u}, where a, f
and u represent 2○, 5○ and 13○ respectively. The solid dots in Figure 6(a) and Figure 6(b) represent
reachable dataflow facts in buinfo and tdinfo, respectively. The bottom-up pass shown in Figure 6(a)
starts at 13○ and backward traverses the exploded �ICFG . The suffixes u, fu and afu are partially
anticipable at 13○, 5○ and 2○ respectively. Thus, we have buInfo(13) = {u}, buInfo(5) = {u, fu} and
buInfo(2) = {u, fu, afu}. The top-down pass in Figure 6(b) starts at the program entry 1○. The
prefix a appears at 2○. Thus, we have tdInfo(3) = {fu}, indicating that the prefix a is partially
available at 3○. The temporal slice is obtained by intersecting buInfo and tdInfo per node. 9○ and
10○ are excluded because they have no intersected dataflow facts.

Lemma 4.2 (Correctness of TMS). Given a GICFG and multi-point markers Π̂, after graph simpli-

fication via TMS, the simplified ICFG preserves all ĉ ∈ Π̂.

Proof Sketch. For each multi-point marker in Π̂, TMS is able to collect the instructions on
all possible control flows that contain the marker. Therefore, all ĉ ∈ Π̂ are preserved within the
simplified graph. □

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:12 Xiao Cheng, Jiawei Ren, and Yulei Sui

15

alloc
free

use

145
9102 3

13

6
7
12use

Data dependence

Control dependence

Fig. 7. An example of spatial multi-point slicing.

Complexity. The cost of TMS for one sequence is the complexity of the IFDS [60], which is
$ (|� | |T|3), where |� | is the number of edges in GICFG and |T| is a constant representing the size of
all the typestates. Therefore, the total complexity is $ (|Π̂ | |� | |T|3).

4.2.2 Spatial multi-point slicing (SMS). SMS works on the program dependence graph, as defined
in Definition 8, aiming to acquire the control and data dependencies of the program points in Π̂,
which are essential to determine the feasibility of Π̂. The program instructions that are not control
or data dependent on Π̂ are irrelevant and excluded.

Definition 8 (Program dependence graph�PDG). �PDG is a directed graph that captures the control
and data dependencies of a program. We use �2 and �3 to represent control and data dependencies,
respectively. For a control dependence edge =8 → = 9 ∈ �2 , = 9 is reachable iff the control-flow guard
at =8 is satisfied. A data dependence edge =

′

8 → =
′

9 ∈ �3 means that the variable definition at =
′

8

is used at =
′

9 . The control dependence edges set �2 can be established in linear time by using an
augmented postdominator tree (APT) [58]. The data dependence �3 is built upon the partial SSA
form by considering program control flows and a pre-computed points-to result [41, 70].

[INIT]
c ∈ Π̂ n ∈ c

{=} ⊆ VSMS
[CONTROL]

= ∈ VSMS (=2 , =) ∈ �2

{=2 } ⊆ VSMS
[DATA]

= ∈ VSMS (=3 , =) ∈ �3

{=3 } ⊆ VSMS

Fig. 8. Inference rules for spatial multi-point slicing.

Figure 8 formalizes the inference rules of SMS including INIT, CONTROL and DATA. The INIT
rule initializes VSMS using the instructions in Π̂. The CONTROL rule aims to retrieve all the control
dependencies of the instructions in Π̂, while the DATA rule aims to collect all the data dependencies.
CONTROL and DATA rules work collectively until no new instructions are discovered.

Example 6. Figure 7 shows a running example of the spatial multi-point slicing using the code
example from Figure 4. Data and control dependencies are annotated with solid and dotted lines
respectively. For example, 10○ is data dependent on 2○ because the variable p used at 10○ is defined
at 2○. 5○ is control dependent on 4○ because the condition C > 1 at 4○ determines the execution of
5○. We perform spatial multi-point slicing by recursively traversing backward against the control
and data dependencies starting from the nodes in Π̂, i.e., 2○, 5○, 13○ and 15○. As a result, the spatial
slice consists of 1○, 2○, 4○, 5○, 10○, 12○, 13○ and 15○.

Lemma 4.3 (Correctness of SMS). Given a GICFG and multi-point markers Π̂, after graph simpli-

fication via SMS, the simplified ICFG preserves all the control and data dependencies of the instructions

within Π̂.

Proof Sketch. The�PDG (Definition 8) is sound because both control and data dependencies are
soundly built. Therefore, SMS is correct because it is an inclusion-based algorithm by including all
possible control and data dependencies related to Π̂ according to the inference rule in Figure 8. □

Complexity. The cost of SMS is $ (|+ | + |� |), which is the cost of a standard depth-first traversal
algorithm (each node can only be visited once). + and � are the nodes and edges of GICFG .

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:13

Table 2. The statistics of the open-source projects. #LOI denotes the number of lines of LLVM instructions.
#Method and #Call are the numbers of functions and method calls. #Ptr and #Obj represent the quantities of
pointer variables and memory objects. |V | and |E | indicate the numbers of ICFG nodes and ICFG edges.

Project #LOI #Method #Call #Ptr #Obj |V | |E|
YAJL 20,592 151 561 10,197 208 9,253 9,922
gzip 33,058 195 459 19,264 457 16,889 16,582
MP4v2 39,178 601 610 15,925 1,991 15,595 16,733
bzip2 48,181 116 250 28,710 263 26,220 25,912

darknet 159,205 985 9,776 136,510 2,550 136,094 147,852
nasm 186,935 652 7,435 121,836 3,736 79,330 81,638
tmux 446,626 1,967 22,369 187,315 3,879 162,879 178,924

Teeworlds 529,737 2,306 28,267 292,621 5,754 251,356 246,029
NanoMQ 788,967 3,235 47,646 379,798 30,838 358,312 443,670
redis 1,363,507 6,314 68,664 708,251 13,958 589,019 704,356
Total 3,615,986 165,22 186,037 1,900,427 63,634 1,644,947 1,871,618

4.2.3 Pu�ing it all together. Given the temporal slice VTMS and spatial slice VSMS, we compact the
original �ICFG into a much smaller graph � ′

ICFG by retaining only the nodes in the intersected slice
VTMS ∩ VSMS.

Theorem 4.4 (Correctness of FGS). Given an interprocedural control flow graph GICFG and an

automaton g , FGS is able to generate a smaller graph G′
ICFG which ensures that GICFG and G′

ICFG are

typestate reachability equivalent.

Proof Sketch. According to Lemma 4.1, all the multi-point markers Π̂g in �ICFG are preserved
within G′

ICFG , i.e., (∀ĉ ∈ Π̂g : ĉ ∈ Π̂
′
g) ∧ (∀ĉ ′ ∈ Π̂

′
g : ĉ ′ ∈ Π̂g) ∧ (ĉ ∉ Π̂g ⇔ ĉ ∉ Π̂

′
g). Concerning the

feasibility of Π̂, our multi-point slicing is able to include all the required program dependencies used
to determine the feasibility of Π̂. This is because our approach, which computes the intersection
of TMS and SMS, can correctly include all the control and data dependencies residing in all
possible temporal executions with each containing at least one ĉ ∈ Π̂, given the correctness of TMS
(Lemma 4.2) and SMS (Lemma 4.3). Therefore, the feasible sequencesΠg andΠ′

g under path-sensitive
analysis are equivalent, i.e., (∀c ∈ Πg : c ∈ Π

′
g) ∧ (∀c ′ ∈ Π

′
g : c ′ ∈ Πg) ∧ (c ∉ Πg ⇔ c ∉ Π

′
g). This

demonstrates that �ICFG and � ′
ICFG are typestate reachability equivalent. □

Speedup by FGS. The PSTA algorithm, as described in [30], exhibits a time complexity of
$ (� (+ � + &) |T| (|� | |T| + CS |T|2)). Here, each element can become less precise at most �
times, corresponds to a highly complex function for SMT solving, � and& are the cost of the join
operation and the equality operation on execution states, respectively. T signifies the domain of
typestate, � stands for GICFG edges, and CS indicates the number of call sites in the program. FGS
can improve the efficiency by simplifying GICFG , i.e., reducing sizes of |� | and CS, which contributes
to the reduction of execution states including � , � and & and reducing the cost of SMT solving.

5 EVALUATION

In this section, we perform an ablation analysis to gain deeper insights into how the multi-point
slicing of FGS influences its overall performance. Moreover, we also show the effectiveness of
FGS for analyzing real-world programs and its practicality for detecting vulnerabilities including
memory leaks, use-after-frees, double-frees, and null dereferences. We assess the effectiveness
of FGS by comparing it with six popular open-source tools: IKOS [17], ClangSA (Clang Static
Analyzer) [53], Saber [71], Cppcheck [25], Infer [43] and Sparrow [56].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:14 Xiao Cheng, Jiawei Ren, and Yulei Sui

5.1 Datasets and Implementation

Datasets. We evaluate FGS on (1) a benchmark comprising 846 vulnerabilities from NIST [55],
which includes memory leaks, double-frees, use-after-frees and null dereferences. (2) ten open-
source C/C++ projects across a variety of different domains: YAJL [10] (JSON parsing library),
gzip [3] (data compression program), MP4v2 [4] (MP4 file library), bzip2 [1] (data compressor),
darknet [2] (neural network framework), nasm [6] (assembler), tmux [9] (terminal multiplexer),
Teeworlds [8] (online multiplayer game), NanoMQ [5] (MQTT broker for IoT edge platform) and
redis [7] (in-memory database). These projects encompass a diverse range of applications, allowing
us to assess FGS’s effectiveness in real-world scenarios.

Implementation. The experiments were conducted on an Ubuntu 18.04 server with an eight-core
2.60GHz Intel Xeon CPU and 128 GB memory. We constructed the interprocedural control and
value flow graphs based on LLVM-IR [48, 70] (using LLVM version 14.0.0). The LLVM-IR represents
program functions as global variables, which are further modeled as address-taken variables. The
abstract domain in the execution state (Definition 4) is a combined domain of memory addresses for
pointer analysis and the constant propagation used in ESP [30] for numerical analysis. The abstract
value representation is implemented using Z3 expressions [31]. The callgraph of a program is built
on a pre-computed Andersen’s points-to results [11] to resolve indirect calls. For the baselines,
namely IKOS, ClangSA, Saber, Cppcheck, Infer, and Sparrow, we utilize their open-source
implementations with default settings to detect memory leaks, double-frees, use-after-frees and
null dereferences.

5.2 Research �estions

Our evaluation aims to answer the following research questions:

RQ1 How do different components impact the overall performance of FGS?We want to
investigate how different slicing methods influence the effectiveness and efficiency of FGS.

RQ2 Does FGS outperform popular static tools for bug detection?We aim to explore whether
FGS can detect more bugs with lower false alarm rates than the state-of-the-art on detecting
existing bugs using the NIST benchmark with ground truths.

RQ3 Can FGS find bugs with lower false positives efficiently in real-world projects?We
would like to examine the effectiveness (in terms of true and false positives) and efficiency
(in terms of running time and memory usage) of FGS on real-world popular applications.

5.3 Impact of Graph Simplification and Ablation Analysis (RQ1)

In this section, we focus on examining the impacts of various components on the performance of
FGS. Firstly, we compare FGS with a path-insensitive typestate analysis on the NIST dataset to
understand the precision improvement by path sensitivity. Next, we show the time proportion of
different phases of FGS. Subsequently, we present the graph simplification result to understand
the statistics of graph simplification achieved by FGS. Finally, we conduct an ablation analysis to
comprehend the influences of different slicing methods.

Comparison with path-insensitive typestate analysis. For path-insensitive typestate analysis,
we consider all �ICFG edges as executable in a non-deterministic manner. While path-insensitive
typestate analysis is capable of uncovering all the bugs detected by FGS, it also tends to produce
over 50% more false positives in comparison to FGS. This underscores the significance of employing
path-sensitive analysis in enhancing the precision of typestate analysis.

Proportions of analysis time. Figure 9 shows the time proportions of different phases in FGS,
including graph generation, multi-point markers extraction, TMS, SMS and main PSTA phase on

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:15

Table 3. Graph simplification result. |+ |, |+ ′ |, |+TMS | and |+SMS | represent the number of nodes in �ICFG ,
� ′
ICFG

, temporal slice and spatial slice, respectively. #Call and #Call′ represent the number of calling contexts

of �ICFG and � ′
ICFG

. |� | and |�′ | represent the number of edges in �ICFG and � ′
ICFG

.

Project |+ | |+ ′ | |+TMS | |+SMS | #Call #Call′ |� | |�′ |

darknet 136,094 1,791 5,523 1,928 9,776 93 147,852 1,802
nasm 79,330 24,946 38,081 26,604 7,435 2,317 81,638 26,034
tmux 162,879 2,671 4,273 3,693 22,369 205 178,924 2,810

Teeworlds 251,356 565 1,380 1,875 28,267 40 246,029 578
NanoMQ 358,312 62,543 102,118 118,663 47,646 5,801 443,670 61,696
redis 589,019 87,446 102,416 111,041 68,664 17,844 704,356 240,956

Table 4. Ablation analysis results. The “−” in the Time columns indicates a running time of more than 48
hours. FGS-TMS and FGS-SMS represent the versions of FGS using only temporal slicing and spatial slicing
respectively. FGS-Base represent the version of FGS without slicing.

Project
FGS FGS-TMS FGS-SMS FGS-Base

Time (secs) Mem (MB) Time (secs) Mem (MB) Time (secs) Mem (MB) Time (secs) Mem (MB)

darknet 750 2,104 2,542 2,785 817 2,784 81,422 34,244
nasm 894 2,482 1,681 4,132 940 3,413 111,750 31,781
tmux 1,932 5,251 5,782 9,064 3,102 7,223 − −
Teeworlds 407 4,320 1,424 5,014 1,700 6,062 − −
NanoMQ 8,722 10,176 25,890 13,600 29,100 18,424 − −
redis 14,266 58,231 23,146 78,131 31,103 98,064 − −

darknet, nasm, tmux, Teeworlds, NanoMQ and redis. It is evident that the main phase accounts
for the largest proportion of the overall runtime. Our graph simplification techniques, including
Π̂-extraction, TMS and SMS, collectively consume less than 10% of the total execution time. This
demonstrates that our graph simplification introduces relatively minor overhead when compared
to the time expended in the main analysis phase.

0%

20%

40%

60%

80%

100%

darknet nasm tmux Teeworlds NanoMQ redis average
Graph generation Markers extraction TMS SMS Main phase

Fig. 9. The proportions of different phases of FGS.

Graph simplification statistics. Table 3
shows the statistics detailing the number of
nodes, edges, and calling contexts before and
after graph simplification. On average, FGS re-
duces the number of nodes by 89%, edges by
86%, and calling contexts by 88%. These results
demonstrate the effectiveness of our graph sim-
plification approach in eliminating a substan-
tial number of irrelevant nodes. Furthermore,
both TMS and SMS contribute to creating more simplified graphs. The intersection of these two
techniques produces an even more concise graph.

Ablation analysis. In our ablation analysis, as detailed in Table 4, we compared the runtime
and memory costs of various configurations of FGS. These configurations include FGS with only
temporal multi-point slicing (FGS-TMS), FGS with only spatial multi-point slicing (FGS-SMS), and
FGS without any slicing (FGS-Base). FGS-Base fails to complete the analysis within a 48-hour
time budget when applied to projects like tmux, Teeworlds, NanoMQ, and redis. FGS, compared to
FGS-Base, exhibited an average speedup of 116× and achieved a notable reduction in memory usage
by 93%. Additionally, when comparing FGS with FGS-TMS and FGS-SMS, we observed notable
improvements in both runtime and memory consumption. For instance, on the Teeworlds project,
FGSwas three times faster than FGS-TMS and reduced memory consumption by approximately 29%
compared to FGS-SMS. These outcomes align with the benchmark statistics presented in Table 3,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:16 Xiao Cheng, Jiawei Ren, and Yulei Sui

Table 5. Comparing true positives (#TP) and false positives (#FP) with six tools using the NIST benchmark.
The “−” means that the detection of specific vulnerabilities is not supported by the corresponding tools.

Category
IKOS ClangSA Saber Cppcheck Infer Sparrow FGS Ground

Truth#TP #FP #TP #FP #TP #FP #TP #FP #TP #FP #TP #FP #TP #FP

Memory leak − − 128 112 200 126 0 0 126 162 − − 228 0 228
Double-free 228 18 156 20 204 20 84 144 − − − − 228 0 228
Use-after-free − − 40 0 − − 0 0 0 0 − − 138 0 138
Null dereference 234 18 216 24 234 18 108 18 134 82 228 18 252 0 252
Total 462 36 540 156 638 164 192 162 260 244 228 18 846 0 846

further emphasizing the efficiency enhancements introduced by the composition of temporal and
spatial multi-point slicing in FGS.

5.4 Analysis Results using NIST Benchmark (RQ2)

Table 5 compares the performance of six state-of-the-art open-source static analysis tools (IKOS,
ClangSA, Saber, Cppcheck, Infer and Sparrow) on the pre-labeled NIST benchmark. We show
true positives and false positives of FGS and our baselines on detecting four vulnerability categories:
memory leak (CWE-401) [26], double-free (CWE-415) [27], use-after-free (CWE-416) [28] and null
dereference (CWE-476) [29]. The last row of the table displays the number of labeled bug ground
truth for each category.

Comparison results. FGS effectively identifies all four types of vulnerabilities, setting it apart
from IKOS and Sparrow, which lack the ability to detect memory leaks. Additionally, IKOS,
Saber, and Sparrow do not provide support for use-after-free detection. Infer and Sparrow also
fall short in identifying double-frees. This highlights FGS’s capability to detect a wide range of
vulnerabilities by leveraging typestate analysis. Furthermore, FGS achieves the best performance
by precisely identifying all the bugs, achieving a 100% true positive rate, and reporting no false
alarms, outperforming all six baseline tools. For memory leak detection, our baseline tools exhibit
an average precision of merely 53%, whereas FGS consistently records no false memory leaks.
With regard to double-free detection, FGS demonstrates its ability to reduce an average of 50
false positives out of the 228 true bugs identified by our baseline tools. In terms of use-after-frees,
although our baselines also report no false alarms, they can only identify a limited number of bugs.
For example, ClangSA only uncovers 40 out of the 138 use-after-free bugs, while the other tools
fail to detect any. Regarding null dereference detection, our baseline detectors, on average, report a
lower precision of 86% compared to FGS.

Result Analysis. In Figure 10, we present three code scenarios, illustrating the factors contributing
to FGS’s superior performance compared to the other tools on the NIST dataset. FGS benefits from its
precision-preserving path-sensitive analysis upon simplified ICFG. Figure 10(a) shows an example
to demonstrate FGS’s ability to capture branch correlations. The code fragment is safe, but IKOS,
ClangSA, Saber and Cppcheck report a false double-free alarm at ℓ10. At ℓ2, the variable cond
derives its value from the function rand()%2, which consistently returns either true or false. FGS can

precisely distinguish the conflicting conditions ℓ3
cond
→ ℓ5 and ℓ9

¬cond
→ ℓ10. Consequently, it deduces

that the invocation of the free() function at both ℓ5 and ℓ10 cannot occur sequentially. Figure 10(b)
presents another instance exemplifying FGS’s prowess in capturing branch correlations. Despite
the code fragment being safe, our baseline detectors (ClangSA, Saber and Infer) incorrectly report
a false alarm concerning a memory leak. At ℓ1, the variable var receives an initial value generated
randomly through rand(), represented as 2 . As the execution proceeds to ℓ6, var undergoes a
self-increment operation, i.e., var changes to 2 + 1. FGS can precisely distinguish the conflicting

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:17

1 char* data;

2 bool cond = rand() % 2;

3 if(cond) {

4 data = malloc(...);

5 free(data);

6 } else {

7 data = malloc(...);

8 }

9 if(cond) { ; }

10 else { free(data); }

(a) Capturing branch correlations.

1 int var = rand();

2 int* data;

3 if(var == 5) {

4 data = malloc(...);

5 } else { ; } // do nothing

6 ++var;

7 ...

8 if(var != 5) {

9 free(data);

10 } else { ; } // do nothing

(b) Capturing branch correlations.

1 int* data = malloc(...);

2 int* res;

3 ...

4 if(rand() % 2) {

5 res = data;

6 } else {

7 free(data);

8 res = 0;

9 }

10 free(res);

(c) Path-sensitive aliasing.

Fig. 10. Code scenarios to explain the precision of FGS.

Table 6. Comparing FGS with six open-source tools using ten popular applications. #TP and #FP are true
positive and false positive, respectively. Time (secs), Mem (MB) are running time and memory costs. The “−”
in the Time columns indicates a running time of more than 4h. The “−” in the Mem columns indicates a cost
of more than 100 Gigabytes.

Project

IKOS ClangSA Saber Cppcheck Infer Sparrow FGS

Report Time Mem Report TimeMem Report Time Mem Report TimeMem Report TimeMem Report Time Mem Report Time Mem

#TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB)

YAJL 4 15 2895 4822 0 0 4 111 3 22 2 206 1 5 1 13 2 15 13 133 3 86 6 59 5 0 2 168

gzip 4 4 3114 4949 0 1 27 151 0 4 18 179 1 3 89 35 1 17 36 177 1 22 14 89 4 0 18 835

MP4v2 2 1 3684 6215 0 0 11 145 3 24 3 380 0 6 56 38 4 28 496 426 1 20 214 231 5 0 2 344

bzip2 0 0 3690 6809 0 6 16 181 0 2 18 179 0 0 3 17 0 37 53 271 0 0 77 148 1 0 9 280

darknet 19 75 5216 8622 11 39 75 301 20 300 245 1145 2 24 11 55 12 104 1185 612 25 10 951 954 30 7 750 2104

nasm 2 8 5007 9951 2 7 180 515 2 102 572 2258 0 1 1 76 1 16 621 919 2 9 942 1132 3 1 894 2482

tmux 4 29 11325 38366 6 12 409 799 4 160 597 3882 0 0 61 39 2 34 693 637 3 12 1036 1894 5 1 1932 5251

Teeworlds 8 8 13569 40368 0 0 83 654 10 50 88 1877 1 4 2 54 6 48 267 449 5 24 1593 2984 12 2 407 4320

NanoMQ 17 29 9344 63068 0 0 52 555 10 426 1421 7613 5 54 111 40 18 74 910 555 6 354 1642 3125 31 11 8722 10176

redis − − − − 0 23 502 1499 7 141 8775 16752 0 1 637 123 1 51 2699 1655 1 149 2654 9211 9 1 14266 58231

Total 60 169 57844 183170 19 88 1359 4911 59 1231 11739 34471 10 98 972 490 47 424 6973 5834 47 686 9129 19827 105 23 27002 84191

conditions ℓ3
2≡5
→ ℓ4 and ℓ8

2≡4
→ ℓ10. Consequently, it effectively concludes that no memory leaks along

the branch ℓ8
2≡4
→ ℓ10. Figure 10(c) provides an example that undergoes FGS’s ability in path-sensitive

aliasing. There are no double-frees in this code snippet. However, IKOS, ClangSA and Cppcheck

raise a false positive at ℓ10. In contrast, FGS precisely discerns that the value attributed to res at ℓ10
from ℓ8 does not share an aliasing relationship with data at ℓ1. This distinction arises due to FGS’s
capacity to independently address the aliasing relations across different paths.

5.5 Bugs in Real-World Projects (RQ3)

Table 6 compares the true positives, false positives, running time and memory costs of FGS with
six baseline tools (IKOS, ClangSA, Saber, Cppcheck, Infer and Sparrow) across ten real-world
popular applications. Overall, FGS achieves the best performance on reporting 128 bugs, including
105 true bugs and 23 false positives after a rigorous manual examination.

Comparison results and analysis. FGS can find all the bugs reported by our baseline detectors
with 61% more true positives on average. Meanwhile, FGS exhibits a higher precision at about
82%, compared to a precision of merely 12% for our baselines. FGS finds more bugs because it
effectively handles some hard code features, such as interprocedural analysis, loop handling, and
accurate external API modeling. This gives better results than other tools in uncovering more bugs.
The key factor behind FGS’s lower false positive rate lies in its scalable yet precision-preserving
path-sensitive analysis on top of simplified ICFG. This is particularly clear when comparing FGS
with a path-insensitive typestate analysis, which employs similar vulnerability checkers but lacks
path-sensitivity. Our observations reveal that the path-insensitive approach yields significantly
more false positives (Section 5.3). Furthermore, FGS showcases commendable efficiency in terms of

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:18 Xiao Cheng, Jiawei Ren, and Yulei Sui

1 char *fgetl(FILE *fp) {

2 ...

3 char *line = malloc(...);

4 if(!fgets(...)){

5 free(line);

6 return 0;

7 }...

8 return line;

9 }

10 char **read_tokens(...) {

11 free(fgetl(fp));

12 }

(a) A safe free in darknet.

1 void RateConvert(int id) {

2 CSample *p = &m_aSamples[id];

3 ...

4 int N = ...;

5 short *data = mem_alloc(...);

6 ...

7 for(int i = 0; i < N; i++) {

8 ...

9 data[i] = p->m_pData[f];

10 }

11 ...

12 }

(b) A null dereference in Teeworlds.

1 void u_ranges(TYPE *frs, ...) {

2 for(TYPE *fr=frs.head();...) {

3 if (fr->s != s) continue;

4 free(fr);

5 ...

6 }

7 }

8 void centre(TYPE *frs, ...) {

9 u_ranges(frs, ...);

10 ...

11 u_ranges(frs, ...);

12 }

(c) A use-a�er-free in tmux.

Fig. 11. A false positive eliminated by FGS and two bugs found by FGS simplified from real-world projects.

both runtime and memory usage, managing to complete analyses for all the projects. It is worth
noting that although FGS may demand more time for code analysis compared to ClangSA, Saber,
Cppcheck, Infer, and Sparrow, its superior ability to uncover a multitude of many types of real
bugs, coupled with its substantially reduced false positive rate, positions it as a highly valuable
tool. Thus, while there might be a modest increase in analysis time, the tangible benefits derived
from its bug detection capabilities far outweigh the incurred time overhead.

Case studies. Figure 11 depicts three real-world scenarios to demonstrate the effectiveness of FGS
in detecting software vulnerabilities. For illustration purposes, we only show the essential parts
relevant to the vulnerability. Figure 11(a) shows a safe code snippet extracted from the darknet
project, wherein FGS precisely eliminates a false double-free alarm reported by our baselines (IKOS,
ClangSA and Cppcheck). At ℓ11, the program releases the memory returned by the function fgetl.
Although the heap object line allocated at ℓ3 is released at ℓ5, the return variable at ℓ6 is not
aliased with line along this path. Therefore, the free operation at ℓ11 is safe. Figure 11(b) presents
a null dereference detected by FGS in the Teeworlds project, which is missed by Cppcheck. The
problematic scenario involves the pointer data allocated at ℓ5, which potentially holds a null value
and is subsequently dereferenced at instruction ℓ9. Figure 11(c) shows a use-after-free bug simplified
from tmux. The function centre calls the function u_ranges twice at ℓ9 and ℓ11. The initial call
releases the memory pointed by fr at ℓ4. During the second call, at ℓ3, the field access of fr yields a
use-after-free bug, as the memory has already been deallocated in the prior call.

6 DISCUSSIONS

This section discusses the impact of SMT solving on PSTA in the analysis of extremely large
programs, as well as the potential alternative uses of FGS.

SMT solving. The effectiveness and scalability of PSTA is affected by the precision and overhead
of SMT solving. It is possible to apply a heavy-weight theorem prover to increase the precision
of feasibility checking. On the other hand, it is an interesting topic to trade precision of SMT
solving for efficiency when analyzing extremely large programs. Importantly, FGS is not dependent
on the type of SMT solving and guarantees that the simplified and original graphs are typestate
reachability equivalent (Definition 6).

Other technique uses. FGS is designed as a fast graph simplification analysis tool and can serve
as a preprocessing step for any PSTA algorithms to boost their performance, thereby facilitating effi-
cient end-to-end bug detection, such as detecting double-frees, use-after-frees, and null dereferences,
as outlined by the typestate finite state automaton (Definition 1) in PSTA. FGS produces a compact
code graph representation, containing only essential temporal and/or spatial information for later
analysis. This enables the main analysis task to be focused on specific program points of interest

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:19

without sacrificing precision. We believe the concept and methodology also apply to other clients,
like symbolic execution [18], abstract interpretation [73] and code embedding [19, 21, 22, 69].

7 RELATED WORK

Typestate analysis. Typestate analysis [39, 68] is a widely-used program analysis technique to
detect semantically undefined vulnerable execution sequences and improve software reliability [32,
38, 46, 54, 59]. There are several static approaches [14, 33, 37, 44, 45, 50, 74, 80] trying to improve the
analysis precision using more precise alias analysis. For example, Li et al. [50] use an access-path-
based approach to compute must-aliases. Our approach works on an orthogonal topic that speeds
up PSTA, which can be easily adapted to various PSTA algorithms with diverse alias analyses.
There is also another branch of hybrid typestate analysis approaches aiming to use static typestate
analysis to guide dynamic analysis [15, 16, 35, 72, 78, 79]. For example, Wang et al. [72] present a
typestate-guided fuzzer to detect UAF vulnerabilities. For those dynamic approaches, FGS can also
work as a complement by enhancing the static typestate analysis.

Path-sensitive analysis. Path-sensitivity determines the feasibility of program paths, which is
an essential property for enhancing the precision of static analysis [12, 34, 42, 64, 71]. However, it
is challenging to achieve a meet-over-path solution because of the potential unbounded number of
paths to be analyzed and the high computational overhead of path conditions. There are several stud-
ies proposed to reduce the trade-offs of path condition solving using condition simplification [75],
summarization [77] or refinement [12, 23]. However, these works still suffer from scalability when
analyzing large programs [65]. Recently, some approaches [63–66] introduce sparse analysis to
path-sensitivity. However, these approaches are not applicable to typestate analyses that require
tracking multiple program points by following the temporal order.

Graph simplification for static analysis. Graph simplification techniques have beenwidely used
across various program analyses. For pointer analysis, a diverse set of techniques, as evidenced by
Manuel et al. [36], Hardekopf and Calvin [40], and Rountev [62], have been employed to streamline
constraint graphs utilized in the inclusion-based pointer analysis. For example, Hardekopf and
Calvin [40] primarily focus on establishing relations such as pointer-equivalence and location-
equivalence among variables, leading to the consolidation of equivalent nodes and consequent graph
simplification. In the domain of CFL-reachability, Li et al. [52] propose an approach centered on
eliminating graph edges that do not contribute to any InterDyck-paths. Meanwhile, Lei et al. [49]
introduce criteria for identifying foldable node pairs with an RSM-based graph-folding algorithm.
In contrast, our graph-simplification approach aims at boosting the efficiency of path-sensitive
typestate analysis, distinguishing it from these aforementioned studies.

8 CONCLUSION

This paper introduces FGS, a novel approach to boosting the efficiency of path-sensitive typestate
analysis (PSTA), focusing on accelerating the path-sensitive algorithm. FGS introduces a novel
tempo-spatial multi-point slicing technique, which effectively reduces computational complexity
and memory costs in PSTA by simplifying the ICFG while retaining vital temporal and spatial
information. We have evaluated FGS using the NIST benchmark and ten real-world projects. Our
experimental results demonstrate that our approach, on average, reduces the number of ICFG nodes
by 89% and the calling context by 88%, leading to a 116× speedup and a 93% reduction in memory
usage. Furthermore, FGS outperforms six popular static detectors in memory leak, double-free,
use-after-free and null dereference detection. FGS achieves notably higher precision (up to 171%)
and detects more true positives (up to 245%) on the NIST dataset. Across the ten large-scale projects,
FGS identifies 105 real bugs with remarkable precision (82%), surpassing our baseline tools.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:20 Xiao Cheng, Jiawei Ren, and Yulei Sui

DATA AVAILABILITY STATEMENT

We have made our implementation publicly available at [20].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their reviews and suggestions. This research is supported
by Australian Research Grants DP210101348 and FT220100391, and by a generous Aspire Gift Grant
from Google.

REFERENCES

[1] 2023. bzip2 and libbzip2. https://sourceware.org/bzip2
[2] 2023. Darknet - Open Source Neural Networks in C. https://github.com/pjreddie/darknet
[3] 2023. GNU Gzip. https://www.gnu.org/software/gzip
[4] 2023. MP4v2 - A C/C++ library to create, modify and read MP4 files. https://github.com/enzo1982/mp4v2/
[5] 2023. NanoMQ - An ultra-lightweight and blazing-fast MQTT broker for IoT edge. https://github.com/emqx/nanomq
[6] 2023. NASM, the Netwide Assembler. https://github.com/netwide-assembler/nasm/
[7] 2023. Redis - The open source, in-memory data store used by millions of developers as a database, cache, streaming

engine, and message broker. https://github.com/redis/redis/
[8] 2023. Teeworlds - A retro multiplayer shooter. https://teeworlds.com/
[9] 2023. Tmux - tmux source code. https://github.com/tmux/tmux
[10] 2023. YAJL - A fast streaming JSON parsing library in C. https://github.com/lloyd/yajl
[11] Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language. Ph. D. Dissertation.

University of Cophenhagen. https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
[12] Domagoj Babic and Alan J. Hu. 2008. Calysto: Scalable and Precise Extended Static Checking. In Proceedings of the

30th International Conference on Software Engineering (ICSE ’08). ACM. https://doi.org/10.1145/1368088.1368118
[13] George Balatsouras and Yannis Smaragdakis. 2016. Structure-sensitive points-to analysis for C and C++. In Static

Analysis: 23rd International Symposium (SAS ’16). Springer. https://doi.org/10.1007/978-3-662-53413-7_5
[14] Kevin Bierhoff and Jonathan Aldrich. 2007. Modular Typestate Checking of Aliased Objects. In Proceedings of the 22nd

Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA ’07).
ACM. https://doi.org/10.1145/1297027.1297050

[15] Eric Bodden. 2010. Efficient hybrid typestate analysis by determining continuation-equivalent states. In 2010 ACM/IEEE

32nd International Conference on Software Engineering (ICSE ’12). ACM. https://doi.org/10.1145/1806799.1806805
[16] Eric Bodden, Patrick Lam, and Laurie Hendren. 2012. Partially Evaluating Finite-State Runtime Monitors Ahead of

Time. ACM Trans. Program. Lang. Syst. (2012). https://doi.org/10.1145/2220365.2220366
[17] Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. 2014. IKOS: A Framework for Static Analysis Based on

Abstract Interpretation. In Software Engineering and Formal Methods (SEFM ’14). Springer, 271–277. https://doi.org/10.
1007/978-3-319-10431-7_20

[18] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Conference on Operating Systems

Design and Implementation (OSDI ’08). USENIX Association, 209–224. https://dl.acm.org/doi/10.5555/1855741.1855756
[19] Xiao Cheng, Xu Nie, Ningke Li, Haoyu Wang, Zheng Zheng, and Yulei Sui. 2022. How About Bug-Triggering Paths? -

Understanding and Characterizing Learning-Based Vulnerability Detectors. TDSC (2022). https://doi.org/10.1109/
TDSC.2022.3192419

[20] Xiao Cheng, Jiawei Ren, and Yulei Sui. 2024. Fast Graph Simplification for Path-Sensitive Typestate Analysis through
Tempo-Spatial Multi- Point Slicing (Artifact). https://doi.org/10.5281/zenodo.11077099

[21] Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong: Statically Detecting Software
Vulnerabilities Using Deep Graph Neural Network. TOSEM (2021). https://doi.org/10.1145/3436877

[22] Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-Sensitive Code Embedding via Contrastive
Learning for Software Vulnerability Detection. In Proceedings of the 31st ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’22). ACM. https://doi.org/10.1145/3533767.3534371
[23] Chia Yuan Cho, Vijay D’Silva, and Dawn Song. 2013. BLITZ: Compositional Bounded Model Checking for Real-World

Programs. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering (ASE ’13).
IEEE Press. https://doi.org/10.1109/ASE.2013.6693074

[24] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL ’77). ACM. https://doi.org/10.1145/512950.512973

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:21

[25] Cppcheck. 2021. Cppcheck: A tool for static C/C++ code analysis. http://cppcheck.sourceforge.net/.
[26] CWE-401 2023. CWE-401: Missing Release of Memory after Effective Lifetime. https://cwe.mitre.org/data/definitions/

401.html.
[27] CWE-415 2023. CWE-415: Double Free. https://cwe.mitre.org/data/definitions/415.html.
[28] CWE-416 2023. CWE-416: Use After Free. https://cwe.mitre.org/data/definitions/416.html.
[29] CWE-476 2023. CWE-476: NULL Pointer Dereference. https://cwe.mitre.org/data/definitions/476.html.
[30] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-Sensitive Program Verification in Polynomial Time. In

Proceedings of the ACM SIGPLAN 2002 conference on Programming language design and implementation (PLDI ’02). ACM.
https://doi.org/10.1145/512529.512538

[31] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and

Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’08/ETAPS’08). Springer-Verlag. https://dl.acm.org/doi/10.5555/1792734.1792766
[32] Robert DeLine and Manuel Fähndrich. 2001. Enforcing High-Level Protocols in Low-Level Software. In Proceedings of

the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation (PLDI ’01). ACM. https:
//doi.org/10.1145/378795.378811

[33] Dinakar Dhurjati, Manuvir Das, and Yue Yang. 2006. Path-Sensitive Dataflow Analysis with Iterative Refinement. In
Proceedings of the 13th International Conference on Static Analysis (SAS ’06). Springer-Verlag. https://doi.org/10.1007/
11823230_27

[34] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, Complete and Scalable Path-Sensitive Analysis. In Proceedings

of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’08). ACM. https:
//doi.org/10.1145/1375581.1375615

[35] Matthew B. Dwyer and Rahul Purandare. 2007. Residual Dynamic Typestate Analysis Exploiting Static Analysis:
Results to Reformulate and Reduce the Cost of Dynamic Analysis. In Proceedings of the Twenty-Second IEEE/ACM

International Conference on Automated Software Engineering (ASE ’07). ACM. https://doi.org/10.1145/1321631.1321651
[36] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken. 1998. Partial Online Cycle Elimination in

Inclusion Constraint Graphs. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design

and Implementation (PLDI ’98). ACM. https://doi.org/10.1145/277650.277667
[37] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2006. Effective typestate verification in

the presence of aliasing. In Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’06). ACM, 133–144. https://doi.org/10.1145/1146238.1146254
[38] Qi Gao, Wenbin Zhang, Zhezhe Chen, Mai Zheng, and Feng Qin. 2011. 2ndStrike: Toward Manifesting Hidden

Concurrency Typestate Bugs. In Proceedings of the Sixteenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’11). ACM. https://doi.org/10.1145/1950365.1950394
[39] Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. 2014. Foundations of Typestate-Oriented Programming.

ACM Trans. Program. Lang. Syst. (2014). https://doi.org/10.1145/2629609
[40] Ben Hardekopf and Calvin Lin. 2007. Exploiting Pointer and Location Equivalence to Optimize Pointer Analysis. In

Proceedings of the 14th International Conference on Static Analysis (SAS ’07). Springer-Verlag. https://doi.org/10.1007/978-
3-540-74061-2_17

[41] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions of lines of code. In International

Symposium on Code Generation and Optimization (CGO ’11). IEEE, 289–298. https://doi.org/10.1109/CGO.2011.5764696
[42] William R. Harris, Sriram Sankaranarayanan, Franjo Ivančić, and Aarti Gupta. 2010. Program Analysis via Satisfiability

modulo Path Programs. SIGPLAN Not. (2010). https://doi.org/10.1145/1707801.1706309
[43] Infer. 2021. Facebook Infer: a tool to detect bugs in Java and C/C++/Objective-C code. https://fbinfer.com/.
[44] Mathias Jakobsen, Alice Ravier, and Ornela Dardha. 2021. Papaya: Global Typestate Analysis of Aliased Objects. ACM.

https://doi.org/10.1145/3479394.3479414
[45] Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. 2021. Lightweight and Modular Resource Leak

Verification (ESEC/FSE 2021). ACM. https://doi.org/10.1145/3468264.3468576
[46] Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. 2022. Accumulation Analysis. In 36th

European Conference on Object-Oriented Programming (ECOOP ’22). Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.10

[47] Ted Kremenek. 2008. Finding software bugs with the clang static analyzer. Apple Inc (2008), 2008–08. https:
//llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf

[48] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong program analysis & transformation. In
International Symposium on Code Generation and Optimization (CGO ’04). https://doi.org/10.1109/CGO.2004.1281665

[49] Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang. 2023. Recursive State Machine Guided Graph Folding for
Context-Free Language Reachability. Proc. ACM Program. Lang., Article 119 (2023). https://doi.org/10.1145/3591233

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

23:22 Xiao Cheng, Jiawei Ren, and Yulei Sui

[50] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. 2022. Path-Sensitive and Alias-Aware Typestate Analysis for Detecting
OS Bugs. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’22). ACM. https://doi.org/10.1145/3503222.3507770
[51] Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slicing by Sequential Criteria. In 30th

European Conference on Object-Oriented Programming (ECOOP’16). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15

[52] Yuanbo Li, Qirun Zhang, and Thomas Reps. 2020. Fast Graph Simplification for Interleaved Dyck-Reachability. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’20).
ACM. https://doi.org/10.1145/3385412.3386021

[53] LLVM Community. 2021. Clang Static Analyzer. https://clang-analyzer.llvm.org/.
[54] Nomair A. Naeem and Ondrej Lhotak. 2008. Typestate-like Analysis of Multiple Interacting Objects. In Proceedings of

the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications (OOPSLA ’08).
ACM. https://doi.org/10.1145/1449764.1449792

[55] NIST 2023. NIST datasets. https://samate.nist.gov/SARD/test-suites/116.
[56] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. 2012. The Sparrow static analyzer. https:

//opam.ocaml.org/packages/sparrow/.
[57] D.J. Pearce, P.H.J. Kelly, and C. Hankin. 2007. Efficient field-sensitive pointer analysis of C. ACM TOPLAS (2007).

https://doi.org/10.1145/1290520.1290524
[58] Keshav Pingali and Gianfranco Bilardi. 1995. APT: A data structure for optimal control dependence computation.

In Proceedings of the ACM SIGPLAN 1995 conference on Programming language design and implementation (PLDI ’95).
ACM. https://doi.org/10.1145/207110.207114

[59] Goran Piskachev, Tobias Petrasch, Johannes Späth, and Eric Bodden. 2019. AuthCheck: Program-State Analysis
for Access-Control Vulnerabilities. In Formal Methods. FM 2019 International Workshops (FM ’19). Springer-Verlag.
https://doi.org/10.1007/978-3-030-54997-8_34

[60] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’95).
ACM. https://doi.org/10.1145/199448.199462

[61] Thomas Reps and Genevieve Rosay. 1995. Precise Interprocedural Chopping. In Proceedings of the 3rd ACM SIGSOFT

Symposium on Foundations of Software Engineering (SIGSOFT ’95). ACM. https://doi.org/10.1145/222124.222138
[62] Atanas Rountev and Satish Chandra. 2000. Off-Line Variable Substitution for Scaling Points-to Analysis. In Proceedings

of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation (PLDI ’00). ACM. https:
//doi.org/10.1145/349299.349310

[63] Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang. 2020. Conquering the Extensional Scalability Problem for
Value-Flow Analysis Frameworks. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering

(ICSE ’20). ACM. https://doi.org/10.1145/3377811.3380346
[64] Qingkai Shi, Xiao Xiao, RongxinWu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and Precise Sparse

Value Flow Analysis for Million Lines of Code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’18). ACM. https://doi.org/10.1145/3192366.3192418
[65] Qingkai Shi, Peisen Yao, RongxinWu, and Charles Zhang. 2021. Path-Sensitive Sparse Analysis without Path Conditions.

In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI ’21). ACM. https://doi.org/10.1145/3453483.3454086
[66] Qingkai Shi and Charles Zhang. 2020. Pipelining Bottom-up Data Flow Analysis. In Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering (ICSE ’20). ACM, 835–847. https://doi.org/10.1145/3377811.3380425
[67] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007. Thin Slicing. In Proceedings of the 28th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’07). ACM. https://doi.org/10.1145/1250734.
1250748

[68] Robert E. Strom and Shaula Yemini. 1986. Typestate: A programming language concept for enhancing software
reliability. IEEE Transactions on Software Engineering SE-12 (1986). https://doi.org/10.1109/TSE.1986.6312929

[69] Yulei Sui, Xiao Cheng, Guanqin Zhang, and Haoyu Wang. 2020. Flow2Vec: Value-Flow-Based Precise Code Embedding.
OOPSLA (2020). https://doi.org/10.1145/3428301

[70] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Analysis in LLVM. In Proceedings of the 25th

International Conference on Compiler Construction (CC). ACM. https://doi.org/10.1145/2892208.2892235
[71] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using full-sparse value-flow analysis. In

Proceedings of the 2012 International Symposium on Software Testing and Analysis (ISSTA ’12). ACM. https://doi.org/10.
1145/2338965.2336784

[72] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao Qin, Hongxu Chen, and Yulei Sui.
2020. Typestate-Guided Fuzzer for Discovering Use-after-Free Vulnerabilities. In Proceedings of the ACM/IEEE 42nd

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

Fast Graph Simplification for Path-Sensitive Typestate Analysis through Tempo-Spatial Multi-Point Slicing 23:23

International Conference on Software Engineering (ICSE ’20). ACM. https://doi.org/10.1145/3377811.3380386
[73] Cheng Xiao, Wang Jiawei, and Sui Yulei. 2024. Precise Sparse Abstract Execution via Cross-Domain Interaction. In 46th

International Conference on Software Engineering (ICSE ’2024). ACM/IEEE. https://doi.org/10.1145/3597503.3639220
[74] Xusheng Xiao, Gogul Balakrishnan, Franjo Ivančić, Naoto Maeda, Aarti Gupta, and Deepak Chhetri. 2014. ARC++:

Effective Typestate and Lifetime Dependency Analysis. In Proceedings of the 2014 International Symposium on Software

Testing and Analysis (ISSTA ’14). ACM. https://doi.org/10.1145/2610384.2610395
[75] Yichen Xie and Alex Aiken. 2005. Scalable Error Detection Using Boolean Satisfiability. In Proceedings of the 32nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’05). ACM, 351–363. https:
//doi.org/10.1145/1040305.1040334

[76] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2017. Machine-Learning-Guided Typestate Analysis for Static
Use-After-Free Detection. In Proceedings of the 33rd Annual Computer Security Applications Conference (ACSAC ’17).
ACM. https://doi.org/10.1145/3134600.3134620

[77] Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating Precise and Concise Procedure Summaries. In
Proceedings of the 35nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’08). ACM.
https://doi.org/10.1145/1328438.1328467

[78] Hengbiao Yu, Zhenbang Chen, Ji Wang, Zhendong Su, and Wei Dong. 2018. Symbolic Verification of Regular
Properties. In Proceedings of the 40th International Conference on Software Engineering (ICSE ’18). ACM. https:
//doi.org/10.1145/3180155.3180227

[79] Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. 2015. Regular Property Guided Dynamic
Symbolic Execution. In Proceedings of the 37th International Conference on Software Engineering - Volume 1 (ICSE ’15).
IEEE Press. https://doi.org/10.1109/ICSE.2015.80

[80] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang, Guoqing Harry Xu, Linzhang Wang,
and Xuandong Li. 2019. Grapple: A Graph System for Static Finite-State Property Checking of Large-Scale Systems Code.
In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). ACM. https://doi.org/10.1145/3302424.3303972

Received 2023-09-29; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 23. Publication date: July 2024.

