
Compatibility Issues in Deep Learning Systems: Problems and
Opportunities

Jun Wang
junwang@nuaa.edu.cn

Nanjing University of Aeronautics

and Astronautics, China

Guanping Xiao∗

gpxiao@nuaa.edu.cn

Nanjing University of Aeronautics

and Astronautics, China

Shuai Zhang
shuaizhang@nuaa.edu.cn

Nanjing University of Aeronautics

and Astronautics, China

Huashan Lei
leihuashan@nuaa.edu.cn

Nanjing University of Aeronautics

and Astronautics, China

Yepang Liu†

liuyp1@sustech.edu.cn

Southern University of Science and

Technology, China

Yulei Sui
y.sui@unsw.edu.au

University of New South Wales,

Australia

ABSTRACT

Deep learning (DL) systems are complex component-based sys-

tems, which consist of core program (code implementation and

data), Python (language and interpreter), third-party libraries, low-

level libraries, development tools, OS, and hardware environments.

Incompatible interaction between components would cause serious

compatibility issues, substantially a�ecting the development and

deployment processes. What types of compatibility issues are fre-

quently exposed in DL systems? What are the root causes of such

issues and how do developers �x them? How far are we from auto-

matically detecting and �xing DL compatibility issues? Although

there are many existing studies on DL bugs, the characteristics of

DL compatibility issues have rarely been systematically studied

and the above questions remain largely unexplored. To �ll this gap,

we conduct the �rst comprehensive empirical study to characterize

compatibility issues in DL systems. Through analyzing 352 DL com-

patibility issues classi�ed from 3,072 posts on Stack Over�ow, we

present their types, manifestation stages, and symptoms. We fur-

ther summarize the root causes and common �xing strategies, and

conduct a tool survey on the current research status of automated

detection and repair of DL compatibility issues. Our study allows

researchers and practitioners to gain a better understanding of DL

compatibility issues and can facilitate future tool development.

CCS CONCEPTS

• Software and its engineering → Software defect analysis;

Software libraries and repositories; • General and reference

→ Empirical studies.

∗Guanping Xiao is the corresponding author.
†Yepang Liu is a�liated with the Department of Computer Science and Engineering
and the Research Institute of Trustworthy Autonomous Systems at SUSTech.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616321

KEYWORDS

deep learning, compatibility issues, empirical study

ACM Reference Format:

JunWang, Guanping Xiao, Shuai Zhang, Huashan Lei, Yepang Liu, and Yulei

Sui. 2023. Compatibility Issues in Deep Learning Systems: Problems and

Opportunities. In Proceedings of the 31st ACM Joint European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineer-

ing (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616321

System librariesCUDA/cuDNN

macOSLinux

GPUCPU TPU

PycharmGCCBazel

Windows

Hardware

OS

Development Tool

Low-level Library

Third-party Library

Core Program

Python

from keras.layers import Dense

from keras.models import Sequential

import tensorflow as tf

import numpy as np Code Data

Caffe theano

Figure 1: Components of DL Systems

1 INTRODUCTION

With the continuous evolution of deep learning (DL) technology,

numerous DL-related software systems have been ubiquitously pro-

duced and deployed, such as medical imaging [62], autonomous

driving cars [83], and various software engineering tasks [47, 98,

112, 118, 132]. Like traditional software [66, 82, 101, 116], develop-

ing and deploying DL systems also face di�erent types of compatibil-

ity issues, which tend to trigger unexpected problems, signi�cantly

obstructing the development and deployment processes.

As shown in Figure 1, DL systems are composed of several com-

plex and interdependent components, including core program (code

implementation and data), programming language (mainly referred

to Python and its interpreter), third-party libraries (e.g., Tensor-

Flow, PyTorch, Numpy, and Pandas), low-level libraries (e.g., CUDA,

cuDNN, drivers, andmany system libraries), development tools (e.g.,

GCC, Bazel, and PyCharm), operating systems (OS, e.g., Windows,

Linux, and macOS), and hardware environments (e.g., CPU, GPU,

and TPU). To satisfy the requirements of di�erent software and

476

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616321
https://doi.org/10.1145/3611643.3616321

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jun Wang, Guanping Xiao, Shuai Zhang, Huashan Lei, Yepang Liu, and Yulei Sui

DL Compatibility Issues

(352)

CORE-TPL

(115, 32.7%)

TPL-TPL

(88, 25.0%)

TPL-LLL

(59, 16.8%)

TPL-Python

 (33, 9.4%)

CORE: Core Program, TPL: Third-party Library, LLL: Low-level Library, DEV: Development Tool, OS: Operating System

TPL-DEV

(10, 2.8%)

TPL-OS

(12, 3.4%)

TPL-Hardware

(22, 6.2%)
LLL-Hardware

(5, 1.4%)

Others

(8, 2.3%)

Figure 2: Types of Compatibility Issues in DL Systems

hardware environments, considering their frequently evolving ver-

sions, such components are speci�c and often incompatible with

each other. Thus, compatible component-to-component interac-

tions must be speci�ed in accordance with certain constraints to

make DL systems run normally.

On the one hand, APIs in third-party libraries are frequently

changing due to �xing bugs, adding new features, and optimizing

code implementation [43]. These coding activitiesmay bring serious

backward-breaking changes. One typical case is the change related

to API usage, which o�ers an interface for developers to directly

use a library feature in building core programs. Using removed or

renamed APIs (e.g., function getting removed or renamed) in the

program will inevitably cause the collapse of DL systems [129].

On the other hand, DL systems can only be built upon spe-

ci�c versions of components. Incompatible version combinations

will cause unexpected issues during the installation or execution

of DL systems. For example, according to the o�cial installation

guide [102], the low-level library for performing GPU computing of

TensorFlow-GPU 1.2 should be CUDA 8. If users choose CUDA 7.5,

no error message will appear in the TensorFlow installation stage.

However, the system will throw an ImportError during execution,

since the corresponding runtime CUDA �le cannot be found, as

reported in a Stack Over�ow (SO) post [10]. In addition, due to

API-breaking changes that occurred in the evolution of libraries,

the interaction between third-party libraries should also rely on

speci�c combinations of versions [124].

Although compatibility issues are commonly observed in DL sys-

tems, these issues are often challenging to locate and �x, especially

for the one who is unfamiliar with the interaction between di�erent

components. In particular, when the system throws an exception at

runtime, it is di�cult for users to determine whether the root cause

is induced by the incompatibility between software and hardware

environments, the version mismatch between third-party libraries,

or the breaking-changed API of third-party libraries used in the

core program.

For example, another SO post reported that a developer tried

to perform the object detection �netuning tutorial from PyTorch

on a Linux laptop with a Nvidia GPU, but kept getting the TypeEr-

ror [27], i.e., object of type <class ‘numpy.�oat64’> cannot be safely

interpreted as an integer. Strangely, the error did not happen on his

home computer with the same OS and GPU environment a day

before. He spent about 15 hours investigating the root cause and

�nally realized that in a recent release (i.e., Numpy 1.18.0), the num

parameter in numpy.linspace() no longer accepts the �oat type.

Hence, anyone who uses pycocotools API with Numpy 1.18.0 will

encounter the same error. Simply downgrading the Numpy version

to 1.17.4 solves this issue.

Therefore, it is practically valuable to study the characteristics

of DL compatibility issues. Since DL systems have become more

and more popular and important nowadays, there are many stud-

ies related to di�erent comprehensive taxonomies of DL bugs [38,

39, 45, 46, 67, 68, 70, 122, 125, 127]. However, none of these studies

speci�cally focus on the analysis of DL compatibility issues. Besides,

existing e�orts have primarily concentrated on analyzing the API

evolution of Python libraries [44, 91, 128, 129] and resolving depen-

dency con�icts in Python programs [42, 64, 84, 111]. For example,

Zhang et al. [129] analyzed the evolution patterns of six Python

framework APIs (i.e., TensorFlow, Keras, Scikit-learn, Pandas, Flask,

and Django) and compatibility issues caused by breaking-changed

APIs. Ye et al. [124] proposed a tool called PyEGo that aims to auto-

matically infer compatible versions of Python, third-party libraries,

and system libraries. However, these studies focus on a speci�c

aspect of DL compatibility issues, but lack a comprehensive under-

standing of the prevalent types, symptoms, root causes, and �xing

solutions of compatibility issues in DL systems.

To bridge this knowledge gap, in this paper, we conduct system-

atic study on compatibility issues in DL systems. First, we collect

3,072 posts from the o�cial SO data dump using �ve tags (i.e., ten-

sor�ow, keras, pytorch, ca�e, and theano) related to the �ve most

discussed DL libraries on SO and 12 keywords (i.e., compatibility,

version, evolution, exception, typeerror, attributeerror, importer-

ror, modulenotfounderror, runtimeerror, compatible, cuda, cudnn).

Then, we perform manual classi�cation on these posts to iden-

tify DL compatibility issues (i.e., 352) and further investigate their

characteristics. Last, we conduct a tool survey to study the current

state of relevant research on automated detection and repair of DL

compatibility issues. Our work mainly focuses on answering the

following three research questions (RQs).

• RQ1. What types of compatibility issues are frequently exposed

in DL systems?

• RQ2. What are the root causes of DL compatibility issues and

how do developers �x them?

• RQ3. How far are we from automatically detecting and �xing

DL compatibility issues?

In this paper, we make the following contributions:

• De�nition.A list of components (including core program, Python,

third-party library, low-level library, development tool, OS, and

hardware) in DL systems, and the de�nition of DL compatibility

issues (Section 2).

• Empirical Study. We conduct the �rst empirical study of DL

compatibility issues by analyzing 352 issues classi�ed from 3,072

SO posts (Sections 3 and 4).

• Tool Survey.We survey 15 tools relevant to detecting and �xing

DL compatibility issues selected from themost recent editions (18-

22) of the top SE conferences, i.e., ICSE, FSE, and ASE (Section 5).

477

Compatibility Issues in Deep Learning Systems: Problems and Opportunities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

• Implications and Suggestions.We compare compatibility is-

sues in DL systems with those in traditional software systems

and provide implications and suggestions for researchers and

practitioners based on our empirical �ndings (Section 6).

• Datasets.We release the replication dataset with a detailed in-

struction document of DL compatibility issues (Section 10).

2 DL COMPATIBILITY ISSUES

DL System: In this study, we de�ne a DL system as the composi-

tion of seven interdependent components, including core program,

Python, third-party library, low-level library, development tool, OS,

and hardware, as depicted in Figure 1. Each component is brie�y

described as follows:

(1) Core Program (CORE): The core program (CORE) consists

of code implementation and data. Code implementation mainly

includes data processing, model de�nition, hyper-parameter set-

tings, and the optimization training process [88]. Data stands for

the datasets used in model development and deployment.

(2) Python: Python, the programming language and its interpreter

environment, provides the syntax and runtime environment to

implement and execute the core program. For example, the core

program can be written in Python 2 or Python 3. In this study,

we consider Python as the major programming language used for

implementing DL systems.

(3) Third-party Library (TPL): TPLs provide prede�ned functions

through APIs, which are used by developers to implement corre-

sponding features in the core program as well as other TPLs. For

example, DL frameworks (e.g., TensorFlow and PyTorch) provide

the features to build and optimize DL models. Numpy and Pandas

o�er several data processing functions. Using APIs from TPLs can

simplify and accelerate software development [109].

(4) Low-level Library (LLL): LLLs provide APIs to access hard-

ware and system resources, which are fundamental parts required

by several TPLs. For example, the GPU computing operations of

TensorFlow are performed through CUDA/cuDNN libraries [88].

Besides, system libraries (e.g., Glibc and Glibcxx) provide standard

C/C++ APIs and OS-speci�c APIs for TPLs, since the low-level

implementation of many TPLs was written in C/C++ [124].

(5) Development Tool (DEV): DEVs are the tools used in develop-

ment and deployment processes, usually related to building/compiling,

executing activities, etc. For example, Bazel is the o�cial tool for

building TensorFlow from source [36].

(6) Operating System (OS): OS provides the software computing

environment. Common OSs in DL systems includeWindows, Linux,

and macOS.

(7) Hardware: Hardware provides the hardware computing envi-

ronment for DL systems [119]. Typical computing devices include

CPU, GPU, and TPU.

DL Compatibility Issue: Based on the above de�nition, we de�ne

the DL compatibility issue as the incompatible interaction problem

between components in the DL system.

3 METHODOLOGY

3.1 Data Collection

3.1.1 Stack Overflow Data. To study compatibility issues in DL

systems, we have collected data from Stack Over�ow (SO), one

of the most popular question-answering sites concentrating on

programming-related questions [121]. Posts on SO are frequently

updated. This may bring potential threats to the reliability of our

�ndings. Thus, we used the o�cial stack exchange data dump re-

leased at archive.org [33], which provides each separate part of the

whole SO website, including Posts, Users, Votes, Comments, PostHis-

tory, PostLinks, Tags, and PostLinks.

The latest SO dump data was published on June 6, 2022, when

we started this work, and later updated on October 5, 2022. To

guarantee questions re�ect the latest issues that DL developers

and users encountered, we used the data released on October 5,

2022. In our study, we downloaded stackover�ow.com-Posts.7z and

stackover�ow.com-Tags.7z, which contain Posts.xml and Tags.xml

respectively, as the raw data.

3.1.2 Data Collection Process. There are 23,020,127 question posts

in the collected SO dump data, spanning from July 2008 to October

2022. We de�ned the following �ve rules as the criteria to sample a

small set as our classi�cation data:

Rule 1. The post is a question post. The �eld PostTypeId in

Posts.xml represents the type of a post: 1 for a question post and 2

for an answer post [121].

Rule 2. The post is still open for discussion. Some posts are

labeled as closed due to duplication, needing details or clari�cation,

or out of topic. These posts may not have su�cient information for

our analysis. To ensure the reliability of our study, we discarded

such closed posts.

Rule 3.The post has an accepted answer and the score (computed

by upvotes minus downvotes) of the post is no less than 3. Posts

with accepted answers indicate that the issues have been resolved,

as recognized by the original posters [41, 67]. To further ensure

the quality and quantity of posts [68], we set a minimum score

threshold of 3.

Rule 4. The post contains at least one of the �ve tags, i.e., tensor-

�ow, keras, pytorch, ca�e, and theano. These �ve tags represent the

�ve most discussed DL libraries on SO, according to the number of

related posts.

Rule 5. The post’s title or body contains at least one of the 12

keywords, i.e., compatibility, version, evolution, exception, typeer-

ror, attributeerror, importerror, modulenotfounderror, runtimeerror,

compatible, cuda, and cudnn. The �rst seven keywords are adopted

from [129], where the authors used them to search for compatibil-

ity issues in GitHub related to the API evolution of Python TPLs.

Based on our domain knowledge in developing and testing DL

projects, we extend the keyword set by adding �ve new keywords,

i.e., modulenotfounderror, runtimeerror, compatible, cuda, cudnn.

Based on the above �ltering conditions, we developed Python

scripts to automatically extract tags and posts from Tags.xml and

Posts.xml �les. Finally, 3,072 posts are collected for further manual

classi�cation, as shown in Table 11.

3.2 DL Compatibility Issues Classi�cation

To identify and characterize DL compatibility issues, we performed

an iterativemanual labeling process by following thewidely-adopted

1The sum of the number of posts in each tag exceeds 3,072 because a post can have
multiple tags.

478

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jun Wang, Guanping Xiao, Shuai Zhang, Huashan Lei, Yepang Liu, and Yulei Sui

Table 1: Summary of Dataset in Our Study
Tag TensorFlow Keras PyTorch Ca�e Theano

Posts 1,999 982 592 67 127

Comp. Posts 265 117 33 9 16

DL compatibility

issue?

SO Posts

Iteration 1 Iteration 2 Iteration 3

No

Yes

Unknown

Type:

CORE-TPL

Stage:

Execution

Symptom:

Breaking

Solution:

Version Change

(TensorFlow+)

Root Cause:

API Incompatibility

Figure 3: Classi�cation Process

open coding procedure [107], as shown in Figure 3. Two annota-

tors (i.e., co-authors of this paper), who are all familiar with DL

project development, spent �ve months on the classi�cation. In

each iteration, a third author participated in the discussion to solve

the inconsistencies and �nally reached a consensus. To measure

the inter-rater agreement between two annotators, we calculated

Cohen’s kappa coe�cient for each iteration [104]. The iterations

are as follows:

Iteration 1. For the 3,072 posts, we analyzed three parts in a post,

i.e., the question descriptions (including code snippets, exception

information (e.g., traceback) and the attached external links), the

answers in the post, and the comments discussed by users. Two

annotators independently inspected these sources of data on the SO

website, which has better readability than the Posts.xml. Since the

online post may be further updated, we compared the last modi�ed

dates between the online post and the extracted one from Posts.xml

to ensure consistency. If the dates are di�erent, we ignore the new

information (e.g., new answers or comments) posted on the website

after the last modi�ed date recorded in Posts.xml.

In this iteration, we �rst checked whether a post discusses a

DL compatibility issue, according to the de�nitions described in

Section 2. Speci�cally, we focused on the information related to the

version change of components, such as TPLs, LLLs, and Python. If

there is no such information, we further checked whether the issue

was induced by API evolution.

If a post is labeled as Yes, we further described corresponding

counterparts of the issues, i.e., the incompatible problem was in-

duced between which components, the manifestation stage of such

issue, and the consequent impact on the DL system. If the poster

did not specify the version of the incompatible component, we

can infer the range of versions prior to the post submission time

by examining the release history on GitHub and the Python-PyPI

repository. It is noted that the library in an issue could be di�erent

from the tag attached to the post since the tag is a general label

related to the discussion topic on SO. Besides, we also recorded

the solution posted by the accepted answer and described the root

cause based on our own understanding. If posts do not contain

su�cient information to be classi�ed as a compatibility issue or

not, we label them as Unknown. Posts related to API misuse and

usage query, general questions asking for code implementation to

a speci�c function, and environment con�guration issues related

Table 2: Distribution of Stages and Types
Type Installation Execution Total

CORE-TPL 0 115 115

TPL-TPL 5 83 88

TPL-LLL 3 56 59

TPL-Python 28 5 33

TPL-Hardware 1 21 22

TPL-OS 6 6 12

TPL-DEV 6 4 10

LLL-Hardware 2 3 5

Others 1 7 8

Total 52 300 352

to missing required dependencies caused by forgetting to con�g-

ure/install necessary components but not due to version mismatch,

are labeled as No.

We then cross-checked the labeling results and mainly compared

the identi�cation of compatibility issues and their stage and impact.

The value of Cohen’s kappa coe�cient is 0.89 in this iteration.

Iteration 2. In the second iteration, we independently relabeled

all posts based on the preliminary classi�cation from the �rst round.

In particular, we focused on the type of DL compatibility issues,

i.e., to determine which two components introduce the issue. To

further understand and identify the type, we created virtual en-

vironments using Conda [32], trying to reproduce the reported

issues, according to the given versions of Python and TPLs. For the

compatibility issues related to CORE and TPL, we used git blame

to identify the commit on GitHub that introduced the API changes

and further labeled the API evolution pattern by adopting the tax-

onomy from [44]. Note that the reproduction process helps us to

match the incompatible library version with the speci�c breaking

changes that were introduced. For example, the code snippet runs

normally in version V1, but crashes in the subsequent version V2.

By reproducing, we updated the labeling results of DL compatibility

issues, solutions, and root causes with more detailed information.

Misclassi�ed posts in the �rst iteration can be further veri�ed. The

value of Cohen’s kappa coe�cient in this iteration is 0.92.

Iteration 3. In the last round, we focused on the labeling of

solutions and root causes of DL compatibility issues. Speci�cally,

we further checked whether the proposed solution is e�ective ac-

cording to discussions posted by users and our reproducing results.

Since posts could have several answers, we concentrated on an-

alyzing those, whose submitted time is close to the issue posted

time. Due to the evolving versions of components, new answers

(solutions) are often not appropriate for the original issue, which

was posted years ago. We �nally summarized the solutions and root

causes of the DL compatibility issues. The value of Cohen’s kappa

coe�cient is 0.95 for the last iteration.

After three iterations, we classi�ed 352 DL compatibility issues

from 3,072 SO posts. Table 1 depicts the distribution of the 352

issues in the set of SO posts. Note that the sum of the number of

posts is greater than 352, as a post can have more than one tag.

4 ANALYSIS RESULTS

4.1 RQ1: Types, Stages and Symptoms

4.1.1 Types. Based on the classi�cation process described above,

we classi�ed the 352 compatibility issues in DL systems into nine

types, including CORE-TPL, TPL-TPL, TPL-LLL, TPL-Python, TPL-

Hardware, TPL-OS, TPL-DEV, LLL-Hardware, and others, as shown

in Figure 2. Each issue is labeled as one leaf category of our classi�-

cation taxonomy. Below, we will discuss each type in detail.

479

Compatibility Issues in Deep Learning Systems: Problems and Opportunities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

CORE: models.py

...

8 from keras.layers.core import Dense, Dropout, Activation, Merge, Reshape
...

Traceback (most recent call last):
 File "/Users/pengjuzhao/Udacity/MLND/entity‐embedding‐rossmann/test_model.py", line 2,
in <module>

 from models import NN_with_EntityEmbedding

 File "/Users/pengjuzhao/Udacity/MLND/entity‐embedding‐rossmann/models.py", line 8, in
<module>

 from keras.layers.core import Dense, Dropout, Activation, Merge, Reshape
ImportError: cannot import name Merge

TPL: Keras

Keras API version in CORE: 1.2.2 Installed Keras version: 2.0.0×
Figure 4: CORE-TPL (backward-incompatible): #42823627

CORE: mnist_test.py

...

17 y = tf.matmul(h, w2) + b2
18

19 cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_, logits=y)
20 train_step = tf.train.AdamOptimizer().minimize(cross_entropy)

...

Traceback (most recent call last):
 File "mnist_test.py", line 19, in <module>

 cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_, logits=y)
TypeError: sigmoid_cross_entropy_with_logits() got an unexpected keyword argument 'labels'

TPL: TensorFlow

TF API version in CORE: 1.0.0 Installed TF version: 0.12×

Figure 5: CORE-TPL (forward-incompatible): #42675391

(1) Core Program and Third-party Library (CORE-TPL): This is

the most common type (115/32.7%) of DL compatibility issues. De-

velopers usually use APIs from a speci�c version of TPLs to imple-

ment the core program. If the installed version is di�erent from

the used one, compatibility issues are likely to occur, due to API

evolution [129]. According to a newer or older installed version

than the used one, CORE-TPL issues can be further classi�ed as

backward-incompatible (69) and forward-incompatible (46).

For example, Figure 4 shows a backward-incompatible issue [8].

The error occurredwhen importing class Merge from keras.layers.core.

This is because class Merge has been moved to another module

since version 2.0 [50]. The same import statement can be executed

under version 1.2.2. On the contrary, Figure 5 shows a forward-

incompatible issue [7], in which an error appearedwhen calling Ten-

sorFlowAPI tf.nn.sigmoid_cross_entropy_with_logits()with

parameter labels in the core program. The parameter labels was

added in TensorFlow 1.0.0 [49], while the developer installed an

older version (e.g., 0.12). In addition, we found that the top �ve

TPLs of CORE-TPL issues are TensorFlow (63), Keras (34), PyTorch

(6), Theano (3), and TorchText (2).

Finding 1: CORE-TPL (32.7%) is the most frequent type of DL

compatibility issues. 60.0% of CORE-TPL issues are backward-

incompatible issues, and the remaining 40.0% are forward-

incompatible issues. Most (84.3%) of CORE-TPL issues are

related to TensorFlow (54.8%) and Keras (29.5%).

(2) Third-party Library and Third-party Library (TPL-TPL): is the

second most frequent type (88/25.0%). Developing Python TPLs

also relies on several other TPLs. The triggering factor of TPL-TPL

mainly lies in the installation of TPLs with incompatible versions.

Since TPLs are frequently evolving [91], it is often di�cult for

users to choose compatible versions, especially when the constraint

condition (e.g., requirements.txt) is not provided [124].We found

the top four related TPLs of TPL-TPL issues are TensorFlow (67),

Keras (42), Numpy (9), and Theano (5). In particular, TensorFlow-

Keras introduces the most issues (37), as they have a strong version

constraint and a large user population.

Keras provides user-friendly API for building neural networks

and supports multi backends [68], e.g., TensorFlow and Theano. For

example, Figure 6 shows a compatibility issue induced by incom-

patible versions of Keras and TensorFlow. The exception occurred

inside Keras when invoking TensorFlow API tf.nn.leaky_relu()

Traceback (most recent call last):
 File "main.py", line 176, in <module>

 dcgan = DCGAN()
 File "main.py", line 25, in __init__
 self.discriminator = self.build_discriminator()

 File "main.py", line 84, in build_discriminator

 model.add(LeakyReLU(alpha=0.2))

 File "/opt/libraries/anaconda2/lib/python2.7/site‐packages/keras/models.py", line 492, in
add

 output_tensor = layer(self.outputs[0])
 File "/opt/libraries/anaconda2/lib/python2.7/site‐packages/keras/engine/topology.py", line
617, in __call__
 output = self.call(inputs, **kwargs)
 File "/opt/libraries/anaconda2/lib/python2.7/site‐packages/keras/layers/
advanced_activations.py", line 46, in call
 return K.relu(inputs, alpha=self.alpha)
 File "/opt/libraries/anaconda2/lib/python2.7/site‐packages/keras/backend/
tensorflow_backend.py", line 2918, in relu
 x = tf.nn.leaky_relu(x, alpha)
AttributeError: 'module' object has no attribute 'leaky_relu'

TPL: Keras

TPL: TensorFlow

Installed Keras version: 2.1.3 Installed TF version: 1.2.1×

Figure 6: TPL-TPL: #48929098
Testing.py

1 from keras.models import Sequential
2 from keras.layers import Dense, Dropout, Flatten
3 from keras.layers import Conv2D, MaxPooling2D

4 from tensorflow.python.keras.callbacks import TensorBoard
…
82 model.fit(x_train, y_train, batch_size=50, epochs = 3, callbacks= [tensorboard])

Traceback (most recent call last):
 File "c:/.../RPS project/Testing.py", line 82, in <module>

 model.fit(x_train, y_train, batch_size=50, epochs = 3, callbacks= [tensorboard])
 File "C:\...\Python37\lib\site‐packages\keras\engine\training.py", line 1178, in fit
 validation_freq=validation_freq)
 File "C:\...\Python37\lib\site‐packages\keras\engine\training_arrays.py", line 125, in fit_loop
 callbacks.set_model(callback_model)

 File "C:\...\Python37\lib\site‐packages\keras\callbacks.py", line 68, in set_model

 callback.set_model(model)

 File "C:\...\Python37\lib\site‐packages\tensorflow\python\keras\callbacks.py", line 1509, in
set_model

 if not model.run_eagerly:

AttributeError: 'Sequential' object has no attribute 'run_eagerly'

TPL: TensorFlow

TPL: Keras

Keras.models.Sequential tf.keras.callbacks.TensorBoard×

Figure 7: TPL-TPL: #57718512

in the implementation of layer LeakyReLU [12]. The developer in-

stalled TensorFlow 1.2.1 and Keras 2.1.3. However, the function

leaky_relu was added in TensorFlow 1.4 [51], resulting the At-

tributeError. Besides, the mixed use of APIs from Keras and tf.keras

(i.e., the integrated Keras APIs in TensorFlow) could also bring com-

patibility issues [24], as shown in Figure 7. Keras and tf.keras are

not compatible, as the implementation of tf.keras is not identical to

the standalone Keras [22, 23, 28].

Finding 2: TPL-TPL (25.0%) is the second most common type

of DL compatibility issues. 76.1% of TPL-TPL issues are in-

duced between TensorFlow and other TPLs, of which Keras

accounts for 55.2%.

(3) Third-party Library and Low-level Library (TPL-LLL): 59 is-

sues are caused by incompatible versions between TPLs and LLLs,

accounting for 16.8%. Among them, 41 issues are related to TPL-

CUDA/cuDNN. In particular, TensorFlow and CUDA, TensorFlow

and cuDNN introduce 25 and 15 issues, respectively. One issue is

related to both. Unlike PyTorch which integrates CUDA/cuDNN

libraries in its installation wheel [29], using GPU for accelerating

DL model training by TensorFlow requires users to install and con-

�gure respective compatible CUDA/cuDNN versions according to

the TensorFlow versions [102]. For example, Figures 8 and 9 illus-

trate two typical compatibility issues related to TensorFlow and

CUDA/cuDNN. During runtime, TensorFlow throws an ImportEr-

ror since libcudart.so.7.0 can not be found [3]. This implies

that TensorFlow requires CUDA 7 to perform GPU computing, but

the installed CUDA version is 5.5. Besides, the cuDNN issue de-

picted in Figure 9 describes that the version of cuDNN library that

TensorFlow compiled against (i.e., 5.1.3) is incompatible with the

con�gured cuDNN library (i.e., 5.0.5) at runtime [5].

Finding 3: TPL-LLL (16.8%) is the third most frequent type of

DL compatibility issues. 69.5% of LLLs are CUDA and cuDNN,

while the remaining 30.5% are related to Nvidia GPU drivers

and system libraries (e.g., glibc, libstdc++, and boost).

480

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jun Wang, Guanping Xiao, Shuai Zhang, Huashan Lei, Yepang Liu, and Yulei Sui

/etc/profile

...

 LD_LIBRARY_PATH=/usr/local/cuda‐5.5/lib:/usr/local/cuda‐5.5/lib64
...

Traceback (most recent call last):
 File "multiply.py", line 2, in <module>

 import tensorflow as tf
 File "/home/luohao/.usr/bin/python2.7.10/lib/python2.7/site‐packages/tensorflow/
__init__.py", line 4, in <module>

 from tensorflow.python import *
…
 File "/home/luohao/.usr/bin/python2.7.10/lib/python2.7/site‐packages/tensorflow/python/
pywrap_tensorflow.py", line 24, in swig_import_helper

 _mod = imp.load_module('_pywrap_tensorflow', fp, pathname, description)
ImportError: libcudart.so.7.0: cannot open shared object file: No such file or directory

LLL: CUDA‐5.5

TPL: TensorFlow

TF requires CUDA version: 7.0 Installed CUDA version: 5.5×
Figure 8: TPL-LLL: #33671372

I tensorflow/core/common_runtime/gpu/gpu_device.cc:838] Creating TensorFlow device (/

gpu:0) -> (device: 0, name: Tesla K20m, pci bus id: 0000:02:00.0)

E tensorflow/stream_executor/cuda/cuda_dnn.cc:347] Loaded runtime CuDNN library: 5005

(compatibility version 5000) but source was compiled with 5103 (compatibility version 5100).

If using a binary install, upgrade your CuDNN library to match. If building from sources, make

sure the library loaded at runtime matches a compatible version specified during compile

configuration.

F tensorflow/core/kernels/conv_ops.cc:457] Check failed: stream->parent()-

>GetConvolveAlgorithms(&algorithms)

LLL: CuDNN-5005TPL: TensorFlow

TF requires cuDNN version: 5.1.3 Installed cuDNN version: 5.0.5×

Figure 9: TPL-LLL: #41005249

pip3 install torch==1.3.1+cpu torchvision==0.4.2+cpu ‐f https://download.pytorch.org/whl/
torch_stable.html

Could not find a version that satisfies the requirement torch==1.3.1+cpu (from versions: 0.1.2,
0.1.2.post1, 0.1.2.post2) ERROR: No matching distribution found for torch==1.3.1.+cpu

Python: 3.8

TPL: PyTorch

PyTorch version: 1.3.1 Python version: 3.8×
Figure 10: TPL-Python: #58901682

I tensorflow/core/common_runtime/gpu/gpu_device.cc:611] Ignoring gpu device

(device: 0, name: GRID K520, pci bus id: 0000:00:03.0) with Cuda compute

capability 3.0. The minimum required Cuda capability is 3.5. Hardware: GPU

TPL: TensorFlow

TF requires CC>=3.5 GPU (GRID K520) with 3.0 CC×

Figure 11: TPL-Hardware: #33651810

(4) Third-party Library and Python (TPL-Python): There are 33 DL

compatibility issues caused by incompatibility between TPL and

Python, accounting for 9.4%. For example, Figure 10 shows that the

developer trying to use pip to install PyTorch [25]. However, there

are no PyTorch wheels for Python 3.8 at the posted time, resulting

in pip being unable to �nd a compatible distribution for PyTorch.

In addition, using 32-bit Python to install 64-bit TPL wheels also

lead to compatibility issues [9].

Finding 4: 9.4% of DL compatibility issues are related to

TPL-Python.

(5) Third-party Library and Hardware (TPL-Hardware): Among

the 352 issues, 22 issues are caused by the incompatibility between

TPL and hardware, accounting for 6.2%. For example, Figure 11

shows that the minimum CUDA capability required by TensorFlow

is 3.5 while the CUDA capability of GRID K520 GPU is 3.0 [2]. As a

result, the GPU device will be ignored and the model training will

be performed on CPU. The hardware types are CPU (11), GPU (8),

TPU (2), and Raspberry Pi (1), while TPLs are related to TensorFlow

(18), PyTorch (2), Theano (1), and Lasagne (1). Moreover, 50.0% (11)

of TPL-Hardware issues are related to the incompatibility between

TensorFlow and CPU. This is mainly because starting with version

1.6, TensorFlow binaries were built with enabling the support of

AVX instructions by default [53], which may not run on older CPU,

e.g., Intel(R) Core(TM) 2 Duo CPU T5870 [19], AMD Athlon Dual

Core 4450e [13], and Intel(R) Pentium(R) 3556U [21].

Finding 5: TPL-Hardware accounts for 6.2% of DL compati-

bility issues. 50.0% of TPL-Hardware issues are caused by the

incompatibility between TensorFlow and CPU.

(6) Third-party Library and Operating System (TPL-OS): 12 DL

compatibility issues are TPL-OS, accounting for 3.4%. Common OS

types in this category are macOS (5), Linux (3), Windows (3), and

Raspian Lite OS (1). We can observe from the example shown in

Figure 12 that, a symbol was missing in _cpu_feature_guard.so

1 import tensorflow

OSError: dlopen(/Users/blancoarnau/tensorflow-test/env/lib/python3.9/site-packages/

tensorflow/python/platform/../../core/platform/_cpu_feature_guard.so, 6): Symbol not found:

__ZNKSt3__115basic_stringbufIcNS_11char_traitsIcEENS_9allocatorIcEEE3strEv

 Referenced from: /Users/blancoarnau/tensorflow-test/env/lib/python3.9/site-packages/

tensorflow/python/platform/../../core/platform/_cpu_feature_guard.so (which was built for

Mac OS X 12.3)

 Expected in: /usr/lib/libc++.1.dylib
OS: macOS

TPL: TensorFlow

TF requires OS version: 12.3 Installed OS version: 11.0×

Figure 12: TPL-OS: #71174306

bazel test ‐c opt ‐‐ //tensorflow/... ‐//tensorflow/compiler/... ‐//tensorflow/contrib/lite/...

ERROR: error loading package '': Encountered error while reading extension file 'closure/
defs.bzl': no such package '@io_bazel_rules_closure//closure': The native http_archive rule is
deprecated. load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") for a drop‐in
replacement.

Use ‐‐incompatible_remove_native_http_archive=false to temporarily continue using the
native rule.
...

INFO: Elapsed time: 0.088s
INFO: 0 processes.
FAILED: Build did NOT complete successfully (0 packages loaded)
FAILED: Build did NOT complete successfully (0 packages loaded)

TPL: TensorFlowDEV: Bazel

TF version: r1.11 Bazel version: 0.19.1+×
Figure 13: TPL-DEV: #53707068

when importing TensorFlow on macOS (11.0) [31]. This is because

the installed TensorFlow version was built for macOS 12.3.

Finding 6: 3.4% of DL compatibility issues are TPL-OS.

(7) Third-party Library and Development Tool (TPL-DEV): There

are 10 compatibility issues are classi�ed as TPL-DEV, accounting for

2.8%. The respective development tools include compiler/building

tools (i.e., Bazel (4), GCC (2), and G++ (1)), IDE (i.e., Xcode (1) and

PySpark (1)), and other (e.g., broswer (1)). For example, Figure 13

shows a TPL-DEV issue related to Bazel [17]. The developer at-

tempted to build TensorFlow r1.11 from source using Bazel but

failed, since some Bazel features that TensorFlow used have been

deprecated in Bazel versions newer than 0.18.1 (e.g., 0.19.1).

Finding 7: 2.8% of DL compatibility issues are related to

TPL-DEV.

(8) Low-level Library and Hardware (LLL-Hardware): Five issues

are classi�ed as LLL-Hardware, accounting for 1.4%. This cate-

gory mainly includes incompatibility between CUDA/cuDNN and

GPU. For example, CUDA 9 does not support GPU architecture

compute_20 and sm_20 [11]. Nvidia Fermi M2090 is a GPU with

compute capability 2.0 that does not support cuDNN library [1].

Finding 8: 1.4% of DL compatibility issues are LLL-Hardware.

(9)Others: Each type in this category has nomore than �ve issues,

which are related to CORE-Python (2), LLL-LLL (4), OS-Hardware (1),

and DEV-Hardware (1). For example, posts with the IDs #38546672

[4], #55261785 [20], #51320027 [14], and #69865825 [30] for the four

types, respectively.

Finding 9: DL compatibility issues can be also related to

CORE-Python, LLL-LLL, OS-Hardware, and DEV-Hardware.

Figure 14 shows the evolution of DL compatibility issues. Over

time, all types of DL compatibility issues show an increasing trend.

Among these types, CORE-TPL, TPL-TPL, and TPL-LLL have re-

ceived more attention from developers. With the evolution of DL

frameworks, API signatures and behaviors inevitably change to

accommodate new requirements, resulting in incompatible APIs

(CORE-TPL). Besides, the integration of di�erent TPLs when build-

ing DL systems often leads to version mismatches between the

libraries involved, causing more TPL-TPL issues. Moreover, TPL-

LLL issues have become more prevalent because DL systems often

require DL frameworks to interact with low-level libraries such

481

Compatibility Issues in Deep Learning Systems: Problems and Opportunities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

 CORE-TPL TPL-OS

 TPL-TPL TPL-DEV

 TPL-LLL LLL-Hardware

 TPL-Python Others

 TPL-Hardware

2012 2014 2016 2018 2020 2022

0

20

40

60

80

100

120

N
u

m
b

e
r
 o

f
I
s
s
u

e
s

Year

Figure 14: Evolution of DL Compatibility Issues over Time

as CUDA and cuDNN. This interaction is necessary to improve

training e�ciency, but it can introduce compatibility issues.

4.1.2 Stages. We classi�ed the manifestation stage of DL compati-

bility issues into two stages, as depicted in Table 2:

• Installation. The issue appeared in the process of the environ-

ment con�guration of DL systems, such as selecting software

and hardware environments, and installing/compiling TPLs.

• Execution. The issue that appeared in the execution/running of

DL systems.

We observed that 300 issues appeared in the execution stage,

while only 52 issues were found in the installation stage. This indi-

cates that most DL compatibility issues are not explicit, and often

expose only at runtime. In particular, most of CORE-TPL (100%),

TPL-TPL (94.3%), TPL-LLL (94.9%), and TPL-Hardware (95.5%) oc-

curred during execution. In most cases, compatibility issues would

occur when CORE/TPL dynamically invokes other TPLs’ APIs.

On the contrary, most of TPL-Python (84.8%) and TPL-DEV (60.0%)

issues are manifested during the installation stage. For example, 28

TPL-Python issues are related to the installation stage. Given a TPL,

its supported Python versions are often limited, especially for an

older Python version (e.g., 2.7 [6]) or a recently released Python ver-

sion (e.g., Figure 10). Moreover, the number of compatibility issues

related to TPL-OS is the same during installation and execution,

both of which are 6. For LLL-Hardware, three issues occurred in the

execution stage, while other two occurred during installation.

Finding 10: Most (85.2%) of DL compatibility issues were

exposed during the execution stage. CORE-TPL (100%), TPL-

TPL (94.3%), TPL-LLL (94.9%), and TPL-Hardware (95.5%) are

prone to occur during execution, while TPL-Python (84.8%)

and TPL-DEV (60.0%) are likely to appear in the installation.

4.1.3 Symptoms. We classi�ed the impact of compatibility issues

on DL systems into three categories:

• Breaking. The issue led to the failure of components at the instal-

lation stage or the termination of the program during execution.

• Low Performance. The issue caused a low execution e�ciency.

• Unexpected Behavior. The issue resulted in unexpected results

but the systems did not throw an exception during execution.

We found that 321 DL compatibility issues have a breaking im-

pact on both the installation and execution stages. For example,

Figure 12 shows that the system encounters an OSError during

execution. The large proportion of breaking impact on DL systems

shows the necessity and urgency to develop tools for detecting and

repairing such issues [106, 124, 129].

Table 3: Distribution of Root Causes and Types
Type

API Incompatibility
UC VMCRL Total

VMCL VMLL

CORE-TPL 115 0 0 0 115

TPL-TPL 0 77 6 5 88

TPL-LLL 0 0 13 46 59

TPL-Python 0 0 33 0 33

TPL-Hardware 0 0 22 0 22

TPL-OS 0 0 12 0 12

TPL-DEV 0 0 10 0 10

LLL-Hardware 0 0 5 0 5

Others 0 0 7 1 8

Total 115 77 108 52 352

Although there are only a few compatibility issues that cause low

performance (28) and unexpected behavior (3) to DL systems, their

impact is not negligible. For the example displayed in Figure 11, due

to the TPL-Hardware issue, the system will perform model train-

ing on the CPU. This will signi�cantly impact the model training

e�ciency. In addition, API evolution may lead to unexpected behav-

ior in the code implementation. For example, torch.arrange()

returns a tensor of type �oat for 0.4.0 while it returns a tensor of

type long for 0.4.1 [16].

Finding 11:Most (91.2%) of DL compatibility issues have a

breaking impact on the installation stage or execution stage

of DL systems.

4.2 RQ2: Root Causes and Solutions

4.2.1 Root Causes. We identi�ed the following three root causes of

DL compatibility issues, including API incompatibility, unsupported

component, and version mismatch between compiled and runtime

libraries. Table 3 depicts the distribution of root causes of DL com-

patibility issues across the types.

(1) Root Cause 1: API Incompatibility.TheDL compatibility issue is

caused by the API evolution breaking the forward and/or backward

compatibility. We can observe from Table 3 that API incompatibil-

ity is the most common root cause that induced DL compatibility

issues (192/352). According to the interaction between components,

API incompatibility can be further divided into two subcategories:

version mismatch between CORE and libraries’ APIs (VMCL: 115/192)

and version mismatch between libraries’ APIs (VMLL: 77/192).

Finding 12: API incompatibility is the most common root

cause, accounting for 54.5%. Of which, 59.9% are caused by

VMCL and 40.1% are induced by VMLL.

VersionMismatchBetweenCORE and Libraries’ APIs (VMCL)

(115/192). It can be seen from Table 3 that all the CORE-TPL issues

are introduced by VMCL. We further analyzed the API evolution

pattern (adopted from [44]) in these issues, as shown in Table 4.

Note that in the table, we categorize the rename and relocated

patterns as part of the remove pattern. Speci�cally, RemoveAlias

(16.5%), RemoveModule (16.5%), AddParameter (9.6%), RemoveFunc-

tion (8.7%), RemoveClass (7.8%), and AddFuntion (7.0%) are the top

six API evolution patterns, accounting for 66.1%. It is noted that

RemoveAlias is mainly found in the issues related to TensorFlow.

For example, in order to make APIs of TensorFlow 1.0 compati-

ble with TensorFlow 2.0, developers usually remove the original

alias and add a new one, such as changing tf.get_variable to

tf.compat.v1.get_variable [26]. In addition, although devel-

opers usually attempted to not breaking backward compatibility

when changing APIs, these API evolution changes introduced 38.3%

forward-incompatible issues, as mentioned in Finding 1.

482

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jun Wang, Guanping Xiao, Shuai Zhang, Huashan Lei, Yepang Liu, and Yulei Sui

Table 4: API Evolution Patterns in VMCL-Issues
Pattern Subpattern # Issues Percentage Total

Class

AddClass 5 4.3%

17RemoveClass 9 7.8%

ChangeInheritance 3 2.6%

Function

AddFunction 8 7.0%

24
RemoveFunction 10 8.7%

ChangeReturnType 3 2.6%

ChangeReturnValue 3 2.6%

Parameter

AddParameter 11 9.6%

23
RemoveParameter 8 7.0%

AddParameterDefault 1 0.9%

MoveParameter 3 2.6%

Module
AddModule 3 2.6%

22
RemoveModule 19 16.5%

Alias
AddAlias 7 6.1%

26
RemoveAlias 19 16.5%

Attribute
AddAttribute 2 1.7%

2
RemoveAttribute 0 0.0%

Others AddException 1 0.9% 1

Total 115 100.0% 115

Table 5: Distribution of Exceptions in VMCL and VMLL
Exception VMCL Exception VMLL

AttributeError 47 AttributeError 38

ImportError 27 ImportError 16

TypeError 23 TypeError 13

ModuleNotFoundError 8 RuntimeError 3

RuntimeError 2 ValueError 2

Others 8 NotImplementedError 2

Total 115
Others 3

Total 77

Finding 13: The most common API evolution patterns re-

lated to VMCL issues are RemoveAlias (16.5%), RemoveModule

(16.5%), AddParameter (9.6%), RemoveFunction (8.7%), Remove-

Class (7.8%), and AddFuntion (7.0%).

Version Mismatch Between Libraries’ APIs (VMLL) (77/192).

Among the 192 issues, 40.1% are caused by VMLL, which is the

major root cause of TPL-TPL. This is mainly due to the independent

development and design of di�erent libraries. The lack of standard-

ized speci�cations and limited testing also contribute to the issues.

Particularly, as mentioned in Finding 2, TensorFlow-Keras intro-

duced the most TPL-TPL issues, which are caused by VMLL, as the

examples shown in Figures 6 and 7. There are 17 TPL-TPL issues

related to the mixed use of Keras and tf.keras. Since TensorFlow 2.0,

Keras becomes the core module of TensorFlow [54]. To avoid the

compatibility issues caused by the mixed use of Keras and tf.keras,

it is recommended to import all Keras API from TensorFlow, i.e.,

using tf.keras [55].

Besides, we further counted the exception type of issues caused

by API incompatibility (i.e., VMCL and VMLL), as shown in Table 5.

We found that AttributeError, ImportError, and TypeError are the top

three most frequent exception types in API incompatibility issues,

which con�rms a similar result from [129].

Finding 14: AttrituteError, ImportError, and TypeError are

the top three exceptions caused by API incompatibility.

(2) Root Cause 2: Unsupported Component (UC). 108 compati-

bility issues are caused by using unsupported components to the

installation and/or execution of DL systems. UC is the second most

common root cause that exists in all the types of DL compatibility

issues except CORE-TPL. We can observe from Table 3 that all the

TPL-Python, TPL-Hardware, TPL-OS, TPL-DEV, LLL-Hardware, and

others are caused by UC. Some components are only compatible

for speci�c environments. For example, TensorFlow only supports

64-bit Python shown in Figure 10. Google TPU does not support

some graph operations when using TensorFlow [15].

Finding 15: 30.7% of DL compatibility issues are caused by

UC, which is the second most common root cause. Besides,

UC is one of the root causes of all types except CORE-TPL.

Table 6: Distribution of Solutions to API Incompatibility

Solution
VMCL

VMLL Total
forward backward

Version Change 31 6 57 94

Code Change

Change API 9 40 1 50

Change Import 8 22 19 49

Change Build 0 0 0 0

Table 7: Distribution of Solutions to UC and VMCRL
Solution UC VMCRL Total

Version Change 76 52 128

Code Change

Change API 1 0 1

Change Import 0 0 0

Change Build 15 0 15

(3) Root Cause 3: VersionMismatch Between Compiled and Runtime

Libraries (VMCRL). There are 52 (14.8%) DL compatibility issues

caused VMCRL. Among them, 46 issues are related to TPL-LLL,

while among the rest, �ve issues are TPL-TPL and one issues are

LLL-LLL. Compilation and execution are two separate processes,

which are often conducted by di�erent developers, especially for

the releases of TPL binaries. Thus, when executing a compiled

binary, it is di�cult to con�gure required libraries, if there is no

guidance provided.

Finding 16: 14.8% of DL compatibility issues are caused by

VMCRL, of which 88.5% are related to TPL-LLL.

4.2.2 Solutions. By analyzing the 352 issues, we identi�ed the

following two common �xing strategies that developers often use

to solve DL compatibility issues, covering 330 issues. Note that

some issues can be �xed by more than one solution.

• Version Change. The issue was �xed by changing the version

of a component.

• Code Change. The issue was �xed by changing the code, mainly

including changing API, changing the import statement, and

changing the build �le.

(1) Solutions to Root Cause 1. Table 6 shows the distribution of

solutions to DL compatibility issues caused by API incompatibility.

For VMCL, it can be observed that 31 forward-incompatible issues

were solved by changing the TPL version, while 17 issues were

repaired by changing the code (API and import statement). By

contrast, 62 backward-incompatible issues were �xed by changing

the code, especially the API usage. The results are expected. It is

convenient to upgrade the installed version to the corresponding

new version for the forward-incompatible issues. However, for the

backward-incompatible issues, developers need to change the API

usage if they want to use the new TPL version. Besides, for VMLL,

57 issues were �xed by changing the version, and 20 issues got a

code �x. This is because changing the incompatible TPL version is

easier than changing the code in a TPL for �xing such issues.

Finding 17: For compatibility issues caused by VMCL, 67.4%

of forward-incompatible issues were �xed by changing the

TPL version, while 89.9% of backward-incompatible issues

were repaired by changing the code. In addition, 74.0% of

issues caused by VMLL were �xed by version change.

(2) Solutions to Root Causes 2 and 3.

Table 7 displays the distribution of solutions to UC and VMCRL.

76 UC-caused issues were repaired by changing the component

version, while 16 issues were �xed by a code change, especially

changing the build �le to rebuild/remake. Besides, all the VMCRL-

caused issues were �xed by a version change. For example, the C

483

Compatibility Issues in Deep Learning Systems: Problems and Opportunities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 8: Library API Evolution
Tool Extract Used API Extract TPL API Match API Detect Changes Repair API

AexPy [44] ✓ ✓

PyCompat [129] ✓ ✓ ✓ ✓

DLocator [109] ✓ ✓ ✓

MLCatchUp [60] ✓ ✓ ✓ ✓

APIScanner [103] ✓ ✓

Relancer [131] ✓ ✓

Table 9: Detection and Repair of Dependency Con�icts
Tool Infer TPL Infer Python Infer LLL

PyEGo [124] ✓ ✓ ✓

DockerizeMe [63] ✓ ✓

Sni�erDog [110] ✓

pipreqs [52] ✓

PyDFix [84] ✓

V2 [64] ✓

Watchman [111] ✓

PyCRE [42] ✓

smartPip [106] ✓

API version of Numpy that TensorFlow compiled against is 0xb, not

installed 0xa [18]. Upgrading the Numpy version �xed the issue.

Finding 18: Most (70.4%) of the issues caused by UC and all

VMCRL-induced issues were solved by changing the compo-

nent version.

5 RQ3: TOOL SURVEY

We conducted a tool survey to study the current research on auto-

mated addressing DL compatibility issues.

Tool Selection Criteria and Study Approach. We collected a

total of 1,779 research papers from the top SE conferences, i.e., ICSE,

ASE, and FSE, published in ACM Proceedings over the past �ve

years (18-22). To ensure up-to-date information, we also included

the accepted papers of ICSE 2023, which were available on the

o�cial website prior to our submission.

• First, we reviewed the 1,779 collected papers to identify papers

that meet the following �ltering criteria: (1) The paper introduces

a tool speci�cally designed to address issues related to Python AND

(dependency con�icts OR API evolution OR compatibility issues); (2)

The tool is readily available for download and use. Through this

process, we extracted nine papers.

• Next, we continued the identi�cation process by examining the

references and citations of the nine papers obtained in the �rst

step, applying the same �ltering criteria. At this stage, we identi-

�ed additional �ve papers and one tool.

• Finally, we extracted a total of 15 tools, consisting of 14 papers

and one tool from GitHub. We classi�ed these tools into two

categories, i.e., library API evolution, detection and repair of de-

pendency con�icts, as shown in Table 8 and Table 9, respectively.

Two authors independently reviewed and identi�ed all the pa-

pers. The inter-rater agreement was measured using Cohen’s kappa

coe�cient, which exceeded 95% after their inspection. In cases of

inconsistency, a third author participated in the discussion to reach

a consensus and �nalize the results. Besides, we also con�gured

and executed these tools to evaluate their functionality.

Tool Survey Results. The tools listed in Table 8 that are related to

library API evolution, can be categorized into two main approaches:

static and dynamic. The static approach involves establishing a

knowledge base of library API evolution histories using manual or

semi-automatic techniques. The Python project source code is then

parsed to extract the invoked APIs through AST. The extracted

APIs are subsequently matched against the library APIs stored

in the prebuilt knowledge base. For example, MLCatchUp [60],

DLocator [109], PyCompat [129], and APIScanner [103] employ the

static method to identify deprecated APIs or APIs with breaking

changes in Python projects. Dynamic methods are used by tools

like AexPy [44] and Relancer [131]. AexPy uses dynamic re�ection

to infer the types, parameters, aliases, and inheritance, making

the API evolution knowledge base more comprehensive. Relancer

adopts an iterative approach by executing code snippets in Jupyter

Notebook and iteratively repairing deprecated APIs based on the

runtime error messages.

Besides, tools (Table 9) for resolving dependency con�icts in

Python programs can be divided into static and dynamic approaches.

In the static method, the dependency relationships between libraries

and their required versions are collected from platforms such as

the Python-PyPI repository and Libraries.io. Tools like PyEgo [124],

PyCRE [42], DockerizeMe [63], and Watchman [111] convert this

collected data into a dependency knowledge graph. They then parse

the project’s AST to identify the resources (e.g., APIs) utilized by

libraries, and use these resources as query conditions. By designing

appropriate traversal algorithms, they resolve the dependencies or

version con�icts of libraries in the project by traversing the knowl-

edge graph. smartPip [106] extracts version constraints between

TPLs from a prebuilt knowledge base. These constraints are then

transformed into satis�ability modulo theories (SMT) expressions.

By solving these SMT expressions, smartPip e�ectively resolves ver-

sion dependencies between TPLs. pipreqs [52] and Sni�erDog [110]

adopt a di�erent approach. They �rst parse the project’s AST to

extract the APIs used. They then compare these APIs with the en-

tries in a prebuilt database to infer the corresponding TPLs used

in the project. Dynamic methods are also employed by tools such

as V2 [64] and PyDFix [84]. V2 builds on DockerizeMe [63] and

uses runtime error messages to narrow down the search space for

candidate TPLs. PyDFix tackles dependency issues in large Python

projects by running the project’s build process (e.g., pip install

and python setup.py) and analyzing the dependency errors found

in the build log.

Finding 19: Of the six tools related to library API evolu-

tion, none of them can fully realize the entire automation

process from detection to repair of DL compatibility issues

caused by API incompatibility. For the resolution of depen-

dency con�icts in Python programs, nine tools attempt to �x

dependency con�icts induced by TPL-TPL, but only a few of

them can infer the incompatibilities caused by the Python

interpreter versions and system libraries. Currently, none

of them can detect and �x compatibility issues caused by

CUDA/cuDNN which are commonly used in DL systems.

6 DISCUSSIONS AND IMPLICATIONS

6.1 Comparison with Traditional Software

Python Programs. In Python programs, compatibility issues arise

primarily from API incompatibility [44, 129] and dependency con-

�icts between libraries [42, 124]. Since our study focuses on Python-

based DL systems (as de�ned in Section 2), CORE-TPL and TPL-TPL

are the most common types (57.7%) of compatibility issues in this

domain. DL systems, characterized by their data-driven nature, de-

mand substantial computational resources (e.g., GPUs and TPUs), to

484

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jun Wang, Guanping Xiao, Shuai Zhang, Huashan Lei, Yepang Liu, and Yulei Sui

expedite model training. DL frameworks rely heavily on low-level

libraries, particularly CUDA and cuDNN, to take advantage of the

computational capabilities of GPUs. As a result, compatibility is-

sues can arise between DL libraries and the underlying components,

especially within DL systems. Notably, TPL-LLL, TPL-Hardware,

and LLL-Hardware are common types in DL systems, accounting

for 24.4% of the total compatibility issues.

Android Applications. In Android applications, compatibility is-

sues are mainly related to variations in device/platform con�gu-

rations [113, 115], evolutionary changes in the OS [80, 117], and

callback compatibility [65]. Similar to our �ndings, compatibility

issues in Android occur during both the installation and execu-

tion/runtime stages [37]. During installation, the majority of fail-

ures are due to applications using library functions that are not sup-

ported by the underlying architecture. Meanwhile, runtime crashes

often stem from API incompatibility at di�erent levels resulting

from OS evolution. There are signi�cant di�erences in compati-

bility issues between Android applications and DL systems. For

Android applications, compatibility issues are primarily caused by

fragmentation, where certain versions of the Android OS can only

run on certain devices. On the other hand, in DL systems, incompat-

ibility with hardware devices often occurs due to version mismatch

between the DL framework and the underlying hardware (TPL-

Hardware). Another di�erence is the nature of breaking changes.

In Android, breaking changes typically result from the evolution of

the OS. In contrast, DL systems exhibit greater independence at the

OS level, with fewer dependencies on speci�c OS versions. Besides,

the API changes are primarily driven by library evolution.

Web Applications. Compatibility issues in web applications en-

compass various aspects, including cross-browser compatibility

[82], and web API evolution-related compatibility [73, 123]. The

�rst type is speci�c to web applications. In addition to disruptive

changes such as adding or removing methods and parameters, API

evolution inweb applications often involves issues like unsupported

request access and API access restrictions. These issues, speci�c to

web API evolution, have not been observed in DL systems [96].

Others. Linux system compatibility is mainly re�ected in kernel ver-

sion compatibility [56], application version compatibility [89, 95],

and system API call compatibility [34]. The root cause of these com-

patibility issues often stems from the di�erences in the versions

of these components. To maintain backward compatibility, Linux

developers often choose to rename old APIs, e.g., from vm86() to

vm86old() [34]. Besides, similar to DL systems, compatibility is-

sues in Java software systems mainly include API evolution and

component compatibility [69]. However, Java software systems put

more emphasis on maintaining backward compatibility of compo-

nents compared to our study, which considers both forward and

backward compatibility. In addition, the peculiarities of the Java

language, such as the explicit speci�cation of class and method

modi�ers [116], result in API evolution patterns that di�er from

those observed in DL systems.

In summary, compatibility issues in DL systems di�er from those

in traditional software due to their unique characteristics and re-

quirements. Generalizations about traditional software may not be

directly applicable to DL systems.

6.2 Implications

Ensuring Consistency Between API Usage and Installed Li-

brary Versions. A large proportion of DL compatibility issues

are caused by API incompatibility, especially the CORE-TPL and

TPL-TPL (Findings 1, 2, and 12). DL developers should pay attention

to the consistency between the used APIs and the installed library

version. In particular, when encountering exceptions such as At-

tributeError, ImportError, and TypeError during execution (Finding

14), developers are suggested to consider the potential compatibility

issues. For issues caused by the API invocation between TPL and

TPL, a common practice is to reinstall the libraries that satisfy the

version constraints. We suggest using tools like PyEGo [124] to

resolve the version con�icts between TPLs (Finding 19).

Early Determination of Component Versions. Due to the data-

driven nature of DL, these systems rely heavily on high-performance

computing resources (e.g., GPUs) to accelerate the model training

process, resulting in a high proportion of TPL-LLL, TPL-Hardware,

and LLL-Hardware issues (Findings 3, 5, and 8). Such dependencies

often lead to breaking impact (Findings 10 and 11). Therefore, to

maintain the correct con�guration of DL systems, developers should

carefully examine the o�cial documents to determine the appro-

priate versions of components. For example, the tested compatible

versions of CUDA/cuDNN for di�erent TensorFlow versions [102],

the compatible versions between CUDA/cuDNN and drivers [87],

and the GPU architectures [94].

Challenges in Automated Detection and Repair of API Evolu-

tion Issues. (1) Construct API Mappings: Two types of mappings

need to be established. The �rst mapping is between the API calls

in the project and their corresponding de�nitions in TPL. Current

approaches mainly rely on matching the API names. For example,

DLocator [109] formats all API calls into a fully quali�ed name for-

mat (i.e., A.B.C.API_Name) to represent the hierarchical structure

of the entire API path. The goal is to eliminate the impact of aliases

and allow for accurate mapping to the TPL API. However, there are

two problems with this approach. First, the Python import mech-

anism can cause inconsistencies between the actual call path and

the actual API path in the source code, especially for complex DL

frameworks. For example, the API torch.load in PyTorch version

1.5.0 has the real path torch.serialization.load in the source

code. Other APIs with the same name include torch.hub.load and

torch.jit.__init__.load. This inconsistency leads to multiple

match results. Second, complex DL frameworks like PyTorch, which

have many built-in APIs compiled in C/C++, often have multiple

overloaded APIs. For example, torch.max has three overloads in

PyTorch version 1.5.0 [90], making it challenging to determine the

correct mapping between the called API and its de�nition in the

TPL. The second mapping involves establishing relationships be-

tween TPL APIs across di�erent versions to analyze API evolution.

MLCatchUp [60] creates this mapping manually because it is di�-

cult to automate. Mapping becomes particularly challenging when

TPL APIs are renamed or removed. (2) Repair and Veri�cation: This

phase aims to repair and verify the invoked APIs that have breaking

changes. However, automatically switching to another API when

repairing a speci�c API fails is a non-trivial task. Sequential code

execution makes it di�cult to continue the repair process. For ex-

ample, when Relancer [131] fails to repair the �rst encountered

485

Compatibility Issues in Deep Learning Systems: Problems and Opportunities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

API, it cannot continue to repair other APIs with breaking changes

in the code snippet.

Challenges in Automated Detection and Resolution of In-

compatible Component Versions. (1) Python Interpreter Iden-

ti�cation: Inferring the speci�c version of the Python interpreter

is currently done using the Python standard libraries and syntax

features employed in Python projects [124]. However, this approach

becomes challenging when projects don’t use standard libraries or

when explicit syntax features are absent. (2) Low-level Library De-

pendency Identi�cation: Resolving compatibility issues that arise

from low-level libraries such as CUDA/cuDNN, which depend on

speci�c GPU hardware models, poses signi�cant di�culties and

may require low-level code dependence analysis [99, 100]. (3) OS-

speci�c Dependency Identi�cation: Addressing compatibility issues

stemming from TPL-OS interactions is a non-trivial task.

7 THREATS TO VALIDITY

Internal Threat. The main internal threat comes from the subjec-

tive bias and error in the manual classi�cation and labeling of DL

compatibility issues. We followed the open coding method in clas-

si�cation and constantly optimized the classi�cation according to

the iterative rounds. To minimize subjective bias, two authors inde-

pendently classi�ed the posts, compared their results, and resolved

any inconsistencies through discussion with a third author until a

consensus was reached. Besides, we tried to reproduce the reported

issues to facilitate the classi�cation process. Moreover, the dataset

is publicly available for further investigation and replication.

External Threat. Our dataset is sourced exclusively from the SO,

without incorporating data from other sources. This poses a poten-

tial threat to the generalizability of our �ndings. Besides, our study

relies on the selection of 12 keywords to �lter the data. However,

this approach may inadvertently exclude relevant posts, thus in-

troducing a potential bias. To alleviate this threat, we selected six

common keywords related to Python program exceptions, which

covered about 54.4% of the 3,072 posts. Moreover, the inclusion of

posts related to Theano, a discontinued DL library, may limit the

applicability of our results. However, there are only 16 compatibility

posts tagged with Theano, which is a relatively small proportion.

8 RELATED WORK

Empirical Study on DL Bugs. The characteristics of various DL

bugs have been widely studied, e.g., DL bugs taxonomy [39, 45,

67, 68, 86, 108, 127], cloud API misuse [105], DL job failures [125],

performance issues [38, 81], development and deployment faults [40,

41, 126], DL libraries and compiler bugs [46, 70, 79, 93], and model

optimization bugs [57]. For example, Yang et al. [122] conducted

an analysis of DL bugs on Github and found that certain bugs were

the result of API evolution and incorrect con�gurations. Zhang

et al. [125] highlighted that API in DL frameworks can lead to

failures in DL jobs. However, these studies did not speci�cally focus

on compatibility issues. Our paper comprehensively analyzes the

characteristics of DL compatibility issues.

Analysis of API Evolution in Python Libraries.Many studies

focus on the analyzing API evolution [91, 128, 129], detecting and

evaluating API changes [35, 44, 60, 103, 109] in Python projects.

Zhang et al. [129] conducted the �rst large-scale and �ne-grained

study of the evolution patterns of Python libraries. Du et al. [44]

proposed AexPy, an API-model-based approach that outperforms

existing tools in detecting breaking changes in Python libraries.

Repairing Dependency Con�icts in Python Programs.Various

studies have focused on automating the detection and resolution

of dependency con�icts between TPLs in Python projects [42, 63,

64, 84, 106, 110, 111, 124]. The state-of-the-art, PyEgo, proposed by

Ye et al. [124], automatically resolves compatibility issues related

to the Python interpreter, TPLs, and system libraries.

Compatibility Issues in other Software Systems. Compatibil-

ity issues have been widely studied in Android apps [37, 65, 66,

78, 80, 92, 97, 101, 113, 114, 117]. Many studies focus on detect-

ing deprecated APIs [61, 74, 76, 77, 120], and developing tools to

resolve compatibility issues [48, 58, 59, 72, 75, 115]. For example,

Zhao et al. [130] proposed RepairDroid, a tool designed to address

three types of compatibility issues in Android apps: OS-induced,

device-speci�c, and inter-callback compatibility issues. Besides, the

continuous evolution of web APIs and client apps often leads to

compatibility issues related to API evolution and cross-browser

behavior [73, 82, 96, 123]. Furthermore, several studies have been

conducted to investigate compatibility issues in other domains, such

as Linux [34, 56, 89, 95], Java [69, 116], C/C++ [71], and JavaScript

[85]. Our study presents the �rst comprehensive empirical study of

compatibility issues in DL systems, distinguishing it from previous

research on traditional software.

9 CONCLUSION

In this paper, we conducted the �rst comprehensive empirical study

to characterize compatibility issues in DL systems. We identi�ed

352 DL compatibility issues from 3,072 Stack Over�ow posts. By

analyzing these issues, we proposed a taxonomy of DL compati-

bility issues and learned their manifestation stages and symptoms.

We further summarized three root causes and two common �xing

strategies. Moreover, we conducted a tool survey to investigate

the current research state on automated detection and repair tools

for DL compatibility issues. We believe that this study can provide

researchers and practitioners with a better understanding of DL

compatibility issues and facilitate future research in related areas.

In the future, we plan to leverage the �ndings to develop tools for

detecting and repairing DL compatibility issues.

10 DATA AVAILABILITY

The replication package and the dataset are publicly available at

https://doi.org/10.5281/zenodo.8207011.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments

and suggestions. This work was supported in part by National Natu-

ral Science Foundation of China under Grant 62002163, Natural Sci-

ence Foundation of Jiangsu Province under Grant BK20200441, Aus-

tralian Research Council under Grants DP210101348 and FT220100391,

and the National Key Research and Development Program of China

under Grant 2019YFE0198100. Any opinions, �ndings, and conclu-

sions or recommendations expressed in this publication are those

of the authors and do not necessarily re�ect the views of the above

sponsoring entities.

486

https://doi.org/10.5281/zenodo.8207011

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jun Wang, Guanping Xiao, Shuai Zhang, Huashan Lei, Yepang Liu, and Yulei Sui

REFERENCES
[1] StackOver�ow.com 32444016. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/32444016.
[2] StackOver�ow.com 33651810. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/33651810.
[3] StackOver�ow.com 33671372. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/33671372.
[4] StackOver�ow.com 38546672. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/38546672.
[5] StackOver�ow.com 41005249. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/41005249.
[6] StackOver�ow.com 42456461. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/42456461.
[7] StackOver�ow.com 42675391. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/42675391.
[8] StackOver�ow.com 42823627. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/42823627.
[9] StackOver�ow.com 43069519. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/43069519.
[10] StackOver�ow.com 44993098. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/44993098.
[11] StackOver�ow.com 48383846. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/48383846.
[12] StackOver�ow.com 48929098. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/48929098.
[13] StackOver�ow.com 49079990. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/49079990.
[14] StackOver�ow.com 51320027. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/51320027.
[15] StackOver�ow.com 52906186. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/52906186.
[16] StackOver�ow.com 53467011. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/53467011.
[17] StackOver�ow.com 53707068. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/53707068.
[18] StackOver�ow.com 53765453. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/53765453.
[19] StackOver�ow.com 53950186. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/53950186.
[20] StackOver�ow.com 55261785. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/55261785.
[21] StackOver�ow.com 56406862. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/56406862.
[22] StackOver�ow.com 57122907. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/57122907.
[23] StackOver�ow.com 57681910. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/57681910.
[24] StackOver�ow.com 57718512. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/57718512.
[25] StackOver�ow.com 58901682. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/58901682.
[26] StackOver�ow.com 59226533. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/59226533.
[27] StackOver�ow.com 59493606. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/59493606.
[28] StackOver�ow.com 59894720. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/59894720.
[29] StackOver�ow.com 65988678. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/65988678.
[30] StackOver�ow.com 69865825. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/69865825.
[31] StackOver�ow.com 71174306. 2023. Retrieved January 10, 2023 from https:

//stackover�ow.com/questions/71174306.
[32] Anaconda. 2023. Retrieved January 10, 2023 from https://www.anaconda.com/.
[33] archive.org. 2023. stackexchange. Retrieved January 10, 2023 from https://

archive.org/details/stackexchange_20221005.
[34] Mojtaba Bagherzadeh, Na�seh Kahani, Cor-Paul Bezemer, Ahmed E Hassan,

Juergen Dingel, and James R Cordy. 2018. Analyzing a Decade of Linux System
Calls. EMSE (2018).

[35] Wilson Baker, Michael O’Connor, Seyed Reza Shahamiri, and Valerio Terragni.
2022. Detect, Fix, and Verify TensorFlow API Misuses. In SANER.

[36] bazel.com. 2023. Bazel. Retrieved January 10, 2023 from https://bazel.build/.
[37] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A Large-scale Study of

Application Incompatibilities in Android. In ISSTA.
[38] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin

Peng. 2022. Understanding Performance Problems in Deep Learning Systems.
In FSE.

[39] Junjie Chen, Yihua Liang, Qingchao Shen, and Jiajun Jiang. 2022. Toward
Understanding Deep Learning Framework Bugs. TOSEM (2022).

[40] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xu-
anzhe Liu. 2020. A Comprehensive Study on Challenges in Deploying Deep
Learning Based Software. In FSE.

[41] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu
Wang, and et al. 2021. An Empirical Study on Deployment Faults of Deep
Learning Based Mobile Applications. In ICSE.

[42] Wei Cheng, Xiangrong Zhu, and Wei Hu. 2022. Con�ict-aware Inference of
Python Compatible Runtime Environments with Domain Knowledge Graph. In
ICSE.

[43] Danny Dig and Ralph Johnson. 2006. How do APIs Evolve? A Story of Refactor-
ing. SMR (2006).

[44] Xingliang Du and Jun Ma. 2022. AexPy: Detecting API Breaking Changes in
Python Packages. In ISSRE.

[45] Xiaoting Du, Yulei Sui, Zhihao Liu, and Jun Ai. 2022. An Empirical Study of
Fault Triggers in Deep Learning Frameworks. TDSC (2022).

[46] Xiaoting Du, Guanping Xiao, and Yulei Sui. 2020. Fault Triggers in the Tensor-
Flow Framework: An Experience Report. In ISSRE.

[47] Xiaoting Du, Zheng Zheng, Guanping Xiao, Zenghui Zhou, and Kishor S Trivedi.
2021. DeepSIM: Deep Semantic Information-based Automatic Mandelbug Clas-
si�cation. TRel (2021).

[48] Mattia Fazzini, Qi Xin, and Alessandro Orso. 2019. Automated API-usage Update
for Android Apps. In ISSTA.

[49] GitHub.com. 2023. commit 76f7c02 of tensor�ow. Retrieved Janu-
ary 10, 2023 from https://github.com/tensor�ow/tensor�ow/commit/
333dc32�79af21484695157f3d141dc776f7c02.

[50] GitHub.com. 2023. commit 9a1b9ef of keras. Retrieved Janu-
ary 10, 2023 from https://github.com/keras-team/keras/commit/
d663fda862df1c831e7f93f1e3feb2e189a1b9ef.

[51] GitHub.com. 2023. commit c33da89 of tensor�ow. Retrieved Janu-
ary 10, 2023 from https://github.com/tensor�ow/tensor�ow/commit/
7a8c63da365106048dc96a�ddb39e2fdc33da89.

[52] Github.com. 2023. pipreqs. Retrieved January 10, 2023 from https://github.com/
bndr/pipreqs.

[53] Github.com. 2023. Tensor�ow 1.6.0. Retrieved January 10, 2023 from https:
//github.com/tensor�ow/tensor�ow/releases/tag/v1.6.0.

[54] GitHub.com. 2023. TensorFlow 2.0.0. Retrieved January 10, 2023 from https:
//github.com/tensor�ow/tensor�ow/releases/tag/v2.0.0.

[55] GitHub.com. 2023. TensorFlow 2.4.0. Retrieved January 10, 2023 from https:
//github.com/keras-team/keras/releases/tag/2.4.0.

[56] Michael W. Godfrey and Qiang Tu. 2000. Evolution in Open Source Software: A
Case Study. In ICSM.

[57] Hao Guan, Ying Xiao, Lijia Ying, Yepang Liu, and Guangdong Bai. 2023. A Com-
prehensive Study of Real-world Bugs in Machine Learning Model Optimization.
In ICSE.

[58] Stefanus A Haryono, Ferdian Thung, Hong Jin Kang, Lucas Serrano, Gilles
Muller, Julia Lawall, and et al. 2020. Automatic Android Deprecated-API Usage
Update by Learning from Single Updated Example. In ICPC.

[59] Stefanus A Haryono, Ferdian Thung, David Lo, Lingxiao Jiang, Julia Lawall,
Hong Jin Kang, and et al. 2022. AndroEvolve: Automated Android API Update
With Data Flow Analysis and Variable Denormalization. EMSE (2022).

[60] Stefanus A Haryono, Ferdian Thung, David Lo, Julia Lawall, and Lingxiao Jiang.
2021. MLCatchUp: Automated Update of Deprecated Machine-learning APIs in
Python. In ICSME.

[61] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.
2018. Understanding and Detecting Evolution-induced Compatibility Issues in
Android Apps. In ASE.

[62] Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He, and Paul Kennedy.
2019. Deep Learning Techniques for Medical Image Segmentation: Achieve-
ments and Challenges. JDI (2019).

[63] Eric Horton and Chris Parnin. 2019. Dockerizeme: Automatic Inference of
Environment Dependencies for Python Code Snippets. In ICSE.

[64] Eric Horton and Chris Parnin. 2019. V2: Fast Detection of Con�guration Drift
in Python. In ASE.

[65] Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Understand-
ing and Detecting Callback Compatibility Issues for Android Applications. In
ASE.

[66] Huaxun Huang, Ming Wen, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2021.
Characterizing and Detecting Con�guration Compatibility Issues in Android
Apps. In ASE.

[67] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-
drea Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning
Systems. In ICSE.

[68] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In FSE.

[69] Kamil Jezek and Jens Dietrich. 2017. API Evolution and Compatibility: A Data
Corpus and Tool Evaluation. J. Object Technol. (2017).

487

https://stackoverflow.com/questions/32444016
https://stackoverflow.com/questions/32444016
https://stackoverflow.com/questions/33651810
https://stackoverflow.com/questions/33651810
https://stackoverflow.com/questions/33671372
https://stackoverflow.com/questions/33671372
https://stackoverflow.com/questions/38546672
https://stackoverflow.com/questions/38546672
https://stackoverflow.com/questions/41005249
https://stackoverflow.com/questions/41005249
https://stackoverflow.com/questions/42456461
https://stackoverflow.com/questions/42456461
https://stackoverflow.com/questions/42675391
https://stackoverflow.com/questions/42675391
https://stackoverflow.com/questions/42823627
https://stackoverflow.com/questions/42823627
https://stackoverflow.com/questions/43069519
https://stackoverflow.com/questions/43069519
https://stackoverflow.com/questions/44993098
https://stackoverflow.com/questions/44993098
https://stackoverflow.com/questions/48383846
https://stackoverflow.com/questions/48383846
https://stackoverflow.com/questions/48929098
https://stackoverflow.com/questions/48929098
https://stackoverflow.com/questions/49079990
https://stackoverflow.com/questions/49079990
https://stackoverflow.com/questions/51320027
https://stackoverflow.com/questions/51320027
https://stackoverflow.com/questions/52906186
https://stackoverflow.com/questions/52906186
https://stackoverflow.com/questions/53467011
https://stackoverflow.com/questions/53467011
https://stackoverflow.com/questions/53707068
https://stackoverflow.com/questions/53707068
https://stackoverflow.com/questions/53765453
https://stackoverflow.com/questions/53765453
https://stackoverflow.com/questions/53950186
https://stackoverflow.com/questions/53950186
https://stackoverflow.com/questions/55261785
https://stackoverflow.com/questions/55261785
https://stackoverflow.com/questions/56406862
https://stackoverflow.com/questions/56406862
https://stackoverflow.com/questions/57122907
https://stackoverflow.com/questions/57122907
https://stackoverflow.com/questions/57681910
https://stackoverflow.com/questions/57681910
https://stackoverflow.com/questions/57718512
https://stackoverflow.com/questions/57718512
https://stackoverflow.com/questions/58901682
https://stackoverflow.com/questions/58901682
https://stackoverflow.com/questions/59226533
https://stackoverflow.com/questions/59226533
https://stackoverflow.com/questions/59493606
https://stackoverflow.com/questions/59493606
https://stackoverflow.com/questions/59894720
https://stackoverflow.com/questions/59894720
https://stackoverflow.com/questions/65988678
https://stackoverflow.com/questions/65988678
https://stackoverflow.com/questions/69865825
https://stackoverflow.com/questions/69865825
https://stackoverflow.com/questions/71174306
https://stackoverflow.com/questions/71174306
https://www.anaconda.com/
https://archive.org/details/stackexchange_20221005
https://archive.org/details/stackexchange_20221005
https://bazel.build/
https://github.com/tensorflow/tensorflow/commit/333dc32ff79af21484695157f3d141dc776f7c02
https://github.com/tensorflow/tensorflow/commit/333dc32ff79af21484695157f3d141dc776f7c02
https://github.com/keras-team/keras/commit/d663fda862df1c831e7f93f1e3feb2e189a1b9ef
https://github.com/keras-team/keras/commit/d663fda862df1c831e7f93f1e3feb2e189a1b9ef
https://github.com/tensorflow/tensorflow/commit/7a8c63da365106048dc96affddb39e2fdc33da89
https://github.com/tensorflow/tensorflow/commit/7a8c63da365106048dc96affddb39e2fdc33da89
https://github.com/bndr/pipreqs
https://github.com/bndr/pipreqs
https://github.com/tensorflow/tensorflow/releases/tag/v1.6.0
https://github.com/tensorflow/tensorflow/releases/tag/v1.6.0
https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0
https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0
https://github.com/keras-team/keras/releases/tag/2.4.0
https://github.com/keras-team/keras/releases/tag/2.4.0

Compatibility Issues in Deep Learning Systems: Problems and Opportunities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[70] Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2020.
An Empirical Study on Bugs Inside TensorFlow. In DASFAA.

[71] Zhouyang Jia, Shanshan Li, Tingting Yu, Chen Zeng, Erci Xu, Xiaodong Liu,
and et al. 2021. DepOwl: Detecting Dependency Bugs to Prevent Compatibility
Failures. In ICSE.

[72] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. 2020. A3: Assisting
Android API Migrations Using Code Examples. TSE (2020).

[73] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. 2013. How Does Web Service
API Evolution A�ect Clients?. In ICWS.

[74] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. 2016. Accessing
Inaccessible Android APIs: An Empirical Study. In ICSME.

[75] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid:
Automating the Detection of API-related Compatibility Issues in Android Apps.
In ISSTA.

[76] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising Deprecated Android APIs. In MSR.

[77] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020.
Cda: Characterising Deprecated Android APIs. EMSE (2020).

[78] Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li. 2022.
Automatically Detecting API-induced Compatibility Issues in Android Apps: A
Comparative Analysis (Replicability Study). In ISSTA.

[79] Zhihao Liu, Yang Zheng, Xiaoting Du, Zheng Hu, Wenjie Ding, Yanming Miao,
and et al. 2022. Taxonomy of Aging-related Bugs in Deep Learning Libraries. In
ISSRE.

[80] Tarek Mahmud, Meiru Che, and Guowei Yang. 2021. Android Compatibility
Issue Detection Using API Di�erences. In SANER. 480–490.

[81] Tarek Makkouk, Dong Jae Kim, and Tse-Hsun Peter Chen. 2022. An Empirical
Study on Performance Bugs in Deep Learning Frameworks. In ICSME.

[82] Ali Mesbah and Mukul R Prasad. 2011. Automated Cross-browser Compatibility
Testing. In ICSE.

[83] SajjadMoza�ari, Omar Y Al-Jarrah, Mehrdad Dianati, Paul Jennings, and Alexan-
dros Mouzakitis. 2020. Deep Learning-based Vehicle Behavior Prediction for
Autonomous Driving Applications: A Review. TITS (2020).

[84] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing
Dependency Errors for Python Build Reproducibility. In ISSTA.

[85] Romulo Nascimento, Andre Hora, and Eduardo Figueiredo. 2022. Exploring API
Deprecation Evolution in JavaScript. In SANER.

[86] Amin Nikanjam, Mohammad Mehdi Morovati, Foutse Khomh, and Houssem
Ben Braiek. 2022. Faults in Deep Reinforcement Learning Programs: A Taxon-
omy and A Detection Approach. ASE J (2022).

[87] Nvidia.com. 2023. CUDA Compatibility. https://docs.nvidia.com/deploy/cuda-
compatibility/index.html.

[88] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, and et al. 2020. Problems and Opportunities in Training
Deep Learning Software Systems: An Analysis of Variance. In ASE.

[89] Andrey Ponomarenko and Vladimir Rubanov. 2011. Automatic Backward Com-
patibility Analysis of Software Component Binary Interfaces. In CSAE.

[90] pytorch.org. 2023. torch.max. Retrieved June 14, 2023 from https://pytorch.org/
docs/1.5.0/torch.html#torch.max.

[91] Haowei Quan, Jiawei Wang, Bo Li, Xiaoning Du, Kui Liu, and Li Li. 2022. Char-
acterizing Python Method Evolution with PyMevol: An Essential Step Towards
Enabling Reliable Software Systems. In ISSREW.

[92] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vásquez, Michele Lanza,
and Rocco Oliveto. 2019. Data-driven Solutions to Detect API Compatibility
Issues in Android: An Empirical Study. In MSR.

[93] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A Comprehensive Study of Deep Learning Compiler
Bugs. In FSE.

[94] Arnon Shimoni. 2023. Retrieved June 14, 2023 from https://arnon.dk/matching-
sm-architectures-arch-and-gencode-for-various-nvidia-cards/.

[95] Pavel Shved and Denis Silakov. 2009. Binary Compatibility of Shared Libraries
Implemented in C++ on GNU/Linux Systems. In SYRCoSE.

[96] SM Sohan, Craig Anslow, and Frank Maurer. 2015. A Case Study of Web API
Evolution. In SERVICES.

[97] Zihe Song, Yingfeng Chen, Lei Ma, Shangjie Lu, Honglei Lin, Changjie Fan, and
et al. 2022. An Empirical Analysis of Compatibility Issues for Industrial Mobile
Games (Practical Experience Report). In ISSRE.

[98] Yulei Sui, Xiao Cheng, Guanqin Zhang, and Haoyu Wang. 2020. Flow2vec:
Value-�ow-based Precise Code Embedding. OOPSLA (2020).

[99] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-�owAnalysis
in LLVM. In CC.

[100] Yulei Sui and Jingling Xue. 2018. Value-�ow-based Demand-driven Pointer
Analysis for C and C++. TSE (2018).

[101] Xiaoyu Sun, Xiao Chen, Yanjie Zhao, Pei Liu, John Grundy, and Li Li. 2022.
Mining Android API Usage to Generate Unit Test Cases for Pinpointing Com-
patibility Issues. In ASE.

[102] tensor�ow.org. 2023. TensorFlow build guide. Retrieved January 10, 2023 from
https://www.tensor�ow.org/install/source#tested_build_con�gurations.

[103] Aparna Vadlamani, Rishitha Kalicheti, and Sridhar Chimalakonda. 2021.
APIScanner-Towards Automated Detection of Deprecated APIs in Python Li-
braries. In ICSE-Companion.

[104] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding Interobserver
Agreement: The Kappa Statistic. Fam med (2005).

[105] Chengcheng Wan, Shicheng Liu, Henry Ho�mann, Michael Maire, and Shan Lu.
2021. Are Machine Learning Cloud APIs Used Correctly?. In ICSE.

[106] Chao Wang, Rongxin Wu, Haohao Song, Jiwu Shu, and Guoqing Li. 2022. smart-
Pip: A Smart Approach to Resolving Python Dependency Con�ict Issues. In
ASE.

[107] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021.
An Exploratory Study of Autopilot Software Bugs in Unmanned Aerial Vehicles.
In FSE.

[108] Gan Wang, Zan Wang, Junjie Chen, Xiang Chen, and Ming Yan. 2022. An
Empirical Study on Numerical Bugs in Deep Learning Programs. In ASE.

[109] Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. 2020. Exploring How Deprecated
Python Library APIs Are (Not) Handled. In FSE.

[110] Jiawei Wang, Li Li, and Andreas Zeller. 2021. Restoring Execution Environments
of Jupyter Notebooks. In ICSE.

[111] Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang, and
et al. 2020. Watchman: Monitoring Dependency Con�icts For Python Library
Ecosystem. In ICSE.

[112] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys
Poshyvanyk. 2022. A Systematic Literature Review on the Use of Deep Learning
in Software Engineering Research. TOSEM (2022).

[113] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-
tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
ASE.

[114] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2019. Pivot: Learning API-device
Correlations to Facilitate Android Compatibility Issue Detection. In ICSE.

[115] Lili Wei, Yepang Liu, Shing-Chi Cheung, Huaxun Huang, Xuan Lu, and Xuanzhe
Liu. 2018. Understanding and Detecting Fragmentation-induced Compatibility
Issues for Android Apps. TSE (2018).

[116] Laerte Xavier, Aline Brito, Andre Hora, andMarco Tulio Valente. 2017. Historical
and Impact Analysis of API Breaking Changes: A Large-scale Study. In SANER.

[117] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu
Zhang, and et al. 2020. How Android Developers Handle Evolution-induced
API Compatibility Issues: A Large-scale Study. In ICSE.

[118] Guanping Xiao, Xiaoting Du, Yulei Sui, and Tao Yue. 2020. Hindbr: Heteroge-
neous Information Network based Duplicate Bug Report Prediction. In ISSRE.

[119] Guanping Xiao, Jun Liu, Zheng Zheng, and Yulei Sui. 2021. Nondeterministic
Impact of CPU Multithreading on Training Deep Learning Systems. In ISSRE.

[120] Guowei Yang, Je�rey Jones, Austin Moninger, and Meiru Che. 2018. How Do
Android Operating System Updates Impact Apps?. In MOBILESoft.

[121] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016. What
Security Questions Do Developers Ask? A Large-scale Study of Stack Over�ow
Posts. JCST (2016).

[122] Yilin Yang, Tianxing He, Zhilong Xia, and Yang Feng. 2022. A Comprehensive
Empirical Study on Bug Characteristics of Deep Learning Frameworks. IST
(2022).

[123] Jerin Yasmin, Yuan Tian, and Jinqiu Yang. 2020. A First Look at The Deprecation
of RESTful APIs: An Empirical Study. In ICSME.

[124] Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei. 2022.
Knowledge-Based Environment Dependency Inference for Python Programs.
In ICSE.

[125] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
2020. An Empirical Study on Program Failures of Deep Learning Jobs. In ICSE.

[126] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019.
An Empirical Study of Common Challenges in Developing Deep Learning
Applications. In ISSRE.

[127] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An Empirical Study on TensorFlow Program Bugs. In ISSTA.

[128] Zejun Zhang, Yanming Yang, Xin Xia, David Lo, Xiaoxue Ren, and John Grundy.
2021. Unveiling the Mystery of API Evolution in Deep Learning Frameworks: A
Case Study of TensorFlow 2. In ICSE-SEIP.

[129] Zhaoxu Zhang, Hengcheng Zhu, Ming Wen, Yida Tao, Yepang Liu, and Yingfei
Xiong. 2020. How Do Python Framework APIs Evolve? An Exploratory Study.
In SANER.

[130] Yanjie Zhao, Li Li, Kui Liu, and John Grundy. 2022. Towards Automatically
Repairing Compatibility Issues in Published Android Apps. In ICSE.

[131] Chenguang Zhu, Ripon K Saha, Mukul R Prasad, and Sarfraz Khurshid. 2021.
Restoring the Executability of Jupyter Notebooks by Automatic Upgrade of
Deprecated APIs. In ASE.

[132] Jianfei Zhu, Guanping Xiao, Zheng Zheng, and Yulei Sui. 2022. Enhancing
Traceability Link Recovery with Unlabeled Data. In ISSRE.

Received 2023-02-02; accepted 2023-07-27

488

https://docs.nvidia.com/deploy/cuda-compatibility/index.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html
https://pytorch.org/docs/1.5.0/torch.html#torch.max
https://pytorch.org/docs/1.5.0/torch.html#torch.max
https://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
https://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
https://www.tensorflow.org/install/source#tested_build_configurations

	Abstract
	1 Introduction
	2 DL Compatibility Issues
	3 Methodology
	3.1 Data Collection
	3.2 DL Compatibility Issues Classification

	4 Analysis Results
	4.1 RQ1: Types, Stages and Symptoms
	4.2 RQ2: Root Causes and Solutions

	5 RQ3: Tool Survey
	6 Discussions and Implications
	6.1 Comparison with Traditional Software
	6.2 Implications

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	10 Data Availability
	Acknowledgments
	References

