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ABSTRACT
Unmanned aerial vehicles (UAVs) are becoming increasingly im-
portant and widely used in modern society. Software bugs in these
systems can cause severe issues, such as system crashes, hangs, and
undefined behaviors. Some bugs can also be exploited by hackers
to launch security attacks, resulting in catastrophic consequences.
Therefore, techniques that can help detect and fix software bugs in
UAVs are highly desirable. However, although there are many exist-
ing studies on bugs in various types of software, the characteristics
of UAV software bugs have never been systematically studied. This
impedes the development of tools for assuring the dependability
of UAVs. To bridge this gap, we conducted the first large-scale em-
pirical study on two well-known open-source autopilot software
platforms for UAVs, namely PX4 and Ardupilot, to characterize
bugs in UAVs. Through analyzing 569 bugs from these two projects,
we observed eight types of UAV-specific bugs (i.e., limit, math, in-
consistency, priority, parameter, hardware support, correction, and
initialization) and learned their root causes. Based on the bug taxon-
omy, we summarized common bug patterns and repairing strategies.
We further identified five challenges associated with detecting and
fixing such UAV-specific bugs. Our study can help researchers and
practitioners to better understand the threats to the dependability
of UAV systems and facilitate the future development of UAV bug
diagnosis tools.
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Figure 1: Example Drone Types Supported by PX4 [43].

1 INTRODUCTION
In recent years, the use of unmanned aerial vehicles (UAVs) is be-
coming more and more popular in daily life [54]. As a typical cyber-
physical system (CPS), UAVs are context-aware. A UAV system per-
ceives the external physical environment through various sensors
and reacts in accordance with the external information [37, 47, 49].
There are three steps for a CPS to interact with physical environ-
ment, namely, sensing, decision-making, and action-taking [46].

Since UAVs are highly correlated with physical environment, the
underlying software of a UAV differs significantly from traditional
software, whose inputs are mostly stable and not interfered by ex-
ternal environment. On the one hand, the system inputs of a UAV
can be dynamically fluctuating and uncontrollable with respect
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Figure 2: Root Causes of UAV-specific Bugs.

to the changes of environment. It is necessary for developers to
consider the changes of environment proactively, making it chal-
lenging to build a reliable UAV system [54]. On the other hand,
various configurations of sensors and hardware (e.g., the sensing
range of a temperature sensor) should be taken into account during
UAV’s software development. Ignoring these configurations (e.g.,
parameters and limits) can cause reliability issues. In addition, some
UAV systems are designed for more than one types of hardware.
For example, as an open-source flight control software for autopilot,
PX41 supports multiple types of drones, including Planes, VTOLs
(Vertical Take-Off and Landings),and Copters, as shown in Fig. 1.
Since different devices may have different functional limitations,
developers also need to consider the correspondence between dif-
ferent functions and hardware models to ensure the reliability of
the whole system.

Although a lot of progress has been made in developing ad-
vanced UAVs, the reliability and safety of such systems are still
major concerns, due to the aforementioned challenges [8]. Soft-
ware bugs in UAV systems have caused property damage to the
users [33]. Hence, there is an urgent need to analyze and under-
stand the characteristics of bugs in UAV software in order to guide
developers to build more reliable and secure UAV systems. Exist-
ing studies [32, 54] have explored some common bugs that might
appear in both UAV software and traditional software, but they do
not focus on UAV-specific bugs.

1https://px4.io/

In this work, we present the first empirical study of UAV-specific
bugs. Our study aims to provide practical yet systematic knowledge
of UAV-specific bugs summarized and categorized from two major
open-source autopilot software platforms (i.e., PX4 and Ardupilot)
for drones. For our study, we collected 569 bugs from these two
popular platforms on GitHub. Among those bugs, 168 are UAV-
specific. We manually analyzed these 168 bugs by investigating
their bug reports, source code, patches, and historical development
data. Through our analyses, we observed eight types of root causes
of UAV-specific bugs, as shown in Fig. 2. We have also summarized
five challenges in detecting and fixing these bugs, as highlighted
below.
• Challenge 1: It is difficult to design general test oracles to help
locate bugs in UAV systems due to the unpredictability of system
outputs and the need to evaluate system behavior from multiple
perspectives.

• Challenge 2: Many bugs in UAV systems are difficult to repro-
duce in the presence of a dynamically changing physical envi-
ronment.

• Challenge 3: Developing UAV software to support a variety of
hardware often causes compatibility and dependence problems,
which are hard to detect via code analysis.

• Challenge 4: Fixing low-level software bugs related to hardware
and various system configurations is highly challenging.
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Figure 3: Flight Stack of PX4.

• Challenge 5: Comparing the expected value with the actual
value at a specific program point is a common method of fault
localization. However, fault localization is generally difficult for
UAV systems since a value or state at a specific program point is
often unpredictable.
Our study can help researchers and developers to gain a better

understanding of UAV-specific bugs and provide assistance for
future UAV system development and research. To conclude, our
paper makes the following contributions:
• We conduct the first empirical study of the root causes of UAV-
specific bugs, which could assist future research on detecting and
fixing software bugs in UAV systems.

• We make an analysis of the challenges in detecting and fixing
UAV-specific bugs.

• We release the replication package and the dataset of UAV-specific
bugs collected from PX4 and Ardupilot at https://doi.org/10.5281/
zenodo.4898868.
The rest of the paper is organized as follows. Section 2 briefly

gives the background knowledge of CPS dependability and the
two examined projects (PX4 and Ardupilot). Section 3 describes
the methodology of our empirical study, including the data col-
lection and bug classification procedures. Section 4 presents the
analysis of the root causes firstly and then presents the challenges
of UAV-specific bugs detecting and fixing. Section 5 discusses our
suggestions to practitioners. Section 6 summarizes the threats to va-
lidity, while Section 7 introduces the related work. Finally, Section 8
concludes the paper.

2 BACKGROUND
2.1 Cyber-Physical System Dependability
The term Cyber-physical system (CPS), widely referred in pervasive
computing, was proposed in the 1990s by Weiser [55]. Recently,
the development of CPSs has undergone considerable progress,
especially in relation to drones, self-driving cars, and various IoT
devices. However, developing and deploying a dependable CPS is
still a difficult problem.

The three most important factors that affect the dependability
of CPSs are context inconsistency, uncertainty, and faults in the
system [54]. A CPS uses context to capture dynamic changes in

the external physical environment. Context such as pressure, loca-
tion, and temperature is captured by sensors. Context inconsistency
means the inconsistency between the physical environment and
the perceived context of the system, which is often manifested as
environment noises. To explain conveniently, in our paper, we do
not divide UAV systems into the physical system (a.k.a. the plant
in control systems) and the controller when we talk about system
input and output. Specifically, in our paper, the inputs of UAV sys-
tems involve the user input (e.g., command-line inputs) and the
input from the physical environment. When we talk about the non-
determinism problem of UAV system inputs, we are referring to the
system input disturbances in the physical environment. UAV sys-
tems outputs in our paper are continuous physical trajectories [32].

2.2 PX4 and Ardupilot
Our study is performed on two popular open-source UAV platforms
on GitHub, namely PX4 and Ardupilot. PX4 [44] is an open-source
flight control system for drones and other unmanned vehicles. This
is an active and well-maintained platform. It represents state of
the art in the field of open source UAV system development. Fig. 3
shows the flight stack of PX4, which is a collection of guidance, nav-
igation, and control algorithms for autonomous drones. As a typical
CPS, PX4 consists of three subsystems: sensing, decision-making,
and action-taking. We introduce several major components of the
subsystems in the following. The estimator computes a vehicle state
(mainly including position and attitude) using sensor inputs. The
controller takes a setpoint from the navigator and an estimated
state from the estimator as inputs. It controls the vehicle state until
it matches the setpoint. For example, the position controller takes
a position setpoint and an estimated position as inputs, and out-
puts the attitude and thrust setpoint to move the vehicle towards
a desired position. The mixer translates the force commands into
the individual motor commands and feeds motor commands to the
actuator [40, 44, 53].

Ardupilot [3] is another open-source UAV platform for drones
and unmanned vehicles. Ardupilot works on a wide variety of
hardware to support multiple types of unmanned vehicles. It is
constantly evolving based on rapid feedback from a large commu-
nity of users and developers. The online community also provides
massive bug data for our research.

https://doi.org/10.5281/zenodo.4898868
https://doi.org/10.5281/zenodo.4898868
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Table 1: The Statistics of the Subjects Collected in Our Study

Project name Stars Commits Lines of Code Number of Files Closed Issues Bugs UAV-specific Bugs
PX4 3,500 32,533 609,135 3,384 5,082 201 65

Ardupilot 4,900 42,826 1,505,836 3,291 3,478 368 103

3 METHODOLOGY
3.1 Data Collection
To obtain our initial taxonomy of UAV software bugs, we consid-
ered two popular and well-known open-source UAV systems, PX4
and Ardupilot. We did not choose other open-source projects, e.g.,
Openpilot [10] and Paparazzi [31], because they are not actively
maintained and the number of issues is small. To collect bugs from
the two projects, we defined the selection criteria consisting of the
following rules:

Rule 1. The issue is closed. A closed issue means it has been
resolved, therefore, such an issue report contains information that
is helpful for bug classification and understanding.

Rule 2. The issue is labeled with bug. Developers usually label
issue reports according to the characteristics of the reported issues.
A report with a bug label typically means that the described issue
is caused by a system software defect, not other external factors.

Rule 3. There is a patch to fix the reported bug. The patch
normally contains developers’ comments and the code to fix the
bug, which allows us to understand the root cause of bugs more
easily.

Based on the above rules, we collected 569 real bugs out of
8,560 closed issues from the projects PX4 and Ardupilot on GitHub.
Among them, PX4 contains 5,082 closed issues and 201 bugs, and
Ardupilot has 3,478 closed issues and 368 bugs. As shown in Table 1,
these two projects contain more than two million lines of code and
over 70,000 commits.

3.2 Bug Classification
To characterize the root causes of the UAV-specific bugs, we ana-
lyzed the data by following the widely-adopted open coding pro-
cedure [7, 39]. Specifically, we performed an iterative manual la-
beling process that lasted half a year involving two annotators
(i.e., co-authors of the paper), whom all have several years of CPS
development experience. The iterations are as follows:

Iteration 1. For the 569 bugs, we analyzed three sources of
data, i.e., bug reports (including comments from developers and
users), commits, and bug patches on GitHub. According to our own
understanding, we described and labeled each bug independently.
We then compared the respective labeling results and analyzed
those with large differences. With this iteration, we came up with
a preliminary classification and labeling strategy.

Iteration 2. We independently labeled all bugs for a second
round based on the preliminary classification and labeling strategy.
We then compared the results and found that there were still a few
differences in the labels. To resolve the differences, we discussed to
clarify the boundaries between the labels. In the end, we slightly
revised our bug classification and labeling strategy.

Iteration 3. We carried out a third iteration by going through
all bugs following the revised classification and labeling strategy.
Finally, we reached a consensus on the taxonomy of bug root causes.

After three iterations, each bug is labeled as one leaf category of
our root cause taxonomy2, which is shown in Fig. 2. As explained
later, the leaf categories in our taxonomy are orthogonal, meaning
that no bugs in our dataset can be classified into multiple categories
from the perspective of root causes.

With the analysis of root causes, we identified 168 UAV-specific
bugs from the 569 bugs following two rules. First, we considered
a bug as UAV-specific if its root cause rarely exists in traditional
software (e.g., bugs caused by the noisy physical environment).
Second, if the root cause of a bug exists in traditional software but
the bug has a much higher probability of appearing in UAV systems,
we also considered it as UAV-specific. For example, the bugs in the
category “hardware support” appear frequently in UAV systems
due to the need to support many hardware platforms. For the char-
acteristics of traditional software bugs, we referred to two previous
empirical studies [52, 57] on bugs in Linux, Mozilla projects, and
Apache projects. Due to the page limits, our subsequent discussion
will focus on UAV-specific bugs.

4 ROOT CAUSES AND CHALLENGES
With the identified UAV-specific bugs, we conducted an empirical
study to understand the bugs’ root causes and the challenges in
dealing with these bugs. Specifically, we explore the following three
research questions (RQs):
• RQ1:What are the common root causes of UAV-specific bugs?
• RQ2: What are the challenges in detecting UAV-specific bugs
and how to address them?

• RQ3: What are the challenges of fixing UAV-specific bugs and
how to address them?
By studying RQ1, we will understand how UAV-specific bugs

arise. The root causes will guide the explanations of the findings
for RQ2 and RQ3. Besides, in RQ2 and RQ3, we will investigate
the new challenges imposed by the key differences between UAV
systems and traditional software. After answering the three RQs,
we also provide several suggestions to help developers build and
debug UAV systems.

4.1 RQ1: Root Causes of Bugs
After conducting the manual classification described in Section 3.2,
we observed that the root causes of the 168 UAV-specific bugs can be
classified into eight categories: limit, math, inconsistency, priority,
parameter, hardware support, correction, and initialization. Fig. 2

2Note that this is not the only way to categorize the bugs in our dataset. Our current
taxonomy is derived based on our knowledge and CPS development experience.
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Table 2: Example Limits of PX4

Name Description Min-Max Default Units
HDRIFT Horizontal drift speed to use GPS 0.1-1.0 0.3 m/s
VDRIFT Vertical drift speed to use GPS 0.1-1.5 0.5 m/s

EKF2_REQ_EPV Required EPV to use GPS 2-100 8 m
FW_ACRO_Z_MAX Acro body z max rate 10-180 45 degree
MT_FPA_MIN Minimal flight path angle setpoint -90.0-90.0 -20.0 degree

shows the number of bugs of these root causes. In the following,
we will discuss each type of root causes in detail.

4.1.1 Root Cause 1: Limit. Definition: limit bugs are those caused
by improper parameter limits. A UAV system is often compati-
ble with a variety of different hardware, hence it is accompanied by
a number of hardware limits. For example, PX4 has 1,306 limits [45],
some of which are shown in Table 2. In practice, it is difficult for
developers to handle a large number of limits correctly. When they
make mistakes, the UAV systems may suffer from various types of
limit bugs. In particular, we observed the following three subtypes
of bugs of root cause 1:
• Limit Conflict. Definition: developers set parameter limits that
are in conflict with each other. Due to various relationships be-
tween limits, two limits may have conflicts in their scope when
set by developers. A typical example is issue #7097 [23] in PX4. In
this issue, pitch limits are applied before applying setpoint offset,
which means that the pitch limit does not consider the offset of
pitch setpoint. This conflict will cause the pitch limit value to
increase by one unit of the setpoint offset. Listing 1 shows the
patch to fix the bug #7097. To eliminate the conflict, the pitch
limits need to subtract the offset.

• Limit Checking Missing. Definition: developers miss the limit
checking for the computation result. Limits checking is frequently
required in a UAV system, but developers may forget to check
certain limits. In issue #7535 [24] of PX4, developers missed the
limit checking of the setpoint after the velocity computation has
been done. This issue caused the drone to fly away. Listing 2
shows that the developers added the constraints for all directions
of the velocity setpoints to fix the bug.

• Limit Range. Definition: the range of the limit is not right for
some hardware or violates certain system requirements. The range
of some limits profoundly impacts the system behavior. Due to
the lack of hardware knowledge, the limit range set by developers
may compromise the stability of a UAV system. An example is
issue #5305 [17] of PX4. The developers set the range of the
actuator control parameter to be -1 to 1, which will enable the
negative thrust. A right range should be 0 to 1. In Listing 3,
the developers set the correct range to fix the problem of wing
throttle because a drone with fixing wings will crash with a
negative thrust.

4.1.2 Root Cause 2: Math. Definition: math bugs arise from
the misuse of mathematical formulas. UAV systems often rely
on various complex control and estimation algorithms. Comparing
to traditional software, UAV software is more prone to math bugs.

- radians(_parameters.pitch_limit_min),
- radians(_parameters.pitch_limit_max),
+ radians(_parameters.pitch_limit_min) - _parameters.

pitchsp_offset_rad ,
+ radians(_parameters.pitch_limit_max) - _parameters.

pitchsp_offset_rad ,

Listing 1: The Fix of Issue #7097.

+ // special velocity setpoint limitation for smooth
takeoff (after slewrate !)

if (_in_takeoff) {
_in_takeoff = _takeoff_vel_limit < -_vel_sp (2);
// ramp vertical velocity limit up to takeoff speed

- _takeoff_vel_limit += _params.tko_speed * dt /
_takeoff_ramp_time.get();

+ _takeoff_vel_limit += -_vel_sp (2) * dt /
_takeoff_ramp_time.get();
// limit vertical velocity to the current ramp

value
_vel_sp (2) = math::max(_vel_sp (2), -

_takeoff_vel_limit);
}

+ // make sure velocity setpoint is constrained in all
directions (xyz)

+ float vel_norm_xy = sqrtf(_vel_sp (0) * _vel_sp (0) +
_vel_sp (1) * _vel_sp (1));

+ if (vel_norm_xy > _vel_max_xy) {
+ _vel_sp (0) *= (_vel_max_xy / vel_norm_xy);
+ _vel_sp (1) *= (_vel_max_xy / vel_norm_xy);
+ }

+ _vel_sp (2) = math:: constrain(_vel_sp (2), -_params.
vel_max_up , _params.vel_max_down);

Listing 2: The Fix of Issue #7535.

Sometimes, it can be very difficult for developers to accurately
select the most suitable mathematical formula. In our dataset, there
are two major subtypes of math bugs:
• WrongCalculationMethod.Definition: developers use the wrong
mathematical formulas/operations. Developers use the wrong cal-
culation formula, which can produce abnormal system outputs.
In issue #8628 [29] of PX4, the developer incorrectly computed
the mixing tables, which are a part of the output in mixer. As
we mentioned in the background section, the mixer outputs the
value to the actuator. Due to this bug, the drone will exhibit
abnormal flight status. Listing 4 shows the fix of issue #8628.

• Need Improvement. Definition: the mathematical formulas used
in program are imprecise or inefficient. In some cases, there is no
obvious error in the use of mathematical formulas or operations,
but the calculation results are not accurate enough. This can
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+ /* fixed wing: scale throttle to 0..1 and other channels to -1..1 */
+ if (_actuators[index]. output[i] > PWM_DEFAULT_MIN / 2) {
+ if (i != 3) {
+ /* scale PWM out PWM_DEFAULT_MIN .. PWM_DEFAULT_MAX us to -1..1 for normal channels */
+ &msg.controls[i] = (_actuators[index]. output[i] - pwm_center) / (( PWM_DEFAULT_MAX -

PWM_DEFAULT_MIN) / 2);
+ } else {
+ /* scale PWM out PWM_DEFAULT_MIN .. PWM_DEFAULT_MAX us to 0..1 for throttle */
+ msg.controls[i] = (_actuators[index]. output[i] - PWM_DEFAULT_MIN) / (PWM_DEFAULT_MAX -

PWM_DEFAULT_MIN);
+ }
+ }

Listing 3: The Fix of Issue #5305.

float out = (roll * _rotors[i]. roll_scale +
pitch * _rotors[i]. pitch_scale) *

roll_pitch_scale +
yaw * _rotors[i]. yaw_scale +

- thrust + boost;
+ (thrust + boost) * _rotors[i].

thrust_scale;
- out *= _rotors[i]. out_scale;

Listing 4: The Fix of Issue #8628.

+ // The lower the voltage the more adjust the estimate
with it to avoid deep discharge

+ const float weight_v = 3e-4f * (1 - _remaining_voltage)
;

+ _remaining = (1 - weight_v) * _remaining + weight_v *
_remaining_voltage;

+ // directly apply current capacity slope calculated
using current

+ _remaining -= _discharged_mah_loop / _capacity.get();
+ _remaining = math::max(_remaining , 0.f);

Listing 5: The Fix of Issue #8198.

be solved by using a better calculation method. For instance,
as shown in Listing 5, developers fixed the issue #8198 [28] of
PX4 by changing the old battery estimation algorithm to a more
precise algorithm. Besides such cases, some math bugs are caused
by inefficient computations and can be solved by fine-tuning the
inefficient algorithm.

4.1.3 Root Cause 3: Inconsistency. Definition: the root cause of
the bugs is related to inconsistency between hardware and
software. Bugs often arise when developers are not familiar with
the consistency between hardware and software in a UAV system.
A typical case is that developers incorrectly use the function with a
wrong drone models. Listing 6 gives an example [25]. The develop-
ers intended to use the function land_detector with multi-copter.
Since land_detector is a function for another drone model VTOL,
the drone cannot take offwith this inconsistent function. In addition
to the inconsistency between functions and drone models, there
are also inconsistencies between hardware interfaces and interface
protocols, inconsistencies between sensors and libraries, and so on.
We observed that inconsistency bugs are more commonly found
in the UAV system designed for multiple devices and may cause
drone crashes when critical functions fail to work. Even worse, due
to various complex and diverse inconsistencies between hardware

pwm_out_sim mode_pwm
sensors start
commander start

- land_detector start multicopter
+ land_detector start vtol

navigator start
ekf2 start
vtol_att_control start

Listing 6: The Fix of Issue #7737.

- m_sensor_data.pressure_pa = convertPressure(
pressure_from_sensor) / 256.0;

m_sensor_data.temperature_c = convertTemperature(
temperature_from_sensor) / 100.0;

+ m_sensor_data.pressure_pa = convertPressure(
pressure_from_sensor) / 256.0;

m_sensor_data.last_read_time_usec = DriverFramework ::
offsetTime ();

m_sensor_data.read_counter ++;

Listing 7: The Fix of Issue #5243.

and software, it could be very difficult for developers to completely
avoid such bugs.

4.1.4 Root Cause 4: Priority. Definition: the root cause of the
bugs is related to hardware or software priority issues.Unlike
traditional software priority bugs, some of the UAV-specific priority
bugs are caused by the hardware priority. These types of bugs are
hard to be observed, because there are no obvious mistakes in the
program logic andmost such bugs do not cause significant deviation
of system performance. Listing 7 gives a typical example of this type
of bugs [19]. The patch which fixes the bug changes the order of
pressure and temperature conversion. As we can see from the code
snippet, the affected two statements have no common variables
and it seems that such a fix would not cause any semantic changes.
However, in many UAV systems, according to the bmp280 data
sheet [50] and the sample pressure and temperature conversion
code, the temperature conversion must be done before the pressure
conversion, as the latter uses some results from the former [19]. In
other words, there exists hidden data dependence between the two
sensors. Such priority bugs require developers to have sufficient
knowledge of the underlying hardware. Unfortunately, due to the
diversity of hardware in UAV systems (e.g., different sensors and
development boards), this requirement is often impractical for UAV
software developers.
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_parameter_handles.land_slope_angle = param_find("
FW_LND_ANG");

_parameter_handles.land_H1_virt = param_find("
FW_LND_HVIRT");

- _parameter_handles.land_flare_alt_relative = param_find
("FW_LND_FL_ALT");

+ _parameter_handles.land_flare_alt_relative = param_find
("FW_LND_FLALT");

_parameter_handles.land_flare_pitch_min_deg =
param_find("FW_LND_FL_PMIN");

_parameter_handles.land_flare_pitch_max_deg =
param_find("FW_LND_FL_PMAX");

_parameter_handles.land_thrust_lim_alt_relative =
param_find("FW_LND_TLALT");

Listing 8: The Fix of Issue #4745.

4.1.5 Root Cause 5: Parameter3. Definition: the root cause of
bugs is related to improper handling of parameters. The pa-
rameters in a UAV system are very complicated. For instance, PX4
has more than 1,000 parameters. Most parameters include a limit
and a default value, which are defined by developers based on the
relevant function module attribute. As parameter settings affect the
performance of a UAV system, improper handling of parameters
may induce bugs. In our study, we found the following two major
subtypes of root causes for parameter of bugs:
• ParameterMissing.Definition: the parameter setting is not enough
to meet the requirements of system functions. Parameter setting is
generally based on existing functional requirements. With the
increase of system functions, if some relevant parameters are not
set accordingly, the UAV system may exhibit unexpected behav-
ior. In addition, the existing parameters may also be insufficient
if developers fail to consider all possible scenarios when setting
the parameters. In issue #6444 [20] of PX4, the drone started
to plummet when the users wanted to nudge the drone during
landing. To fix this bug, the developers added a parameter to
allow users to operate the stick during landing.

• Parameter Misuse. Definition: such bugs are caused by the mis-
use of certain parameters. Since parameters have diversified char-
acteristics, in order to use them correctly, developers need to
understand the functions related to the parameters, the naming
of the parameters, as well as the scope of the parameters. This is a
non-trivial task and we observed various parameter misuses. For
example, in issue #4745 [16] of PX4, the mistaken use of the two
parameters FW_LND_FL_ALT and FW_LND_FLAT was caused by a
similar naming. The patch to fix the bug is shown in Listing 8.

4.1.6 Root Cause 6: Hardware support. Definition: the root cause
of the bugs is related to the flawed support of certain hard-
ware. For this category, we only included the bugs related to the
driver programs of a UAV’s underlying hardware. There are also
hardware support bugs in traditional software systems. We found
that the hardware support bugs in UAV systems are no different
to those in traditional systems. Most of them are caused by driver
defects (e.g., compatibility issues). We call this type of bugs UAV-
specific because the proportion of such bugs in a UAV system is

3We did not put limit-related bugs in the root cause “parameter” because not all
parameters have the limit property.

AP_Notify ::flags.pre_arm_check = true;
AP_Notify ::flags.pre_arm_gps_check = true;

+ // initialise battery
+ battery.init();

// init baro before we start the GCS , so that the CLI
baro test works

barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.init();

Listing 9: Pull Request #11208.

large (i.e., 17.3%), as the UAV hardware support is generally not as
good as in a traditional system (e.g., Linux).

4.1.7 Root Cause 7: Correction. Definition: the root cause of
the bugs is related to the correction of sensor data. The data
obtained by some sensors need to be corrected before they are used.
For example, the GPS data can be disturbed by various environmen-
tal conditions (e.g., temperature) and therefore need to be corrected
to ensure accuracy. Since intensive data corrections are required in
a UAV system, developers may easily miss some correction process,
resulting in various unexpected bugs.

4.1.8 Root Cause 8: Initialization. Definition: the root cause of
bugs is related to the initialization (or reset) of certain val-
ues. Similar to data correction, we found that missing initialization
is also a typical type of mistakes made by developers. Even some
developers remember to do the initialization but they may often
forget to redo the initialization (i.e., reset values) during the com-
putation. Listing 9 shows an example where the developer forgets
to initialize the battery during the calculation [30].

4.2 RQ2: Challenges in Bug Detection
To address RQ2, we first classified the UAV-specific bugs by answer-
ing the following two questions:

(1) Can the bugs be triggered by deterministic inputs?
(2) Can the bugs cause severe abnormal behavior (e.g., UAV

crash, UAV unexpected trajectories)?
The first question concerns whether the bugs can be triggered
easily, while the second question concerns whether the bugs can
be observed or captured easily. If the answers to both questions
are “Yes”, the chances of detecting such bugs are relatively high.
If the answers to both questions are “No”, the bugs could be very
difficult to detect. For RQ2, we focused on analyzing bugs with two
“No” answers. Besides, we also analyzed the bugs with multiple
pages of comments on GitHub because sometimes this means that
developers need a lot of discussions to determine the location and
cause of bugs before bug fixing. Based on the characteristics of UAV
systems and the studied bugs, We identified three challenges for
detecting UAV-specific bugs.

4.2.1 Challenge 1: Test Oracle Design. In traditional programs, an
input usually corresponds to one or more specific outputs. This
relationship can help check the correctness of a program [61]: when
inputting a value, if the program outputs an unexpected state or
value, the program is considered buggy. Here, the expected output
of the program is a test oracle. It is known that designing an oracle
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Figure 4: Which Trajectory (a or b) is Correct? [32]

for bug detection is a difficult problem when testing traditional soft-
ware [4, 12, 14, 58]. The test oracle design is even harder for UAV
systems, because the relations between the input and the output
of a UAV is often non-deterministic. Typically, the input of a UAV
can be divided into two parts: (1) the user input and (2) the input
from the physical environment. The user input, such as the input
from the drone’s controller and the input from the command line
interface of a simulator, is generally well defined. But the input
from the physical environment is obtained by sensors. These inputs
are highly dynamic and cannot be precisely defined or predicted.
Althoughmany developers have used parameter constraints to limit
the range of the inputs from the physical environment, the vast
volume of combinations of such inputs are still hard to be explored
during testing. On the other hand, the UAV outputs generally con-
tain continuous physical trajectories [32]. Given a command input
to a drone, e.g., fly from point A to point B, if the drone outputs
two different trajectories that both complete the task (as shown in
Fig. 4), it would be hard to determine which trajectory is correct.

Furthermore, even if a drone outputs a physical trajectory that
is exactly the same as in a previous successful test, the behavior
can be wrong when other factors (e.g., wind speed) are considered.
Because of this reason, to effectively test UAV systems, one has to
holistically consider multiple factors. This is clearly challenging
and it could be very difficult to determine an ideal oracle for UAV
testing. In a recent study [32], the authors presented a trajectory
prediction method to generate the test oracle for UAV systems.
However, the application scenario of this method is limited to con-
tinuous and differentiable physical trajectories, and the correctness
of the system is determined by simply judging whether the physical
trajectory is smooth or not, without considering other factors.

By studying the bug comments, we found that UAV developers
heavily relied on experts to judge the correctness of UAV outputs.
As the judgment of the experts highly depends on their experience
and domain knowledge, such human oracles may not be reliable.
It is also difficult for experts to determine the correctness of UAV
behaviors from one single output (e.g., trajectory). Future research
may focus on the oracle problem of UAV testing and explore how
to automate the testing process. We believe that it is also important
to design testing frameworks that allow experts to clearly define
criteria to judge the correctness of UAV behavior, so as to improve
the reliability and reusability of human oracles.

4.2.2 Challenge 2: Bug Reproducing. Being able to reproduce a bug
is crucial for verifying the correctness of bug detection in UAV
systems [5, 6, 34]. The physical environment of UAV systems is

non-deterministic, and it is possible that two executions behave
differently in different physical environments. When reproducing a
UAV-specific bug, the first step is typically to reproduce the running
environment. However, the physical environment is highly dynamic
and noisy, which means that it cannot be reproduced perfectly in
the real world. Via our analysis of bug reports, we found that UAV
developers mainly rely on simulators to reproduce bugs. Usually,
a physical environment-level simulation is available and simple
enough. Nonetheless, the simulation of drone systems is often sim-
plified and unable to catch all the imperceptible changes (either
system-level or environment-level) for bug detection. Implement-
ing highly realistic simulation is expensive in terms of human effort
and there are also many technical challenges (e.g., how to model
and simulate uncertainty). Besides, the simulators may have bugs,
which could bring new problems when reproducing UAV-specific
bugs.

Traditional software also suffers from the non-determinism prob-
lem. However, in UAV systems, the problem becomes much more
common because almost every execution could be affected by non-
determinism. This problem needs more research attention.

4.2.3 Challenge 3: Hardware Dependence. Hardware dependence
is a situation where there is data dependence between different
hardware in a UAV system. While the data dependence problem
in traditional software has been well explored, we observed that
the UAV bugs caused by hardware dependence cannot be detected
with the existing techniques. This is because some data dependence
in UAV systems could be “hidden” in the hardware level. In the
issue #5243 mentioned earlier, the developers triggered the bad
performance of the drone. Because of hardware dependence, no bug
can be found by analyzing the source code. This bug was discovered
by a developer who was working on the bmp280 data sheet, which
describes the hardware dependence between the pressure sensor
and temperature sensor.

The computations in a UAV system are driven by the sensor
inputs, which are limited by the parameter settings (see Table 2 for
examples). However, the parameter settings rarely include the hard-
ware dependence or the priority of sensors. Finding bugs caused
by implicit hardware dependence could be a huge challenge for
UAV software developers who lack knowledge of the underlying
hardware. Future research may study how to address this challenge
to ease bug finding in UAV systems.

4.3 RQ3: Challenges in Bug Fixing
To address RQ3, we first classified the UAV-specific bugs by answer-
ing the following questions:

(A) Is the bug fixed quickly (i.e., in a week)?
(B) Is the bug fixed with less than three patches?

Question (A) concerns the fixing time and question (B) concerns
the difficulty of fixing. For RQ3, we then manually analyzed the
bugs that have at least one “No” answer of the two questions (we
call them NA and NB bugs) to find out the reason why developers
took a long time to fix the bugs and why the bug fixing requires
many (three or more) patches. With the analysis, we identified two
challenges in fixing bugs in UAV systems.
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4.3.1 Challenge 4: Hardware Related Bugs Fixing. Developers took
a lot of time to fix some hardware related bugs. For example, 25
UAV-specific bugs in PX4 took developers more than one week to
fix and 22 out of the 25 bugs are hardware-related bugs4. Bug fixing
in a traditional program often aims to find solutions in the source
code. However, in a UAV system, it is difficult for developers to
find solutions from source code to fix hardware-related bugs. For
example, in relation to issue #5243, which we have mentioned in
Section 4.1.4, there is no obvious fault at the code level. Hence, it
is hard for the developers to find a solution to such bugs in source
code. Even if the developers know the properties of the hardware, it
could still be difficult to fix such bugs. Due to the interdependence
of hardware and software, unilateral compliance with hardware
properties does not solve some bugs in UAV systems. For the issue
#5305, the hardware parameter limits can be set to “-1 to 1” accord-
ing to the hardware properties, but in practice, the drone’s thrust
cannot be set to a negative value. Therefore, when fixing such bugs,
developers need to have both software and hardware knowledge,
and also need to consider the usage scenarios of the system. What’s
more, considering that UAV systems also need to be compatible
with different drone models, fixing hardware-related bugs could be
more difficult. When attempting to fix issue #7746 [26] of PX4, the
developers said that:
“However, for doing so I think I need to know more about FW and VTOL.
Can you elaborate a bit more about vtol and landdetector? When is a vtol
using MC and when FW? Why do we need to check for rotary wing in
the MC landdetector (I thought that if we have a rotary wing, then we
use MC landdector)?”

From the above comment, it can be inferred that the developer
was confused about what strategies to take when fixing bugs for
different drone models. In the future, it is highly desirable to design
tools to give developers assistance to help them fix UAV-specific
bugs more effectively.

4.3.2 Challenge 5: Fault Localization. Whether a bug is NA or NB,
developers could spend a lot of time on fault localization. NB bugs
have multiple fixing patches, which usually means multiple mod-
ules are involved. NA bugs contain many hardware-related bugs
(e.g., 22/25 in PX4). All these have brought challenges to UAV fault
localization, which is a critical step for debugging [35, 38, 56, 60].
A typical way to localize a fault in a program is to examine the pro-
gram output at several program locations and compare the output
values with the expected ones. However, as discussed earlier, in a
UAV system, it is difficult for developers to predict the expected
value/state at a certain program location. Although the expected
values/states can be given by experts, it could still be difficult for
developers to judge the correctness of UAV behavior due to non-
determinism.

To understand how to overcome the challenge, we further an-
alyzed 35 PX4 bugs, for which we can identify the developers’
strategies of localizing faults by reading the bug reports. Interest-
ingly, we observed four strategies that the developers often use
to localize bugs, as summarized in Table 3. In the following, we
discuss each of these strategies in detail.

4These hardware-related bugs include parameter bugs, limit bugs, priority bugs, ini-
tialization bugs, correction bugs, and inconsistency bugs.

Table 3: Identified FL Strategies from PX4 UAV-specific Bugs

FL Strategy Number of Bugs Percentage
Flight Log 21 32.3%

Changing Parameters 9 13.8%
Bug Reproducing 3 4.6%
Changing Code 2 3.1%

Unknown 30 46.2%

Figure 5: Sequence of Events from Issue #8186 [27].

Strategy 1: Referring to the Data in Multiple Flight Logs.
A flight log often includes many details of the UAV system’s run-
time behavior. By inspecting multiple logs, developers can usually
pinpoint the bug location more accurately. In issue #8186 [27] of
PX4, the developer described a “priority” bug. The drone crashed
after the sequence of events, as shown in Fig. 5. As we know, know-
ing the sequence of events that triggers a bug in an event-driven
program can effectively help locate the faults. However, knowing
the event sequence is not enough for fault localization in a UAV
system. This is because unlike the clearly-defined events (e.g., click-
ing a button) in event-driven programs, UAV system events are
usually vaguely described by developers or users. The description
is often not detailed enough, making it difficult to locate the buggy
modules and pinpoint the potential faults. In this case of issue
#8186, the developer located the bug by examining the log of the
inertial measurement unit (IMU) and the selected sensor. Through
the abnormal timeout of the IMU and sensor, the developer located
the fault at a system module (i.e., sensors), which can handle the
sensor’s timeout.

Strategy 2: Changing Parameters. In PX4 issue #5110 [18],
the drone drifted when estimating attitude, and the reporter said:
“I’ve already tried changing parameters in Attitude Q estimator via
QGroundControl but these changes don’t seem to affect it.”

As the comment indicates, a drone user or developer may change
some related parameters (like the parameters in Attitude Q esti-
mator in this case) to test the drone behavior and localize faulty
modules, when the drone exhibits unexpected behavior. In the
above case, although the system behavior was not influenced by
the changes, changing parameters still guided the developer to
locate the bugs, as shown in the Fig. 6.

Strategy 3: Bug Reproducing. Bug reproducing is a widely-
used method to help locate faults in many software systems, but it is
not observed in our studied UAV projects. In PX4, only three of the
35 bugs were located using bug reproducing. In issue #6669 [22] of
PX4, the reporter reproduced the bug in the simulator, and all critical
UAV runtime events are given to guide the fault localization. With
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Figure 6: The Conversation Between the Bug Reporter and
the Developer in PX4 Issue #5110 [18].

the detailed bug report and the information obtained by reproducing
the bug, the developers located and fixed the bug quickly. Although
reproducing bugs can provide valuable information to help locate
and fix the bugs, we found that, similar to many other projects, the
data provided in many UAV bug reports are often very limited. To
facilitate fault localization, UAV project maintainers may define
standards to guide bug reporting (i.e., what information should be
included).

Strategy 4: Changing Code.As UAV developers and users may
not be professionals, when they localize faults, they may simply
rely on code changing rather than using sophisticated techniques
or tools. In PX4 issue 6651 [21], the UAV’s takeoff could not be
detected in altitude mode. The bug reporter tried to locate the fault
by uncommenting some code lines to observe the UAV’s behavior.

5 SUGGESTIONS FOR PRACTITIONERS
Based on our empirical analysis, we provide the following six sug-
gestions for UAV practitioners.
• Developers should pay attention to the output from the controller
or the underlying hardware. These outputs typically should be
constrained within a reasonable range. For example, no matter
what velocity or thrust computation has been performed, the
output needs to fall within in a correct value range.

• Developers should also pay attention to the correction of sensor
data. Although data correction may only slightly adjust certain
values, it may significantly affect the dependability of the sys-
tem. For example, temperature-sensitive sensors, GPS sensors,
magnetic sensors, and pressure sensors are all strongly related
to flight control. A small error in collecting and processing data
from these sensors can cause serious consequences.

• Changing the values or properties of global parameters should be
done very carefully. Even if the parameters cause bugs, it may not
be desirable to directly changing the parameters. For example,
if the range of a parameter t is from 0 to 100, and a bug can be
fixed by allowing t to take a value beyond 100, it is preferred
to fix this bug with new variables, like a_max = t_max + 100,
instead of directly changing the range of t, which may cause
problems when other parts of the system also use t.

• Developers should pay special attention to the initialization of
hardware. Proper initialization of the underlying hardware could
make a UAV system more stable.

• As mentioned in Section 4.3.2, flight logs can be very useful
for fault localization. UAV users may include critical log data
when reporting bugs to facilitate bug diagnosis. Nonetheless, it
requires sufficient expertise and debugging experience to ensure
the accuracy of fault localization via log analysis. In the future, it
is desirable to design useful tools to help developers effectively
analyze flight logs.

• Developers should be careful when using functions in a UAV
system that supports multiple hardware models. For example, in
PX4, most of the functions applicable to multi-rotor and VTOL
do not support the plane model since the plane’s flight style is
very different from that of multi-rotor and VTOL.

6 THREATS TO VALIDITY
The validity of our study results may be subject to several threats.

Project Selection. First, Our empirical study only involved two
open-source UAV projects. The collected bugs may not be represen-
tative and comprehensive. Hence, our findings may not be general-
izable. In fact, we tried to find more projects, but most other UAV
systems are either closed-source or do not have enough bug data
for our analysis. We found that there are only five well-known and
large open-source UAV systems on GitHub, and the two projects
studied in our paper are the most active ones with a total of 8,560
closed issues. To mitigate the threat, we collected and thoroughly
analyzed 168 UAV-specific bugs in the two projects. Future studies
may investigate more projects to further understand the character-
istics of UAV software bugs.

Bug Selection. Second, similar to the previous studies (e.g., [9]),
we only collected the issues with the “bug” label from the two
project for our research. While the developers and maintainers of
the two projects have good labeling habits, it is still possible for
us to miss some real bugs that do not have the “bug” label. In our
future extension of this work, we will consider studying issues with
other labels or no labels.

Manual Analysis of Bugs. In our work, all bugs are analyzed
manually and it is inevitable that we could bring subjective judg-
ment into the process. To reduce the threat, we had a lot of discus-
sions when analyzing and classifying bugs, and we also tried to
find references from the comments in bug reports to help build our
taxonomy. It took two experienced UAV developers and two other
co-authors six months to analyze and cross-validate the results. Our
results are also online for public scrutiny.

7 RELATEDWORK
Empirical Studies of CPSs and Robotics Software. Zheng et
al. [62] conducted an empirical study of CPSs consisting of three
parts: a literature review, an online survey, and interviews. They
reviewed an empirical study of CPS developers and used the find-
ings to highlight the key challenges in verification and validation in
CPSs and presented a research roadmap to address these challenges.
Unlike this study, we focus on the real-world bugs in CPSs.

Joshua et al. [13] conducted a comprehensive study of bugs in
self-driving cars. They introduced 13 root causes, 20 bug symptoms,
and 18 categories of software components that are often affected
by those bugs. They distilled 16 findings from their study to guide
future research. Yang et al. [59] summarized the state-of-the-art
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research results and identified the challenges of developing depend-
able CPSs. There are three challenges: context management, fault
detection, and uncertainty handling. They found that the physical
environment could strongly affect the dependability of a CPS. Dif-
ferent from these two studies, our study summarizes the different
types UAV system bugs and the challenges in detecting and fixing
these bugs.

Neshenko et al. [42] provided a comprehensive classification
of recent surveys on IoT vulnerabilities and they also provided a
unique taxonomy, including the features of IoT vulnerabilities, their
attack vectors, impacts, and corresponding remediation method-
ologies. In their paper, they analyzed the flaws of IoT from the
perspective of attack and defense. In comparison, our bug analysis
is not restricted to the security perspective.

For robotics software, Anders et al. [11] characterized the de-
pendency bugs in ROS and studied the pervasiveness and potential
solutions of these bugs. Michel et al. [2] studied the energy-related
practices in robotics software. Sotiropoulos et al. [51] studied the
probability of immersing software in virtual scenarios to conduct
simulation-based testing, and found that most of the robot naviga-
tion bugs can be found even in low-fidelity simulation. Our study
shows that although there exist development challenges that are
common to UAV and robotics software, developing UAV software
may encounter multiple specific problems due to its unique features,
e.g., hidden data dependence between different hardware.

Testing and Detecting UAV Bugs. Lucio et al. [48] proposed a
UAV test platform by employing Matlab/Simulink to run the drones
under test. Their paper mainly focuses on the control system, not
software bugs. Claudio et al. [41] proposed an automated approach
to generating an online test oracle for CPSs by identifying signal
first-order logic (SFOL) fragments to specify requirements, defining
the quantitative semantics of the fragment, and correctly convert-
ing the fragment into Simulink. Uttam et al. [1] presented a test bed
for a cyber-physical power system. The test bed is built for hard-
ware in loop simulation and system attacks, in order to generate
data sets required by researchers. He et al. [32] proposed a system
identification based oracle for fault localization in control-CPS soft-
ware. They used the AR-SI algorithm to predict a physical trajectory
which can be used as a test oracle for Ardupilot. The results show
that the generated oracle increases the accuracy of CPS software
fault localization. Kane et al. [36] proposed monitor based oracles
for CPS testing and used an external runtime monitor as partial
test oracles to detect unexpected CPS behavior. Giannakopoulo
et al. [15] implemented a test case generation tool for autopilots.
Symbolic execution has been used to generate both user inputs and
test oracles. Our study is different from the aforementioned studies
in that it is the first empirical study of real UAV-specific bugs by
analyzing bugs that have been fixed in GitHub projects.

8 CONCLUSION
In this work, we conducted a large-scale empirical study to charac-
terize UAV-specific bugs in two open-source UAV platforms, namely
PX4 and Ardupilot. We identified 168 UAV-specific bugs from 569
real bugs in the two projects on GitHub. By analyzing these bugs,
we proposed a taxonomy of UAV-specific bugs and summarized
five challenges for detecting and fixing bugs in UAV systems. We

believe this study can facilitate the development of UAV systems
and guide future research in related areas. In the future, we plan to
leverage our empirical findings to develop program analysis tools
for detecting and fixing bugs in UAV systems.
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