
Event Trace Reduction for Effective Bug Replay of Android Apps
via Differential GUI State Analysis

Yulei Sui
University of Technology Sydney

Australia

Yifei Zhang
Alibaba Group

China

Wei Zheng
Northwestern Polytechnical

University, China

Manqing Zhang
Northwestern Polytechnical

University, China

Jingling Xue
University of New South Wales

Australia

ABSTRACT

Existing Android testing tools, such as Monkey, generate a large
quantity and a wide variety of user events to expose latent GUI
bugs in Android apps. However, even if a bug is found, a majority of
the events thus generated are often redundant and bug-irrelevant.
In addition, it is also time-consuming for developers to localize and
replay the bug given a long and tedious event sequence (trace).

This paper presents Echo, an event trace reduction tool for ef-
fective bug replay by using a new differential GUI state analysis.
Given a sequence of events (trace), Echo aims at removing bug-
irrelevant events by exploiting the differential behavior between the
GUI states collected when their corresponding events are triggered.
During dynamic testing, Echo injects at most one lightweight in-
spection event after every event to collect its corresponding GUI
state. A new adaptive model is proposed to selectively inject inspec-
tion events based on sliding windows to differentiate the GUI states
on-the-fly in a single testing process. The experimental results show
that Echo improves the effectiveness of bug replay by removing
85.11% redundant events on average while also revealing the same
bugs as those detected when full event sequences are used. Our
tool is publicly available at https://github.com/zmqgeek/Echo and
its demo video is available at https://youtu.be/0UCVIIEigEI.

CCS CONCEPTS

• Theory of computation→ Program analysis.

KEYWORDS

Android testing, program analysis, bug replay
ACM Reference Format:

Yulei Sui, Yifei Zhang, Wei Zheng, Manqing Zhang, and Jingling Xue. 2019.
Event Trace Reduction for Effective Bug Replay of Android Apps via Differ-
ential GUI State Analysis. In Proceedings of the 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3338906.3341183

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3341183

1 INTRODUCTION

GUI testing has become an essential part of the Android develop-
ment cycle to improve the overall quality of Android apps. Due to
non-deterministic user events in Android apps [23, 27], traditional
human testing is unable to test an app thoroughly. Many Android
testing techniques have been proposed to find latent GUI bugs via
automatic event generation [4–8, 15–20]. However, replaying the
bugs found by testing tools to help developers localize them still
remains a time-consuming task. Tedious event traces pose a major
challenge to effective bug replay, even if a bug is found.

Background and Insights. Existing testing tools generate GUI
events (e.g., tapping and dragging) to explore all possible program
executions for the purposes of finding GUI bugs. A testing process
for an app can be described as a series of state transitions. It starts
with a (unique) initial state. Then, events (e.g., a tapping on the
screen) generated by a testing tools are injected into the Android
system to exercise the app. An event can cause some side-effects
(e.g., a click on a button in an activity), which may cause a state
transition (e.g., transiting to another activity) or stay at the same
state if an event is side-effect-free (e.g., a tapping on the blank area
of the screen). Once a bug (e.g., a crash) is found, the testing process
will terminate at a (unique) error state. To reproduce this bug, the
triggering event sequence are re-injected into the Android system
to replay the bug finding process. In order to increase coverage, GUI
testing tools generate a large quantity and a wide variety of user
events. However, in reality, bugs only reside in some parts of an
app. Frequently, testing tools end up exercising many bug-unrelated
code regions through redundant events, which makes developers
difficult to identify critical and meaningful events for effective bug
replay.

Challenges. Developing a practical replay technique for An-
droid apps is challenging. First, existing tools often generate a large
number of various events in the presence of dynamically changed
GUIs. The side-effect of an event can only be known when the
event interacts with a particular GUI. This needs to be observed
dynamically during testing. Second, recording and inspecting a
large amount of events adds the overall overhead of the testing
process. It is nontrivial to develop a cost-effective strategy to record
useful information where necessary to reflect the testing process
in order to correctly replay bugs. Third, the side-effect of an event
(e.g., a click on the screen) generated by a testing tool may differ.
Good criteria need to be developed to differentiate the side-effects
of events to remove redundant events driven by the triggered bugs.

https://github.com/zmqgeek/Echo
https://youtu.be/0UCVIIEigEI
https://doi.org/10.1145/3338906.3341183
https://doi.org/10.1145/3338906.3341183

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yulei Sui, Yifei Zhang, Wei Zheng, Manqing Zhang, and Jingling Xue

Tapping
Pressing

key “Enter” Dragging ...

TTG-Based Event
Trace Reduction

Reduced Event Trace

...

(ii) Differential GUI State Analysis

Inspection
Event

Tapping Dragging

(i) Test Case Generation and Inspection Event Injection

...

App
Under
Test

App
Under
Test

(iii) Trace Reduction for Bug Replay

Bug
Replay

Adaptive Sliding Window Model
Yes No

Inspection
Events

TTG
Construction

s1

s2 s3

s4

e1 e2

e3 e4

e5

s1

s2 s3

s4

e1 e2

e3 e4

e5

TTG
Construction

s1

s2 s3

s4

e1 e2

e3 e4

e5

User Events

Figure 1: An Overview of Echo.

Our solution. We present Echo, an event trace reduction tech-
nique for effectively replaying bugs found by existing GUI test-
ing tools, such as Monkey [4]. Due to the event-driven nature in
Android apps, GUI bugs are triggered through a sequence of user
events to interact with the Android system via dynamically changed
GUIs. GUI state, which is the GUI information extracted from the
dynamically generated Android layout XML file of the current GUI
on the screen, is the key to reflecting the GUI changes causing a
bug. Given this insight, Echo aims at removing redundant events
by exploiting the differential behavior between the GUI states col-
lected when their corresponding events are exercised. As illustrated
in Figure 1, Echo has the following three components:

(i) Test generation and inspection event injection. Our test gener-
ation phase adopts the same event generation strategy as inMonkey,
an internal Android GUI testing tool, which is often used to com-
pare with different testing tools in the literature [10, 14, 17, 20, 22].
Echo injects at most one inspection event after every user event to
collect its corresponding GUI state. The inspection event serves as
a snapshot to record the side-effect of the event if it changes the
current GUI state. To efficiently record GUI states under a large
amount of events, we propose an adaptive model based on sliding
windows to selectively inject inspection events. As illustrated in
Figure 1(i), an inspection event is injected between two user events
only if the model allows it (i.e., returns ‘Yes’). By adjusting the
granularity of inspection, the sliding window facilitates trade-offs
between efficiency and effectiveness for bug replay.

(ii) Differential GUI state analysis. Due to the highly interactive
nature of Android GUIs, the outcomes of injecting an event usually
manifest on the screen. The current GUI state of an app can be
extracted from the dynamically updated XML file describing the
current GUI on the screen in the Android resource folder. There-
fore, the side-effect of an event can be obtained by differentiating
between the current GUI and the previous one. We abstract the test-
ing process of an app using a Testing Trace Graph (TTG), through
which the event trace reduction can be formulated as a path-finding
problem. A TTG is constructed on-the-fly during the single testing
process. It is a directed graph ⟨S,E⟩, where s ∈ S is a set of nodes
with each representing a GUI state, and each edge (s

e
↪−→ s ′) ∈ E

denoting an event e that causes a state transition from s to s ′.
(iii) Trace reduction for bug reply. A TTG has an entry and an

exit, which represent the initial and error states of the testing pro-
cess. Once a bug is found during testing, TTG construction is com-
pleted. Event trace reduction is to find a shortest path from the
initial to the error state. The reduced event trace is collected from
the edges on that path. The bug can be replayed by re-injecting
the reduced trace. Hence, the bug-irrelevant events are removed to
improve the overall quality of bug replay.

2 A MOTIVATING EXAMPLE

This section illustrates the idea and workflow of Echo using a bug
in a real-world Android app Addi [1] (a scientific computation tool),
found and replayed by Echo as illustrated in Figure 2.

2.1 Bug Scenario

Addi provides a command-line interface (CDI) for users to perform
scientific computation. It can also load and execute a script via a file
manager from the device. If the file manager is not installed, Addi
sends an implicit intent for downloading it by navigating users to
an app store (e.g., Google Play). However, the app crashes if the app
store is not installed on the current device since no available com-
ponents can handle this intent. The following subsections describe
Echo’s event trace reduction process, which reduces a sequence
of 162 events that triggered this bug to only four (i.e., e0, e1, e160
and e161) with five bug-relevant GUI states (i.e., s0, s1, s2, s35 and
s36) for a successful bug replay as shown in Figure 2.

2.2 Test Generation and Inspection Events

Monkey-style testing, which relies on a random event generation
strategy, requires a seed for a pseudo-random number generator to
generate each test case. To fairly generate event traces, we randomly
select five seeds to perform test case generation when testing every
app including Addi. The shortest event sequence that triggered the
abovementioned bug consists of 162 events. Echo injects inspection
events on-the-fly during dynamic testing to record the current GUI
state, i.e., the structure and contents of the XML layout file of
the current GUI on the screen. At most one inspection event is
injected after each generated user event based on a sliding window
model. The window size ws is the inspection interval, requiring
one inspection everyws events.

2.3 Differential GUI State Analysis

By using inspection events, differential GUI state analysis con-
structs a TTG on-the-fly during testing, aiming at exploiting the
differential behavior before and after a user event. Figure 2 gives
the constructed TTG with 37 nodes (screenshots) representing the
corresponding 37 unique GUI states. The bug-relevant states, s0, s1,
s2, s35 and s36, which form the shortest path to the error state on
TTG, are highlighted inside blue rectangles. s19, a bug-irrelevant
state (after a keyboard input) that is not on the shortest path, is
highlighted in a red rectangle. All other redundant states, i.e., s3 to
s18 and s20 to s34, are omitted for brevity. The transitions between
the GUI states on the shortest path are highlighted in blue arrows.
On the contrary, the red dotted arrows (e.g., e2, e3, e4 and e159)
represent redundant events reduced for bug replay.

Let us take a look at the transition between s0 and s1 on the
TTG using our differential GUI state analysis. The event e0 sends

Event Trace Reduction for Effective Bug Replay of Android Apps ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

…

s0 (Initial State) s1 s2 s19 s35 s36 (Error State)

e0 e1

e160

e161

e3

e2

s3
e4 … s34

e159

Figure 2: TTG constructed on-the-fly during the testing process Addi. sn denotes a GUI state, corresponding to the n-th node

on the TTG. ei , which represents an state transition edge between two states, denotes the i-th user event that causes a state

transition. represents the shortest path (reduced event trace) to the error state on TTG. represents the redundant

state transitions removed by Echo. denotes the position of the tapping event of e3 on the screen.

KEYCODE_MENU to press the menu key (the three dots button on the
bottom right corner of s0). The side-effect of this event is to pop out
the menu (s1 in Figure 2), which can be detected via the inspection
event by comparing the current GUI state with the previous one.
The difference between the two GUI states allows Echo to add a
new state s1 into the TTG and connect s0 to s1 with e0 on its edge,
indicating that the transition is caused by this event.

Some events do not introduce any side-effects. For example, the
event e3 taps the top-right corner on the screen, (highlighted using

in s2 of Figure 2). Therefore, e3 is side-effect-free since there
is no GUI element to interact with the event on that blank area.
A self-loop is introduced with e3 on the edge to represent this
side-effect-free transition on the TTG.
2.4 Event Trace Reduction and Bug Replay

A TTG captures all GUI state transitions for a particular bug. TTG
construction is on-the-fly during the testing process until the bug
is found. A TTG can have cycles (e.g., s2, s3, ... s19, ... s34, s2) since
the current GUI state can be transited to any of the old ones on the
TTG via different events. For example, tapping the return button
on the screen can cause a transition from the current GUI to the
old one. Due to cycles on the TTG, we may have multiple paths
from the initial to the error state.

Echo formulates the event trace reduction problem as a path-
finding problem on the TTG. The longest path is the one containing
the full event sequence (i.e., e0, e1, e2, ... e161), which is obviously
unnecessary costly for bug replay, since many of the events resid-
ing in cycles are redundant. We use Dijkstra’s algorithm to find a
shortest path from the initial to the error state. The reduced trace
is obtained on the edges along the shortest path. The shortest path
from s0 to s36 are highlighted using blue arrows via events e0, e1,
e160 and e161. 158 events are reduced including 85 side-effect-free
(e.g., e2 and e3) and 73 events with side-effects, i.e., the ones can
differentiate GUI states, but identified as redundant e.g., e159. Fi-
nally, the reduced trace consisting of only four events (e0, e1, e160
and e161) are re-injected into the system to replay this bug.

3 EVALUATION

3.1 Tool Implementation

We have implemented Echo in Appium [2], an open source test
automation infrastructure, which uses vendor-provided automation

frameworks under the hood so that apps can be tested without any
modification. Echo’s test generation component, based on Appium,
provides the same configuration options as the original Monkey. It
can generate the following types of GUI events: tapping and drag-
ging on the screen, snapshot, volume adjustment, pressing keys on
the device and multi-touch gestures such as pinching and zooming.
In addition, a throttle event can create a fixed delay between other
types of user events to allow the devices to process and react to the
events just injected. The percentage of each type of events in Echo
can be configured via command line options.

Echo injects at most one inspection event after each user event
generated by a GUI testing tool. To effectively and efficiently record
the testing process for building TTG, the injection of an inspection
event is determined by a sliding window model. The window size
ws represents the inspection interval, i.e., suggesting one inspection
after everyws user events. f denotes the adjusting frequency, which
allows Echo to periodically check the status of the current TTG
once every f inspections. ∆ denotes the delta value to increase or
decrease the current window size.

The sliding window model leverages the historical information
to predict the future window size for inspection event injection
by adjusting its granularity. For each periodical check, we will
increase the window size (ws ← ws + ∆) if there are no new GUI
states added to TTG. Otherwise, the window size is decreased as
ws ← ((ws−∆) > 1) ? (ws−∆) : 1) since the minimumwindow size
is 1. We illustrate our model using an example in Figure 3, where
f =2, ∆=1 andws is dynamically adjusted. Our model starts with
a fine-grained inspection with its window sizews=1. The model
injects inspection events ie0 and ie1 after user events e0 and e1,
respectively. Since f=2, Echo periodically checks the status of the
TTG once every two inspections. Through the second inspection
ie1, we found no changes on the TTG. The window size is then
adjusted to 2 to reduce testing overhead by avoiding ineffective
inspections that repeatedly record user events that all likely stay
on the same GUI (e.g., e2 and e3 in Figure 2). Consequently, the
inspection is then performed once after every two user events.
Through the inspection event ie3, the window size is decreased to
1 because there is a new GUI state added to the TTG. Shrinking
the sliding window allows us to pay closer attention to the new
GUI states on the changed TTG. Note that a larger sliding window

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yulei Sui, Yifei Zhang, Wei Zheng, Manqing Zhang, and Jingling Xue

Table 1: Echo’s results

App Name

Sliding Widow Size Fixed to One Adaptive Sliding Window Model Applied

Bug
#TTG Nodes /

#States

#TTG Edges /

#User Events

#Inspection

Events

#Event After

Reduction

#Reduction

Percentage

#TTG Nodes /

#States

#TTG Edges /

#User Events

#Inspection

Events

#Events After

Reduction

#Reduction

Percentage

Aagtl 3 5 5 2 60.00% 3 4 4 2 60.00% FileNotFoundException
Addi 38 162 162 4 97.53% 36 106 106 4 97.53% ActivityNotFoundException
Amazed 4 100 100 1 99.00% 4 57 57 1 99.00% NullPointerException
Photostream 8 21 21 4 80.95% 6 11 11 3 85.71% NullPointerException
ADSdroid 8 30 30 5 83.33% 8 18 18 5 83.33% IndexOutOfBoundsException

ws = 2

e1 e2 e4

ws = 1 ws = 1

e3 e5e0

ws = 1

Window Sliding

f = 2
Δ = 1

ws = 2

e6

ie2

No new GUI state
added to the TTG

New GUI State(s)
added to the TTG

...

ie3ie1ie0

Figure 3: Inspection events based on sliding windows.

is more efficient but at the cost of ineffective bug replay (due to
missing bug-relevant events in replay).

3.2 Results and Analysis

We have evaluated Echo using five real-world Android apps (Ta-
ble 1) from the F-Droid repository [3]. Aagtl is a GPS-based
geocaching aide. Addi is for scientific computation. Amazed is a
game app. Photostream for photo sharing. ADSdroid is a data-
sheet searching app. For each of the five apps, Echo has success-
fully detected and replayed the bugs as listed in the last column
in Table 1. The FileNotFoundException error in Aagtl is trig-
gered when a user event tries to open a non-existent file on the
SD card. Addi triggers an ActivityNotFoundException when
sending an implicit intent that does not have a receiver. The
NullPointerException error in Amazed occurs when calling a
method through an null pointer, which is correctly initialized but
is set to null before the call. The NullPointerException error in
Photostream is due to a null value of a parameter passed from
a caller. The IndexOutOfBoundsException error in ADSdroid is
detected when retrieving an element from an empty ArrayList.

Table 1 gives the Echo’s results under two settings. Columns
2-6 show the results when the sliding window size is fixed to one.
Columns 7-11 give the results when the adaptive model is applied.
In both settings, the original user events are significantly reduced
by Echo for effective bug replay. When the window size is fixed to
one, we have the same number of inspection events (Column 4) as
user events (Column 3). Echo’s differential GUI state analysis has
successfully eliminated 84.16% (on average) user events (Column
6), while replaying the same bugs when full event traces are used.

When the adaptive model is applied, Column 9 shows that a sub-
stantial number of inspection events are reduced (5 to 4 in Aagtl,
162 to 106 in Addi, 100 to 57 in Amazed, 21 to 11 in Photostream,
and 30 to 18 in ADSdroid). The events after reduction (Column 10)
by this setting are almost the same as those (Column 5) under the
setting when the window size is fixed to one (except Photostream).
It demonstrates that our adaptive model is effective in identifying
critical and meaningful events while reducing unnecessary inspec-
tions for effective bug replay.

4 RELATEDWORK

GUI testing. Recently, there are several research efforts on de-
veloping effective techniques for finding GUI bugs. Monkey [4] is
a representative random testing approach by generating a large
quantity and a wide variety of events to achieve good code coverage.
Choi et al. present SwiftHand [8], a testing technique that uses
machine learning to learn a model of an app and uses it to gener-
ate test inputs. Azim et al. propose A3E [6], a tool that combines
static and dynamic analysis to automatically generate test cases to
exercise various Android activities. Mao et al. present Sapienz [17],
a multi-objective search-based testing technique to increase cov-
erage. Song et al. present EHBDroid [19], an approach that does
not generate GUI events but directly invokes callbacks of event
handlers through instrumenting the app. TrimDroid [18] employs
static analysis to improve the quality of GUI testing by extracting
GUI dependencies. Su et al. present Stoat [20], a model driven ap-
proach to detecting latent bugs by increasing GUI testing coverage
via a stochastic model. Collider [13] and SynthesiSE [12] present
symbolic execution based approaches to Android testing. Unlike the
prior art, Echo, as an effective replay approach, accepts the event
sequence that triggers a bug from any testing tool. Thus, Echo can
be an important complementary tool to existing GUI testing tools
to improve their bug replay processes.

Test Case Reduction. Delta debugging [25, 26] is an automated
debugging method to narrow down causes of program failures. Re-
cently, it has been used for test case reduction in Android testing.
Clapp et al. [11] develop a variant of delta debugging to minimize
long event traces reaching a particular Android activity. DetRe-
duce [9] minimizes the test suites for regression testing by eliminat-
ing redundant loops and trace fragments. SimplyDroid is a trace
simplification technique [14], which uses Activity IDs to form a
trace representation and applies delta debugging to find a minimal
subtrace that triggers a bug. Echo differs from SimplyDroid in two
aspects. First, instead of repeatedly testing an app until a minimal
subtrace is found, Echo performs a single testing process to produce
effective traces by injecting lightweight inspections based on an
adaptive sliding window. Second, Echo abstracts the testing process
using an on-the-fly built TTG, on which reduction is formulated as
a path-finding problem. Our differential GUI state analysis can also
be applied to delta debugging to achieve good trade-offs between
efficiency and precision to enable more powerful bug replay.

5 CONCLUSION

This paper presents Echo, an event trace reduction tool for effective
bug replay of Android apps using differential GUI state analysis.
In the future, we plan to enhance Echo by integrating more so-
phisticated static analysis techniques, e.g., program dependence
analysis [21, 24] and static happens-before analysis [23] to facilitate
dynamic analysis to detect and replay more complicated concur-
rency bugs (e.g., order violations) in Android apps.

Event Trace Reduction for Effective Bug Replay of Android Apps ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] [n.d.]. Addi, a math calculation environment. https://f-droid.org/en/packages/
com.addi/

[2] [n.d.]. Appium: Mobile App Automation Made Awesome. http://appium.io/
[3] [n.d.]. F-Droid: Open-Source Android Apps Repository. https://f-droid.org/
[4] [n.d.]. Google Monkey. https://developer.android.com/studio/test/monkey.html
[5] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Au-

tomated Concolic Testing of Smartphone Apps. In FSE ’12. 59.
[6] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first Exploration

for Systematic Testing of Android Apps. In OOPSLA ’13. 641–660.
[7] Young-Min Baek and Doo-Hwan Bae. 2016. Automated Model-based Android

GUI Testing Using Multi-level GUI Comparison Criteria. In ASE ’16. 238–249.
[8] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of

Android Apps with Minimal Restart and Approximate Learning. In OOPSLA ’13.
623–640.

[9] Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang. 2018. DetReduce:
minimizing Android GUI test suites for regression testing. In ICSE ’18. ACM,
445–455.

[10] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet? (E). In ASE ’15.
429–440.

[11] Lazaro Clapp, Osbert Bastani, Saswat Anand, and Alex Aiken. 2016. Minimizing
GUI Event Traces. In FSE ’16. 422–434.

[12] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android
testing via synthetic symbolic execution. In ASE ’18. ACM, 419–429.

[13] Casper S Jensen, Mukul R Prasad, and Anders Møller. 2013. Automated testing
with targeted event sequence generation. In ISSTA ’13. ACM, 67–77.

[14] Bo Jiang, Yuxuan Wu, Teng Li, and W. K. Chan. 2017. SimplyDroid: Efficient
Event Sequence Simplification for Android Application. In ASE ’17. 297–307.

[15] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input
Generation System for Android Apps. In FSE ’13. 224–234.

[16] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented
Evolutionary Testing of Android Apps. In FSE ’14. 599–609.

[17] Ke Mao, Mark Harman, and Yue Jia. [n.d.]. Sapienz: Multi-objective Automated
Testing for Android Applications. In ISSTA ’16. 94–105.

[18] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.
2016. Reducing Combinatorics in GUI Testing of Android Applications. In ICSE
’16. 559–570.

[19] Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: Beyond GUI Testing
for Android Applications. In ASE ’17. 27–37.

[20] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. [n.d.]. Guided, Stochastic Model-based GUI
Testing of Android Apps. In FSE ’17. 245–256.

[21] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis
in LLVM. In CC ’16. ACM, 265–266.

[22] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An empirical study of android test generation tools in
industrial cases. In ASE ’18. ACM, 738–748.

[23] Diyu Wu, Jie Liu, Yulei Sui, Shiping Chen, and Jingling Xue. 2019. Precise Static
Happens-Before Analysis for Detecting UAF Order Violations in Android. In
ICST ’19. IEEE, 276–287.

[24] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: value-flow-guided
precise program repair for null pointer dereferences. In ICSE ’19. IEEE Press,
512–523.

[25] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In FSE ’99. 253–267.

[26] A. Zeller and R. Hildebrandt. 2002. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.

[27] Yifei Zhang, Yulei Sui, and Jingling Xue. 2018. Launch-mode-aware context-
sensitive activity transition analysis. In ICSE ’18. IEEE, 598–608.

https://f-droid.org/en/packages/com.addi/
https://f-droid.org/en/packages/com.addi/
http://appium.io/
https://f-droid.org/
https://developer.android.com/studio/test/monkey.html

	Abstract
	1 Introduction
	2 A Motivating Example
	2.1 Bug Scenario
	2.2 Test Generation and Inspection Events
	2.3 Differential GUI State Analysis
	2.4 Event Trace Reduction and Bug Replay

	3 Evaluation
	3.1 Tool Implementation
	3.2 Results and Analysis

	4 Related Work
	5 Conclusion
	References

