
All Your App Links Are Belong to Us: Understanding the Threats
of Instant Apps Based Attacks

Yutian Tang
ShanghaiTech University

Shanghai, China
csytang@ieee.org

Yulei Sui
University of Technology Sydney

Sydney, Australia
yulei.sui@uts.edu.au

Haoyu Wang
Beijing University of Posts and

Telecommunications
Beijing, China

haoyuwang@bupt.edu.cn

Xiapu Luo∗
The Hong Kong Polytechnic

University
Hong Kong, China

csxluo@comp.polyu.edu.hk

Hao Zhou
The Hong Kong Polytechnic

University
Hong Kong, China

sunmoonsky0001@gmail.com

Zhou Xu∗
Chongqing University
Chongqing, China

zhouxullx@cqu.edu.cn

ABSTRACT
Android deep link is a URL that takes users to a specific page of
a mobile app, enabling seamless user experience from a webpage
to an app. Android app link, a new type of deep link introduced
in Android 6.0, is claimed to offer more benefits, such as support-
ing instant apps and providing more secure verification to protect
against hijacking attacks that previous deep links can not. However,
we find that the app link is not as secure as claimed, because the
verification process can be bypassed by exploiting instant apps.

In this paper, we explore the weakness of the existing app link
mechanism and propose three feasible hijacking attacks. Our find-
ings show that even popular apps are subject to these attacks, such
as Twitter, Whatsapp, Facebook Message. Our observation is con-
firmed by Google. To measure the severity of these vulnerabilities,
we develop an automatic tool to detect vulnerable apps, and perform
a large-scale empirical study on 400,000 Android apps.

Experiment results suggest that app link hijacking vulnerabil-
ities are prevalent in the ecosystem. Specifically, 27.1% apps are
vulnerable to link hijacking with smart text selection (STS); 30.0%
apps are vulnerable to link hijacking without STS, and all instant
apps are vulnerable to instant app attack. We provide an in-depth
understanding of the mechanisms behind these types of attacks.
Furthermore, we propose the corresponding detection and defense
methods that can successfully prevent the proposed hijackings for
all the evaluated apps, thus raising the bar against the attacks on An-
droid app links. Our insights and findings demonstrate the urgency
to identify and prevent app link hijacking attacks.

∗The corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409702

CCS CONCEPTS
• Security and privacy→Mobile platform security.

KEYWORDS
Android, Deep Link, App Link, Instant app

ACM Reference Format:
Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu.
2020. All Your App Links Are Belong to Us: Understanding the Threats of
Instant Apps Based Attacks. In Proceedings of the 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3368089.3409702

1 INTRODUCTION
Mobile apps are pervasive. Android, as the dominant mobile op-
erating system, supports a wide variety and a large number of
mobile apps. To provide integrated service to users, Android inte-
grates various functionalities from different apps. The deep link is
a mechanism in Android to allow such seamless web-to-app com-
munications [4, 17]. A deep link is a universal resource identifier
(URI) for app content, such as a specific Activity. For example,
clicking a deep link (e.g., yelp:///career/home) on a webpage in
the mobile Chrome, a user is automatically redirected to the Yelp
app by Android. Here, Chrome hands over the control to the Yelp
as the latter is more suitable for the task.
App Link. Despite the convenience, researchers also identified
serious security issues in deep links [9, 10, 43]. A most significant
hijacking example is an app can register another app’s scheme with
a deep link and deceive users into opening the malicious app. To
prevent this, Android promotes a new type of deep link called app
link since Android 6.0.

The target of the app link is taking users directly to a link’s spe-
cific content in an app. App links [17] are different from deep links
in two aspects: first, app links only support links with HTTP(S) (e.g.,
http(s)://...). However, deep links support customized schemes
(e.g., yelp://...); second, the app link verification is enforced for
enabling app links. Whereas, such verification is not enforced for
deep links. To pass the app link verification, a developer must do
the followings: first, a user has to claim the app link in the app’s

https://doi.org/10.1145/3368089.3409702
https://doi.org/10.1145/3368089.3409702

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu

manifest file (AndroidManifest.xml); second, the user has to pub-
lish a digital asset link (DAL) on their domain. The rules and syntax
for constructing DAL are presented in the official tutorial [18].
Instant App. Despite the efforts made by the Android security
team and researchers [23, 29, 32], app links are still not as secure as
expected, especially when it is under the context of instant apps [2].
Instant apps are recently promoted byAndroid to enable on-demand
use of modules in an app without the installation of the entire app.
To build an instant app, developers must split an app into modules
and associate URLs with these modules. These modules are named
as features in an instant app.

Each instant app consists of one base feature module and zero
or more feature modules. The feature modules can access all public
functions in the base feature module. Inside each module, there is at
least one Activity that serves as an entrance to the module. This
Activity is always associated with a URI, through which users
can access the Activity and other services in the module. When a
user clicks the URI, the module is downloaded and its Activity is
launched to the user.

http://google.com/tripsapp

launch
InstantHomeActivity

Google Trips App

Base module

ExploreActivity

… … …

publish to

Base module

InstantHomeActivity

ExploreActivity

… … …

click

download

Google Play

Figure 1: The Workflow of Android Instant App.

If a user accesses a feature module, an Android Package (a.k.a.
APK, the binary format of an app) that contains the base feature
module and the feature module is downloaded to the device. Other-
wise, an APK that only contains the base feature module is down-
loaded [2] to the device. Fig. 1 shows an example of Google Trips
instant app (com.google.android.apps.travel.onthego), which
only contains the base module.

In Google Trips, there are two Activities that are as-
sociated with URLs. To be exact, InstantHomeActivity and
ExploreActivity are bound to links google.com/tripsapp and
google.com/tripsapp/trip/em, respectively. Once the link (i.e.,
google.com/tripsapp) is clicked, the module (base module in this
case) is downloaded to the device. Then InstantHomeActivity is
shown to users.

Compared with normal apps, instant apps have the following
unique features: first, an instant app does not require any installa-
tion; and second, an instant app can provide on-demandmodules for
app users. A module is downloaded to the target device if and only
if a user attempts to access certain functions inside that module.
Attacks. However, we find that app link verification can be easily
bypassed by exploiting instant apps (detailed in Section 4). Attackers
can manipulate a malicious instant app (MIA) to launch three types
of attacks, including link hijacking with STS (§4.2), link hijacking
without STS (§4.3), and instant app hijacking (§4.4). STS is a novel
feature introduced in Android 8.0 [38].

With STS, Android can recognize the text selected or tapped
and recommend the next logical step. For example, if a user selects

a sequence of numbers, STS recognizes them as a possible phone
number and recommends the user to make a phone call. In this
attack,the STS is spoofed to recommend our MIA for users. If a user
select our MIA, they can be hijacked.

We validate these attacks on the latest Android versions (both
Android 9 and 10). The attacks can be launched successfully on
a Pixel device. We already reported the weakness of the app link
mechanism to Google through its Vulnerability Reward Program
(VRP). Google confirmed the vulnerability we reported. Our An-
droid Id is 128919672.

To further measure the severity of these attacks, we develop
a tool called MIAFinder to detect apps that are vulnerable to the
aforementioned three types of attacks (detailed in Section 4). We
then apply MIAFinder to 400,000 Android apps in the wild. Experi-
ment results suggest that app link vulnerabilities are prevalent in
Android’s ecosystem, with over 30% of apps are fragile to these
attacks (detailed in Section 6). To defense the app link attacks, we
propose a novel API named verifyDomainPackage and generate a
patch that integrates the verifyDomainPackage API for the latest
Android (10.0). The experiments show that verifyDomainPackage
can successfully prevent the all the three types of attacks (detailed
in Section 7).
Contributions. The major contributions as follow:
• New Vulnerabilities and Attacks. We present the weakness of the
app link mechanism in Android and present three kinds of attacks
accordingly. These attacks are demonstrated to be practical and
reproducible. For example, we demonstrate that our attacks can
even hijack some popular apps, such as Gmail, Facebook Message,
system SMS, and Whatsapp. To the best of our knowledge, this
is the first end-to-end study of the security issues in the app link
mechanism. Our observation is acknowledged by Google.
•Detection and Defense Techniques.We develop a static analysis tool
named MIAFinder to automatically detect apps that are vulnerable
to the three types of attacks. To defence these attacks, We further
propose a defense mechanism and generate a patch for the latest
Android 10. Experiment results show that our defense mechanism
can successfully protect against these attacks.
• Large-Scale Study. We have conducted a large-scale empirical
study on 200,000 apps from Google Play and 200,000 apps from
Tencent Myapp, the largest third-party app market in China. Our re-
sults demonstrate that 53,619 Google Play apps and 54,650 Tencent-
Myapp apps are vulnerable to link hijacking with smart text selection
(STS) attack; 57,442 Google Play apps and 62,496 Tencent-Myapp
apps are vulnerable to link hijacking without smart text selection
attack; and all instant apps are vulnerable to instant app hijacking
attack.

We hope that our efforts can raise awareness among relevant
stakeholders (including smartphone vendors, app markets, app
developers and mobile users). Hence, we have made our MIAFinder
and all the experiments publicly available at: https://sites.google.
com/view/instant-app-attacks.

2 MOTIVATING EXAMPLES
Architecture of MIA. We illustrate a malicious instant app (MIA)
as shown in Fig. 3, which contains two parts, a phishing module
and a benign module. When users use the MIA, only the functions

https://sites.google.com/view/instant-app-attacks
https://sites.google.com/view/instant-app-attacks

All Your App Links Are Belong to Us: Understanding the Threats of Instant Apps Based Attacks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Link Hijacking
with STS

Link Hijacking
without STS

Instant App
Hijacking

Attack Vector Instant app Instant app Instant app
App Link

Verification? Pass/Fail1 Pass/Fail Pass

Victims

in-app
browsers/
browsers

✓ ✗ Nil2

none in-app
browsers ✓ ✓ Nil

instant app Nil Nil ✓

Assumption
& Setup

We assume that a user installs a MIA from Google Play. For three different attacks, the settings for the
MIAs are shown in Sec.4.3, Sec.4.2, and Sec.4.4 respectively.

Attack Overview

When a user selects a text
whose content is a URL,
Android suggests the MIA
to respond to it. For example,
if a user select
www.yelp.com/biz/...
in an app (e.g, SMS app),
The STS suggests our MIA
to the user.

When a user clicks a link
(e.g. www.yelp.com/biz/...),
(s)he is redirected to the MIA.
For example, if a user
click the link in an app
(e.g, SMS app), the STS
suggests our MIA to the user.

When a user selects a link
to launch an instant app,
Android launches the MIA.
For example, if a user clicks
google.com/tripsapp
to launch Google Trip
instant app, (s)he is redirect
to our MIA.

Countermeasures

To prevent this attack,
developers can prevent users
from selecting a text or
stopping the STS. we propose
4 solutions for developers
to prevent this attack (§5).

This attack can be prevented
by implementing an in-app
browser. Once a user clicks
a link, the in-app browser
can respond to the link.

The protection must be taken
by Android. Android can
leverage verifyDomainPackage
(§7) to detect MIA.

1Pass: app link verification passed; Fail: app link verification failed; 2Nil: this field is unavailable; 3MIA: malicious instant app;
Table 1: Overview of Attack Models

in the benign module can be accessed. The benign module does not
contain any harmful content, which makes users hard to recognize
that the instant app is malicious. Thus the MIA hides itself as a
non-MIA. However, once users access the victim URL, the phishing
module becomes active and hijacks the URL. As Android hands over
the control to the phishing module without notifying users, the
users are not aware that they are interacting with a malicious app.
As we successfully upload our MIA to Google Play (see demo videos
on the project page), our MIA can bypass the security checking
from Google Play and launch attacks without users’ consent.
Link hijacking with STS. As shown in Table 1, the attack relies
on a novel feature, smart text selection (STS), which is introduced in
Android 8.0. Once a user selects a piece of text, Android can recog-
nize the text selected and then recommend the next logical step for
the user. For example, when a user selects a sequence of numbers,
STS may suggest the user make a phone call with the numbers
selected. In STS, there are five functional texts for recommenda-
tions, including email address, phone number, physical address (in a
longitude and latitude format), URL and date-time. As shown in Fig.
2 (1.1-1.3), once a Yelp URL (e.g., www.yelp.com/biz/brunch-y-ckae-
barcelona-2) is selected, the STS recommends MIA as a possible
solution for the URL. If a user launches the URL with the MIA,
his/her privacy data can be collected by the MIA. Once the MIA

collects the data from a user, the MIA then broadcasts the Intent to
make the victim app (Yelp) to respond to the URL again.
Link hijacking without STS. We assume that a user intends to
open the Yelp app via a browser (e.g., Chrome). As shown in Fig.2
(2.1-2.3), when a user clicks the URL (www.yelp.com/biz/brunch-y-
ckae-barcelona-2) to launch the Yelp app, Android ranks all possible
apps that can respond to this URL. Android always gives a higher
priority to an instant app comparing to a none instant app to re-
spond to a URL. Therefore, the MIA rather than the Yelp app is
launched by Android.
Instant app hijacking. If a user intends to launch an instant app,
the process can also be hijacked. As shown in Fig. 2 (3.1-3.2), when
a user clicks the URL google.com/tripsapp to launch the Google
Trips instant app; As both our MIA and the victim instant app
(Google Trips) are instant apps, Android ranks them based on their
package names. In this case, we set a “smaller” package name
(a.example.instantappurlauto) comparing to the Google Trips
(com.google.android.apps.travel.
onthego). The MIA is then ranked higher than the Google Trips
instant app by Android for responding to the URL. As a result, the
MIA rather than the Google Trips is launched by Android.
Differences in three attacks.We compare the differences in the
three attacks from the following aspects:

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu

1.1 Select a Yelp URL with

smart text selection in an app

www.yelp.com/biz/brunch-y-cake-

barcelona-2

1.1

1.2

1.31.2 Android

recommends our MIA

as a candidate for

processing the URL

1.3/2.3 MIA collects privacy

data from users and hides

itself by re-broadcasting the

URL with an Intent

Link Hijacking with STS

2.1

www.yelp.com/biz/brunch-y-cake-barcelona-2

2.2

2.3

2.1 Click a Yelp URL in an app

2.2 Android always uses our MIA to

open the URL without users’ consent

Link Hijacking without STS

3.1
google.com/tripsapp

3.2
3.2 Android always uses

MIA to respond to the URL

without users’ consent

Instant App Hijacking

Google Trip (victim

instant app)

3.1 Click an URL to open an

instant app

Figure 2: Illustration of three proposed attacks

Benign Module Phishing Module

Google Play

….

Victim Apps

Figure 3: The architecture of the MIA.

•The victim apps. As shown in Table 1, only the instant app hi-
jacking targets at attacking instant apps. Other attacks only work
on typical apps (none instant app);
•Approaches to launch the attack. As shown in Fig.2 and Table
1, only link hijacking with STS relies on the STS to launch the attack.
Other attacks do not rely on the STS.
Remarks.We emphasis that two extra points for these attacks.
• We demonstrate that these attacks can hijack app links (URLs
that are mapped to an app). If a URL does not map to any app, it
also can be hijacked by link hijacking with/without STS.
• The attacks proposed can be launched regardless of the correct-
ness of app link configurations. That is, even if an app link is not
correctly configured or the app link verification fails, attacks also
can be launched.

Based on the above two points, we can conclude that the attacks
proposed are practical with high risks. On the one hand, all URLs
can be hijacked by proposed attacks. On the other hand, all apps
that define app links can be affected by our attacks.

3 BACKGROUND
Recall our motivating examples, we highlight that our attacks can
be launched no matter the app links are correctly configured or not.
Therefore, in this section, we first present the background of app
links, then introduce how Android verifies app links, and finally
show the cases that can fail the app link verification process.

get DAL

(www.yelp.com/.well-known/assetlinks.json)

register

www.yelp.com/biz/*
1

2

3 return & verify

com.yelp.android
<->www.yelp.com

assetlinks.json

During Installation

www.yelp.com/biz/brunch-y-cake-barcelona-2

4

After Installation

Figure 4: The verification process and usage sample of an app link

❶ App link configuration and release. To use app links, a de-
veloper must register them (in the HTTP(S) scheme) in the app’s
manifest file. Then, the developer publishes the DAL on the web. For
example, in order to use app links in the Yelp app, the Yelp app devel-
opers need to register the Yelp domain (www.yelp.com) in the app,

All Your App Links Are Belong to Us: Understanding the Threats of Instant Apps Based Attacks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

and also publish the DAL on Yelp’s sever at www.yelp.com/.well-
known/assetlinks.json.
❷,❸ Verify app links. Once a user installs the Yelp app, the veri-
fication of app links in the Yelp happens. As shown in Fig. 4, the
app registers its app links to Android. To verify these app links,
Android extracts the DAL file (assetlinks.json) from the remote
server (i.e.,www.yelp.com). As the DAL file defines the authorized
app, Android can check whether the package name, scheme, and
certificate fingerprint of the app [16] match with a record on the
DAL. If and only if the verification of app links passed, the app
links become valid.
❹ Use app links. Once users click app links, they are redirected
to the Yelp app by the Android system.
Invalid app link verification. However, incorrect configuration
from either app-end or web-end can fail the link verification process.
For the app-end, the incorrect configurations, such as missing the
“autoVerify=true” field or invalid the domain names can result in a
failure. For the web-end, the incorrect JSON format, invalid fields
in a DAL or invalid namespaces can also be the reasons.
Intent and Intent Filter. Once a user clicks a URL in an app, an
Intent is sent by the app. In Android, an Intent is a messaging
object that can be used to request an action from another app
component. For example, one Activity can start a Service (e.g.,
playing background music) with an Intent. There are two types
of intents: explicit Intent and implicit Intent. The explicit Intent
defines an app to respond to the Intent by specifying the app’s
package name. Whereas, the implicit Intent only defines a general
action to perform in an Intent. For example, an app can use an
implicit Intent to request the Google Map app to show a location.
Apps that can perform the action defined in an implicit Intent
get the chance to respond to the Intent. To hijack a URL, the MIA
must claim that it has the capability to process the link to Android.
Only the MIA claims to process a link, Android can consider it as a
candidate for the link.

4 ATTACK MODELS
4.1 Overview
In this section, we provide a bird’s-eye view of all attack models.
We demonstrate an MIA can be exploited as an attack vector for
three types of attacks, including link hijacking with STS (§4.2), link
hijacking without STS (§4.3), and instant app hijacking attack (§4.4).
Even though we launch these attacks with instant apps, the settings
of them can be different.
•Attack vector : For all attacks, we exploit MIAs as the attack vector.
•The MIA: The MIA can either be installed from Google Play or
by clicking the the MIA’s launching URL in an other app (e.g., An-
droid’s SMS app). The reason that attacks can be launched without
users’ consent is presented in Sec. 2.

4.2 Link Hijacking with Smart Text Selection
The link hijacking with STS aims at preventing users from accessing
URLs via STS. When (s)he selects a URL text (e.g. google.com) with
STS, Android suggests the MIA for handling the URL. The URL text
can come from the app itself or input by users.

The attack steps. In the MIA, for simplicity, we build two
Activities: MainActivity and LoginActivity. Recall the archi-
tecture of our MIA (see. Fig. 3), the MainActivity belongs to the
benign module, while the LoginActivity belongs to the phishing
module. The intent filters associated with them are shown in Fig. 5.
The MainActivity is the launcher for the MIA and it is bound with
www.<my-own-site>.org/main. Thismeanswhen the URL is clicked,
the MIA is launched automatically, and Android navigates to the
MainActivity. The LoginActivity is designed for spoofing users.

The MainActivity is associated with <my-own-site>/main,
which is an app link. This is mandatory for launcher Activity
for instant apps. We also set up a deep link for the malicious
LoginActivity. The intent filter inside the LoginActivity makes
the LoginActivity can handle the all URLs that match the regular
expression www.yelp.com/.*. Note that, as a deep link does not
require any verification, the setting for LoginActivity does not
violate any principles for building an app.

<activity android:name=".MainActivity">

 …

 <meta-data

 android:name="default-url"

 android:value="https://www.example.org/main" />

 <intent-filter android:autoVerify="true">

 <action android:name="android.intent.action.VIEW" />

 <category

android:name="android.intent.category.DEFAULT" />

 <category

android:name="android.intent.category.BROWSABLE" />

 <data android:host="www.<my-own-site>.org"

android:pathPattern="/main"

 android:scheme="http" />

 </intent-filter>

</activity>

<activity android:name=".LoginActivity">

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category

android:name="android.intent.category.DEFAULT" />

 <data android:host=“www.yelp.com”

android:pathPttern=“/.*” android:scheme="http"/>

 <data android:host=“www.yelp.com”

android:pathPattern=“/.*” android:scheme="https"/>

 </intent-filter>

</activity>

Deep Link

App Link

www.yelp.com/biz/brunch-y-cake-barcelona-2

for hijacking

for installing &

launching the

instant app

Figure 5: Link Hijacking Manifest Configuration

The victim apps. This attack targets at apps that access a URLwith
STS. This attack can work on all kinds of apps, including browsers,
in-app browsers (apps that have embedded WebView for opening
URLs, e.g., Wechat), and none-browser apps. This attack can be
launched on browsers because when a user uses STS for processing
text selected, the selection is handled directly by Android rather
than the app itself.
The root cause. With deep link defined in
Fig. 5, the LoginActivity can respond to
www.yelp.com/biz/brunch-y-cake-barcelona-2. This is because
the URL is subject to the regular expression www.yelp.com/.*. If
the URL is selected, Android looks up for all apps that can respond
to the URL. Then, STS suggests all these apps for users to select.
Therefore, STS suggests our MIA to users. If users select our MIA,
Android uses our MIA (see Fig.6) to respond to the URL. The MIA
is thereby launched to respond to the Intent.

www.yelp.com/.well-known/assetlinks.json
www.yelp.com/.well-known/assetlinks.json
www.yelp.com

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu

private static List<LabeledIntent> createForUrl(Context context, String

text) {

 if (Uri.parse(text).getScheme() == null) {

 text = "http://" + text;

 }

 return Arrays.asList(new

LabeledIntent(context.getString(com.android.internal.R.string.browse),

context.getString(com.android.internal.R.string.browse_desc), new

Intent(Intent.ACTION_VIEW,

Uri.parse(text)).putExtra(Browser.EXTRA_APPLICATION_ID,

context.getPackageName()),LabeledIntent.DEFAULT_REQUEST_CODE));

}

Figure 6: The Smart Text Selection for URL text

4.3 Link Hijacking without Smart Text
Selection

The link hijacking aims at preventing users or apps from accessing
certain URLs/apps with the MIA. For example, once users click
a URL (e.g.,www.yelp.com/biz/brunch-y-cake-barcelon-2) in the
SMS app, they are redirected to our MIA rather than the Yelp app.
The attack steps. The setting for the MIA follows the same
step in §4.2. We also build two Activities: MainActivity and
LoginActivity. The intent filters associated with them are shown
in Fig. 5. The only difference is the way of launching this attack.
In link hijacking without STS, by clicking a URL, link hijacking
occurs. Whereas in link hijacking with STS, users have to select a
piece of URL, then STS recommends the MIA to users.
The victim apps. This attack can be launched on apps that access
a URL. For example, some apps contain rate-us buttons. Once the
button is clicked, users are redirected to the MIA. It worth mention-
ing that this attack cannot work on browsers or in-app browser
apps (apps that implement browsers for opening URLs, for example,
Wechat). The reason is that browsers or in-app browser apps can
handle the URL themselves rather than asking Android to handle
the URL.
The root cause. If a URL is clicked, Android looks up all apps
that can handle the URL. As our instant app can handle the In-
tent (see §4.2), Android suggests our MIA to respond to the Intent.
Typically, Android asks users to select one app from all candidates
to respond to the given link. However, with the instant app, we
can successfully escape such prompt. To illustrate this attack, we
start from introducing how Android processes a URL click. Once a
URL is tapped, the startActivitymethod is called. Android checks
whether there is a locally installed app that can resolve this Intent.
If multiple apps that can resolve the Intent, Android ranks them
based on their package names. Then, Android finds a suitable ac-
tivity to respond to the Intent with chooseBestActivity method
(PackageManagerService.java).

Ranks
Candidates
Activities

(based on package name)

The top one has

a higher priority

Start
Has a saved

preferred app

N Loop to find a

top ranked

Instant app

N Return a list
of apps

Return
N

Y

<chooseBestActivity>
(1) (2) (3) (4)(0)

Figure 7: The functionality of chooseBestActivity method inside
PackageManagerService.java

Inside method chooseBestActivity, the system performs the fol-
lowing checking: (1) check whether the first Activity has a higher
priority (or default). If so, the first Activity is used to respond to

the Intent; (2) if (1) returns false, Android checks whether there
is a preferred app for handling the Intent. If so, the preferred app
(a.k.a. saved preference) replies to the Intent; (3) if the checking (2)
returns false, Android loops all Activities to find whether there is
an instant app that can cope with the Intent. If so, the instant app
responds to the Intent; (4) if no instant app and no saved preferred
app to cope with the Intent, Android shows a list of candidate apps
to allow users to select from. The candidate apps are selected based
on whether they can handle the Intent. For example, a user can
have 5 different apps that can play audios. All these 5 apps are
candidates for the task of playing audios (presented as an Intent
in a program). From (1) to (4), we can find that if a user does not
set any preference, Android places the priority on instant apps. It
means in general, an instant app owns a higher priority compared
to a none instant app.

Recall our link hijacking scenario, as the LoginActivity supports
all URLs with the pattern www.yelp.com/.*, the MIA can respond
to the URL. However, the attack occurs in step (3) and (4). If no app
is signed to a higher priority, and no app is set to be the default app,
Android checks whether an instant app can cope with the Intent.
Consequently, the MIA responds to the Intent. Android provides
the MIA a higher priority based on the fact that the app is an instant
app. However, the defect is that Android fails to check whether
the URL is used for launching the instant app. This attack reveals
two defects: first, Android has to verify whether a URL is the one
associated with the instant app; and second, Android should not
assign a higher priority to instant apps comparing to none instant
apps.

The fundamental observations for this vulnerability are: (1) An-
droid does not verify whether all links claimed in an instant app
belong to the same entity (e.g., a developer, a company). For an in-
stant app, it is possible to claim both app links and deep links. As
deep links are not required to verify, the MIA can claim deep links
that it does not own, and (2) Android authorizes a higher priority to
an instant app comparing to an installable app.

4.4 Instant App Hijacking
The instant app hijacking aims at preventing users from accessing
an instant app even if it is installed. Here, we assume that both the
MIA and the victim instant app are installed from Google Play.
The attack steps.We assume that users download both the victim
instant app (e.g., Google Trip instant app
com.google.android.apps.travel.onthego) and the MIA from
Google Play. Once users intend to access the Google Trip instant
app, they are redirected to our MIA. As shown in Fig. 8, we set the
MainActivity same as link hijacking (see Fig. 5) and the malicious
LogActivity is set to respond the URL google.com/tripsapp. This
URL is associated with Google Trip instant app
(com.google.android.apps.travel.onthego). That is, the
LogActivity is designed for hijacking the Google Trips instant app.
The key factor of launching this attack is setting the package name
to be one “smaller” than Google Trips’ package name based on the
dictionary order. Here, we set the package name of our MIA to
a.example.instantappurlauto (a.example.instantappurlauto <
com.google.android.apps.travel.onthego).

All Your App Links Are Belong to Us: Understanding the Threats of Instant Apps Based Attacks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

<activity android:name=".MainActivity">

 <meta-data

 android:name="default-url"

 android:value="https://www.example.org/main" />

 <intent-filter android:autoVerify="true">

 <action android:name="android.intent.action.VIEW" />

 <category

android:name="android.intent.category.DEFAULT" />

 <category

android:name="android.intent.category.BROWSABLE" />

 <data android:host="www.<my-own-site>.org"

android:pathPattern="/main"

 android:scheme="http" />

 </intent-filter>

</activity>

<activity android:name=".LoginActivity">

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category

android:name="android.intent.category.DEFAULT" />

 <data android:host="play.google.com"

android:pathPrefix=“/tripsapp” android:scheme="http"/>

 <data android:host=“google.com” android:pathPrefix=“/

tripsapp” android:scheme="https"/>

 </intent-filter>

</activity>

Deep Link

App Link

http(s)://google.com/tripsapp

for installing &

launching the

instant app

<manifest … package=“a.example.instantappurlauto”>
ranks higher than Google

Trips for Android to select

Figure 8: Instant App Hijacking Manifest Configuration

The victim apps. All instant apps are vulnerable to this attack. If
the malicious app is installed prior to the victim instant app, the
app user is blocked for downloading and using the victim instant
app unless (s)he uninstalls the MIA. If the MIA is installed after
the installation of the victim instant app, the app user is blocked
for accessing the victim instant app even though the victim instant
app is installed on the phone. for both cases, the services from the
victim instant app are blocked.
The root cause. By setting the intent filters of LogActivity as
Fig. 8, both the MIA and Google Trip instant app can respond to the
URL. If multiple instant apps and apps can resolve one URL, Android
ranks them based on package names. Then, Android leverages
chooseBestActivity method for locating the target app for the
Intent. Recall the functionality of chooseBestActivity introduced
in §4.3, if there is no saved preferred app and no app with a higher
priority for the given Intent, Android checks whether there is an
instant app can resolve the Intent.

We assign a package name to the MIA with a lower dictionary
rank comparing to the victim instant app. As all apps are ranked
base on package names, the MIA is ranked higher than the victim
app (a.example.instantappurlauto < com.google.android.apps
.travel.onthego). Based on the background presented in §4.3 and
Fig. 7, the chooseBestActivity is incorrectly chosen the MIA to
respond to the URL rather than the victim instant app.

5 DETECTION
In this section, we present our method to detect vulnerable apps
that can be attacked.

5.1 Static Analysis
To detect whether an app is vulnerable to proposed attacks, we
construct a program dependence graph (PDG) of the app [14]. The
PDG consists of the control flow dependencies and the data flow
dependencies of the app. To construct a PDG, we collect possible
entry points in the app. As Android apps do not specify the entry
points (e.g., main method for Java application) for execution, we
collect the entry points of an app from two parts [22]: (1) lifecycle

methods in Android components (e.g., Activity). We focus on life-
cycle methods of components as they are the standard entry points
to the app. Through them, developers can manage the app’s com-
ponents and their behaviors; and (2) UI callbacks. Android allows
developers to register UI callbacks for monitoring certain events.
For example, the method onClickListener is invoked once a but-
ton is clicked. In practice, we leverage EdgeMiner [8] to collect all
possible entries for a given app. If the app employs obfuscations
or packer to protect its bytecode, we will use deobfuscators (e.g.,
TIRO [42]) and unpackers (e.g., PackerGrind [44, 46]) to recover
the hidden bytecode for analysis.

Next, we build the app’s PDG by using FlowDroid [3], and further
extend the PDG to a UI-oriented PDG named UPDG, which models
the dependencies and transitions [49, 54, 55] through UI elements
(e.g. TextView). A node in UPDG is defined as:

𝑛 = {𝑢𝑖𝑑,𝑢𝑡𝑦𝑝𝑒, 𝑎, 𝑐, 𝑜} , (1)

in which the 𝑢𝑖𝑑 represents the UI element’s id. The UI id can
be retrieved from the layout files. 𝑢𝑡𝑦𝑝𝑒 represents the type (e.g.,
TextView) of the UI element. 𝑎 represents the Activity context,
which means the UI element 𝑢𝑖𝑑 is used in the Activity 𝑎. 𝑐 repre-
sents the callback method with the element. 𝑜 represents the node
in PDG.

To construct the UPDG, we first parse all layout files and the
manifest file in the app. From layout files, we extract all UI el-
ements, including text content, name, id (𝑢𝑖𝑑), and type (𝑢𝑡𝑦𝑝𝑒).
Then, we match the UI elements with the original PDG nodes.
To realize this, we search the statements that are related to UI
reference or initialization with findViewById. For example, the
statement findViewById(R.id.btn) can be used to refer to the
UI element with id btn. Next, we analyze the UI callbacks (e.g.,
onClickListener) that are associated with these UI elements. Then,
we retrieve the Activity context (𝑎) and the corresponding callback
(𝑐) for a node 𝑛 in UPDG. Last, we append data flows introduced by
the inter-component communication (ICC) via implicit Intents [15]
to the UPDG. To capture them, we leverage IC3 [34] to locate the
source and sink for all Intents in the app. IC3 transforms the ICC
problem into a Multi-Valued Composite (MVC) constant propaga-
tion problem (i.e., finding all possible values of objects concerned at
a particular program point). IC3 specifies the MVC constant propa-
gating problem with the COnstant propAgation (COAL) language
and then employs a COAL solver to solve the problem. IC3 infers
the arguments in an Intent and then finds the target component.
We append the data flows introduced by Intents to the UPDG.

5.2 Detecting Link Hijacking with STS
In practice, we leverage the workflow defined in Fig. 9 to check
whether an app is vulnerable to this attack. To be exact,
• If an app contains EditTexts (the text can be edited in an EditText),
we check the followings: 1) if the text is a password, phone number,
time, or date, the text cannot be visible or cannot be a valid URL.
For example, the text in an EditText whose input type is password
can not be visible (all characters are presented by “•”); 2) some
approaches can be used for preventing users from using STS (e.g.,
use setMovementMethod(null)). These approaches are introduced
in §7 in detail. We exclude all these cases as they prohibit users
from using STS.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu

App

has
EditText?

is textPassword?
is textPhoneNumber,
timeNumber, dateNumber?

Others
setMovementMethod(null)?

override isSuggestionsEnabled()?

setCustomSelectionActionModeCall
back()?

other cases

has Labels?
(TextView) setTextSelectable(true)?

is text a URL?

❌

has onClickListener() to
change text to a URL?

❌

other callbacks/onClickListener to
change text to a URL?

❌❌

Figure 9: The Workflow for Checking Link Hijacking with STS

• If an app contains TextViews (a.k.a labels), we check the follow-
ings: 1) whether the TextViews can be selected by tracking the
setTextIsSelectable(true). If and only if the method
setTextIsSelectable(true) is invoked, the text on a TextView
can be selected. If the text on the TextView cannot be selected, the
attack cannot be launched. It is worth mentioning that by default
the text on a TextView cannot be selected; 2) if the content in a
TextView is a URL, it can be hijacked with STS; and 3) if the content
in a TextView can be changed to a URL, it can be hijacked with STS.
For 3), we check all the onClickListeners on TextViews in the app
to evaluate whether the content on TextViews can be changed to
URLs. Besides, we also check all callbacks and onClickListeners
in the app to evaluate whether the content on TextViews can be
changed to URLs.
Implementation. In practice, we transverse the UPDG to find
whether any UPDG node that invokes the APIs mentioned above.
For a node in the UPDG that is associated with a UI element, we
track the node through the UPDG graph to collect all operations
performed and allowed on the node. Then, we check whether the
node satisfies the conditions in Fig. 9. For example, the expres-
sion writtentext=(EditText)findViewById(R.id.editText1);
defines a EditText object writtentext. The writtentext is also
associated with a UI element whose id is editText1. We track
the usage of this node (i.e., writtentext for simplicity) on the
UPDG to find other settings for this object. All settings and
operations defined on writtentext are then collected. We leverage
the workflow in Fig. 9 to evaluate whether attacks can be launched
with this node. If so, the app is considered to be vulnerable.

5.3 Detecting Link Hijacking without STS
To determine whether an app is fragile to link hijacking without
STS, we use the checking diagram in Fig. 10.
• First, we check whether the app uses any Intent in the code.
• Second, if the app launches a URL with the Intent, we then check
whether the app is a browser or contains an in-app browser.
• Third, if the app is not a browser or does not implement any
in-app browser, the app is vulnerable to the link hijacking attack
without STS.

As aforementioned, if an app intends to open a URL with an
Intent, the app is fragile to this attack. However, if the app is a

App Start any Intent? date field
is a URL?

Not a browser or
an in-app browser?

❌

Figure 10: The Workflow for Checking Link Hijacking

browser or the app contains an in-app browser, the attack cannot
be launched. It is because the browser/in-app browser can handle
URLs inside itself rather than asking Android to find the targets for
the URLs.
Implementation.We first iterate the UPDG to check whether the
app launches any Intent. First, we track and locate all Intent objects
in an app. There are two types of Intents: explicit and implicit
Intent. For explicit Intent, the target of the Intent is defined in the
Intent object by specifying the package name. However, to launch
a URL, the type of the Intent must be implicit. To launch a URL
with an Intent, the data field is set to the target URL. Therefore, we
first locate the Intent objects in the given app. Next, we leverage
the taint analysis [3] to track the setting of the data field of these
Intent objects. If the data field is set to a URI (by tracking the type),
then we can confirm the app uses an Intent to open a URL.

The next step is to detect whether the app is a browser or con-
tains an in-app browser. To do this, we traverse the UPDG to detect
whether there is an instance of WebView or an instance of type 𝐴
where 𝐴 is a subclass of WebView. If an app is a browser or imple-
ments an in-app browser, the attack cannot be launched.

5.4 Detecting Instant App Hijacking
As presented in Sec. 4.4, the malicious instant app can hijack other
instant apps that have larger package names in terms of dictionary
comparison. Therefore, all instant apps are vulnerable to this attack,
as long as the malicious instant app has a deliberately designed
package name.

6 EVALUATION
6.1 Evaluation Overview
Apps & DALs To evaluate whether real-world apps are vulnerable
to three types of attacks, we crawled 200,000 apps from Google
Play and 200,000 apps from Tencent Myapp (the largest third-party
app market in China).

To determine whether app links are valid, besides checking the
correctness of app links claimed, we also need to check the correct-
ness of the DAL. If and only if both the app itself and the DAL are
successfully configured, the app links are valid. To obtain the app
links claimed by an app, we plan the following steps:
•Step 1: Exploring reachable Activities. We extract all
intent filters from all Activities, whose “categories” contain
BROWSABLE and DEFAULT fields. With these fields, these Activities
are reachable from a browser;
•Step 2: Verifying the app link. For the all intent filters ex-
tracted from Step 1, we extract intent filters whose “action”
fields contain VIEW. It returns intent filters either with app links

All Your App Links Are Belong to Us: Understanding the Threats of Instant Apps Based Attacks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

or with customized URLs. Then, we extract intent filters with
HTTP(s) schemes as they represent the app links;

After Step 2, we obtain all app links claimed by the app. For each
app link, we extract the domain from the app link. Then, we leverage
OpenWPM [13] to visit the domain. We set the loading interval to
15 seconds to allow page loading and URL redirection. Then, we
download the corresponding DAL files from remote servers. For
a given domain X, its DAL file is located at X/.well-known/asset-
links.json.
Evaluation Roadmap. In Research Question (RQ) 1, we discuss
the incorrect configurations of app links. Note that, incorrect con-
figurations can make app link verification fails. Apps that fail to
pass app link verification are fragile to various attacks [29], such
as link hijacking, man-in-the-middle (MITM) attack. They are also
vulnerable to attacks proposed in this paper.

In RQ 2 and RQ 3, we evaluate whether real-world apps are
robust to link hijacking attacks (with and without STS). In RQ 4,
we discuss whether instant apps are robust to instant app hijacking.
Last, in RQ 5, we evaluate the accuracy of our MIAFinder tool.

6.2 RQ1: Are real-world apps correctly
configure app links?

Motivation. In this RQ, we aim at finding the incorrect configura-
tions of app links. The incorrectness implies that app links are not
valid, and it leaves room for attackers.
Methodology. The correctness of app links requires the follow-
ing checking: 1) the “autoVerify” attribute must be set to be
TRUE in the app’s manifest file. This attribute triggers the ver-
ification process of app links declared. Without this attribute,
Android does not verify the link; 2) if the domain declared is
not valid (i.e., the domain not exists or cannot be visited), the
verification of app links cannot be passed; 3) if the domain de-
clared does not contain any DAL, the verification of app links
fails as well. For example, if an app claims to associate a domain
www.example.com and the domain does not publish any DAL, the
verification fails. As the assetlinks.json must be published un-
der a fixed path (<domain>/.well-known/assetlinks.json), if the
assetlinks.json cannot be found at the path, we consider there is
no DAL published; and 4) if the DAL file exists, we check whether
the DAL file subjects to its syntax. If and only if the DAL is corrected
built, the app links are valid.

Given a DAL, we perform the following steps for evaluating it.
• Step 1: Checking DAL existences.We check whether a domain
hosts a DAL file. It can be achieved by checking whether the path
of the DAL file is reachable. It is possible that a domain does not
contain a DAL, and it does not support any app link.
• Step 2: Verifying the syntax. As Android forces the syntax of a
DAL file, the valid DALmust pass the syntax checking. For example,
if a DAL file adds a field that is not supported by the syntax, the
verification of the DAL cannot pass.
• Step 3: Checking fields. Next, we check the fields and values
in the DAL to explore all possible violations in the DAL. For the
relation field, there are two standard relations (§4). For the target
field, there are two possible targets, android_app and web. If a DAL
has an invalid field or sets an invalid value, the verification of the
DAL fails.

• Step 4: Include statement checking. It is also possible to claim
statement indirectly by referring an existing DAL with the include
statement [18]. Therefore, for this type of DAL, we check the in-
cluded file with Step 1 to Step 3.
Results. As a result, the incorrect configurations of app end belong
to the following categories:
•Missing “autoVerify=true” field: To allow Android verifies the
app link, the field “autoVerify=true” must be set. Therefore, if an
app link lacks such a field, the verification fails.
• Invalid host format: The host must be a correct URL in format;
otherwise the app link cannot be verified.
• Inaccessible host: Even a given host a URL in format, if the URL
cannot be accessed, the app link verification can not pass as the
DAL cannot be retrieved.
•Missing fields in Intent-filters: The valid app link requires the
intent-filter to specify: a ACTION_VIEW action, one or more data
tags, and two categories (BROWSABLE and DEFAULT). Missing any field
makes the app link invalid.

In addition, we find that the incorrect configurations of DALs
belong to the following categories:
• Incorrect JSON formatting errors: This type of error is that the
DAL is not with a valid JSON format. The errors can be unmatched
brackets, unexpected symbols, unknown symbols, and duplicate
entities.
• Incorrect fields: Some incorrect DALs have field errors, includ-
ing using undefined fields, missing required fields
(e.g.,namespace), typo in fields. All these make them invalid.
• IncorrectNamespace:The syntax of the DAL requires its names-
pace to be “android_app” or “web”. If a DAL uses invalid namespaces,
the app link verification fails.

Answer to RQ1:Among all 200,000 Google Play apps, 8,682 apps
use app links. There are only 18.0% of them configure the app
links correctly. Among all 200,000 Tencent-Myapp apps, 4,035
apps use app links. There are only 3.1% of them configure the
app links correctly.

Implications. This experiment suggests that developers must
check the configurations of app links carefully. As for app mar-
kets, we suggest app markets for forcing apps to verify domains
claimed by apps.

6.3 RQ2: Are real-world apps robust to the
general link hijacking attack with STS?

Motivation. In this research question, we intend to evaluate
whether real-world apps robust to link hijacking with STS.
Methodology. See Sec. 5.2 for details.

Answer to RQ2: As a result, there are 53,619 Google Play apps
(26.8%) that are vulnerable to link hijacking with STS attack.
There are 54,650 Tencent-Myapp apps (27.3%) that are vulnerable
to this attack.

Implications. For this type of attack, it is the defect introduced
by Android. Even if the victim is a browser or contains an in-app
browser, the attack can be launched successfully. It is because that
STS first obtains the URL selected and then broadcasts an Intent to
find the target candidate for the URL. In Sec.7, we proposed four

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu

solutions for protecting this attack by either stopping users from
selecting any text or customizing the suggestions returned by STS.

6.4 RQ3: Are real-world apps robust to the link
hijacking attack without STS?

Motivation. In this research question, we intend to evaluate
whether real-world apps are robust to link hijacking without STS.
This evaluation aims at finding the risks of this attack.
Methodology. See Section 5.3 for details.

Answer to RQ3: As a result, there are 57,442 Google Play apps
(28.7%) that are vulnerable to link hijacking without STS attack.
There are 62,496 Tencent-Myapp apps (31.2%) that are vulnerable
to this attack.

Implications. As the results show, there is a large number of apps
that vulnerable to the link hijacking attack. To prevent from being
attacked, an app can implement an in-app browser rather than
broadcast the Intent. Except for this approach, an app cannot
prevent this attack. The reason is that it is Android rather than the
victim app to select the target app to respond to the URL. Therefore,
the defect must be fixed from the system layer. Nothing can be done
by the victim app to prevent this attack.

6.5 RQ4: Are Instant Apps robust to Instant
App Hijacking?

We relax the evaluation of instant app hijacking attack base on the
following concerns: first, in §4.4, we illustrate the vulnerability by
investigating Android source code. The vulnerability is verified by
providing evidence from Android source code; second, the subtlety
of this attack is using certain settings in the MIA and exploiting
the platform (a.k.a. Android) defects. It means that all instant apps
are vulnerable to instant app hijacking.

Though we find the clue that instant apps are not robust to the
hijacking from the Android source code, we still test instant app
hijacking on all 36 real-world instant apps out of 200,000 apps from
Google Play. The instant app hijacking can attack all these instant
apps. Note that instant apps can only be published with Google
Play rather than other app stores as they require Google Play for
installing the victim instant apps [2]. Therefore, we do not consider
the apps from Tencent Myapp market for this attack.

Answer to RQ4: All instant apps are vulnerable to instant app
hijacking attack.

Implications. This defect implies that Android must carefully se-
lect the instant app to respond to a URL if there are more than one
instant apps can respond to a link. First, if a link is associated with
an instant app, only the instant app that passes the app link verifi-
cation can respond the link (in our attack, our malicious instant app
claims the app via a deep link rather than an app link. Therefore,
Google does not force our malicious instant app to verify the link
claimed). Second, Android has to ask users to select an instant app
to handle if there are multiple instant apps can respond to the URL.
Note that, if two instant apps from the same developer/company, it
is possible that they can process the same link. Therefore, asking
users for their preferences is the solution for this case. Moreover,

allowing multiple instant apps for the same URL is an anti-pattern
in design.

6.6 RQ5: What is the accuracy of MIAFinder?
Motivation. In this paper, we develop MIAFinder to find apps that
are vulnerable to proposed attacks. In this RQ, we evaluate the
accuracy of the MIAFinder.
Methodology. To evaluate the accuracy of MIAFinder, we ran-
domly select 800 apps from Google Play and then manually checked
whether they can be attacked successfully in order to build a bench-
mark for evaluating our tool. Next, we run the MIAFinder to find
vulnerable apps. Note that, for an app, if it can be attacked by at
least one attack (out of three proposed attacks), we consider it as
vulnerable.
Results. As a result, our tool reports 276 vulnerable apps and all of
them can be exploited. Therefore, the precision of our tool is 100%.

The recall of our tool is 87%. There are 2 main reasons why our
tool misses some vulnerable apps:
• Since the current version of our tool cannot handle native code,
it may miss vulnerable apps that define and handle the UI elements
through native code. For example, if a vulnerable game app is based
on Unity, the UI elements can be defined and handled through C
code, and thus our tool misses it;
• Since our tool currently focuses on the default Android UI frame-
work, it misses vulnerable apps that use third-party UI frameworks.

Answer to RQ5: Based on the experiments of 800 apps, we find
that the precision of our tool is 100% and the recall is 87%.

7 COUNTERMEASURE
Preventing Link Hijacking with STS. To prevent link hijacking
with STS attack, we propose 4 solutions.
• Solution 1. If a developer plans to use TextView (a.k.a, label) in
an app, (s)he can use the setTextSelecttable(false) to prevent
users from selecting any text in a label;
• Solution 2. If a developer plans to use EditText (users can edit text
in EditText), (s)he can use setMovementMethod(null) to prevent
users from selecting any text in an EditText.
• Solution 3. Developers can override the
isSuggestionsEnabled() method in default TextView or
EditText. The isSuggestionsEnabled() returns a Boolean value to
indicate whether or not suggestions are enabled on this TextView
or EditText.
• Solution 4. Another solution is using the
setCustomSelectionActionModeCallback API. This API allows de-
velopers to customize the popup menu if a piece of text is selected.

All these approaches aim at preventing users from selecting any
text in UIs or customizing the popup menu for STS. Once users
cannot select any text in UIs, the STS cannot work.
Preventing Link Hijacking without STS. To address this, we
propose a novel API named verifyDomainPackage. As shown in
Fig. 11, Android can invoke verifyDomainPackage, whose argu-
ments are the received an Intent and an Activity. The Intent
contains the target URL to open. The Activity represents a can-
didate component to respond to the Intent. First, it retrieves the
package name of the candidate app (e.g., the MIA) that can respond

All Your App Links Are Belong to Us: Understanding the Threats of Instant Apps Based Attacks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

to the Intent (Fig. 11: 1.1). Second, it extracts the candidate app’s
signature stored in Android (Fig. 11: 1.2-1.3). Third, it downloads
the DAL for the URL given in the Intent (Fig. 11: 1.4-1.5). Last, it
exams whether the candidate app can respond to the URL by check-
ing the package name, signature with the DAL downloaded (Fig.
11: 1.6). The verifyDomainPackage can be used to check whether
there is an MIA that intends to hijack URLs.

sd verifyDomainPackage

WebsitePackage
Manager

Credential ProviderClicent

1.6:
checkandDomainVerfiy(packagenam

e,DAL,signature)

1.5: assetlinks.json

1.4: downloadDAL(URL)

1.3: clientSignature

1.2: getSignature(String): String

1.1:
getPackageName
(Activity): String

1: startActivityForResult(intent)

Figure 11: The Workflow for verifyDomainPackage API

With the verifyDomainPackageAPI, Android can check whether
a candidate app (i.e., Activity) can be used to respond to a URL.
It worth mentioning that using verifyDomainPackage can prevent
the link hijacking attack with STS.
Preventing Instant App Hijacking Attack. To prevent the in-
stant app hijacking attack, Android can scan all instant apps in-
stalled. If Android finds an instant app that claims a URL that is not
owned by the instant app, Android must inform app users about
this case. To check whether an instant app owns all URLs claimed,
Android can use the verifyDomainPackage API. If an instant app
claims a URL that it does not own, the instant app can be a malicious
one. Android can notify users of the potential risk of this MIA.

To wrap up, the novel API verifyDomainPackage proposed can
be leveraged to prevent all three attacks aforementioned. We also
build our patch and verify it with Android 10.0.

8 RELATEDWORK
Deep Links. Ma et al. [32]’s work Aladdin helps developers auto-
matically release deep links for an app. Aladdin first computes the
paths to reach each Activity and Fragment in a given app. Then,
it construct a proxy Activity to bind all deep links to the proxy
Activity. The proxy Activity is also in charge of managing all deep
links. Hu et al. [23] proposed a framework called Elix, which aims
at extracting all valid deep links that are defined in an app. Elix
extracts app links with a path-selective taint analysis. It leverages a
taint analysis that starts from the Activity.getIntent() for taint
analysis and prunes infeasible paths with the symbolic execution.

Liu et al. [29] conduct an empirical measurement on various mobile
deep links across apps and websites to explore the incorrect config-
urations for deep links. Different from all these works, our work
aims at revealing the defects in app links rather than leveraging (or
constructing) app links (or deep links).
Instant App. The only work that related to instant apps is pro-
posed by Aonzo et al. [1]. In [1], Aonzo et al. reported the design
defects in password manager apps and mentioned the misuse of
accessibility service can result in security problems. Even though
work [1] leverages instant app as an attack vector, our work has dif-
ferent research targets and unique contributions: [1] aims at using
instant apps for phishing rather than uncovering defects in the app
link schemes. Whereas, our work targets at exploring the defects
rooted in Android, including link verification, access control, and
priority ranking.
App Browser Security. Some works aim at attacking mobile
browsers and in-app browsers [11, 20, 31, 33, 40, 41]. Chin et al. [11]
reveal two WebView vulnerabilities, including excess authorization
and file-based cross-zone scripting. Tuncay et al. [40] present that
Draco, which enables developers to specify a set of policies to only
allow desired access. Wang et al. [41] reveal the cross-origin risk
in Android and iOS browsers and in-app browser apps. With the
cross-origin attack, malicious apps can obtain a mobile user’s au-
thentication credentials and record users’ behavior. Different from
all these works, our work targets at measuring the vulnerability of
app links in terms of using an instant app as an attack vector.
App-to-app Communication. The works on the app to app com-
munication leverage both static and dynamic analysis. On the
one hand, researchers leverage static analysis to detect privacy
leakage from the victim app to the malicious app [5–7, 19, 26–
28, 30, 37, 39, 50–53, 56] using the call graph and taint analysis
[24, 35, 36, 45, 47]. On the other hand, some works explore privacy
the leakage issues with dynamic analysis [12, 21, 25, 48]. Different
from all these works, our work highlights the deep link vulnerability
introduced with instant apps.

9 CONCLUSION
In this paper, we revisit app links defined by Android and reveal
three attack models that can be exploited. Our attacks showed
strong evidence that existing limitations in verifying instant apps
and drawbacks in launching instant apps (e.g., an instant app should
not be given a higher priority comparing to a typical app). To
evaluate whether existing Android apps are fragile to these attacks,
we conduct a large-scale empirical study on 200,000 Android apps
on Google Play and 200,000 apps on Tencent Myapp. As a result,
there are 53,619 Google Play apps and 54,650 Tencent-Myapp apps
that vulnerable to link hijacking with smart text selection; 57,442
Google Play apps and 62,496 Tencent-Myapp apps that vulnerable
to link hijacking without smart text selection; and all instant apps
are vulnerable to instant app hijacking. Finally, we make a series of
suggestions to countermeasure the attacks we proposed.

10 ACKNOWLEDGEMENT
We thank the anonymous reviewers for their helpful comments.
This research is partially supported by ShanghaiTech Univer-
sity Start-up Research Fund, the Hong Kong General Research

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu

Fund (No. 152223/17E, 152239/18E), Australian Research Grants
(No. DP200101328), the National Natural Science Foundation of
China (No. 61702045) and China Postdoctoral Science Foundation
(No.2020M673137).

REFERENCES
[1] Simone Aonzo, Alessio Merlo, Giulio Tavella, and Yanick Fratantonio. 2018.

Phishing Attacks on Modern Android. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS). 1788–1801.

[2] Instant App. 2019. https://developer.android.com/topic/google-play-instant
[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. SIGPLAN Not. 49, 6 (2014), 259–269.

[4] Tanzirul Azim, Oriana Riva, and Suman Nath. 2016. uLink: Enabling user-defined
deep linking to app content. In 14th ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys).

[5] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek. 2015. COVERT: Compositional
Analysis of Android Inter-App Permission Leakage. IEEE Transactions on Software
Engineering (TSE) 41, 9 (2015), 866–886.

[6] Amiangshu Bosu, Fang Liu, Danfeng Yao, and Gang Wang. 2017. Collusive Data
Leak and More: Large-scale Threat Analysis of Inter-app Communications. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security (ASIA CCS). 71–85.

[7] Y. Cai, Y. Tang, H. Li, L. Yu, H. Zhou, X. Luo, L. He, and P. Su. 2020. Resource
Race Attacks on Android. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 47–58.

[8] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, and Yan Chen. 2015. EdgeMiner: Automatically De-
tecting Implicit Control Flow Transitions through the Android Framework. In
Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS).

[9] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2014. Peeking into Your App
without Actually Seeing It: UI State Inference and Novel Android Attacks. In 23rd
USENIX Security Symposium (Security). 1037–1052.

[10] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing Inter-application Communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services (MobiSys).
239–252.

[11] Erika Chin and DavidWagner. 2014. Bifocals: AnalyzingWebView Vulnerabilities
in Android Applications. In Revised Selected Papers of the 14th International
Workshop on Information Security Applications. 138–159.

[12] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
2014. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. ACM Trans. Comput. Syst. 32, 2 (2014), 5:1–5:29.

[13] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of ACM SIGSAC Conference on
Computer and Communications Security (CCS). 1388–1401.

[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (1987), 319–349.

[15] Google. 2019. https://developer.android.com/reference/android/content/Intent
[16] Google. 2019. Android App Signing. https://developer.android.com/studio/

publish/app-signing
[17] Google. 2019. Deep Link. https://developer.android.com/training/app-links/deep-

linking
[18] Google. 2019. Digital Asset Links. https://developers.google.com/digital-asset-

links/
[19] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen

Nguyen, and Martin C. Rinard. 2015. Information Flow Analysis of Android Ap-
plications in DroidSafe. In 22nd Annual Network and Distributed System Security
Symposium (NDSS). 1–16.

[20] Behnaz Hassanshahi, Yaoqi Jia, Roland H. C. Yap, Prateek Saxena, and Zhenkai
Liang. 2015. Web-to-Application Injection Attacks on Android: Characterization
and Detection. In European Symposium on Research in Computer Security. 577–
598.

[21] Roee Hay, Omer Tripp, and Marco Pistoia. 2015. Dynamic Detection of Inter-
application Communication Vulnerabilities in Android. In Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA). 118–128.

[22] Shashank Holavanalli, Don Manuel, Vishwas Nanjundaswamy, Brian Rosenberg,
Feng Shen, Steven Y. Ko, and Lukasz Ziarek. 2013. Flow Permissions for An-
droid. In Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 652–657.

[23] Yongjian Hu, Oriana Riva, Suman Nath, and Iulian Neamtiu. 2019. Elix: Path-
Selective Taint Analysis for Extracting Mobile App Links. In Proceedings of the

17th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys). 193–206.

[24] Wei Huang, Yao Dong, AnaMilanova, and Julian Dolby. 2015. Scalable and Precise
Taint Analysis for Android. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis (ISSTA). 106–117.

[25] Yiming Jing, Gail-Joon Ahn, Adam Doupé, and Jeong Hyun Yi. 2016. Checking
Intent-based Communication in Android with Intent Space Analysis. In Pro-
ceedings of the 11th ACM on Asia Conference on Computer and Communications
Security (ASIA CCS). 735–746.

[26] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014.
Android Taint Flow Analysis for App Sets. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis (SOAP).
1–6.

[27] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel. 2015. IccTA: Detecting Inter-Component Privacy
Leaks in Android Apps. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE). 280–291.

[28] F. Liu, H. Cai, G. Wang, D. Yao, K. O. Elish, and B. G. Ryder. 2017. MR-Droid:
A Scalable and Prioritized Analysis of Inter-App Communication Risks. In 2017
IEEE Security and Privacy Workshops (S & P). 189–198.

[29] Fang Liu, Chun Wang, Andres Pico, Danfeng Yao, and Gang Wang. 2017. Mea-
suring the Insecurity of Mobile Deep Links of Android. In 26th USENIX Security
Symposium (Security). 953–969.

[30] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:
Statically Vetting Android Apps for Component Hijacking Vulnerabilities. In
Proceedings of the 2012 ACMConference on Computer and Communications Security
(CCS). 229–240.

[31] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks
on WebView in the Android System. In Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC). 343–352.

[32] Yun Ma, Ziniu Hu, Yunxin Liu, Tao Xie, and Xuanzhe Liu. 2018. Aladdin: Au-
tomating Release of Deep-Link APIs on Android. In Proceedings of the 2018 World
Wide Web Conference (WWW). 1469–1478.

[33] Damien Octeau, Somesh Jha, Matthew Dering, Patrick McDaniel, Alexandre Bar-
tel, Li Li, Jacques Klein, and Yves Le Traon. 2016. Combining Static Analysis with
Probabilistic Models to Enable Market-scale Android Inter-component Analysis.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). 469–484.

[34] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel. 2015. Composite
Constant Propagation: Application to Android Inter-Component Communica-
tion Analysis. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE). 77–88.

[35] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis
Tools Keep Their Promises?. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). 331–341.

[36] C. Qian, X. Luo, Y. Shao, and A. Chan. 2014. On Tracking Information Flows
through JNI in Android Applications. In Proceedings of the 44th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN).

[37] D. Sbirlea, M. G. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar. 2013. Automatic
detection of inter-application permission leaks in Android applications. IBM
Journal of Research and Development 57, 6 (2013), 10:1–10:12.

[38] Smart Text Selection. 2019. https://www.android.com/versions/oreo-8-0/
[39] Y. Tang, X. Zhan, H. Zhou, X. Luo, Z. Xu, Y. Zhou, and Q. Yan. 2019. Demystify-

ing Application Performance Management Libraries for Android. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
682–685.

[40] Guliz Seray Tuncay, Soteris Demetriou, and Carl A. Gunter. 2016. Draco: A
System for Uniform and Fine-grained Access Control forWeb Code onAndroid. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS). 104–115.

[41] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. Unauthorized
Origin Crossing on Mobile Platforms: Threats and Mitigation. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications Security
(CCS). 635–646.

[42] Michelle Y Wong and David Lie. 2018. Tackling runtime-based obfuscation in
Android with TIRO. In Proceedings of USENIX Security Symposium.

[43] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFengWang, Kai Chen, Xiaojing Liao, Shi-
Min Hu, and Xinhui Han. 2015. Cracking App Isolation on Apple: Unauthorized
Cross-App Resource Access on MAC OS X and IOS. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS). 31–43.

[44] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive
unpacking of Android apps. In Proc. ICSE.

[45] Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin Zhou, Yuru Shao, and
Alvin T.S. Chan. 2019. NDroid: Toward Tracking Information Flows Across
Multiple Android Contexts. IEEE Transactions on Information Forensics and
Security (2019).

https://developer.android.com/topic/google-play-instant
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developers.google.com/digital-asset-links/
https://developers.google.com/digital-asset-links/
https://www.android.com/versions/oreo-8-0/

All Your App Links Are Belong to Us: Understanding the Threats of Instant Apps Based Attacks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[46] L. Xue, H. Zhou, X. Luo, L. Yu, D. Wu, Y. Zhou, and X. Ma. 2020. PackerGrind:
An Adaptive Unpacking System for Android Apps. IEEE Transactions on Software
Engineering (2020).

[47] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards
On-Device Non-Invasive Mobile Malware Analysis for ART. In Proceedings of
USENIX Security Symposium.

[48] Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Haixin Duan. 2014.
IntentFuzzer: Detecting Capability Leaks of Android Applications. In Proceedings
of the 9th ACMSymposium on Information, Computer and Communications Security
(ASIA CCS). 531–536.

[49] Shengqian Yang, Hailong Zhang, HaoweiWu, YanWang, Dacong Yan, and Atanas
Rountev. 2015. Static Window Transition Graphs for Android. In IEEE/ACM
International Conference on Automated Software Engineering (ASE). 658–668.

[50] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang.
2013. AppIntent: analyzing sensitive data transmission in android for privacy
leakage detection. In Proceedings of the 2013 ACM SIGSAC conference on Computer
and communications security (CCS). 1043–1054.

[51] L. Yu, X. Luo, J. Chen, H. Zhou, T. Zhang, H. Chang, and H. Leung. 2019.
PPChecker: Towards Accessing the Trustworthiness of Android Apps’ Privacy

Policies. IEEE Transactions on Software Engineering (2019).
[52] Le Yu, Tao Zhang, Xiapu Luo, and Lei Xue. 2015. AutoPPG: Towards Automatic

Generation of Privacy Policy for Android Applicationss. In Proceedings of ACM
CCSWorkshop on Security and Privacy in Smartphones and Mobile Devices (SPSM).

[53] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang, Zhiyun Qian, Geng Hong,
Yuan Zhang, and Min Yang. 2018. Invetter: Locating Insecure Input Validations in
Android Services. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS). 1165–1178.

[54] L. L. Zhang, C. M. Liang, Z. L. Li, Y. Liu, F. Zhao, and E. Chen. 2018. Characterizing
Privacy Risks of Mobile Apps with Sensitivity Analysis. IEEE Transactions on
Mobile Computing (TMC) 17, 2 (2018), 279–292.

[55] H. Zhou, T. Chen, H. Wang, L. Yu, X. Luo, T. Wang, and W. Zhang. 2020. UI
Obfuscation and Its Effects on Automated UI Analysis for Android Apps. In
Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE).

[56] H. Zhou, H. Wang, Y. Zhou, X. Luo, Y. Tang, L. Xue, and T. Wang. 2020. Demysti-
fying Diehard Android Apps. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE).

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Background
	4 Attack Models
	4.1 Overview
	4.2 Link Hijacking with Smart Text Selection
	4.3 Link Hijacking without Smart Text Selection
	4.4 Instant App Hijacking

	5 Detection
	5.1 Static Analysis
	5.2 Detecting Link Hijacking with STS
	5.3 Detecting Link Hijacking without STS
	5.4 Detecting Instant App Hijacking

	6 Evaluation
	6.1 Evaluation Overview
	6.2 RQ1: Are real-world apps correctly configure app links?
	6.3 RQ2: Are real-world apps robust to the general link hijacking attack with STS?
	6.4 RQ3: Are real-world apps robust to the link hijacking attack without STS?
	6.5 RQ4: Are Instant Apps robust to Instant App Hijacking?
	6.6 RQ5: What is the accuracy of MIAFinder?

	7 Countermeasure
	8 Related Work
	9 Conclusion
	10 Acknowledgement
	References

