
FSE 2016, November 16th, Seattle

On-Demand Strong Update Analysis
via Value-Flow Refinement

Yulei Sui and Jingling Xue

School of Computer Science and Engineering
The University of New South Wales

2052 Sydney Australia

Nov. 16, 2016

1 / 18

FSE 2016, November 16th, Seattle

Contributions

• Demand-driven pointer analysis with strong updates for
C/C++ programs.

• Hybrid multi-stage analysis framework to performs strong
update analysis precisely by refining imprecisely
pre-computed value-flows away.

• Small analysis time and memory budgets (0.19 seconds
and 36KB of memory per points-to query, on average).

2 / 18

FSE 2016, November 16th, Seattle

Outline

• Background and Motivation
• Our approach: SUPA
• Experimental Results and Evaluation

2 / 18

FSE 2016, November 16th, Seattle

Pointer Analysis
• Statically approximate runtime values of a pointer
• A fundamental enabling technology for many clients.

Compiler
Optimisation
(e.g., SIMD)

Memory Error
Detection

(e.g., Null pointer)

Concurrency Bug
Detection

(e.g., Data race)

Software Testing
(e.g., Accelerating
dynamic analysis)

Security
(e.g., CFI)

Debuging
(e.g., Slicing)

Pointer Analysis

Precision

Effectiveness of Clients

Strong Updates
One of the key factors to boost the precision

Compiler
Optimisation
(e.g., SIMD)

Memory Error
Detection

(e.g., Null pointer)

Concurrency Bug
Detection

(e.g., Data race)

Software Testing
(e.g., Accelerating
dynamic analysis)

Security
(e.g., CFI)

Debuging
(e.g., Slicing)

Pointer Analysis

Precision

Effectiveness of Clients

Strong Updates
One of the key factors to boost the precision

3 / 18

FSE 2016, November 16th, Seattle

Pointer Analysis
• Statically approximate runtime values of a pointer
• A fundamental enabling technology for many clients.

Compiler
Optimisation
(e.g., SIMD)

Memory Error
Detection

(e.g., Null pointer)

Concurrency Bug
Detection

(e.g., Data race)

Software Testing
(e.g., Accelerating
dynamic analysis)

Security
(e.g., CFI)

Debuging
(e.g., Slicing)

Pointer Analysis

Precision

Effectiveness of Clients

Strong Updates
One of the key factors to boost the precision

Compiler
Optimisation
(e.g., SIMD)

Memory Error
Detection

(e.g., Null pointer)

Concurrency Bug
Detection

(e.g., Data race)

Software Testing
(e.g., Accelerating
dynamic analysis)

Security
(e.g., CFI)

Debuging
(e.g., Slicing)

Pointer Analysis

Precision

Effectiveness of Clients

Strong Updates
One of the key factors to boost the precision

3 / 18

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates
• Key feature of flow-sensitivity to boost the precision of

pointer analysis

Compiler
Optimisation
(e.g., SIMD)

Memory Error
Detection

(e.g., Null pointer)

Concurrency Bug
Detection

(e.g., Data race)

Software Testing
(e.g., Accelerating
dynamic analysis)

Security
(e.g., CFI)

Debuging
(e.g., Slicing)

Pointer Analysis

Precision

Effectiveness of Clients

Strong Updates

 --Strong updates: overwrite contents of an abstract
memory object with a new value.

 --Weak updates: add new values to the existing values of
an abstract object.

4 / 18

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates
Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrites the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis without strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

p = &a;

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a
Strong updates for a

*q refers to a single runtime
memory location

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

spurious data dependence
and points-to relation may cause

false alarms in bug detectors

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

5 / 18

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates
Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrites the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis without strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

p = &a;

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a
Strong updates for a

*q refers to a single runtime
memory location

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

spurious data dependence
and points-to relation may cause

false alarms in bug detectors

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

5 / 18

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates
Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrites the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis without strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

p = &a;

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a
Strong updates for a

*q refers to a single runtime
memory location

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

spurious data dependence
and points-to relation may cause

false alarms in bug detectors

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

5 / 18

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates
Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrites the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis without strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

p = &a;

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a
Strong updates for a

*q refers to a single runtime
memory location

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

spurious data dependence
and points-to relation may cause

false alarms in bug detectors

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

5 / 18

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates
Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-insensitive analysis

q → a
a → b, c
r → b, c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrites the old content of an abstract object with new values.

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis without strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

p = &a;

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a
Strong updates for a

*q refers to a single runtime
memory location

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

spurious data dependence
and points-to relation may cause

false alarms in bug detectors

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

p → a

Flow-sensitive analysis with strong updates

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

L5:

5 / 18

FSE 2016, November 16th, Seattle

Flow- and Context-Sensitive Strong Updates
Flow-Insensitive Pointer Analysis
 Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates
 Respect program control-flow, i.e., a separate solution at each program point.
 Overwrite the old content of an abstract object with new values.

*p = &d;

Flow-Sensitive Analysis

foo(p){

}

return *p;

bar(){

if(..) {
 p = &a;
 *p = &b;
cs1: x = foo(p);
} else {
 p = &c
}
cs2: y = foo(p);

}

Strong updates for a
under context [cs1]

Weak updates for both a
and b under context [cs2]

*p refers to unique object a under cs1

*p refers to two objects a and b
under cs2

x → b, d

y → b, d

6 / 18

FSE 2016, November 16th, Seattle

Whole-Program CFG of 300.twolf (20.5KLOC)

#functions: 194 #pointers: 20773 #loads/stores: 8657
Costly to reason about whole-program control-flows!

7 / 18

FSE 2016, November 16th, Seattle

Call Graph of emacs-24.4 (431.9KLOC)

#functions: 3938 #pointers: 754746 #loads/stores: 52781

Costly to reason about whole-program calling contexts!

8 / 18

FSE 2016, November 16th, Seattle

Limitations of Existing Strong Update Analyses

Whole-program

Multiple Analysis Choices:

Single Analysis Choice:

Time consuming

Analysis with BudgetsDemand-Driven Multiple analysis choices
for different queries

Single analysis choice
for all queries

Existing Strong Update Analyses

Practical Strong Update Analysis

Gap

9 / 18

FSE 2016, November 16th, Seattle

Outline

• Background and Motivation
• Our approach: SUPA
• Experimental Results and Evaluation

9 / 18

FSE 2016, November 16th, Seattle

SUPA: On-Demand Strong-UPdate Analysis

Program Pre-
analysis Value-Flows

Stage[i]

On-Demand
Reachability SolverQueries

Out-Of-Budget[i]?

Stages

Stage[0] Stage[N-1]

Efficiency
Precision

....

Budgets No

Yes

Select i

i++

Refine

• Pre-computed value-flows (def-use)
• Backward CFL-reachability analysis on value-flow graph

under analysis budgets (value-flow edges traversed)
• Multi-stages include FSCS, FSCI and FICI stages.

10 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

An Example

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

points-to query pts(r)?

p = &a

q = p;

*p = &b

*q = &c

r = *p;

p → a

q → ap → a

a → bq → ap → a

a → bq → ap → a a → c

a → bq → ap → a a → c r → b r → c

L1:

L2:

L3:

L4:

demand-driven analysis on top of pre-
computed value-flow (def-use) graph

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

starting from L5: r = ..
backward tracing against value-flows

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

p = &a;

q = p;

*p = &b

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

value-flow traces:

[p] L1
1

p = &a;

q = p;

*p = &b;

*q = &c

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

*p refers to object a

L5

value-flow traces:

[p] L1
1

2 [a]

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

r points to o3 only

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

spurious
dependence

The earlier a strong update is performed,
The fewer the number of statements is traversed.

L3 does not need to be analyzed
during backward reachability

Analysis Budget < 4 ?

p = &a;

q = p;

*p = &b;

*q = &c;

r = *p;

L1:

L2:

L3:

L4:

L5:

[p]
[p]

[p]

[q]

[a]

[a]

def-use of top-level pointers
def-use of address-taken objects

L5

value-flow traces:

[p] L1
1

2 [a]

L4 [q] L2
3

[p] L2
4

L3
[a]

stop backward tracing
due to strong updates

spurious
dependence

Fall back to less precise analysis e.g., Andersen's
r points to both b and c

11 / 18

FSE 2016, November 16th, Seattle

Flow- and Context-Sensitive Strong Updates

• Every statement is parameterized additionally by a context
i.e., a sequence of callsites.

• CFL-reachability on top of value-flow graph by matching
calls and returns.

• Strong updates on singleton heap objects (objects with
concrete contexts, not involved in recursion or loops).

12 / 18

FSE 2016, November 16th, Seattle

Outline

• Background and Motivation
• Our approach: SUPA
• Experimental Results and Evaluation

12 / 18

FSE 2016, November 16th, Seattle

Evaluation
• Implementation:

• Implemented on top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC ’16)

• Core implementation of SUPA is round 5,000 LOC C++
code.

• Field-sensitivity and on-the-fly call graph construction.

• Methodology
• One major client, uninitialized pointer detection (add a

special tainted object (UAO) pointed by every stack and
heap objects at their allocation sites).

• SUPA v.s. SFS1

• Benchmarks:
• 12 open-source programs, nine recently released

applications, such as make, bash,sendmail,vim, and emacs.
• Machine setup:

• Ubuntu Linux 3.11 Intel Xeon Quad Core, 3.7GHZ, 64GB

1Ben Hardekopf and Calvin Lin, Flow-sensitive pointer analysis for millions of lines
of code CGO ’11

13 / 18

FSE 2016, November 16th, Seattle

Evaluation
• Implementation:

• Implemented on top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC ’16)

• Core implementation of SUPA is round 5,000 LOC C++
code.

• Field-sensitivity and on-the-fly call graph construction.
• Methodology

• One major client, uninitialized pointer detection (add a
special tainted object (UAO) pointed by every stack and
heap objects at their allocation sites).

• SUPA v.s. SFS1

• Benchmarks:
• 12 open-source programs, nine recently released

applications, such as make, bash,sendmail,vim, and emacs.
• Machine setup:

• Ubuntu Linux 3.11 Intel Xeon Quad Core, 3.7GHZ, 64GB

1Ben Hardekopf and Calvin Lin, Flow-sensitive pointer analysis for millions of lines
of code CGO ’11

13 / 18

FSE 2016, November 16th, Seattle

Evaluation
• Implementation:

• Implemented on top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC ’16)

• Core implementation of SUPA is round 5,000 LOC C++
code.

• Field-sensitivity and on-the-fly call graph construction.
• Methodology

• One major client, uninitialized pointer detection (add a
special tainted object (UAO) pointed by every stack and
heap objects at their allocation sites).

• SUPA v.s. SFS1

• Benchmarks:
• 12 open-source programs, nine recently released

applications, such as make, bash,sendmail,vim, and emacs.
• Machine setup:

• Ubuntu Linux 3.11 Intel Xeon Quad Core, 3.7GHZ, 64GB
1Ben Hardekopf and Calvin Lin, Flow-sensitive pointer analysis for millions of lines

of code CGO ’11
13 / 18

FSE 2016, November 16th, Seattle

Benchmarks

Table: Program characteristics

Program KLOC Statements Pointers Alloc Sites Queries
milc-v6 15 11713 29584 865 3
less-451 27.1 6766 22835 1135 100
hmmer-2.3 36 27924 74689 1472 2043
make-4.1 40.4 14926 36707 1563 1133
a2ps-4.14 64.6 49172 116129 3625 5065
bison-3.0.4 113.3 36815 90049 1976 4408
grep-2.21 118.4 10199 33931 1108 562
tar-1.28 132 30504 85727 3350 909
bash-4.3 155.9 59442 191413 6359 5103
sendmail-8.15 259.9 86653 256074 7549 2715
vim-7.4 413.1 147550 466493 8960 6753
emacs-24.4 431.9 189097 754746 12037 4438
Total 1807.6 670761 2158377 49999 33232

14 / 18

FSE 2016, November 16th, Seattle

Analysis Precision

m
ilc le
ss

hm
m
er

m
ak
e

a2
ps

bi
so
n

gr
ep ta
r

ba
sh

se
nd
m
ai
l

vi
m

em
ac
s0%

20%

40%

60%

80%

100% B=200k

B=100k

B=40k

B=20k

B=10k

B=4k

B=2k

B=1k

B=400

B=200

B=100

B=40

B=20

B=10

Figure: Percentage of queried variables proved to be initialized by
SUPA over SFS under different budgets

SUPA answers correctly 97% of all the queries as SFS under 10K budget per
query, and the same precision as SFS when increasing the budget to 200K.

15 / 18

FSE 2016, November 16th, Seattle

Analysis Time and Memory Usage

101 102 103 104 105
0.0001

0.001

0.01

0.1

1

10

0.0002

0.0004
0.0009 0.0021

0.0040
0.0084 0.0209

0.0356
0.0727 0.1867

0.4301
0.8495 2.4762

2.8794

Budget

T
im

e
p
er

q
u
er
y
(s
ec
s)

(a) Analysis Time

101 102 103 104 105
0.01

0.1

1

10

100

1,000

0.06

0.06
0.10 0.22

0.30 0.40
0.74

1.68

5.41
35.33

68.24
135.78

280.26

360.67

Budget

M
em

or
y
u
sa
ge

(K
B
)

(b) Memory Usage

SUPA consumes about 0.19 seconds and 36KB of memory per query,
on average (with a budget of 10000 value-flows traversed).

16 / 18

FSE 2016, November 16th, Seattle

Precision

Number of strong updates Number of UAO by Supa Number of UAO by SFS

101 103 105

0

5

10

15

20

Budget

#SU milc

101 103 105

0

2

4

6

#UAO

101 103 105

0

100

200

300

Budget

#SU less

101 103 105

0

20

40

60

#UAO

101 103 105

0

50

100

150

200

Budget

#SU hmmer

101 103 105

0

50

100

150

#UAO

101 103 105

0

50

100

150

200

Budget

#SU make

101 103 105

0

10

20

30

40

#UAO

101 103 105

0

500

1,000

1,500

Budget

#SU a2ps

101 103 105

0

20

40

60

#UAO

101 103 105

0

500

1,000

1,500

Budget

#SU bison

101 103 105

0

50

100

150

#UAO

101 103 105

0

50

100

150

200

Budget

#SU grep

101 103 105

0

10

20

30

#UAO

101 103 105

0

200

400

600

Budget

#SU tar

101 103 105

0

20

40

60

80

100

#UAO

101 103 105

0

100

200

300

400

Budget

#SU bash

101 103 105

0

10

20

30

#UAO

101 103 105

0

200

400

600

800

Budget

#SU sendmail

101 103 105

0

50

100

150

#UAO

101 103 105

0

1,000

2,000

3,000

Budget

#SU vim

101 103 105

0

100

200

300

#UAO

101 103 105

0

500

1,000

1,500

Budget

#SU emacs

101 103 105

0

20

40

60

80

#UAO

Figure: Correlating the number of strong updates with the number of
UAO’s under different budgets.

17 / 18

FSE 2016, November 16th, Seattle

Context-Sensitive Results

Table: Average analysis times and UAO’s reported by SUPA-FSCS
(with a budget of 10000 in each stage) and SUPA-FSCI (with a
budget of 10000 in total)

Program SUPA-FSCI SUPA-FSCS
Time (ms) #UAO Time (ms) #UAO

milc 0.02 3 14.52 0
less 15.15 37 92.41 37
hmmer 11.41 86 135.05 71
make 124.40 26 229.44 26
a2ps 126.01 34 448.26 32
bison 465.54 94 529.20 86
grep 124.46 14 197.66 14
tar 26.31 70 83.10 68
bash 188.69 17 327.16 17
sendmail 200.32 94 250.19 85
vim 168.67 218 473.25 218
emacs 159.22 45 222.65 45

17 / 18

FSE 2016, November 16th, Seattle

Conclusion

• Demand-driven pointer analysis with strong updates for
C/C++ programs.

• Hybrid multi-stage analysis framework to performs strong
update analysis precisely by refining imprecisely
pre-computed value-flows away.

• Small analysis time and memory budgets (0.19 seconds
and 36KB of memory per points-to query, on average).

18 / 18

FSE 2016, November 16th, Seattle

Full replication package is publicly available online:
http://www.cse.unsw.edu.au/~corg/supa/

Thanks!

Q & A

18 / 18

http://www.cse.unsw.edu.au/~corg/supa/

FSE 2016, November 16th, Seattle

Backup Slides: Pre-analysis and SFS Time

Table: Pre-processing times taken by pre-analysis shared by SUPA
and SFS and analysis times of SFS (in seconds)

Program
Pre-Analysis Times Analysis

Shared by SUPA and SFS Time of
Andersen’s Analysis SVFG Total SFS

milc 0.42 0.1 0.52 0.16
less 0.42 0.37 0.79 1.94

hmmer 1.57 0.46 2.03 1.07
make 1.74 1.17 2.91 13.94
a2ps 7.34 1.31 8.65 60.61
bison 8.18 3.66 11.84 44.16
grep 1.44 0.17 1.61 2.39
tar 2.73 1.71 4.44 12.27

bash 53.48 44.07 97.55 2590.69
sendmail 24.05 23.43 47.48 348.63

vim 445.88 85.69 531.57 13823
emacs 135.93 146.94 282.87 8047.55

18 / 18

FSE 2016, November 16th, Seattle

Case Studies
// symtab.c

114 static

115 void symbols_sort(symbol **first, symbol **second) {

...

119 symbol* tmp = *first;

120 *first = *second;

121 *second = tmp;

...

123 }

623 static void

624 user_token_number_redeclaration(...) {

...

627 symbols_sort (&st, &nd);

...

628 complain_indent (&nd->location, ...);

635 }

// mark.c

68 static struct mark* getmark(int c){

72 register struct mark *m; static struct mark sm;

75 switch (c) {

77 case ’^’:

81 m = &sm;

...

84 m->m_ifile = curr_ifile;

85 break;

108 case ’\’’:

112 m = &marks[LASTMARK];

113 break;

127 }

128 return (m);

129 }

179 public void gomark(int c) {

186 m = getmark(c);

208 if (m->m_ifile){ ...}

218 }
(a) Code snippet from bison-3.0.4 (b) Code snippet from less-4.5.1

//io_lat4.c

93 int qcdhdr_get_str(char *s, QCDheader *hdr, char **q) {

98 *q = (*hdr).value[i];

104 }

113 int qcdhdr_get_int(char *s,QCDheader *hdr,int *q) {

114 char *p;

115 qcdhdr_get_str(s,hdr,&p);

117 sscanf(p,"%d",...);

119 }

120 int qcdhdr_get_int32x(char *s,QCDheader *hdr,...) {

121 char *p;

123 qcdhdr_get_str(s,hdr,&p);

125 sscanf(p,"%x",...);

128 }

129 int qcdhdr_get_double(char *s, QCDheader *hdr, ...) {

130 char *p;

131 qcdhdr_get_str(s,hdr,&p);

133 sscanf(p,"%lf",...);

135 }

//argp-help.c

434 static struct hol * make_hol (...) {

442 struct hol *hol = malloc (sizeof (struct hol)); // Obj

501 return hol;

502 }

849 static void hol_append (struct hol *hol, ...) {

934 hol->short_options = short_options;

939 }

1386 static struct hol * argp_hol (...) {

1390 struct hol *hol = make_hol (argp, cluster);

1401 hol_append(hol, ...);

1405 }

1588 static void _help (...)

1617 hol = argp_hol (argp, 0);

1664 hol_usage (hol, fs);

1727 }

1346 static void hol_usage (struct hol *hol, ...) {

1353 strlen(hol->short_options);

1382 }
(c) Code snippet from milc-v6 (d) Code snippet from tar-1.28

SU for sm.m_ifileSU for nd

SU for q
SU for Obj.short_options

Query
pt(⟨ℓ628 ,nd->location⟩)

Query
pt(⟨ℓ117 ,p⟩)

Query
pt(⟨ℓ1353 ,hol->short_options⟩)

Query
pt(⟨ℓ208 ,m->m_ifile⟩)

18 / 18

	Motivation
	Motivation
	Framework and Analyses
	Experimental Result

