Adifact evaluated by FSE |

On-Demand Strong Update Analysis
via Value-Flow Refinement

Yulei Sui and Jingling Xue

School of Computer Science and Engineering
The University of New South Wales
2052 Sydney Australia

Nov. 16, 2016

1/18

FSE 2016, November 16th, Seattle

Contributions

e Demand-driven pointer analysis with strong updates for
C/C++ programs.

e Hybrid multi-stage analysis framework to performs strong
update analysis precisely by refining imprecisely
pre-computed value-flows away.

e Small analysis time and memory budgets (0.19 seconds
and 36KB of memory per points-to query, on average).

2/18

FSE 2016, November 16th, Seattle

Outline

e Background and Motivation
e Our approach: SUPA
o Experimental Results and Evaluation

2/18

FSE 2016, November 16th, Seattle

Pointer Analysis

« Statically approximate runtime values of a pointer
¢ A fundamental enabling technology for many clients.

Compiler Memory Error Concurrency Bug
Optimisation Detection Detection
(e.g., SIMD) (e.g., Null pointer) (e.g., Data race)
Software Testing .
(e.g., Accelerating e%eb;ﬁggg (Sgcug}:yl)
dynamic analysis) A
[Pointer Analysis]

FSE 2016, November 16th, Seattle

Pointer Analysis

« Statically approximate runtime values of a pointer
¢ A fundamental enabling technology for many clients.

Effectiveness of Clients

.
Compiler Memory Error Concurrency Bug
Optimisation Detection Detection
(e.g., SIMD) (e.g., Null pointer) (e.g., Data race)
Software Testing)
(e.g., Accelerating e%ebgﬁgr?g Szcug:yl)
dynamic analysis) "
[Pointer Analysis]
Precision

3/18

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates

o Key feature of flow-sensitivity to boost the precision of
pointer analysis

--Strong updates: overwrite contents of an abstract
memory object with a new value.

--Weak updates: add new values to the existing values of
an abstract object.

[Pointer Analysis]

Precision

Strong Updates %

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates

Flow-Insensitive Pointer Analysis

Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis

Respect program control-flow, i.e., a separate solution at each program point.

L1: p=4&a;
L2: 9=p;

L3: *p = &b;
L4: "q=&c
L5: r="p;

Flow-insensitive analysis

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates

Flow-Insensitive Pointer Analysis
Ignore program execution order, i.e., a single solution across whole program.

Flow-Sensitive Pointer Analysis
Respect program control-flow, i.e., a separate solution at each program point.

L1: = &a;
p p-a
L2: g=p; q—a
a—b,c
L3: *p = &b, r— b, C
L4: "q=8&c
L5: r="p;

Flow-insensitive analysis

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates

Flow-Insensitive Pointer Analysis

Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis

Respect program control-flow, i.e., a separate solution at each program point.

L1: p=4&a;
p—a
L2: g=p;
p—~a qgq—a
L3: *p =&b;
p—a g—a a-b
L4: "q=&c
p—a qgq-—a a—-b a-c
L5: r="p;

p—~a g—a a—-b a—-c r—b r—c
Flow-sensitive analysis without strong updates

5/18

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates

Flow-Insensitive Pointer Analysis

Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis

Respect program control-flow, i.e., a separate solution at each program point.

L1: p=4&a;
p—a

L2: gq=p;

L3: *p=&b; *q refers to a single runtime
poa q-a a-b memory location

L4: *g= &C Strong updates for a
p—a qgq-—a a>h a-—-c

L5: r="p;

p—~a g—a a—b a—-c p>xh r—c
Flow-sensitive analysis with strong updates

FSE 2016, November 16th, Seattle

Flow-Sensitive Analysis with Strong Updates

Flow-Insensitive Pointer Analysis

Ignore program execution order, i.e., a single solution across whole program.
Flow-Sensitive Pointer Analysis with strong updates

Respect program control-flow, i.e., a separate solution at each program point.

L1: p=4&a;
p—a spurious data dependence
L2: gq=p; and points-to relation may cause
p—~a g—a false alarms in bug detectors
L3 *p = &b;
)/ p—a qg-—a a—-b
\ L4:(*a=&c
>< p—a g—a > a-c
‘LS: r="p;

p—a qg—a a—b a—c M r—c
Flow-sensitive analysis with strong updates

FSE 2016, November 16th, Seattle

Flow- and Context-Sensitive Strong Updates

Flow-Insensitive Pointer Analysis
Ignore program execution order, i.e., a single solution across whole program.

Flow-Sensitive Pointer Analysis
Respect program control-flow, i.e., a separate solution at each program point.

bar(){ foo(p){ *p refers to unique object a under cs1
if(..) { Strong updates for a
p=&a; *pl= &d; under context [cs1]
*p = &b; :
cs1: x =foo(p); -, d . Weak updates for both a
}else 2((P); x % return "p; and b under context [cs2]
p=&c

*p refers to two objects a and b

)
cs2: y=foo(p); y— b, d } under cs2

Flow-Sensitive Analysis

6/18

FSE 2016, November 16th, Seattle

#functions: 194 #pointers: 20773
Costly to reason about whole-program control-flows!

FSE 2016, November 16th, Seattle

Call Graph of emacs-24.4 (431.9KLOC)

-

A NS
] i I L vL { —
i = T =
S (LA K AN
‘ H sl ‘ ’ \WU I ‘\\‘ A
T
I
Il |
it
i s i

#functions: 3938 #pointers: 754746 #loads/stores: 52781

Costly to reason about whole-program calling contexts!

FSE 2016, November 16th, Seattle

Limitations of Existing Strong Update Analyses

‘@ 'l Single Analysis Choice:

ANSWER A O
¢ ﬁ

ANSWER
products 2 -
Whole-program Time consuming

Single analysis choice
- for all queries
Existing Strong Update Analyses

Gap

Practical Strong Update Analysis

Multiple Analysis Choices:
AQ BQ

Multiple analysis choices

D d-Dri Analysis with Budgets
emand-briven naysis wi udge for different queries

FSE 2016, November 16th, Seattle

Outline

e Background and Motivation
e Our approach: SUPA
e Experimental Results and Evaluation

FSE 2016, November 16th, Seattle

SUPA: On-Demand Strong-UPdate Analysis

<«----
|

[}
Refine

Pre-
Program—> analysis [~ Value-Flows
On-Demand

Queries———>

Reachability Solver

Stages
- - Efficiency . _5
< - - Precision - - -

Stage[0] Stage[N-1]

v
Budgets Out-Of-Budget[i]? No ki
Yes

Stageli]

L |

Select i

i++

e Pre-computed value-flows (def-use)

o Backward CFL-reachability analysis on value-flow graph
under analysis budgets (value-flow edges traversed)

o Multi-stages include FSCS, FSCI and FICI stages.

FSE 2016, November 16th, Seattle

10/18

5 UNSW

An Example

L1: p=2&a

L2: q=p; points-to query pts(r)?
L3:

L4:

L5:

11/18

FSE 2016, November 16th, Seattle

An Example

L1: p=&a
p—a
L2: q=p; points-to query pts(r)?
L3:
L4:
L5:
p—a g~—a a—b a—c r—-b r—c
e 11/ 18

FSE 2016, November 16th, Seattle

An Example

L1: p = &a; — def-use of top-level pointers
ED\ ----» def-use of address-taken objects
|
L2: q=p; [P]
[p]
[q demand-driven analysis on top of pre-
L3: 0 =8&b computed value-flow (def-use) graph
I
(@]
v
L4: *q = &c
[a]
|
\/
L5: r="p;

11/18

FSE 2016, November 16th, Seattle

An Example

L1: p = &a; — def-use of top-level pointers

Ep\ - ---» def-use of address-taken objects
\

L2: =k [Pl » value-flow traces:

q]

L3: &b

/
> ©
‘o - -l

Ne)
l<q--p--1l «--

4
o

L4: &c

starting from L5:r = ..

backward tracing against value-flows
L5:

-

11/18

FSE 2016, November 16th, Seattle

An Example

L1: p = &a; — def-use of top-level pointers
ED\ ----» def-use of address-taken objects
|
Lo: q=p; o] value-flow traces:
[p]
]
L3: p=3&b
[a]
v
L4: *q=&c L5 <«—[p]— L1
I
a @
|
v
L5: r="p;

11/18

FSE 2016, November 16th, Seattle

An Example

L1: p = &a; — def-use of top-level pointers
Ep\ - ---» def-use of address-taken objects
\ .
L2: q=p; Ipl value-flow traces:
[P]
q]
L3: o] =|&b; '
' 1
) @ @
v v
L4: *q=8c L5 <—[p]— L1
il ©,
|
*p refers to object a
L5: r="*p;

11/18

FSE 2016, November 16th, Seattle

An Example

L1: p = &a; — def-use of top-level pointers
Ep\ ----» def-use of address-taken objects
|
Lo: q=p; o] value-flow traces:
[p]
]
L3: *p = &b; L4 <—[g]— L2 <=[p]— L2
I I
! I
g @w @ Q@
+ Lvs [p]— L1
. *oa . | p R—
L4: q _:&c, @
[a]
|
v
L5: r="p;

11/18

FSE 2016, November 16th, Seattle

An Example

L1: p = &a; — def-use of top-level pointers
EP\ ----» def-use of address-taken objects
|
Lo: q=p; Ipl value-flow traces:

[pl L3 stop backward tracing
>[z% due to strong updates
[q] X

L3: p = &b; L4 <—[q]— L2 <—[p]— L2

purious @ [;:1] @ @

dependence

. *q = &C" L5 <«—[p]— L1
L4: q : &c; @
[a]
|
\ .
L5: r="p; r points to o3 only

11/18

FSE 2016, November 16th, Seattle

An Example

L1: p =&a; — def-use of top-level pointers
EP] ----» def-use of address-taken objects
| The earlier a strong update is performed,
L2: q=p; [p] The fewer the number of statements is traversed.
/ bl
q]
L3: L3 does not need to be analyzed
’ ! during backward reachability
(2] purious
dependence
L4: *q = &c;
[a]
|
v
L5: r="p;

11/18

§ UNSW

FSE 2016, November 16th, Seattle

An Example

L1: p =4&a; —» def-use of top-level pointers
EP\ - ---» def-use of address-taken objects
|
L2: q=p: ipl value-flow traces:

[pl L3 stop backward tracing
[a], due to strong updates
[q]

L3: . L4 <—q)— L2 <{p]— L2
[8;1] purious (2 [a] ® O)
>V< dependence V
L4: *q = &¢; L5 4_%_ L1
a .
[;] Analysis Budget <4 ?
L5: r !* o: Fall back to less precise analysis e.g., Andersen's

r points to both b and ¢

11/18

§ UNSW

FSE 2016, November 16th, Seattle

Flow- and Context-Sensitive Strong Updates

o Every statement is parameterized additionally by a context
i.e., a sequence of callsites.

o CFL-reachability on top of value-flow graph by matching
calls and returns.

e Strong updates on singleton heap objects (objects with
concrete contexts, not involved in recursion or loops).

12/18

FSE 2016, November 16th, Seattle

Outline

e Background and Motivation
e Our approach: SUPA
e Experimental Results and Evaluation

12/18

FSE 2016, November 16th, Seattle

Evaluation
e Implementation:
¢ Implemented on top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC '16)
e Core implementation of SUPA is round 5,000 LOC C++

code.
o Field-sensitivity and on-the-fly call graph construction.

'Ben Hardekopf and Calvin Lin, Flow-sensitive pointer analysis for millions of lines
of code CGO "11

13/18

FSE 2016, November 16th, Seattle

Evaluation

e Implementation:
¢ Implemented on top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC '16)
e Core implementation of SUPA is round 5,000 LOC C++
code.
o Field-sensitivity and on-the-fly call graph construction.
e Methodology
¢ One major client, uninitialized pointer detection (add a
special tainted object (UAO) pointed by every stack and
heap objects at their allocation sites).
e SUPAvs. SFS!

'Ben Hardekopf and Calvin Lin, Flow-sensitive pointer analysis for millions of lines
of code CGO "11

13/18

FSE 2016, November 16th, Seattle

Evaluation

e Implementation:
¢ Implemented on top of our previous open-source tool SVF
(http://unsw-corg.github.io/SVF/) (CC '16)
e Core implementation of SUPA is round 5,000 LOC C++
code.
o Field-sensitivity and on-the-fly call graph construction.
e Methodology
¢ One major client, uninitialized pointer detection (add a
special tainted object (UAO) pointed by every stack and
heap objects at their allocation sites).
e SUPA v.s. SFS!
e Benchmarks:
e 12 open-source programs, nine recently released
applications, such as make, bash,sendmail,vim, and emacs.
e Machine setup:
e Ubuntu Linux 3.11 Intel Xeon Quad Core, 3.7GHZ, 64GB

'Ben Hardekopf and Calvin Lin, Flow-sensitive pointer analysis for millions of lines
of code CGO "11

13/18

FSE 2016, November 16th, Seattle 7 UNSW

Benchmarks

Table: Program characteristics

| Program [[KLOC |Statements| Pointers | Alloc Sites | Queries |

milc-v6 15 [11713 29584 | 865 3
less-451 271 |6766 22835 |1135 100
hmmer-2.3 ||36 |27924 74689 | 1472 2043
make-4.1 40.4 |14926 36707 |1563 1133
a2ps-4.14 646 |49172 116129 |3625 5065
bison-3.04 ||113.3 |36815 90049 |1976 4408
grep-2.21 118.4 [10199 33931 |1108 562
tar-1.28 132 30504 85727 | 3350 909
bash-4.3 155.9 | 59442 191413 | 6359 5103
sendmail-8.15([259.9 | 86653 256074 | 7549 2715
vim-7.4 4131 |[147550 | 466493 |8960 6753
emacs-24.4 ||431.9 |189097 |754746 |12037 | 4438
Total 1807.6|670761 |2158377|49999 |33232

14/18

FSE 2016, November 16th, Seattle = UNSW

Analysis Precision
100 %

H B=200k
OB=100k
| EB=40k
OB=20k
EB=10k
4 OB=4k
EB=2k
EB=1k

4 OB=400
HB=200
EB=100
1 EB=10
EB=20
EB=10

80%
60 % [
40 %

20 %

Figure: Percentage of queried variables proved to be initialized by
SUPA over SFS under different budgets

SUPA answers correctly 97% of all the queries as SFS under 10K budget per
query, and the same precision as SFS when increasing the budget to 200K.

- ___| 15/18

FSE 2016, November 16th, Seattle

Analysis Time and Memory Usage

10

— 2.8794
§ 1 0.8495 ‘/4;32
— 0.4301

7 216

g 0.1 i S

< 0.0084_G.0209

g 001 0.0040 °

g 0.001 g 00021
& .0002

0.0001 1ot 102 10° 104 10° Budget
(a) Analysis Time

. 1,000 B60.67
= 135.78 5
2 w0 D=l
o 5.33

Ed 10

% 1.68

= 1 o0

I).30 .74

2 6.0 Mw%

5] 0.1 il

= 0.06

0.01

10! 102 103 104 10° Budget
(b) Memory Usage

SUPA consumes about 0.19 seconds and 36KB of memory per query,
on average (with a budget of 10000 value-flows traversed).

- ___| 16/18

FSE 2016, November 16th, Seattle NSW

THE UNIVERSITY OF NEW SOUTH WALES

Precision

—— Number of strong updates -e= Number of UAO by SuPA --- Number of UAO by SFS
#SU milc #UAD #SU less #UAO #SU hmmer #UAO #SU make #UAO #SU a2ps guao #SU bison #uAo
20— T m 6 300 — T 7 60 200 — 150 200 — - n 40 1,500 T n 60 1,500 — . - 150
15} 150 150 |- - 30
7 14 200f 1 40 | 100 L = 1,000 40 1,000 1 100
10 100 [100 [- 1 20
2 100 120 - 50 500[- 20 500F-F ool {50
5h A 50 50 J10 UL/
ol i il g ol i il o oL i i o4 i iy ol i iy oL i i
100 10° 10° 100 10° 10° 10t 10° 10° 100 10° 10° 100 10® 10° 10t 10° 10°
Budget Budget Budget Budget Budget Budget
#SU 8rep #UAO #SU tar #UAO #SU bash #UA0 #sU sendmail #UA0 #SU vim #UAO #SU emacs #UAO
200 — T 7 30 600 — T) 100 400 — T 30 800 — - M 150 3,000 — T 300 1,500 — - m 80
{80 4 8 y
150 |- 300 600 b H 60
20 400 | FR9eses 60 20 AT S 100 2,000 | SIS 7Y 200 1,000 |
100 200" [400} T 1 40
Y 10 200 - 14 {10 - 50 1,000 1 100 00|
50 | 9 100 200 |- | 20
oL i ilg o i iy oL i il g o4 i iy Py = i iy ok i i
10t 10° 10° 100 10° 10° 10t 10° 10° 10t 10° 10° 100 10° 10° 10t 10° 10°
Budget Budget Budget Budget Budget Budget

Figure: Correlating the number of strong updates with the number of
UAQO’s under different budgets.

- ___| 17/18

FSE 2016, November 16th, Seattle

THE UNIVERSITY OF NEW SOUTH WALES

Context-Sensitive Results

Table: Average analysis times and UAO’s reported by SUPA-FSCS
(with a budget of 10000 in each stage) and SUPA-FSCI (with a
budget of 10000 in total)

Program SUPA-FSCI SUPA-FSCS
Time (ms) [#UAO | Time (ms) [#UAO
milc 0.02 3 14.52 0
less 15.15 37 92.41 37
hmmer 11.41 86 135.05 71
make 124.40 26 229.44 26
azps 126.01 34 448.26 32
bison 465.54 94 529.20 86
grep 124.46 14 197.66 14
tar 26.31 70 83.10 68
bash 188.69 17 327.16 17
sendmail 200.32 94 250.19 85
vim 168.67 218 473.25 218
emacs 159.22 45 222.65 45

- ___| 17/18

FSE 2016, November 16th, Seattle

NSW

Conclusion

e Demand-driven pointer analysis with strong updates for
C/C++ programs.

e Hybrid multi-stage analysis framework to performs strong
update analysis precisely by refining imprecisely
pre-computed value-flows away.

e Small analysis time and memory budgets (0.19 seconds
and 36KB of memory per points-to query, on average).

18/18

FSE 2016, November 16th, Seattle

Artifact evaluated by FSE |

Full replication package is publicly available online:
http://www.cse.unsw.edu.au/~corg/supa/

Thanks!

Q&A

18/18

FSE 2016, November 16th, Seattle

http://www.cse.unsw.edu.au/~corg/supa/

Backup Slides: Pre-analysis and SFS Time

Table: Pre-processing times taken by pre-analysis shared by SUPA
and SFS and analysis times of SFS (in seconds)

FSE 2016, November 16th, Seattle

Pre-Analysis Times Analysis
Program Shared by SUPA and SFS Time of
Andersen’s Analysis | SVFG | Total SFS
milc 0.42 0.1 0.52 0.16
less 0.42 0.37 0.79 1.94
hmmer 1.57 0.46 2.03 1.07
make 1.74 1.17 2.91 13.94
azps 7.34 1.31 8.65 60.61
bison 8.18 3.66 | 11.84 4416
grep 144 017 1.61 2.39
tar 2.73 1.71 4.44 12.27
bash 53.48 | 44.07| 97.55| 2590.69
sendmail 24.05| 23.43 | 47.48| 348.63
vim 44588 | 85.69 | 531.57 | 13823
emacs 135.93 | 146.94 | 282.87 | 8047.55

18/18

NSW

Case Studies

// symtab.c // mark.c
114 static 68 static struct markx getmark(int c){
115 void symbols_sort(symbol **first, symbol **second) { 72 register struct mark *m; static struct mark sm;
75 switch (c) {
119 symbol* tmp = *first; 77 case *7:
120 xfirst = *second; 81 m = &sm;
121 (*second)= tmp; SU fornd 84 n->n_ifile v= curr_ifile; SU forsm.m._ifile
85 break;
123 } 108 case *\’’:
112 m = &marks [LASTMARK] ;
623 static void 113 break;
624 user_token_number_redeclaration(...) { 127}
Query 128 return (m); Query
627 s?vrn?ols,sort (ast, &nd); pl(ctszs ,nd->location) 1_2,2 }}mbhc void gomark(int © { pt(ce208 ,m->m_ifile))
628 complain_indent .5 186 etmark(c) ;
-
635 } 218 }
(a) Code snippet from bison-3.0.4 (b) Code snippet from less-4.5.1
//io latd.c //argp-help.c
93 int gedhdr_get_str(char *s, QCDheader *hdr, char **q) { 434 static struct hol * make_hol (...) {
98 *q)= (*hdr).value[i]; sU forq 442 struct hol *hol = malloc (sizeof (struct hol)); // Obj
104) 501 return hol; A -
113 int qcdhdr_get_int(char *s,QCDheader #hdr,int *q) { 502 su forObj.short_optlons
114 849 static void hol_append (struct hol *hol, ...) {
115 Query 934 THol->short_options »= short_options;
117 939
119 pt(c€117 ,py) 1386 static struct hol * argp_hol (...) {
120 int qcdhdr_get_int32x(char #*s,QCDheader *hdr,...) { 1390 struct hol ¥hol = make_hol (argp, cluster);
121 char *p; 1401 hol_append(hol, ...);
123 qedhdr_get_str(s,hdr,&p); 1405
125 sscanf(p,"’x",...); 1688 static void _help (.
128 1617 hol = argp_hol (argp, 0); Query
129 int qcdhdr_get_double(char *s, QCDheader *hdr, ...) { 1664 hol_usage (hol, fs); .
130 char *p; 1797 pt(c€1353 ,hol->short_options))
131 qodhdr_get_str(s,hdr,&p); 1346 static void hol e (struct hol *hol, ...) {
133 sscanf (p,"%1f",...); 1353
135 1382
(¢) Code snippet from mile-v6 (d) Code snippet from tar-1.28

FSE 2016, November 16th, Seattle

THE UNIVERSITY OF New

18/18

SOUTH WALES

	Motivation
	Motivation
	Framework and Analyses
	Experimental Result

